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Abstract

We initiate a direction for proving lower bounds on the size of non-commutative arithmetic circuits.

This direction is based on a connection between lower bounds on the size of non-commutative arith-

metic circuits and a problem about commutative degree four polynomials, the classical sum-of-squares

problem: find the smallest n such that there exists an identity
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2 + · · ·+ x2
k) · (y2
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k) = f2
1 + f2

2 + · · ·+ f2
n, (0.1)

where each fi = fi(X, Y ) is a bilinear form in X = {x1, . . . , xk} and Y = {y1, . . . , yk}. Over the

complex numbers, we show that a sufficiently strong super-linear lower bound on n in (0.1), namely,

n ≥ k1+ε with ε > 0, implies an exponential lower bound on the size of arithmetic circuits computing

the non-commutative permanent.

More generally, we consider such sum-of-squares identities for any biquadratic polynomial h(X, Y ),

namely

h(X, Y ) = f2
1 + f2

2 + · · ·+ f2
n. (0.2)

Again, proving n ≥ k1+ε in (0.2) for any explicit h over the complex numbers gives an exponential

lower bound for the non-commutative permanent. Our proofs relies on several new structure theorems

for non-commutative circuits, as well as a non-commutative analog of Valiant’s completeness of the

permanent.

We proceed to prove such super-linear bounds in some restricted cases. We prove that n ≥ Ω(k6/5)

in (0.1), if f1, . . . , fn are required to have integer coefficients. Over the real numbers, we construct an

explicit biquadratic polynomial h such that n in (0.2) must be at least Ω(k2). Unfortunately, these

results do not imply circuit lower bounds.

We also present other structural results about non-commutative arithmetic circuits. We show that

any non-commutative circuit computing an ordered non-commutative polynomial can be efficiently

transformed to a syntactically multilinear circuit computing that polynomial. The permanent, for

example, is ordered. Hence, lower bounds on the size of syntactically multilinear circuits computing

the permanent imply unrestricted non-commutative lower bounds. We also prove an exponential

lower bound on the size of non-commutative syntactically multilinear circuit computing an explicit

polynomial. This polynomial is, however, not ordered and an unrestricted circuit lower bound does

not follow.
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1 Introduction

1.1 Non-commutative computation

Arithmetic complexity theory studies computation of formal polynomials over some field or ring. Most of
this theory is concerned with computation of commutative polynomials. The basic model of computation
is that of arithmetic circuit. Despite decades of work, the best size lower bound for general circuits
computing an explicit n-variate polynomial of degree d is Ω(n log d), due to Baur and Strassen [30, 2].
Better lower bounds are known for a variety of more restricted computational models, such as monotone
circuits, multilinear or bounded depth circuits (see, e.g., [6, 3]).

In this paper we deal with a different type of restriction. We investigate non-commutative polynomials
and circuits; the case when the variables do not multiplicatively commute, i.e., xy 6= yx if x 6= y, as in the
case when the variables represent matrices over a field1. In a non-commutative circuit, a multiplication
gate is given with an order in which its inputs are multiplied. Precise definitions appear in Section 2.
A simple illustration of how absence of commutativity limits computation is the polynomial x2 − y2.
If x, y commute, the polynomial can be computed as (x − y)(x + y) using one multiplication. In the
non-commutative case, two multiplications are required to compute it.

Surprisingly, while interest in non-commutative computations goes back at least to 1970 [33], no better
lower bounds are known for general non-commutative circuits than in the commutative case. The seminal
work in this area is [21], where Nisan proved exponential lower bounds on non-commutative formula size
of determinant and permanent. He also gives an explicit polynomial that has linear size non-commutative
circuits but requires non-commutative formulas of exponential size, thus separating non-commutative
formulas and circuits.

One remarkable aspect of non-commutative computation is its connection with the celebrated approxima-
tion scheme for the (commutative) permanent [14]. The series of papers [7, 16, 1, 5] reduce the problem of
approximating permanent to the problem of computing determinant of a matrix whose entries are elements
of (non-commutative) Clifford algebras. However, already in the case of quaternions (the third Clifford
algebra), determinant cannot be efficiently computed by means of arithmetic formulas. This was shown
by Chien and Sinclair [4] who extend Nisan’s techniques to this and other non-commutative algebras.

In this paper, we propose new directions towards proving lower bounds on non-commutative circuits.
We present structure theorems for non-commutative circuits, which enable us to reduce circuit size lower
bounds to apparently simpler problems. The foremost such problem is the so called sum-of-squares
problem, a classical question on a border between algebra and topology. We also outline a connection
with multilinear circuits, in which exciting progress was made in recent years. We then make modest steps
towards the lower-bound goal, and present results some of which are of independent interest. Before we
describe the results, we take a detour to briefly describe the sum-of-squares problem and its long history.

1As in this case, addition remains commutative, as well as multiplication by constants
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1.2 The sum-of-squares problem

In this section all variables commute. Consider the polynomial

SOSk = (x2
1 + x2

2 + · · ·+ x2
k) · (y2

1 + y2
2 + · · ·+ y2

k). (1.1)

Given a field (or a ring) F, define SF(k) as the smallest n such that there exists a polynomial identity

SOSk = z2
1 + z2

2 + · · ·+ z2
n , (1.2)

where each zi = zi(X,Y ) is a bilinear form in variables X = {x1, . . . , xk} and Y = {y1, . . . , yk} over the
field F.

We refer to the problem of determining the value SF(k) as the sum-of-squares problem. Note that the
problem is not interesting if F has characteristic two, for then SF(k) = 1. Over other fields, the trivial
bounds are

k ≤ SF(k) ≤ k2 .

In Section 1.3, we describe the connection between the sum-of-squares problem and arithmetic complexity.
At this point, let us discuss the mathematical significance of the sum-of-squares problem (much more can
be found, e.g., in [29]). We focus on real sums of squares, for they are of the greatest historical importance2.
Nontrivial identities exhibiting SR(k) = k initiated this story.

When k = 1, we have x2
1y

2
1 = (x1y1)2. When k = 2, we have

(x2
1 + x2

2) · (y2
1 + y2

2) = (x1y1 − x2y2)2 + (x1y2 + x2y1)2.

Interpreting (x1, x2) and (y1, y2) as complex numbers α and β, this formula expresses the property

|α|2|β|2 = |αβ|2 (1.3)

of multiplication of complex numbers. The case k = 1 trivially expresses the same fact (1.3) for real α
and β. In 1748, motivated by the number theoretic problem of expressing every integer as a sum of four
squares, Euler proved an identity showing that SR(4) = 4. When Hamilton discovered the quaternion
algebra in 1843, this identity was quickly realized to express (1.3) for mutiplying quaternions. This was
repeated in 1848 with the discovery of the octonions algebra, and the 8-square identity expressing (1.3)
for octonions. Motivated by the study of division algebras, mathematicians tried to prove a 16-square
identity in the following 50 years. Finally Hurwitz in 1898 proved that it is impossible, obtaining the first
nontrivial lower bound:

Theorem 1.1. [11] SR(k) > k, except when k ∈ {1, 2, 4, 8}.

The following interpretation of the sum-of-squares problem got topologists interested in this problem: if
z1, . . . , zn satisfy (1.2), the map z = (z1, . . . , zn) : Rk × Rk → Rn is a bilinear normed map. Namely,
it satisfies |z(x̄, ȳ)| = |x̄||ȳ| for every x̄, ȳ ∈ Rk, where | · | is the Euclidean norm. This rigid structure
allows for topological and algebraic geometry tools to yield the following, best known lower bound, which
unfortunately gains only a factor of two over the trivial bound:

2The assumption that the zi’s in (1.2) are bilinear is satisfied automatically if the zi’s are real polynomials.
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Theorem 1.2. [13, 18] SR(k) ≥ (2− o(1))k.

As it happens, the trivial upper bound can be improved as well. There exists a normed bilinear map as
above from Rk × Rρ(k) to Rk, with ρ(k) = Θ(log k). This was shown by Radon and Hurwitz [24, 12],
who computed the exact value of the optimal ρ(k). Interestingly, such a map exists even if we require
the polynomials zi to have integer3 coefficients, see [36, 19]. The existence of this integer bilinear normed
map turns out to be related to Clifford algebras as well: it can be obtained using a matrix representation
of a Clifford algebra with ρ(k) generators. This can be seen to imply

Fact 1.3. SZ(k) ≤ O(k2/ log k).

This is the best known upper bound on SR, or SF for any other field with char F 6= 2. This motivated
researchers to study integer sums of squares, and try to prove lower bounds on SZ. Despite the effort
[18, 34, 29], the asymptotic bounds on SZ remained as wide open as in the case of reals. One of the
contributions of this paper is the first super-linear lower bound in the integer case. We show that SZ(k) ≥
Ω(k6/5).

To illustrate the subtlety of proving lower bounds on the sum-of-squares problem, let us mention that if
we allow the zi’s to be rational functions rather than polynomials, the nature of the problem significantly
changes. In 1965, Pfister [23] proved that if the zi’s are rational functions, SOSk can be written as a sum
of k squares whenever k is a power of two.

1.3 Non-commutative circuits and bilinear complexity

Conditional lower bounds on circuit complexity. The connection between the sum-of-squares
problem and non-commutative lower bounds is that a sufficiently strong lower bound on S(k) implies an
exponential lower bound for permanent. Here we present our main results, for a more detailed discussion,
see Section 2.1. In the non-commutative setting, there are several options to define the permanent, we
define it row-by-row, that is,

PERMn(X) =
∑
π

x1,π(1)x2,π(2) · · ·xn,π(n),

where π is a permutation of [n] = {1, . . . , n}. The advertised connection can be summarized as follows4.

Theorem 1.4. Let F be an algebraically closed field. Assume that SF(k) ≥ Ω(k1+ε) for a constant ε > 0.
Then PERMn requires non-commutative circuits of size 2Ω(n).

Theorem 1.4 is an instance of a general connection between non-commutative circuits and commutative
degree four polynomials, which we now proceed to describe.

Let f be a commutative polynomial of degree four over a field F. We say that f is biquadratic in variables
X = {x1, . . . , xk} and Y = {y1, . . . , yk}, if every monomial in f has the form xi1xi2yj1yj2 . If f is
biquadratic in variables X and Y , we define

3The coefficients of the zi’s can actually be taken to be in {−1, 0, 1}.
4If char F = 2, the theorem holds trivially, since SF(k) = 1.
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sum-of-squares complexity: SF(f) is the smallest5 n so that f can be written as

f = z2
1 + · · ·+ z2

n,

bilinear complexity: BF(f) is the smallest n so that f can be written as

f = z1z
′
1 + · · ·+ znz

′
n,

where each zi and z′i are bilinear forms in X,Y . We thus have SF(SOSk) = SF(k), as defined in the
previous section.

Let us first note that over certain fields, SF(f) and BF(f) are virtually the same:

Remark 1.5. Clearly, BF(f) ≤ SF(f). If F is algebraically closed with char F 6= 2, then SF(f) ≤ 3BF(f).
This holds since 2zz′ = (z + z′)2 + (

√
−1z)2 + (

√
−1z′)2.

We now define the non-commutative version of SOSk: the non-commutative identity polynomial is

IDk =
∑
i,j∈[k]

xiyjxiyj . (1.4)

We show that a lower bound on BF(SOSk) implies a lower bound on the size of non-commutative circuit
computing IDk.

Theorem 1.6. The size of a non-commutative circuit over F computing IDk is at least Ω(BF(SOSk)).

Theorem 1.6 is proved in Section 4. The lower bound given by the theorem is reminiscent of the tensor
rank approach to lower bounds for commutative circuits, where a lower bound on tensor rank implies
circuit lower bounds [31]. In the non-commutative case we can prove a much stronger implication. For
every ε > 0, a k1+ε lower bound on BF(SOSk) gives an exponential lower bound for the permanent.
Theorem 1.7, which is proved in Section 5, together with Remark 1.5 imply Theorem 1.4.

Theorem 1.7. Assume that BF(SOSk) ≥ Ω(k1+ε) for some ε > 0. Then PERMn requires non-commutative
circuits of size 2Ω(n) over F.

The theorem is reminiscent of a result in Boolean complexity, where a sufficient linear lower bound on
complexity of a bipartite graph implies an exponential circuit lower bound for a related function (see [15]
for discussion.)

An important property that the non-commutative permanent shares with its commutative counterpart is
its completeness for the class of explicit polynomials. This enables us to generalize Theorem 1.7 to the
following theorem, which is proved in Section 5.1. Let {fk} be a family of commutative biquadratic poly-
nomials such that the number of variables in fk is polynomial in k. We call {fk} explicit, if there exists
a polynomial-time algorithm which, given k and a degree-four monomial α as inputs6, computes the
coefficient of α in fk. The polynomial SOSk is clearly explicit.

5When no such n exists, SF(f) is infinite.
6We think of the input as given in a binary representation; the algorithm thus runs in time polynomial in log k.
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Theorem 1.8. Let F be a field such that char F 6= 2. Let {fk} be a family of explicit biquadratic polyno-
mials. Assume that BF(fk) ≥ Ω(k1+ε) for some ε > 0. Then PERMn requires non-commutative circuits
of size 2Ω(n) over F.

Lower bounds on sum-of-squares complexity in restricted cases. Remark 1.5 tells us that for
some fields, BF = Θ(SF), and hence to prove a circuit lower bound, it is sufficient to prove a lower bound
on SF. We prove lower bounds on SF(k) in some restricted cases. For more details, see Section 2.2.

Over R, we find an explicit ‘hard’ polynomial (Theorem 1.9 is proved in Section 6).

Theorem 1.9. There exists an explicit family {fk} of real biquadratic polynomials with coefficients in
{0, 1, 2, 4} such that SR(fk) = Θ(k2).

By Theorem 1.8, if the construction worked over the complex numbers C instead of R, we would have an
exponential lower bound on the size of non-commutative circuits for the permanent. Such a construction
is not known.

In Section 7, we investigate sums of squares over integers. We prove the following:

Theorem 1.10. SZ(k) ≥ Ω(k6/5).

This result, too, does not imply a circuit lower bound. However, if we knew how to prove the same for
Z[
√
−1] instead of Z, we would get lower bounds for circuits over Z. Such lower bounds are not known.

1.4 Ordered and multilinear circuits

An important restriction on computational power of circuits is multilinearity. This restriction has been
extensively investigated in the commutative setting. A polynomial is multilinear, if every variable has
individual degree at most one in it. Syntactically multilinear circuits are those in which every product
gate multiplies gates with disjoint sets of variables. This model was first considered in [22], where lower
bounds on constant depth multilinear circuits were proved (and later improved in [27]). In a breakthrough
paper, Raz [25] proved super-polynomial lower bounds on multilinear formula size for the permanent and
determinant. These techniques were extended by [28] to give a lower bound of about n4/3 for the size
multilinear circuits.

An interesting observation about non-commutative circuits is that if they compute a polynomial of a
specific form, they are without loss of generality multilinear. Let us call a non-commutative polynomial
f ordered, if the variables of f are divided into disjoint sets X1, . . . , Xd and every monomial in f has the
form x1 · · ·xd with xi ∈ Xi. The non-commutative permanent, as defined above, is thus ordered. An
ordered circuit is a natural model for computing ordered polynomials. Roughly, we require every gate to
take variables from the sets Xi in the same interval I ⊂ [d]; see Section 8.1 for a precise definition. One
property of ordered circuits is that they are automatically syntactically multilinear.

We show that any non-commutative circuit computing an ordered polynomial can be efficiently trans-
formed to an ordered circuit, hence a multilinear one, computing the same polynomial. Such a reduction
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is not known in the commutative case, and gives hope that a progress on multilinear lower bounds for
permanent or determinant will yield general non-commutative lower bounds. Theorem 1.11 is proved in
Section 8.1.

Theorem 1.11. Let f be an ordered polynomial of degree d. If f is computed by a non-commutative
circuit of size s, it can be computed by an ordered circuit of size O(d3s).

Again, we fall short of utilizing this connection for general lower bounds. By a simple argument, we
manage to prove an exponential lower bound on non-commutative multilinear circuits, as we state in the
next theorem. However, the polynomial APk in question is not ordered, and we cannot invoke the previous
result to obtain an unconditional lower bound (Theorem 1.12 is proved in Section 8.2).

Theorem 1.12. Let
APk =

∑
σ

xσ(1)xσ(2) · · ·xσ(k),

where σ is a permutation of [k]. Then every non-commutative multilinear circuit computing APk is of size
at least 2Ω(k).

1.5 A different perspective: lower bounds using rank

An extremely appealing way to obtain lower bounds is by using sub-additive measures, and matrix rank
is perhaps the favorite measure across many computational models. It is abundant in communication
complexity, and in circuit complexity it has also found its applications. Often, one cannot hope to find
a unique matrix whose rank would capture the complexity of the investigated function. Instead, we can
associate the function with a family of matrices, and the complexity of the function is related to the
minimum rank of matrices in that family. Typically, the family consists of matrices which are in some
sense “close”to some fixed matrix.

For arithmetic circuits, many of the known structure theorems [8, 21, 25, 9] invite a natural rank inter-
pretation. This interpretation, however, has lead to lower bounds only for restricted circuits. We sketch
below the rank problem which arises in the case of commutative circuits, and explain why it is considerably
simpler in the case of non-commutative ones.

Let f be a commutative polynomial of degree d. Consider N ×N matrices whose entries are elements of
some field, and rows and columns are labelled by monomials of degree roughly d/2. Hence N is in general
exponential in the degree of f . Associate with f a familyM of all N ×N matrices M with the following
property: for every monomial α of degree d, the sum of all entries Mβ1,β2 , such that β1β2 = α, is equal
to the coefficient of α in f . In other words, we partition M into subsets Tα corresponding to the possible
ways to write α as a product of two monomials, and we impose a condition on the sum of entries in every
Tα. It can be shown that the circuit complexity of f can be lower bounded by the minimal rank of the
matrices in M.

Note that the sets Tα are of size exponential in d, the degree of f . The structure of the sets is not friendly
either. Our first structure theorem for non-commutative circuits, which decomposes non-commutative
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polynomials to central polynomials, translates to a similar rank problem. However, the matrices M ∈M
will be partitioned into sets of size only d (instead of exponential in d). This is thanks to the fact that there
are much fewer options to express a non-commutative monomial as a product of other monomials. Our
second structure theorem, concerning block-central polynomials, gives a partition into sets of size at most
two. The structure of these sets is quite simple too. However, not simple enough to allow us to prove a
rank lower bound. In the rank formulation of circuit lower bounds, we can therefore see non-commutative
circuits as a first step towards understanding commutative circuit lower bounds.

1.6 Structure of the paper

In Section 2 we outline our proofs of conditional lower bounds for non-commutative circuits and re-
stricted lower bounds on the sum-of-squares complexity. In Section 3 we investigate the structure of
non-commutative circuits. In Section 4 we present a connection between circuit complexity of degree-four
polynomials and bilinear complexity. In Section 5 we show a reduction from circuit complexity of general
polynomials to bilinear complexity of degree-four polynomials, in particular, we prove a conditional lower
bound for permanent. In Section 6 we construct a polynomial whose sum-of-squares complexity over the
reals in high. In Section 7 we prove a super-linear lower bound for the sum-of-squares complexity over
the integers. Finally, in Section 8 we study a family of circuits we call ordered, which are in particular
multilinear, and prove lower bound for the size of multilinear non-commutative circuits.

2 Overview of proofs

2.1 Conditional lower bounds on non-commutative circuit size

In this section we describe the path that leads from non-commutative circuit complexity to bilinear
complexity.

Preliminaries. Let F be a field. A non-commutative polynomial is a formal sum of products of variables
and field elements. We assume that the variables do not multiplicatively commute, that is, xy 6= yx

whenever x 6= y. However, the variables commute with elements of F. The reader can imagine the
variables as representing square matrices.

A non-commutative arithmetic circuit Φ is a directed acyclic graph as follows. Nodes (or gates) of in-
degree zero are labelled by either a variable or a field element in F. All the other nodes have in-degree
two and they are labelled by either + or ×. The two edges going into a gate v labelled by × are labelled
by left and right. We denote by v = v1 × v2 the fact that (v1, v) is the left edge going into v, and (v2, v)
is the right edge going into v. (This is to determine the order of multiplication.) The size of a circuit Φ
is the number of edges in Φ. The integer C(f) is the size of a smallest circuit computing f .

Note. Unless stated otherwise, we refer to non-commutative polynomials as polynomials, and to non-
commutative circuits as circuits.
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The proof is presented in three parts, which are an exploration of the structure of non-commutative
circuits.

Part I: structure of circuits. The starting point of our trail is the structure of polynomials computed
by non-commutative circuits, which we now explain. The methods we use are elementary, and are an
adaptation of works like [8, 9] to the non-commutative world.

We start by defining the ‘building blocks’ of polynomials, which we call central polynomials. A homo-
geneous7 polynomial f of degree d is called central, if there exist integers m and d0, d1, d2 satisfying
d/3 ≤ d0 < 2d/3 and d0 + d1 + d2 = d so that

f =
∑
i∈[m]

highi, (2.1)

where

(i). the polynomial g, which we call the body, is homogeneous of degree deg g = d0,

(ii). for every i ∈ [m], the polynomials hi, hi are homogeneous of degrees deg hi = d1 and deg hi = d2.

The width of a homogeneous polynomial f of degree d, denoted w(f), is the smallest integer n so that f
can be written as

f = f1 + f2 + · · · fn, (2.2)

with each fi a central polynomial. In Section 3.1 we show that the width of f is at most O(d3C(f)), and
so lower bounds on width imply lower bounds on circuit complexity. We prove this by induction on the
circuit complexity of f .

Part II: degree-four. In the first part, we argued that a lower bound on width implies a lower bound
on circuit complexity. In the case of degree-four, a central polynomial has a very simple structure: d0 is
always 2, and so the body must reside in one of three places: left (when d1 = 0), center (when d1 = 1),
and right (when d1 = 2). For a polynomial of degree four, we can thus write (2.2) with n at most order
C(f), and each fi of this special form.

This observation allows us to relate width and bilinear complexity, as the following proposition shows. For
a more general statement, see Proposition 4.1, which also shows that the width and bilinear complexity
are in fact equivalent.

Proposition 2.1. w(IDk) ≥ B(SOSk).

Part I and Proposition 2.1 already imply Theorem 1.6, which states that a lower bound on bilinear
complexity implies a lower bound on circuit complexity of IDk.

7Recall that a polynomial f is homogeneous, if all monomials with a non-zero coefficient in f have the same degree, and

that circuit Φ is homogeneous, if every gate in Φ computes a homogeneous polynomial.
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Part III: general degree to degree-four. The argument presented in the second step can imply
at most a quadratic lower bound on circuit size. To get exponential lower bounds, we need to consider
polynomials of higher degrees. We think of the degree of a degree-4r polynomial as divided into 4 groups,
for which we try to mimic the special structure from part II: A block-central polynomial is a central
polynomial so that d0 = 2r and d1 ∈ {0, r, 2r}. The structure of block-central polynomials is similar to
the structure of degree-four central polynomials in that the body is of fixed degree and it has three places
it can reside in: left (when d1 = 0), center (when d1 = r), and right (when d1 = 2r). In Section 5 we show
that a degree-4r polynomial f can be written as a sum of at most O(r32rC(f)) block-central polynomials.

We thus reduced the analysis of degree-4r polynomials to the analysis of degree-four polynomial. This
reduction comes with a price, a loss of a factor of 2r. We note that this loss is necessary. The proof is
a rather technical case distinction. The idea behind it is a combinatorial property of intervals in the set
[4r], which allows us to transform a central polynomial to a sum of 2r block-central polynomials.

Here is an example of this reduction in the case of the identity polynomial. The lifted identity polynomial,
LIDr, is the polynomial in variables z0, z1 of degree 4r defined by

LIDr =
∑

e∈{0,1}2r
zeze ,

where for e = (e1, . . . , e2r) ∈ {0, 1}2r, we define ze =
∏2r
i=1 zei . The lifted identity polynomial is the

high-degree counterpart of the identity polynomial, which allows us to prove that a super-linear lower
bound implies an exponential one (the corollary is proved in Section 5):

Corollary 2.2. If B(SOSk) ≥ Ω(k1+ε) for some ε > 0, then C(LIDr) ≥ 2Ω(r).

To complete the picture, we show that LIDr is reducible to the permanent of dimension 4r.

Lemma 2.3. There exists a matrix M of dimension 4r× 4r whose nonzero entries are variables z0, z1 so
that the permanent of M is LIDr.

To prove the lemma, the matrix M is constructed explicitly, see Section 5. The conditional lower bound
on the permanent, Theorem 1.7, follows from Corollary 2.2 and Lemma 2.3.

An important property that non-commutative permanent shares with its commutative counterpart is
completeness for the class of explicit polynomials. This enables us to argue that a super-linear lower bound
on the bilinear complexity of an explicit degree-four polynomial implies an exponential lower bound on
permanent. In the commutative setting, this a consequence of the VNP completeness of permanent, as
given in [32]. In the non-commutative setting, one can prove a similar result [10], see Section 5.1 for more
details.

2.2 Restricted lower bounds on sum-of-squares complexity

We now discuss the lower bounds for restricted sum-of-squares problems we prove: an explicit lower bound
over R and a lower bound for SOSk over integers. For more details and formal definitions, see Sections 6
and 7.
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We phrase the problem of lower bounding SR(g) in terms of matrices of real vectors. Let V = {vi,j : i, j ∈
[k]} be a k×k matrix whose entries are vectors in Rn. We call V a vector matrix, and n is called the height
of V . The matrix V defines a biquadratic polynomial f(V ) in X = {x1, . . . , xk} and Y = {y1, . . . , yk} by

f(V ) =
∑

i1≤i2,j1≤j2

ai1,i2,j1,j2xi1xi2yj1yj2 ,

where ai1,i2,j1,j2 is equal to vi1,j1 ·vi2,j2 +vi1,j2 ·vi2,j1 , up to a small correction factor which is not important
at this point. We can think of the coefficients as given by the permanent of the 2 × 2 sub-matrix8 of V
define by i1, i2 and j1, j2.

The following lemma, whose version is proved in Section 6, gives the connection between sum-of-squares
complexity and vector matrices.

Lemma 2.4. Let g be a biquadratic polynomial. Then SR(g) ≤ n is equivalent to the existence a vector
matrix V of height n so that g = f(V ).

As long as it is finite, the height of a vector matrix for any polynomial does not exceed k2, and a
counting argument shows that this holds for “almost” all polynomials. The problem is to construct
explicit polynomials that require large height. Even a super-linear lower bound seems nontrivial, since
the permanent condition does not talk about inner products of pairs of vectors, but rather about the sum
of inner products of two such pairs. In Sections 6 we manage to construct an explicit polynomial which
requires near-maximal height Ω(k2). In our proof, the coefficients impose (through the 2 × 2 permanent
conditions) either equality or orthognality constraints on the vectors in the matrix, and eventually the
existence of many pairwise orthogonal ones. In a crucial way, we employ the fact that over R, if two unit
vectors have inner product one, they must be equal. This property9 fails over C, but it is still possible
that even over C our construction has similar height (of course, if this turns out to be even k1+ε, we get
an exponential lower bound for non-commutative circuits).

The construction, however, does not shed light on the classical sum-of-squares problem which is concerned
specifically with the polynomial SOSk. In the case of SOSk, the conditions on the matrix V from Lemma
2.4 are especially nice and simple: (1) all vectors in V are unit vectors, (2) in each row and column the
vectors are pairwise orthogonal, and (3) every 2× 2 permanent (of inner products) must be zero.

As mentioned in the introduction, the best upper bounds for the sum-of-squares problem have integer
coefficients, and so a lot of effort was invested into proving lower bounds in the integer case. Despite that,
previously known lower bounds do not even reach 2k. In Section 7 we prove the first super-linear lower
bound, SZ(k) = Ω(k6/5). Over integers, we take advantage of the fact that the unit vectors in V must
have entries in {−1, 0, 1} and there is exactly one nonzero entry in each vector. The nonzero coordinate
can be thus thought of as a “color” in [n], which is signed by plus or minus. This gives rise to the earlier
studied notion of intercalate matrices (see, [34] and the book [29]). The integer sum-of-squares problem
can thus be phrased in terms of minimizing the number of colors in a signed intercalate matrix, which can
be approached as an elementary combinatorial problem.

8 In some cases, e.g., when i1 = i2, this matrix can become 1× 2, 2× 1 or even 1× 1, but we still think of it as a 2× 2

matrix. This is also where the correction factor comes from.
9Here, the inner product of two complex vectors a, b is

P
i aibi, rather than

P
i aibi, with b the complex conjugate of b.
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Our strategy for proving the integer lower bound has three parts. The first step uses a simple counting
argument to show that there must exist a sub-matrix in which one color appears in every row and every
column. In the second step we show that the permanent conditions give rise to a “forbidden configuration”
in such sub-matrices. In the last step we conclude that any matrix without this forbidden configuration
must have many colors.

3 Non-commutative circuits

In this section we study the structure of non-commutative circuits. We use the following notation. For
a node v in a circuit Φ, we denote by Φv the sub-circuit of Φ rooted at v. Every node v computes
a polynomial Φ̂v in the obvious way. A monomial α is a product of variables, and COEFα(f) is the
coefficient of α in the polynomial f . Denote by deg f the degree of f , and if v is a node in a circuit Φ,
denote by deg v the degree of Φ̂v.

3.1 Structure of non-commutative circuits

In this section we describe the structure of the polynomials computed by non-commutative circuits. The
methods we use are elementary, and are an adaptation of works like [8, 9] to the non-commutative world.

We start by defining the ‘building blocks’ of polynomials, which we call central polynomials. Recall that a
polynomial f is homogeneous, if all monomials with a non-zero coefficient in f have the same degree, and
that circuit Φ is homogeneous, if every gate in Φ computes a homogeneous polynomial. A homogeneous
polynomial f of degree d is called central, if there exist integers m and d0, d1, d2 satisfying

d/3 ≤ d0 < 2d/3 and d0 + d1 + d2 = d

so that
f =

∑
i∈[m]

highi, (3.1)

where

(i). the polynomial g is homogeneous of degree deg g = d0,

(ii). for every i ∈ [m], the polynomials hi, hi are homogeneous of degrees deg hi = d1 and deg hi = d2.

Remark 3.1. In the definition of central polynomial, no assumption on the size of m is made. Hence we
can without loss of generality assume that hi = ciαi and hi = βi, where αi is a monomial of degree d1, βi
is a monomial of degree d2, and ci is a field element.

The width of a homogeneous polynomial f of degree d, denoted w(f), is the smallest integer n so that f
can be written as

f = f1 + f2 + · · ·+ fn,

where f1, . . . , fn are central polynomials of degree d. The following proposition shows that the width of a
polynomial is a lower bound for its circuit complexity. We will later relate width and bilinear complexity.
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Proposition 3.2. Let f be a homogeneous polynomial of degree d ≥ 2. Then

C(f) ≥ Ω(d−3w(f)).

Proof. We start by observing that the standard homogenization of commutative circuits [31, 3] works for
non-commutative circuits as well.

Lemma 3.3. Let g be a homogeneous polynomial of degree d. Then there exists a homogeneous circuit of
size O(d2C(f)) computing g.

Assume that we have a homogeneous circuit Φ of size s computing f . We will show that w(f) ≤ ds. By
Lemma 3.3, this implies that w(f) ≤ O(d3C(f)), which completes the proof. Without loss of generality,
we can also assume that no gate v in Φ computes the zero polynomial (gates that compute the zero
polynomial can be removed, decreasing the circuit size).

For a multiset of pairs of polynomials H = {〈hi, hi〉 : i ∈ [m]}, define

g ×H =
∑
i∈[m]

highi .

Let G = {g1, . . . , gt} be the set of homogeneous polynomials g of degree d/3 ≤ deg g < 2d/3 so that there
exists a gate in Φ computing g. We show that for every gate v in Φ so that deg v ≥ d/3 there exist
multisets of pairs of homogeneous polynomials H1(v), . . . ,Ht(v) satisfying

Φ̂v =
∑
i∈[t]

gi ×Hi(v). (3.2)

We prove (3.2) by induction on the depth of Φv. If deg(v) < 2d/3 then Φ̂v = gi ∈ G for some i ∈ [t].
Thus (3.2) is true, setting Hi(v) = {〈1, 1〉} and Hj(v) = {〈0, 0〉} for j 6= i in [t]. Otherwise, we have
deg v ≥ 2d/3. When v = v1 +v2, we do the following. Since Φ is homogeneous, v1, v2 and v have the same
degree which is at least 2d/3. Induction thus implies: for every e ∈ {1, 2},

Φ̂ve =
∑
i∈[t]

gi ×Hi(ve).

This gives
Φ̂v = Φ̂v1 + Φ̂v2 =

∑
i∈[t]

gi ×
(
Hi(v1) ∪Hi(v2)

)
.

When v = v1 × v2, we have deg v = deg v1 + deg v2. Since deg v ≥ 2d/3, either (a) deg v1 ≥ d/3 or (b)
deg v2 ≥ d/3. In the case (a), by induction,

Φ̂v1 =
∑
i∈[t]

gi ×Hi(v1) .

Defining Hi(v) = {〈h, hΦ̂v2〉 : 〈h, h〉 ∈ Hi(v1)}, we obtain

Φ̂v = Φ̂v1Φ̂v2 =
(∑
i∈[t]

gi ×Hi(v1)
)

Φ̂v2 =
∑
i∈[t]

gi ×Hi(v).
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Since Φ̂v2 is a homogeneous polynomial, Hi(v) consists of pairs of homogeneous polynomials. In case (b),
define Hi(v) = {〈Φ̂v1h, h〉 : 〈h, h〉 ∈ Hi(v2)}.

Applying (3.2) to the output gate of Φ, we obtain

f =
∑
i∈[t]

gi ×Hi ,

where Hi are multisets of pairs of homogeneous polynomials. For every i ∈ [t] and every r ≤ d − deg gi,
define Hri = {〈h, h〉 ∈ Hi : deg(h) = r, deg h = d − deg gi − r}. Then gi ×Hri is a central polynomial.
Moreover, since f is homogeneous of degree d, we obtain

f =
∑
i∈[t]

d−deg gi∑
r=0

gi ×Hri .

Since t ≤ s, the proof is complete. QED

3.2 Degree four polynomials

Before we describe the specific structure of degree four polynomials, let us give general definitions. For a
monomial α and a variable x, we say that x occurs at position i in α, if α = α1xα2 and degα1 = i − 1.
Let X1, . . . , Xr be (not necessarily disjoint) sets of variables. For a polynomial f , let f [X1, . . . , Xr] be the
homogeneous polynomial of degree r so that for every monomial α,

COEFα(f [X1, . . . , Xr]) =
{

COEFα(f) if α = x1x2 · · ·xr with xi ∈ Xi for every i ∈ [r],
0 otherwise.

In other words, f [X1, . . . Xr] is the part of f consisting of monomials degree r with the property that if a
variable x occurs at a position i then x ∈ Xi.

Claim 3.4. Let f be a central polynomial so that f = f [X1, X2, X3, X4]. Then, either

f = g[X1, X2]h[X3, X4] or f =
∑
i∈[m]

hi[X1]g[X2, X3]hi[X4] ,

where g, h, hi, hi are some polynomials.

Proof. As f is central of degree four, deg g = d0 = 2, and d1 ∈ {0, 1, 2}. If d1 = 1, then d2 = 1 as well,
and

f = f [X1, X2, X3, X4] =
∑
i∈[m]

(
highi

)
[X1, X2, X3, X4] =

∑
i∈[m]

hi[X1]g[X2, X3]hi[X4].

If d1 = 0, then d2 = 2, and

f = f [X1, X2, X3, X4] =
∑
i∈[m]

(
ghi
)
[X1, X2, X3, X4] = g[X1, X2]

( ∑
i∈[m]

hi[X1]hi[X4]
)
.
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A similar argument holds when d1 = 2. QED

Claim 3.4 implies the following lemma.

Lemma 3.5. If f = f [X1, X2, X3, X4], then w(f) is the smallest n so that f can be written as f =
f1 + · · ·+ fn, where for every t ∈ [n], either

(a) ft = gt[X1, X2]ht[X3, X4], or

(b) ft =
∑
i∈[m] ht,i[X1]gt[X2, X3]ht,i[X4],

where gt, ht, ht,i, ht,i are some polynomials.

4 Degree four and bilinear complexity

In this section we related the width of degree four polynomials to their highway number. We consider
polynomials of a certain structure. Let f be a polynomial in variables X = {x1, . . . , xk} and Y =
{y1, . . . , yk} so that f = f [X,Y,X, Y ], i.e.,

f =
∑

i1,j1,i2,j2∈[k]

ai1,j1,i2,j2xi1yj1xi2yj2 . (4.1)

For a non-commutative polynomial g, we define g(c) to be the polynomial g understood as a commutative
polynomial. For example, if g = xy+ yx, then g(c) = 2xy. We say that f is (X,Y )-symmetric, if for every
i1, j1, i2, j2 ∈ [k],

ai1,j1,i2,j2 = ai2,j1,i1,j2 = ai1,j2,i2,j1 = ai2,j2,i1,j1 .

In particular, if f is of the form (4.1), the polynomial f (c) is biquadratic. In the following proposition, we
relate the width of a polynomial f and B(f (c)).

Proposition 4.1. Let f be a homogeneous polynomial of degree four of the form (4.1). Then

(i). B(f (c)) ≤ w(f), and

(ii). If char F 6= 2 and f is (X,Y )-symmetric, then w(f) ≤ 4B(f (c)).

Proof. We start by proving (i). Using Lemma 3.5, we can write f = f1 + · · ·+ fn, where for every t ∈ [n],
either

(a) ft = gt[X,Y ]ht[X,Y ], or

(b) ft =
∑
i∈[m] ht,i[X]gt[Y,X]ht,i[Y ].
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The commutative polynomial f (c)
t is a product of two bilinear forms in X and Y : in case (a), of gt[X,Y ](c)

and ht[X,Y ](c), and in case (b), of gt[Y,X](c) and
∑
i∈[m] ht,i[X](c)ht,i[Y ](c). Altogether f (c) = f

(c)
1 +

· · ·+ f
(c)
n , where each f

(c)
t is a product of two bilinear forms, and hence B(f (c)) ≤ n.

We now prove (ii). Assume that
f (c) = z1z

′
1 + · · ·+ znz

′
n, (4.2)

where zt and z′t, t ∈ [n], are bilinear in X and Y . Write

zt =
∑
j∈[k]

xjgt,j and z′t =
∑
j∈[k]

xjht,j ,

where gt,j and ht,j are homogeneous degree one polynomials in the variables Y . Let ft be the non-
commutative polynomial

ft =
∑
m

(xjgt,m)
∑
j

(xjht,j) +
∑
m

(xjht,m)
∑
j

(xjgt,j)+

+
∑
m

(xm
∑
j

(gt,jxj)ht,m) +
∑
m

(xm
∑
j

(ht,jxj)gt,m)

with summations ranging over [k]. We can see that ft is a sum of four central polynomials. It is therefore
sufficient to show that

f =
1
4

(f1 + · · ·+ fn). (4.3)

First, note that f (c)
t = 4ztz′t and hence

f (c) =
1
4

(f (c)
1 + · · ·+ f (c)

n

)
(4.4)

Second, note that if g is (X,Y )-symmetric and α = xi1yj1xi2yj2 is a non-commutative monomial, then

COEFα(c)(g(c)) = N(i1, j1, i2, j2)COEFα(g),

where

N(i1, j1, i2, j2) =


1 if i1 = i2 and j1 = j2,

2 if i1 = i2 and j1 6= j2,

2 if i1 6= i2 and j1 = j2,

4 if i1 6= i2 and j1 6= j2.

Fix a monomial α = xi1yj1xi2yj2 and consider the coefficient of α in the two sides of (4.3). Since f is
(X,Y )-symmetric, we have

COEFα(c)(f (c)) = N(i1, j1, i2, j2)COEFα(f) .
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Hence (4.4) tells us that

COEFα(f) =
COEFα(c)

(
f

(c)
1 + · · ·+ f

(c)
n

)
4N(i1, j1, i2, j2)

.

Since ft is (X,Y )-symmetric, we have COEFα(c)f
(c)
t = N(i1, j1, i2, j2)COEFα(ft). Hence

COEFα(f) =
1
4

(COEFα(f1) + · · ·+ COEFα(ft))

and equation (4.3) follows. QED

Proof of Theorem 1.6. Recall the definition of the identity polynomial,

IDk =
∑
i,j∈[k]

xiyjxiyj .

The commutative polynomial ID
(c)
k is the polynomial SOSk

SOSk =
∑
i∈[k]

x2
i

∑
j∈[k]

y2
j .

The theorem follows from Proposition 3.2 and 4.1. QED

Let us note that it is not necessary to separate variables in IDk into two disjoint sets X and Y . In the non-
commutative setting, this is just a cosmetic detail. This is a consequence of a more general phenomenon
discussed in Section 8.1.

Remark 4.2. w(IDk) = w(
∑
i,j∈[k] xixjxixj).

Proof. Denote g =
∑
i,j∈[k] xixjxixj . Clearly w(g) ≤ w(IDk) and we must prove the opposite inequality.

Let X := {xi : i ∈ [k]}. Let us write IDk as
∑
i,j∈[k] xi,0xj,1xi,0xj,1 in variables Xb = {xi,b : i ∈ [k]},

b ∈ {0, 1}. If f is a homogeneous polynomial of degree r in X and e = 〈e1, . . . er〉 ∈ {0, 1}n, let fe be the
polynomial s.t. fe = fe[Xe1 , . . . Xer ] and

COEFxi1,e1 ...xir,er (fe) = COEFxi1 ...xir (f) .

Hence IDk = g0101. Moreover, if g = f1 + . . . fn then g0101 = f0101
1 + . . . f0101

n . It is thus sufficient to prove
that if fj is central, then f (0101)

j is also central. This follows from the following: (gh)(0101) = g(01)h(01), if
g, h are homogeneous polynomials of degree two, and (hgh)(0101) = h(0)g(10)h (1), if h, g, h are homogeneous
polynomials of degrees one, two and one. QED
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5 Higher degrees

In this section, we show that a sufficiently strong lower bound on the width of a degree four polyno-
mial implies an exponential lower bound on the width, and hence circuit size, of a related high degree
polynomial.

Let f be a homogeneous polynomial of degree 4r. We assume that f contains only two variables z0 and
z1. We define f (λ) to be the polynomial obtained by replacing degree r monomials in f by new variables.
Formally, for every monomial α of degree r in variables z0, z1, introduce a new variable xα. The polynomial
f (λ) is defined as the homogenous degree four polynomial in the 2r variables X = {xα : degα = r}
satisfying

COEFxα1xα2xα3xα4
(f (λ)) = COEFα1α2α3α4(f) . (5.1)

Remark 5.1. Let g be a homogeneous degree four polynomial in k variables. If k ≤ 2r, then there exists
a polynomial f of degree 4r in variables z0, z1 such that g = f (λ) (up to a renaming of variables).

Proof. For e = (e1, . . . , er) ∈ {0, 1}r, let ze be the monomial
∏r
j=1 zej . If k ≤ 2r and i ∈ [k], let

(i) ∈ {0, 1}r be the binary representation of i. If

g =
∑

i1j1i2j2∈[k]

ai1j1i2j2xi1xj1xi2xj2 ,

let
f =

∑
i1j1i2j2∈[k]

ai1j1i2j2z(i1)z(j1)z(i2)z(j2) .

QED

We now relate w(f) and w(f (λ)). To do so, we need a modified version of Proposition 3.2. Let f be a
homogeneous polynomial of degree 4r. We say that f is block-central, if either

I. f = gh, where g, h are homogeneous polynomials with deg g = deg h = 2r, or

II. f =
∑
i∈[m] highi, where g, hi, hi are homogeneous polynomials of degrees deg g = 2r and deg hi =

deg hi = r for every i ∈ [m].

Every block-central polynomial is also central. The following lemma shows that every central polynomial
can be written as a sum of 2r block-central polynomials. The lemma thus enables us to consider a
simpler problem, i.e., lower bounding the width with respect to block-central polynomials. However, this
simplification comes with a price, namely, a loss of a factor of 2r.

Lemma 5.2. Let f be a central polynomial of degree 4r in two variables z0, z1. Then there exist n ≤ 2r

and block-central polynomials f1, . . . , fn so that f = f1 + · · ·+ fn.
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Proof. Let M(k) be the set of monomials in variables z0, z1 of degree exactly k. The size of M(k) is 2k.
As f is central, by Remark 3.1, we can write f as

f =
∑

α∈M(d1),ω∈M(d2)

c(α, ω)αGω , (5.2)

where c(α, ω) is a field element, G is a homogeneous polynomial of degree d0 with 4r/3 ≤ d0 < 8r/3, and
d0 + d1 + d2 = 4r.

Our goal is to write f is a sum of block-central polynomials, namely, we wish to write f as a sum of
polynomials of either type I or type II. We use the parameters d0, d1, d2 to determine the type of these
polynomials, according to the following case distinction.

Assume first that d0 + 2d1 ≤ 3r. We express f as a sum of type I polynomials. There are two sub-cases
to consider.

1. d0 + d1 ≤ 2r: Every monomial ω ∈ M(d2) can be written as ω1ω2, where ω1 ∈ M(t), ω2 ∈ M(d2 − t)
and t = 2r − (d0 + d1). Then (5.2) can be written as

f =
∑

α∈M(d1),ω1∈M(t)

fα,ω1 ,

where
fα,ω1 = (αGω1)

( ∑
ω2∈M(t−d2)

c(α, ω1ω2)ω2

)
.

As d2 − t = 2r, each fα,ω1 is of type I. There are at most |M(d1)||M(t)| = 22r−d0 such fα,ω1 . Since
d0 ≥ 4r/3, there are at most 22r/3 of them.

2. d0 + d1 > 2r: We can write G =
∑
γ∈M(t)Gγγ, where t = d0 + d1 − 2r, and Gγ are some polynomials

of degree d0 − t. Then
f =

∑
α∈M(d1),γ∈M(t)

fα,γ ,

where
fα,γ = (αGγ)

( ∑
ω∈M(d2)

c(α, ω)γω
)
.

Each fα,γ is of type I, and the number of such fα,γ is 2d0+2d1−2r ≤ 2r, as d0 + 2d1 ≤ 3r.

If d0 +2d2 ≤ 3r, the argument is analogous. Hence we are in the situation d0 +2d1 > 3r and d0 +2d2 > 3r.
In this case, we express f as a sum of centralpolynomials of type II. There are four sub-cases to consider.

1. d1 ≥ r and d2 ≥ r: For α ∈ M(d1), write α = α1α2 with α1 ∈ M(r) and α2 ∈ M(d1 − r). For
ω ∈M(d2), write ω = ω1ω2 with ω1 ∈M(d2 − r) and ω2 ∈M(r). Then

f =
∑

α2∈M(d1−r),ω1∈M(d2−r)

fα2,ω1 ,
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where
fα2,ω1 =

∑
α1,ω2∈M(r)

c(α1α2, ω1ω2)α1(α2Gω1)ω2 .

Each fα2,ω1 is of type II. There are 22r−d0 ≤ 22r/3 such fα2,ω1 , since d0 ≥ 4r/3.

2. d1 < r and d2 ≥ r: Write G =
∑
γ∈M(r−d1) γGγ , where Gγ is a homogeneous polynomial of degree

d0 − (r − d1). Write ω = ω1ω2 with ω1 ∈M(d2 − r) and ω2 ∈M(r). Then

f =
∑

γ∈M(r−d1),ω1∈M(d2−r)

fγ,ω1 ,

where
fγ,ω1 =

∑
α∈M(d1),ω2∈M(r)

c(α, ω1ω2)αγ(Gγω1)ω2 .

Each fγ,ω1 is of type II, and there are 2d2−d1 < 2r such fγ,ω1 , since d0 + 2d1 > 3r.

3. d1 ≥ r and d2 < r: This is the previous case with d2 and d1 interchanged.

4. d1 < r and d2 < r: Write G =
∑
γ1∈M(r−d1),γ2∈M(r−d2) γ1Gγ1,γ2γ2, where Gγ1,γ2 is a homogeneous

polynomial of degree 2r. Then

f =
∑

γ1∈M(r−d1),γ2∈M(r−d2)

fγ1,γ2 ,

where
fγ1,γ2 =

∑
α∈M(d1),ω∈M(d2)

c(α, ω)αγ1Gγ1,γ2γ2ω.

Each fγ1,γ2 is of type II, and there are 2d0−2r ≤ 22r/3 such fγ1,γ2 , since d0 ≤ 8r/3.

QED

We can now relate the width of f and f (λ).

Proposition 5.3. Let f be a homogeneous polynomial of degree 4r in the variables z0, z1. Then w(f) ≥
2−rw(f (λ)).

Proof. Assume w(f) = n. Lemma 5.2 implies f = f1 + · · · + fn′ , where n′ ≤ 2rn and fj are block-
central polynomials. Equation (5.1) implies

f (λ) = f
(λ)
1 + · · ·+ f

(λ)
n′ .

It is thus sufficient to show that every f (λ)
t is a central polynomial, for then w(f (λ)) ≤ n′ ≤ 2rn.

In order to do so, let us extend the definition of (.)(λ) as follows. If g is a polynomial of degree `r in the
variables z0, z1, let g(λ) be the homogeneous polynomial of degree ` in X so that

COEFxα1 ···xαk (g(λ)) = COEFα1···αk(g).
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If g, h are homogeneous polynomials whose degree is divisible by r, we obtain (gh)(λ) = g(λ)h(λ). Hence
if ft = gtht a block-centralpolynomial of type I, then f

(λ)
t = g

(λ)
t h

(λ)
t is a central polynomial of type (a)

according to Lemma 3.5 with X = X1 = X2 = X3 = X4. If ft =
∑
i ht,igtht,i is a block-centralpolynomial

of type II, f (λ)
t =

∑
i h

(λ)
t,i g

(λ)
t ht,i

(λ), and hence f (λ)
t is a centralpolynomial of type (b) according to Lemma

3.5. QED

By Remark 5.1, we can start with a degree four polynomial in k ≤ 2r variables and “lift” it to a polynomial
f of degree 4r such that f (λ) = g. We can then deduce that a sufficiently strong lower bound on the
bilinear complexity of g implies an exponential lower bound for the circuit complexity of f . We apply this
to the specific case of the identity polynomial. The lifted identity polynomial, LIDr, is the polynomial in
variables z0, z1 of degree 4r defined by

LIDr =
∑

e∈{0,1}2r
zeze ,

where for e = (e1, . . . , es) ∈ {0, 1}s, we define ze =
∏s
i=1 zei .

Corollary 5.4 (Corollary 2.2 restated). If B(SOSk) ≥ Ω(k1+ε) for some ε > 0, then C(LIDr) ≥ 2Ω(r).

Proof. The definition of LIDr can be equivalently written as

LIDr =
∑

e1,e2∈{0,1}r
ze1ze2ze1ze2 .

By definition, LID(λ)
r =

∑
i,j∈[k] xixjxixj with k = 2r. Hence, by Remark 4.2, w(LID(λ)

r ) = w(IDk). By

Proposition 5.3, w(LIDr) ≥ 2−rw(LID(λ)
r ). Hence w(LIDr) ≥ 2−rw(IDk). By Proposition 4.1, w(IDk) ≥

B(IDk). If B(IDk) ≥ ck1+ε for some constants c, ε > 0, we have w(LIDr) ≥ c2−r2r(1+ε) = c2εr. By
Proposition 3.2, C(LIDr) ≥ Ω(r−32εr) = 2Ω(r). QED

One motivation for studying the lifted identity polynomial is that we believe it is hard for non-commutative
circuits. However, note that an apparently similar polynomial has small circuit size. For e = (e1, . . . , es) ∈
{0, 1}s, let e? = (es, . . . , e1). The polynomial ∑

e∈{0,1}2r
zeze? ,

has a non-commutative circuit of linear size. This result can be found in [21], where it is also shown that
the non-commutative formula complexity of this polynomial is exponential in r.

We now show that LIDr is reducible to the permanent of dimension 4r.

Lemma 5.5 (Lemma 2.3 restated). There exists a matrix M of dimension 4r× 4r whose nonzero entries
are variables z0, z1 so that the permanent of M is LIDr.

20



Proof. For j ∈ {0, 1}, let Dj be the 2r× 2r matrix with zj on the diagonal and zero everywhere else. The
matrix M is defined as

M =
[
D0 D1

D1 D0

]
.

The permanent of M taken row by row is

PERM(M) =
∑
σ

M1,σ(1)M2,σ(2) · · ·M4r,σ(4r),

where σ is a permutation of [4r]. The permutations that give nonzero value in PERM(M) satisfy: for
every i ∈ [2r], if σ(i) = i then σ(2r + i) = 2r + i, and if σ(i) = 2r + i then σ(2r + i) = i. By definition of
M , this means that for every such σ and i ∈ [2r], Mi,σ(i) = Mi+2r,σ(i+2r). Moreover, given the values of
such a σ on [2r], it can be uniquely extended to all of [4r]. QED

Theorem 1.7 follows from Corollary 2.2 and Lemma 2.3.

5.1 Explicit polynomials and completeness of non-commutative permanent

The (conditional) exponential lower bound on the circuit size of permanent can be significantly generalized.
An important property that non-commutative permanent shares with its commutative counterpart is
completeness for the class of explicit polynomials. This enables us to argue that a super-linear lower
bound on width of an explicit degree four polynomial implies an exponential lower bound on permanent.

Let {fk} be an infinite family of non-commutative polynomials over F so that every fk has at most p(k)
variables and degree at most p(k), where p : N → N is a polynomial. We call {fk} explicit, if there
exists a polynomial time algorithm which, given k and a monomial α is input, computes COEFα(fk).
Hence PERMk and other families of polynomials are explicit in this sense. In the commutative setting,
the following theorem is a consequence of the VNP completeness of permanent, as given in [32]. In the
non-commutative setting, one can prove a similar result [10].

Theorem 5.6. Assume that {fk} is an explicit family of non-commutative polynomials such that C(fk) ≥
2Ω(k). Then C(PERMk) ≥ 2Ω(k).

Proof of Theorem 1.8 For a commutative biquadratic polynomial in k variables

f =
∑

i1,j1,i2,j2∈[k]

ai1,j1,i2,j2xi1yj1xi2yj2 ,

define f ′ as the non-commutative polynomial

f ′ =
∑

i1,j1,i2,j2∈[k]

ai1,j1,i2,j2xi1yj1xi2yj2 .
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This is to guarantee that f ′ = f ′[X,Y,X, Y ] and (f ′)(c) = f is as required in Proposition 4.1. Let r be
the smallest integer so that 2r ≥ 2k. Let f? be the polynomial given by Remark 5.1 so that (f?)(λ) = f ′.
If f is explicit, f? is explicit.

Let {fk} be as in the assumption. As in the proof of Corollary 2.2, we conclude that f?k require exponential
size non-commutative circuits. By Theorem 5.6, this implies an exponential lower bound for permanent.

QED

6 Real sum-of-squares

In this section, we prove Theorem 1.9. We construct a real biquadratic polynomial f in the variables
X = {x1, . . . , xk} and Y = {y1, . . . , yk} over R, so that f can be written as f =

∑
i∈[n] z

2
i with zi bilinear

in X,Y , but every such n is at least k2/4. The construction of f is in polynomial time with respect to
the length of the binary representation of k.

Remark 6.1. In the case of R, the condition that zi are bilinear is satisfied automatically, provided zi is
a polynomial.

6.1 Real sums-of-squares and vector matrices

We phrase the problem of lower bounding SR(f) in terms of matrices of real vectors. Let V = {vi,j : i ∈
[r], j ∈ [s]} be a matrix whose entries are vectors in Rn. We call V a vector matrix, and n is called the
height of V . Let U = {ui,j : i ∈ [r], j ∈ [s]} be a vector matrix of arbitrary height. We say that U and V

are equivalent, if for every i1, i2 ∈ [r], j1, j2 ∈ [s],

vi1,j1 ·vi2,j2 = ui1,j1 ·ui2,j2 ,

where for two vectors w1,w2 in Rm, w1·w2 is the standard inner product in Rm. We say that U and V

are similar, if for every i1, i2 ∈ [r] and j1, j2 ∈ [s]

vi1,j1 ·vi2,j2 + vi1,j2 ·vi2,j1 = ui1,j1 ·ui2,j2 + ui1,j2 ·ui2,j1 .

It is more convenient to consider the four different cases of this equality:

vi,j ·vi,j = ui,j ·ui,j . (6.1)

vi,j1 ·vi,j2 = ui,j1 ·ui,j2 , if j1 6= j2 . (6.2)

vi1,j ·vi2,j = ui1,j ·ui1,j , if i1 6= i2 . (6.3)

vi1,j1 ·vi2,j2 + vi1,j2 ·vi2,j1 = ui1,j1 ·ui2,j2 + ui1,j2 ·ui2,j1 , if i1 6= i2, j1 6= j2 . (6.4)

A k × k vector matrix V defines a polynomial f(V ) in the variables X,Y by

f(V ) =
∑

i1≤i2,j1≤j2

ai1,i2,j1,j2xi1xi2yj1yj2 ,
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with

ai1,i2,j1,j2 =


vi,j ·vi,j if i1 = i2 = i, j1 = i2 = j,

2vi,j1 ·vi,j2 if i1 = i2 = i, j1 < j2,

2vi1,j ·vi2,j if i1 < i2, j1 = j2 = j,

2(vi1,j1 ·vi2,j2 + vi1,j2 ·vi2,j1) if i1 < i2, j1 < j2.

(6.5)

Note that if U and V are similar then f(U) = f(V ).

Lemma 6.2. If V be a k × k a vector matrix. Then the following are equivalent:

(i). There exist bilinear forms z1, . . . , zn so that f(V ) =
∑
i∈[n] z

2
i .

(ii). There exists a vector matrix U of height n so that U and V are similar.

Proof. Assume that
f(V ) =

∑
i∈[n]

z2
i , (6.6)

where each zi is bilinear. For ` ∈ [n] and i, j ∈ [k], let ui,j [`] be the coefficient of xiyj in z`, and let
ui,j = (ui,j [1], . . . , ui,j [n]). Let U = {ui,j : i, j ∈ [k]} be the k × k vector matrix of height n. Equation
(6.6) can be written as

f(V ) =
( ∑
i,j∈[k]

ui,jxiyj
)
·
( ∑
i,j∈[k]

ui,jxiyj
)
. (6.7)

The right hand side of (6.7) can be written as∑
i,j

(
(ui,j ·ui,j)x2

i y
2
j

)
+ 2

∑
i,j1<j2

(
(ui,j1 ·ui,j2)x2

i yj1yj2
)

+ 2
∑

i1<i2,j

(
(ui1,j ·ui2,j)xi1xi2y2

j

)
+

+2
∑

i1<i2,j1<j2

(
(ui1,j1 ·ui2,j2 + ui1,j2 ·ui2,j1)xi1xi2yj1yj2

)
.

Comparing the coefficients on the left and right hand side of (6.7), we obtain

ai1,i2,j1,j2 =


ui,j ·ui,j if i1 = i2 = i, j1 = i2 = j,

2ui,j1 ·ui,j2 if i1 = i2 = i, j1 < j2,

2ui1,j ·ui2,j if i1 < i2, j1 = j2 = j,

2(ui1,j1 ·ui2,j2 + ui1,j2 ·ui2,j1) if i1 < i2, j1 < j2.

(6.8)

By (6.5), this means that U and V are similar. Conversely, if U is a vector matrix similar to V , we obtain
(6.6) by means of (6.5), (6.7) and (6.8). QED

In particular, the lemma shows that f(V ) can always be written as a sum of real bilinear squares. Moreover,
the proof of the lemma entails the converse: if f can be written as sum of bilinear squares, then f = f(V )
for some vector matrix V .
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6.2 A hard vector matrix

In this section we construct a hard polynomial by describing its vector matrix M . Let ei(j), i, j ∈ [`], be
`2 orthonormal vectors in R`2 . The matrix M will be k × k matrix with k = 2(` − 1) whose entries are
vectors ei(j).

For t ∈ [`], let L(t) be the following 2× 2(`− 1) matrix

L(t) =
[

e1(t) e1(t) e2(t) e2(t) e3(t) e3(t) · · · e`−2(t) e`−1(t) e`−1(t)
e1(t) e2(t) e2(t) e3(t) e3(t) e4(t) · · · e`−1(t) e`−1(t) e`(t)

]
.

Let M be the matrix

M =



L(1) L(1)
L(1) L(2)
L(2) L(2)
· · · · · ·

L(`− 2) L(`− 1)
L(`− 1) L(`− 1)
L(`− 1) L(`)


.

The following theorem shows that f(M) is hard, in the sense of sum-of-squares complexity.

Theorem 6.3. SR(f(M)) = `2.

The proof is based on the following lemma.

Lemma 6.4. If U and M are similar, then U and M are equivalent.

Let us first show that Lemma 6.4 implies Theorem 6.3. The matrix M consists of `2 orthonormal vectors.
Hence any matrix U equivalent to M has height at least `2. The theorem follows from Lemmas 6.4 and 6.2.

We now proceed to prove Lemma 6.4. Let us state two more definitions. A vector matrix V is called
normal, if for every v in V , we have v·v = 1. Two vector matrices V1, V2 of the same height are called
orthogonal, if for every v1 in V1 and v2 in V2, we have v1·v2 = 0.

The proof of Lemma 6.4 starts with the following three simple claims. In the claims, we denote elements
of V,U by v,u, and elements of Vp, Up by vp,up, where p is an integer. In a crucial way, we employ the
following property of real vectors: if v·v = u·u = 1 and v·u = 1, then v = u.

Claim 6.5. If U and V are similar and V is normal, then U is normal.

Proof. This follows from condition (6.1). QED

Claim 6.6. Let

V =
[
V1

V1

]
and U =

[
U1

U2

]
.

If V is normal and U and V are similar, then U1 = U2. The same holds for V = [V1 V1] and U = [U1U2].
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Proof. Let V1 be r×c vector matrix. For every i ∈ [r] and j ∈ [c], vi+r,j = vi,j and so vi+r,j ·vi,j = 1. Since
V is normal and U and V are similar, by (6.1), ui,j ·ui,j = ui+r,j ·ui+r,j = 1. By (6.3), ui+r,j ·ui,j = 1,
and so ui+r,j = ui,j . QED

Claim 6.7. Let

V =
[
V1 V2

V3 V4

]
and U =

[
U1 U2

U3 U4

]
with V a normal matrix. Assume that V1 and V4 are orthogonal and either

(i). V2, V3 are orthogonal and U2, U3 are orthogonal, or

(ii). V1 = V2 = V3, U1 = U2 = U3 and U1, V1 are equivalent.

Then U1 and U4 are orthogonal.

Proof. Let V1 and V4 be of sizes r1 × c1 and r2 × c2. From condition (6.4), we have that for every
i1 ∈ [r1], j1 ∈ [c1], i1 ∈ [r2] and j2 ∈ [c2],

vi1,j1 ·vr1+i2,c1+j2 + vi1,c1+j2 ·vr1+i2,j1 = ui1,j1 ·ur1+i2,c1+j2 + ui1,c1+j2 ·ur1+i2,j1 ,

which gives
v1
i1,j1 ·v

4
i2,j2 + v2

i1,j2 ·v
3
i2,j1 = u1

i1,j1 ·u
4
i2,j2 + u2

i1,j2 ·u
3
i2,j1 .

The property that is common to both cases in the assumption of the claim is that v2
i1,j2
·v3
i2,j1

=
u2
i1,j2
·u3
i2,j1

. Therefore, u1
i1,j1
·u4
i2,j2

= v1
i1,j1
·v4
i2,j2

= 0. QED

The three claims imply the following, using the special structure of the matrix L.

Claim 6.8. If a vector matrix U is similar to L(t), then U is equivalent to L(t).

Proof. Since L(t) is normal, so is U by Claim 6.5. By Claim 6.6, U is of the form

U =
[

u1 u1 u2 u2 u3 u3 · · · u`−2 u`−1 u`−1

u1 u2 u2 u3 u3 u4 · · · u`−1 u`−1 u`

]
.

It is thus sufficient to prove that for every i < j in [`], the two vectors ui and uj are orthogonal. This
follows by induction on j. If j = i+ 1, apply case (ii) of Claim 6.7 to the matrices[

ei(t) ei(t)
ei(t) ej(t)

]
and

[
ui ui
ui uj

]
.

Otherwise, j ≥ i+ 2 and U contains a submatrix[
ui uj−1

ui uj

]
,
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which is similar to the matrix [
ei(t) ej−1(t)
ei(t) ej(t)

]
.

By assumption ui and uj−1 are orthogonal. Now case (i) of Claim 6.7 implies that ui and uj are
orthogonal. QED

Proof of Lemma 6.4. If U is similar to M , by Claim 6.8, U has the form

U =



U(1) U(1)
U(1) U(2)
U(2) U(2)
· · · · · ·

U(`− 2) U(`− 1)
U(`− 1) U(`− 1)
U(`− 1) U(`)


,

where U(t) is equivalent to L(t). It is now sufficient to prove that U(i) and U(j) are orthogonal whenever
i < j. This follows by a similar argument as the one in Claim 6.8. QED

7 Integer sums-of-squares

In this section, we prove Theorem 1.10. More exactly, we prove that in any identity of the form

(x2
1 + · · ·+ x2

k) · (y2
1 + · · ·+ y2

k) = z2
1 + · · ·+ z2

n , (7.1)

where zi are bilinear forms with integer coefficients, n must be at least Ω(k6/5).

7.1 Sum-of-squares and intercalate matrices

Following Yiu [34], we phrase SZ(k) in a more combinatorial language (though we deviate from Yiu’s
notation). We call a k × k matrix M = (Mi,j)i,j∈[k] with non-zero integer entries an intercalate matrix, if

1) |Mi,j1 | 6= |Mi,j2 |, whenever j1 6= j2,

2) |Mi1,j | 6= |Mi2,j |, whenever i1 6= i2,

3) if i1 6= i2, j1 6= j2 and Mi1,j1 = ±Mi2,j2 , then Mi1,j2 = ∓Mi2,j1 .

We call C = C(M) = {|Mij | : i, j ∈ [k]} the set of colors in M . We say that M has n colors, if |C| = n.
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Condition 1) says that no color appears twice in the same row of M , condition 2) says that no color
appears twice in the same column of M . Condition 3) then requires that for every 2× 2 submatrix(

a b

c d

)
of M , either |a|, |b|, |c|, |d| are all different, or the submatrix is of the form(

ε1a ε2b

ε3b ε4a

)
,

where |a| 6= |b| and εi ∈ {+1,−1} satisfy ε1ε2ε3ε4 = −1. The following are examples of 2 × 2 intercalate
matrices: (

1 2
3 −4

)
,

(
1 2
2 −1

)
, and

(
−1 −2

2 −1

)
.

The following matrices are not intercalate:(
1 2
3 1

)
,

(
1 2
2 1

)
, and

(
−1 2

2 −1

)
.

The following proposition relates intercalate matrices and integer sum-of-squares formulas.

Proposition 7.1. The following are equivalent:

(i). There exists an identity (0.1) where z1, . . . zn are bilinear forms with integer coefficients.

(ii). There exists an intercalate k × k matrix with n colors.

Proof. The proof is analogous to the proof of Lemma 6.2. Note that if V is a k×k vector matrix consisting
of k2 orthonormal real vectors then, by definition of f(V ), (x2

1 + · · · + x2
k)(y2

1 + · · · + y2
k) = f(V ). As

in Lemma 6.2, we can show that (i) is equivalent to the following: there exists a k × k vector matrix U

consisting of vectors ui,j ∈ Zn, i, j ∈ [k], with the properties (u·v denotes the usual inner product in Rn)

i) ui,j ·ui,j = 1, for every i, j,

ii) ui,j1 ·ui,j2 = 0, whenever j1 6= j2,

iii) ui1,j ·ui1,j = 0, whenever i1 6= i2,

iv) ui1,j1 ·ui2,j2 + ui1,j2 ·ui2,j1 = 0, for every i1 6= i2, j1 6= j2.

However, since we are dealing with vectors in Zn, condition i) implies a stronger property

v) uij ∈ {0, 1,−1}n and uij has exactly one non-zero entry.
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Here is how a matrix U with properties i) through v) corresponds to an intercalate matrix. Given an
intercalate matrix M with colors {a1, . . . , an}, define V as follows: for every ` ∈ [n] and i, j ∈ [k], define
ui,j [`] = sgn(Mi,j), if Mi,j = a`, and ui,j [`] = 0 otherwise (where ui,j)[`] denotes the `th coordinate of ui,j).
Conversely, given such a matrix U , define an intercalate matrix with colors {1, . . . , n} as Mi,j = ui,j [`] · `,
where ` is the unique coordinate such that ui,j [`] 6= 0. It is straightforward to verify that the required
properties of V resp. M are satisfied. QED

7.2 The number of colors in intercalate matrices

We say that two integer matrices M and M ′ are equivalent, if M ′ can be obtained from M by

1) permuting rows and columns,

2) multiplying rows and columns by minus one, and

3) renaming colors, that is, if θ : N→ N is a one-to-one map, we have M ′i,j = sgn(Mi,j) · θ(|Mi,j |), for
every i, j ∈ [k].

Here are two elementary properties of intercalate matrices.

Fact 7.2. A submatrix of an intercalate matrix is an intercalate matrix.

Fact 7.3. If M and M ′ are equivalent, then M is intercalate if and only if M ′ is intercalate.

We say that a k × k matrix M is full, if for every i ∈ [k], we have Mi,i = 1.

The following lemma is the main step in the proof of our main theorem.

Lemma 7.4. Let M be a k × k full intercalate matrix. Then M has at least Ω(k3/2) colors.

Lemma 7.4 implies the following theorem, which gives Theorem 1.10 by Proposition 7.1 .

Theorem 7.5. Any k × k intercalate matrix has at least Ω(k6/5) colours.

Proof. Let M be a k × k intercalate matrix with n colors. We show that M contains a s × s submatrix
M (0) which is equivalent to a full intercalate matrix, with s ≥ k2/n. For a color a, let Ma = {(i, j) ∈
[k]× [k] : |Mi,j | = a}. The sets Ma form a partition of [k]× [k] to n pairwise disjoint sets, and hence there
exists some a so that s := |Ma| ≥ k2/n. Let M (0) be the submatrix of M obtained by deleting rows and
columns that do not contain a. Since the color a never occurs twice in the same row or column in M (0),
M (0) is s × s matrix, and we can permute rows and columns of M (0) to obtain a matrix M (1) in which
the diagonal entries satisfy |M (1)

i,i | = a. We can thus multiply some of the rows of M (1) by minus one to

obtain a matrix M (2) in which the diagonal entries have M (2)
i,i = a. Finally, we can rename the colors

of M (2) to obtain a matrix M (3) with M
(3)
i,i = 1 for every i ∈ [k]. Altogether, M (3) is a full intercalate

matrix equivalent to M (0).

M (0) contains at most n colors. Hence Lemma 7.4 tells us that n ≥ Ω(s3/2). Since s ≥ k2/n, we have
n ≥ Ω(k3/n3/2), which implies n ≥ Ω(k6/5). QED
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7.3 Number of colors in full intercalate matrices

The definition of intercalatness immediately implies the following:

Fact 7.6. If M is a full intercalate matrix, then Mi,j = −Mj,i for every i 6= j.

We now describe a few combinatorial properties of full intercalate matrices.

Lemma 7.7. Assume that M is 6× 6 intercalate matrix of the form10

1 2 3
1 4

1
1 2 3

1 b

1


.

Then b = −4.

Proof. Let M1,4 = c. By Fact 7.6, M has the form

1 2 3 c

−2 1 4
−3 −4 1
−c 1 2 3

1 b

1


.

Property 3) in the definition of intercalate matrices implies that M2,5 = M3,6 = M4,1 = −c, as M2,1 =
−M4,5 and M3,1 = −M4,6. Using Fact 7.6, we thus conclude that M has the form



1 2 3 c

−2 1 4 −c
−3 −4 1 −c
−c 1 2 3

c 1 b

c 1


.

Here we have M5,2 = −M3,6 and hence M5,6 = M3,2. In other words, b = −4. QED

Let M be a k × k matrix. A triple (i, j1, j2) such that 1 ≤ i < j1 < j2 ≤ k is called a position in M .
Let (a, b) be an ordered pair of natural numbers. We say that (a, b) occurs in position (i, j1, j2) in M , if
|Mi,j1 | = a and |Mi,j2 | = b.

10The empty entries are some unspecified integers.
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Proposition 7.8. Let M be a full intercalate matrix. Then every pair (a, b) occurs in at most two different
positions in M .

Proof. Assume that (a, b) occurs at three distinct positions (i(p), j1(p), j2(p)), p ∈ {0, 1, 2}, in M . By
renaming colors, we can assume without loss of generality that (a, b) = (2, 3). We show that M contains
9× 9 submatrix M ′ equivalent to a matrix of the form A1

A2

A3

 ,

where

Ai =

 1 2 3
1 ci

1

 .

This will imply a contradiction: Lemma 7.7 implies that c2 = −c1, c3 = −c1 and c3 = −c2, and hence
c1 = −c1, which is impossible, as c1 6= 0.

We first show that the nine indices I = {i(p), j1(p), j2(p) : p ∈ {0, 1, 2}} are all distinct. There are a few
cases to consider.

(i). The definition of position guarantees that

|{i(p), j1(p), j2(p)}| = 3

for every p ∈ {0, 1, 2}.

(ii). Since no color can appear twice in the same row,

|{i(0), i(1), i(2)}| = |{j1(0), j1(1), j1(2)}| = |{j2(0), j2(1), j2(2)}| = 3.

(iii). Since |Mi(p),j1(p)| = |Mi(q),j1(q)| = 2, M being intercalate implies

|Mi(p),j1(q)| = |Mi(q),j1(p)|.

Assume, for the sake of contradiction, that j2(p) = j1(q) for some p 6= q. Thus, |Mi(p),j1(q)| =
|Mi(p),j2(p)| = 3, and so |Mi(q),j1(p)| = 3. But j1(p) 6= j2(q), as j1(p) < j2(p) = j1(q) < j2(q). This
contradicts property (1 in the definition of intercalate matrices, since |Mi(q),j1(p)| = |Mi(q),j2(q)|.

(iv). Assume, for the sake of contradiction, that i(q) = je(p) for some p 6= q and e = 1, 2. Since M
is full, Mi(q),je(p) = 1. As above, we conclude that |Mi(p),je(q)| = 1. But i(p) 6= je(q), since
i(p) < je(p) = i(q) < je(q). Thus the color 1 appear twice in the row i(p), which is a contradiction.

Let M ′ be the 9 × 9 submatrix of M defined by the set of rows and columns I. Permuting rows and
columns of M ′, we obtain a matrix of the form B1

B2

B3

 ,
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where

Bi =

 1 εi2 δi3
1

1


and εi, δi ∈ {1,−1}. Multiplying rows and columns by minus one where appropriate, we conclude that
M ′ is of the desired form. QED

We are now ready for the proof of the lemma.

Proof of Lemma 7.4. There are at least k3/8 different positions in M . From n colors, one can build at
most n2 ordered pairs. Proposition 7.8 implies that any such pair appears in at most two positions in M .
Thus, 2n2 ≥ k3/8 and so n ≥ Ω(k3/2). QED

8 Multilinear and ordered circuits

8.1 Ordered circuits

An interesting property of non-commutative polynomials and circuits is that we can treat occurrences of
x at different positions as distinct variables. For example, we could have defined the identity polynomial
as a polynomial in 4k variables

IDk
′ =

∑
i,j∈[k]

x1,ix2,jx3,ix4,j ,

or as the polynomial in only k variables

IDk
′′ =

∑
i,j∈[k]

xixjxixj .

These modification are not important in the non-commutative setting; the circuit complexity of IDk, IDk
′

and IDk
′′ differ by at most a constant factor. We discuss this phenomenon in this section.

A homogeneous polynomial f of degree r is called ordered, if there exist disjoint sets of variables X1, . . . , Xr

so that f = f [X1, . . . , Xr] with the definition of f [X1, . . . , Xr] from Section 3.2. In other words, f is ordered
if every variable that occurs at position i in some monomial in f is in Xi.

An interval I is a set of the form I = [j1, j2] = {i : j1 ≤ i ≤ j2}. A polynomial g is of type [j1, j2], if
g = g[Xj1 , . . . , Xj2 ]. It is a homogeneous polynomial of degree j2 − j1 + 1. A constant polynomial is of
type I = ∅.

We now define ordered circuits, which are a natural model for computing ordered polynomials. In an
ordered circuit Φ, every gate v is associated with an interval Iv = Iv(Φ) ⊆ [r]. A circuit Φ is called
ordered, if it satisfies the following properties:

(i). Every gate v in Φ computes a polynomial of type Iv.

31



(ii). If v = v1 + v2, then Iv = Iv1 = Iv2 .

(iii). If v = v1 × v2 with Iv = [i, j], then there exists i− 1 ≤ ` ≤ j so that Iv1 = [i, `] and Iv2 = [`+ 1, j].

We can also define an ordered version for a general polynomial. Let f be a homogeneous polynomial of
degree r in the variables X = {x1, . . . , xk}. We define the ordered version of f , denoted f (ord), as follows.
For every j ∈ [r] and i ∈ [k], introduce a new variable xj,i, and let Xj = {xj,1, . . . , xj,k}. For a monomial
α = xi1 . . . xir , let α(ord) := x1,i1 . . . xr,ir . The polynomial f (ord) is the ordered polynomial in the variables
X1, . . . , Xr defined by

COEFα(ord)(f (ord)) = COEFα(f) .

Given f (ord) we can easily recover f by substituting xj,i = xi for every j ∈ [r] and i ∈ [k]. When f is
already ordered, then f (ord) and f are the same polynomials, up to renaming of variables.

The following theorem shows that non-commutative circuits computing f can be efficiently simulated by
ordered circuits computing f (ord). In particular, if f is already ordered, then a general circuit computing
f can be efficiently simulated by an ordered circuit. Every ordered circuit is syntactically multilinear, as
defined in Section 8.2 below. This implies that non-commutative circuits for ordered polynomials can be
efficiently simulated by syntactically multilinear circuits. We do know such a result in the commutative
world: the best known transformation of a commutative circuit to a syntactically multilinear circuit
increases the size by a factor of 2r (instead of r3 here).

The theorem is a stronger version of Theorem 1.11 which was stated in the introduction.

Theorem 8.1. Let Φ be a circuit of size s computing a homogeneous polynomial f of degree r. Then
there is an ordered circuit Ψ of size O(r3s) that computes f (ord).

Proof. Before we prove the theorem we introduce some notation. If g is a polynomial (not necessarily
homogeneous) and I = [j1, j2] ⊆ [r] is a nonempty interval, define g(I) as the polynomial of type I defined
by

COEFα(I)(g(I)) = COEFα(g),

where α(I) =
∏j2
j=j1

xj,ij and α =
∏j2
j=j1

xij , and if I = ∅, g(I) is the constant term in g. We thus have
that f (ord) = f (I) with I = [1, r].

We prove the theorem by describing how to construct Ψ. We duplicate each gate v in Φ into O(r2) gates
in Ψ, which we denote (v, I) with I ⊆ [r] an interval. Every (v, I) will compute the polynomial Φ̂(I)

v . If
v is an input gate labelled by a field element, set (v, ∅) = Φ̂v and (v, I) = 0 for every nonempty I. If v
is an input gate labelled by a variable xi, set (v, [j, j]) = xj,i and (v, I) = 0 when I is not a singleton. If
v = v1 + v2, set (v, I) = (v1, I) + (v2, I) for all I. If v = v1 × v2 and I = [i, j], set

(v, I) =
∑

i−1≤`≤j

(v1, [i, `])× (v2, [`+ 1, j]).

Associate with the gate (v, I) in Ψ the interval I. Thus, Ψ is ordered. By induction, every gate (v, I)
computes Φ̂(I)

v , and hence Ψ computes f (ord). For every gate v in Φ, there are at most O(r3) edges in Ψ,
and so the size of Ψ is as claimed. ut
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8.2 Multilinear circuits

In this section we prove an exponential lower bound for the size of non-commutative syntactically multi-
linear circuits (a circuit Φ is syntactically multilinear, if for every product gate v = v1 × v2 in Φ, the two
circuits Φv1 and Φv2 do not share variables). Note that an ordered circuit is automatically syntactically
multilinear. By means of Proposition 8.1, a lower bound on syntactically multilinear circuits computing
an ordered polynomial would imply an unconditional lower bound. However, our lower bound involves a
polynomial which is not ordered.

We now define the multilinear version of central polynomials. Let f be a multilinear polynomial of degree
d. We say that f is ml-central, if f is central as in (3.1), and for every i ∈ [m], the polynomial highi is
multilinear; in particular, the polynomials hi, g, hi have distinct variables.

The following lemma describes the structure of multilinear circuits.

Lemma 8.2. Let f be a homogeneous multilinear polynomial of degree d ≥ 2. Assume that there is a
syntactically multilinear circuit Φ of size s computing f . Then there exist n ≤ O(d3s) and ml-central poly-
nomials f1, . . . , fn such that f = f1 + · · ·+ fn.

Proof. The proof is almost identical to Proposition 3.2. QED

Our lower bound is based on counting monomials. The following lemma is the basic observation for the
lower bound.

Lemma 8.3. Let f be a ml-central polynomial of degree k in k variables. Then f has at most 2−Ω(k)k!
monomials with nonzero coefficients.

Proof. Write f as f =
∑
i∈[m] highi with every highi multilinear. Let X be the set of variables in f and

X0 the set of variables in g. Every monomial with a nonzero coefficient in f has the form α1γα2, where
(1) γ is a multilinear monomial of degree d0 in variables X0, and (2) α1, α2 are multilinear monomials in
the variables X \X0 of degrees d1, d2, and α1,α2 have distinct variables. Since d0 + d1 + d2 = k, we have
|X0| = d0. There are thus d0! βs in (1), and at most (d1 + d2)! pairs α1, α2 in (2). Hence f contains at
most

d0!(d1 + d2)! = d0!(k − d0)! =
k!(
k
d0

)
monomials with non-zero coefficients. Since k/3 ≤ d0 < 2k/3, this is at most 2−Ω(k)k!. QED

Define the all-permutations polynomial, APk, as a polynomial in variables x1, . . . , xk

APk =
∑
σ

xσ(1)xσ(2) · · ·xσ(k) ,

where σ is a permutation of [k]. Note that AP
(ord)
k is a polynomial in k2 variables,

AP
(ord)
k =

∑
σ

x1,σ(1)x2,σ(2) · · ·xk,σ(k).
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In other words, AP
(ord)
k = PERMk.

Proof of Theorem 1.12. Assume that APk is computed by such a circuit of size s. By Lemma 8.2, APk
can be written as a sum of O(k3s) ml-centralpolynomials. By Lemma 8.3, APk can thus have at most
O(2−Ω(k)k!k3s) monomials with nonzero coefficients. However, APk has k! monomials. QED
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