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Abstract

In 1994, Y. Mansour conjectured that for every DNF formula on n variables with ¢ terms there exists
a polynomial p with t©(1°6(1/€)) non-zero coefficients such that E,c (o 1y~ [(p(2) — f(2))?] < e. We
make the first progress on this conjecture and show that it is true for several natural subclasses of DNF
formulas including randomly chosen DNF formulas and read-k£ DNF formulas for constant k.

Our result yields the first polynomial-time query algorithm for agnostically learning these subclasses
of DNF formulas with respect to the uniform distribution on {0, 1}" (for any constant error parameter).

Applying recent work on sandwiching polynomials, our results imply that a t~©(1°81/€)_bjased dis-
tribution fools the above subclasses of DNF formulas. This gives pseudorandom generators for these
subclasses with shorter seed length than all previous work.

1 Introduction

Let f : {0,1}" — {0,1} be a DNF formula, i.e., a function of the form 7} V --- vV T; where each T;
is a conjunction of at most n literals. In this paper we are concerned with the following question: how
well can a real-valued polynomial p approximate the Boolean function f? This is an important problem
in computational learning theory, as real-valued polynomials play a critical role in developing learning
algorithms for DNF formulas.

Over the last twenty years, considerable work has gone into finding polynomials p with certain properties
(e.g., low-degree, sparse) such that
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In 1989, Linial et al. [LMN93] were the first to prove that for any ¢-term DNF formula f, there exists
a polynomial p : {0,1}" — {0, 1} of degree O(log(t/€)?) such that E,c(q 1y [(p(z) — f(x))?] < €. They
showed that this type of approximation implies a quasipolynomial-time algorithm for PAC learning DNF
formulas with respect to the uniform distribution. Kalai et al. [KKMSO08] observed that this fact actually
implies something stronger, namely a quasipolynomial-time agnostic learning algorithm for learning DNF
formulas (with respect to the uniform distribution). Additionally, the above approximation was used in
recent work due to Bazzi [Baz07] and Razborov [Raz08] to show that bounded independence fools DNF
formulas.

Three years later, building on the work of Linial et al. Mansour [Man95] proved that for any DNF
formula with ¢ terms, there exists a polynomial p defined over {0, 1}" with sparsity tOUloglogtlog(1/€)) gych
that E, (13 [(p(z) — f(x))?] < e. By sparsity we mean the number of nonzero coefficients of p. This
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result implied a nearly polynomial-time query algorithm for PAC learning DNF formulas with respect to the
uniform distribution.

Mansour conjectured [Man94] that the bound above could improved to tOUog1/€) Such an improvement
would imply a polynomial-time query algorithm for learning DNF formulas with respect to the uniform
distribution (to within any constant accuracy), and learning DNF formulas in this model was a major open
problem at that time.

In a celebrated work from 1994, Jeff Jackson proved that DNF formulas were learnable in polynomial
time (with queries, uniform distribution) without proving the Mansour conjecture. His “Harmonic Sieve”
algorithm [Jac97] used boosting in combination with some weak approximation properties of polynomials.
As such, for several years, Mansour’s conjecture remained open and attracted considerable interest, but its
resolution did not imply any new results in learning theory.

In 2008, Gopalan et al. [GKKO8b] proved that a positive resolution to the Mansour conjecture also
implies an efficient query algorithm for agnostically learning DNF formulas (to within any constant error
parameter). The agnostic model of learning is a challenging learning scenario that requires the learner to
succeed in the presence of adversarial noise. Roughly, Gopalan et al. showed that if a class of Boolean func-
tions C can be e-approximated by polynomials of sparsity s, then there is a query algorithm for agnostically
learning C in time poly (s, 1/¢€) (since decision trees are approximated by sparse polynomials, they obtained
the first query algorithm for agnostically learning decision trees with respect to the uniform distribution on
{0,1}"). Whether DNF formulas can be agnostically learned (queries, uniform distribution) still remains a
difficult open problem [GKKO08a].

1.1 Our Results

We prove that the Mansour conjecture is true for several well-studied subclasses of DNF formulas. As far
as we know, prior to this work, the Mansour conjecture was not known to be true for any interesting class of
DNF formulas.

Our first result shows that the Mansour conjecture is true for the class of randomly chosen DNF formulas:

Theorem 1. Ler f : {0,1}" — {0,1} be a DNF formula with t terms where each term is chosen inde-
pendently from the set of all terms of length log n. Then there exists a p with ||p|; < t°1°8Y) such that

E((p(z) — f(2))’] < e

By [|p||1 we mean the sum of the absolute value of the coefficients of p. It is easy to see that this implies
that f is e-approximated by a polynomial of sparsity at most O(||p||1/€?). We choose the terms to be of
length ©(log n) so that the expected value of f is bounded away from either O or 1.

Our second result is that the Mansour conjecture is true for the class of read-k£ DNF formulas:

Theorem 2. Let f : {0,1}" — {0, 1} be a DNF formula with t terms where each literal appears at most k
times. Then there exists a p with ||p||; < tOF1°81/) such that B[(p(x) — f(z))?] < e.

Even for the case £ = 1, Mansour’s conjecture was not known to be true. Mansour [Man95] proves
that any polynomial that approximates read-once DNF formulas to € accuracy must have degree at least
Q(logtlog(1/e)/loglog(1/¢)). He further shows that a “low-degree” strategy of selecting all of a DNF’s
Fourier coefficients of monomials up to degree d results in a polynomial p with ||p||; = tO(eglostlogl/e) ¢
is not clear, however, how to improve this to the desired t(°1/€) bound.

As mentioned earlier, by applying the result of Gopalan et al. [GKKO08b], we obtain the first polynomial-
time query algorithms for agnostically learning the above classes of DNF formulas to within any constant
accuracy parameter. We consider this an important step towards agnostically learning all DNF formulas.



Corollary 3. Let C be the class of DNF formulas with t terms where each term is randomly chosen from the
set of all terms of length logt. Then there is a query-algorithm for agnostically learning C with respect to
the uniform distribution on {0, 1}" to accuracy € in time poly(n) - 0008 1/€) \with probability 1 — nfi(es?)
(over the choice of the DNF formula).

We define the notion of agnostic learning with respect to randomly chosen concept classes in Section 2.
We also obtain a corresponding agnostic learning algorithm for read-k DNF formulas:

Corollary 4. Let C be the class of read-k DNF formulas with t terms. Then there is a query-algorithm for

agnostically learning C with respect to the uniform distribution on {0,1}" to accuracy € in time poly(n) -
tO(k log l/e)‘

Our sparse polynomial approximators can also be used in conjunction with recent work due to De. et
al. to show that for any randomly chosen or read-k DNF f, a 1 /150(10g 1/€)_biased distribution fools f (for
k=0(1)):

Theorem 5. Let f be a randomly chosen DNF formula or a read-k DNF formula. Then there exists a
pseudorandom generator G such that

P [F(G@) =1~ Pr [f(z)=1] <

with s = O(logn + logt - log(1/¢)).

Previously it was only known that these types of biased distributions fool read-once DNF formulas
[DETTO9].

1.2 Related Work

As mentioned earlier, Mansour, using the random restriction machinery of Hastad and Linial ef al. [Has86,
LMNO93] had shown that for any DNF formula f, there exists a p of sparsity t(0glogtlog1/€) that approxi-
mates f.

The subclasses of DNF formulas that we show are agnostically learnable have been well-studied in
the PAC model of learning. Read-k£ DNF formulas were shown to be PAC-learnable with respect to the
uniform distribution by Hancock and Mansour [HM91], and random DNF formulas were recently shown to
be learnable on average with respect to the uniform distribution in the following sequence of work [JSO5,
JLSWOS, Sel08, Sel09].

Recently (and independently) De et al. proved that for any read-once DNF formula f, there exists an
approximating polynomial p of sparsity t©(°8 1/€). More specifically, De et al. showed that for any class of
functions C fooled by d-biased sets, there exist sparse, sandwiching polynomials for C where the sparsity
depends on §. Since they show that 1/ tOUog 1/¢) piased sets fool read-once DNF formulas, the existence of
a sparse approximator for the read-once case is implicit in their work.

1.3 Our Approach

As stated above, our proof does not analyze the Fourier coefficients of DNF formulas, and our approach is
considerably simpler than the random-restriction method taken by Mansour (we consider the lack of Fourier
analysis a feature of the proof, given that all previous work on this problem has been Fourier-based). Instead,
we use polynomial interpolation.



A Basic Example. Consider a DNF formula f = T3 V- - - VI3 where each 7; is on a disjoint set of exactly
log ¢ variables. For simplicity assume none of the literals are negated. Then the probability that each term is
satisfied is 1/¢, and the expected number of satisfied terms is one. Further, since the terms are disjoint, with
high probability over the choice of random input, only a few—say d—terms will be satisfied. As such, we
construct a univariate polynomial p with p(0) = 0 and p(i) = 1 for 1 < i < d. Then p(T} + - - - + T}) will
be exactly equal to f as long as at most d terms are satisfied. A careful calculation shows that the inputs
where p is incorrect will not contribute too much to E[(f —p)?], as there are few of them. Setting parameters
appropriately yields a polynomial p that is both sparse and an e-approximator of f.

Random and read-once DNF formulas. More generally, we adopt the following strategy: given a DNF
formula f (randomly chosen or read-once) either (1) with sufficiently high probability a random input does
not satisfy too many terms of f or (2) f is highly biased. In the former case we can use polynomial
interpolation to construct a sparse approximator and in the latter case we can simply use the constant O or 1
function.

The probability calculations are a bit delicate, as we must ensure that the probability of many terms
being satisfied decays faster than the growth rate of our polynomial approximators. For the case of random
DNF formulas, we make use of some recent work due to Jackson ef al. on learning random monotone DNF
formulas [JLSWOS].

Read-k DNF formulas. Read-k DNF formulas do not fit into the above dichotomy, so we do not use the
sum 77 + - - - 4 T} inside the univariate polynomial. Instead, we use a sum of DNF formulas (rather than
terms) based on a construction from [Raz08]. We modify Razborov’s construction to exploit the fact that
terms in a read-k DNF formula do not share variables with many other terms. Our analysis shows that we
can then employ the previous strategy: either (1) with sufficiently high probability a random input does not
satisfy too many formulas in the sum or (2) f is highly biased.

2 Preliminaries

In this paper, we will primarily be concerned with Boolean functions f : {0,1}" — {0,1}. Let 21, ...z,
be Boolean variables. A literal is either a variable x; of its negation Z;, and a term is a conjunction of
literals. Any Boolean function can be expressed as a disjunction of terms, and such a formula is said to
be a disjunctive normal form (or DNF) formula. A read-k DNF formula is a DNF formula in which the
maximum number of occurrences of each variable is bounded by k.

2.1 Sparse Polynomials

Every function f : {0,1}" — R can be expressed by its Fourier expansion: f(z) = > ¢ f(S)xs(z) where
xs(x) = [[;eq(—1)% for S C [n], and f(S) = E[f - xs]. The Fourier expansion of f can be thought of as

the unique polynomial representation of f over {41, —1}" under the map xz; — 1_2”" .

Definition 6. The Fourier /1-norm (also called the spectral norm) of f is defined to be || f||1 := > _ 4| f(S)).
We will also use the following minor variant, ||f”f@ = ZS¢@|JE(S’)|.

We will use the same notation for polynomials p : {0,1}" — R (so ||p||1 here is the sum of the absolute
value of the coefficients of the polynomial p), which is justified by the following lemma.



Fact 7. Given a polynomial p : {0,1}" — R with ||p||1 = L, the spectral norm of p is also L.

Proof. We can obtain the Fourier representation of p by replacing each term of the polynomial by the Fourier
expansion for the term. It is easy to see that the spectral norm of a conjunction is 1.
|

We are interested in the spectral norm of functions because functions with small spectral norm can be
approximated by sparse polynomials over {+1, —1}".

Fact 8 ([KM93]). Given any function with E[f?] <lande >0, let S = {S C [n] : |f(S)] > ¢/|Ifl1}.
and g(v) = Y ges f(S)xs(x). Then E[(f — 9)°] < € and S| < (|| f]l1/e)?

In Mansour’s setting, Boolean functions output +1 for FALSE and —1 for TRUE. Mansour conjectured
that polynomial-size DNF formulas could be approximated by sparse polynomials over {+1, —1}".

Conjecture 9 ([Man94]). Let f : {+1,—1}" — {+1,—1} be any function computable by a t-term DNF
formula. Then there exists a polynomial p : {+1, —1}" — R with t°1°€1/¢) terms such that E[(f —p)?] < e.

We will prove the conjecture to be true for various subclasses of polynomial-size DNF formulas. In
our setting, Boolean functions will outputs O for FALSE and 1 for TRUE. However, we can easily change
the range by setting f* := 1 — 2 - f. Thus, given a DNF formula f : {0,1}" — {0, 1}, we will exhibit
a polynomial p : {0,1} — R with ||p||; = t©U1°81/) that approximates f in the f>-norm to within /8.
Changing the range to {+1, —1} will change the accuracy of the approximation by at most a factor of 4:
E[((1—2f) — (1 —2p))]2 = 4E[(f — p)?] < €/2, and it will change the £1-norm of p by at most a factor
of 2. Finally, changing the domain of 2p — 1 to {+1, —1}" won’t change the ¢1-norm of p (Fact 7), and by
Fact § there is a polynomial with (2t9(1081/€))2(2 /¢)2 = tOUo81/€) terms over {+1, —1}" that approximates
1 — 2p to within €/2, thus proving Mansour’s conjecture.

2.2 Agnostic learning

We first describe the traditional framework for agnostically learning concept classes with respect to the
uniform distribution and then give a slightly modified definition for an “average-case” version of agnostic
learning where the unknown concept (in this case a DNF formula) is randomly chosen.

Definition 10 (Standard agnostic model). Let D be the uniform distribution on {0,1}". Let f : {0,1}" —
{0, 1} be an arbitrary function. Define

t = min P .

opt = min Pr[e(x) # f(z)]

That is, opt is the error of the best fitting concept in C with respect to D. We say that an algorithm A
agnostically learns C with respect to D if the following holds for any f: if A is given black-box access to f
then with high probability A outputs a hypothesis h such that Pr,..p[h(z) # f(z)] < opt + €.

The intuition behind the above definition is that a learner—given access to a concept ¢ € C where an
7 fraction of ¢’s inputs have been adversarially corrupted—should still be able to output a hypothesis with
accuracy 7+ € (achieving error better than n may not be possible, as the adversary could embed a completely
random function on an 7 fraction of ¢’s inputs). Here 7 plays the role of opt.

This motivates the following definition for agnostically learning a randomly chosen concept from some
class C:



Definition 11 (Agnostically learning random concepts). Let C be a concept class and choose c randomly
from C. We say that an algorithm A agnostically learns random concepts from C if with probability at
least 1 — & over the choice of c the following holds: if the learner is given black-box access to ¢ and
Prycqo1yn[c(w) # ¢/ (x)] < n, then A outputs a hypothesis h such that Pr,c o 132 [h(z) # ¢/(z)] <n+e

We are unaware of any prior work defining an agnostic framework for learning randomly chosen con-
cepts.

The main result we use to connect the approximation of DNF formulas by sparse polynomials with
agnostic learning is due to Gopalan ef al. [GKKOS8b]:

Theorem 12 ([GKKOS8b]). Let C be a concept class such that for every c € C there exists a polynomial p
such that ||p||1 < s and Eycqyq _1y»[Ip(x) — c(z)|?] < €2/2. Then there exists an algorithm B such that
the following holds: given black-box access to any Boolean function f : {+1,—1}"—{+1, -1}, B runs in
time poly(n, s, 1/€) and outputs a hypothesis h : {+1, —1}"—{+1, —1} with

$€{+1j,r_1}7z [h(:ﬁ) # f(l')] < opt+e

3 Approximating DNF's using univariate polynomial interpolation

Let f = Ty VTyV ---V T; be any DNF formula. We say T;(z) = 1 if x satisfies the term T;, and O
otherwise. Let y : {0,1}" — {0, ...t} be the function that outputs the number of terms of f satisfied by
z, e, yr(r) =Ti(x) + To(z) + - - - + Ti(z).

Our constructions will use the following univariate polynomial P to interpolate the values of f on inputs

{z 1 yp(zx) < d}.
Fact 13. Let 4
P(y):=> (1) <y> (1)
j=1 J
The polynomial P is a degree-d polynomial in vy, and takes the value O when y = 0, and takes the value 1

wheny € [d]. Ford+1 <y <t |P(y)| <d(Y).

For any ¢-term DNF formula f, we can construct a polynomial py : {0, 1}"—R defined as py := Poyj.
A simple calculation, given below, shows that the /1-norm of p; is polynomial in ¢ and exponential in d.

Lemma 14. Let f be a t-term DNF formula with terms of length at most w. Then py is a ((d + 1)td)-
term degree-(dw) polynomial over {0,1}" with coefficients of magnitude at most d%, and thus ||ps||s, <

(d+ 1)(td)

Proof. Note that the degree-d univariate polynomial P has (d + 1)-terms and coefficients of magnitude at
most d?. We can view the polynomial py as the polynomial P'(Ty,...,T;) := P(Ty + -+ + T}) over
variables T; € {0, 1}. The polynomial P’ has at most (d + 1)t? terms with coefficients of magnitude at most
d? and has degree d. Now each term of P’ is a product of T}’s, thus py is a ((d + 1)t?)-term degree-(dw)
polynomial over {0, 1}" with coefficients of magnitude at most d?. |

The following lemma shows that we can set d to be fairly small, ©(log 1/¢), and the polynomial p;
will be a good approximation for any DNF formula f, as long as f is unlikely to have many terms satisfied
simultaneously.



Lemma 15. Let f be any DNF formula with t = poly(n) terms, d = 4e3In1/e, and ¢ = (1/8)logn. If

<elr}1/e>j’

for every d < j < {, then the polynomial py satisfies E[(f — ps)?] < e.

Prlys(z) = j

IN

Proof. We condition on the values of ys(x), controlling the magnitude of py by the unlikelihood of y
being large. Our condition on f gives that Prly; = j] < (4e*)™/ ford < j < ¢, and that Pr[y; > ¢] <
n~%(oslogn) Note that by Fact 13, max, |f(z) — py(z)| < d(}), hence:
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j=d-+1

ol 02 .
Z d27'(462)7] + nfﬂ(loglogn)
j=d+1

521 d(eQ)—j+n—Q(loglogn)
j=d+1
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Z 6€_j +n—Q(log10gn) <e.
j=d+1
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If = psl®
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For f satisfying the condition in Lemma 15, we may take d = O(log 1/¢) and apply Lemma 14 to obtain
an e-approximating polynomial for f with spectral norm t©(0g1/¢),

4 Mansour’s Conjecture for Random DNF Formulas

In this section, we establish various properties of random DNF formulas and use these properties to show
that for almost all f, Mansour’s conjecture holds. Roughly speaking, we will show that a random DNF
formula behaves like the “tribes” function, in that any “large” set of terms is unlikely to be satisfied by a
random assignment. This notion is formalized in Lemma 18. For such DNF formulas, we may use the
construction from Section 3 to obtain a good approximating polynomial for f with small spectral norm
(Theorem 19).

Throughout the rest of this section we assume that n® < t(n) < n’ for any constants a,b > 0. For
brevity we write ¢ for ¢(n). Let D!, be the probability distribution over ¢-term DNF formulas induced by
the following process: each term is independently and uniformly chosen at random from all ¢ (107; t) possible
terms of size exactly logt over {x1,...,z,}.

If ¢ grows very slowly relative to n, say t = O(nl/ 4), then with high probability a random f drawn from
D!, will be a read-once DNF formula, in which case the results of Section 5 hold. If the terms are not of size
©(logn), then the DNF will be biased, and thus be easy to learn. We refer the reader to [JS05] for a full
discussion of the model.

To prove Lemma 18, we require two Lemmas, which are inspired by the results of [JSO5] and [JLSWO0S].
Lemma 16 shows that with high probability the terms of a random DNF formula are close to being disjoint,
and thus cover close to j log ¢ variables.



Lemma 16. With probability at least 1 — t7e71°8¢(j1og t)\°8t /nl°8t over the random draw of f from DY,
at least jlogt — (logt)/4 variables occur in every set of j distinct terms of f. The failure probability is at
most 1/n*1%8Y) for any j < (In(2)/4) logn.

Proof. Let k := logt. Fix a set of j terms, and let v < jk be the number of distinct variables (negated
or not) that occur in these terms. We will bound the probability that v > w := jk — k/4. Consider any
particular fixed set of w variables. The probability that none of the j terms include any variable outside of
the w variables is precisely ((1,‘;) / (Z) )j . Thus, the probability that v < w is by the union bound:

() () < oy (o= st e

k

Taking a union bound over all (at most ¢/) sets, we have that with the correct probability every set of j terms
contains at least w distinct variables. |

We will use the method of bounded differences (a.k.a., McDiarmid’s inequality) to prove Lemma 18.

Proposition 17 (McDiarmid’s inequality). Let X1, ...,X,, be independent random variables taking values
inaset X, and let f : X™ — R be such that for all i € [m], |f(a) — f(a’)| < d;, whenever a,a’ € X™
differ in just the ith coordinate. Then for all T > 0,

2

Prf>Ef+ 7] <exp <_Z2TdQ

) dPr[f<Ef—1]< ( 27 >
and Pr —7|<exp| == |-
=

The following lemma shows that with high probability over the choice of random DNF formula, the
probability that exactly j terms are satisfied is close to that for the “tribes” function: (;)t_j (1 —1/t)t.
Lemma 18. For any j < (In(2)/4)logn, with probability at least 1 — 1/n*(°8%) over the random draw of
f from D}, the probability over the uniform distribution on {0,1}" that an input satisfies exactly j distinct
terms of f is at most 2(;) t=I(1—1/t)H.
Proof. Let f =Ty V---V Ty, and let 3 := t=7(1 — 1/t)*=J. Fix any J C [t] of size j, and let P; be the
probability over x € {0,1}" that the terms 7; for i € .J are satisfied and no other terms are satisfied. We
will show that P; < 2/ with high probability; a union bound over all possible sets J of size j in [t] gives
that P; < 243 for every .J with high probability. Finally, a union bound over all (;) possible sets of j terms
(where the probability is taken over x) proves the lemma.

Without loss of generality, we may assume that J = [j]. For any fixed x, we have:

Pr [z satisfies exactly the terms in J] = (3,
feD},

and thus by linearity of expectation, we have E¢cp: [P;] = (3. Now we show that with high probability that
the deviation of Py from its expected value is low.

Applying Lemma 16, we may assume that the terms 77, - - - , T} contain at least j log ¢ — (log t) /4 many
variables, and that J U T; for all i = j + 1,--- , ¢ includes at least (j + 1)logt — (logt)/4 many unique
variables, while increasing the failure probability by only 1/ nf2logt) Note that conditioning on this event
can change the value of Py by at most 1/n1°89) < 13 so under this conditioning we have E[P;] > 15.
Conditioning on this event, fix the terms T4, -- ,T}. Then the terms T}, ,T; are chosen uniformly



and independently from the set of all terms 7" of length log ¢ such that the union of the variables in J and T’
includes at least (j + 1) logt — (logt)/4 unique variables. Call this set X'.

We now use McDiarmid’s inequality where the random variables are the terms 7)1, ..., T; randomly
selected from X, letting g(Tj41,---,Ty) = Py and g(Tjq1,--- ,Ti—1, T}, Tigr,--- ,Ty) = P} for all
i=7-+1,...,t. We claim that:

£1/4
This is because P’ can only be larger than P; by assignments which satisfy 771, --- , Ty and T;. Similarly,
P!, can only be smaller than P; by assignments which satisfy 77, --- , Ty and T;. Since T; and T come

from X', we know that at least (j + 1)t — (logt)/4 variables must be satisfied.
Thus we may apply McDiarmid’s inequality with 7 = % 3, which gives that Pr¢[P; > 2(] is at most

—2932 —9Vt(1 — 1/t)2(t=9)
4
exp <t3/2/752J+2> < exp ( 5 :

Combining the failure probabilities over all the (;) possible sets, we get that with probability at least

(]) (nﬂ(logt) +e T pflogt)’

over the random draw of f from D!, Py for all J C [t] of size j is at most 2/3. Thus, the probability that a
random input satisfies exactly some j distinct terms of f is at most 2(;) G. |

Using these properties of random DNF formulas we can now show that Mansour’s conjecture [Man94]
is true with high probability over the choice of f from Df.

Theorem 19. Let f : {0,1}" — {0, 1} be a t-term DNF formula where each term is chosen independently
from the set of all terms of length log n. Then with probability at least 1 — n=*(1), there exists a p with
lIp||y < tCU V) such that B[(p(z) — f(z))?] < e.

Proof. Let d := €°In(1/¢) and p; be as defined in Section 3. Lemma 14 tells us that |[ps||; < tOUes1/€),
We show that with probability at least 1 — n~%() over the random draw of f from Dt p ¢ will be a good
approximator for f. This follows by Lemma 18; with probability at least 1 — (£ — d — 1)/nf2(ogt) —
1—n~“M), we have Pr[y = j] forall d < j < ¢. Thus for such f Lemma 15 tells us that E[(f —p;)?] < e.

|

S Mansour’s Conjecture for Read-4 DNF Formulas

In this section, we give an e-approximating polynomial for any read-k DNF formula and show that its
spectral norm is at most t©(%1°87) _This implies that Mansour’s conjecture holds for all read-k DNF formulas
where k is any constant.

We first illustrate the intuition behind the general case by proving Mansour’s conjecture for read-once
DNF formulas. To do this we show that, like random DNF formulas, read-once DNF formulas satisfy the
conditions of Lemma 15, and thus we can use our construction from Section 3.

Read-k DNF formulas, in contrast, may not satisfy the conditions of Lemma 15, so we must change
our approach. Instead of using Zle T; inside our univariate polynomial, we use a different sum, which is
based on a construction from [Raz08] of representing any DNF formula. We modify this representation to
exploit the fact that for read-k DNF formula, the variables in a term can not share variables with too many
other terms. The details are given in Section 5.2.



5.1 Read-once DNF Formulas

In a read-once DNF formula, the probability that a term is satisfied is independent of whether or not any of
the other terms are satisfied, and we take advantage of this fact.

Lemma 20. Let f = T1V,--- ,VT; be a read-once DNF formula of size t such that Pr[f] < 1 — €. Then
the probability over the uniform distribution on {0, 1}" that some set of j > eln1/e terms is satisfied is at

J
most <61“f1/6) .

Proof. For any assignment  to the variables of f, let y(x) be the number terms satisfied in f. By linearity
of expectation, we have that E, [y;(z)] = 3°i_, Pr[T; = 1]. Note that Pr[~f] = [['_, (1 — Pr[T}]), which
is maximized when each Pr[T;] = E[y;]/t, hence Pr[-f] < (1 — E[ys]/t)! < e~ ElWsl. Thus we may
assume that E[y] < In1/e, otherwise Pr[f] > 1 —e.

Assuming E[yf] < In1/e, we now bound the probability that some set of j > eln1/e terms of f is
satisfied. Since all the terms are disjoint, this probability is > g, sj=; [ lies Pr[Zi], and the arithmetic-
geometric mean inequality gives that this is maximized when every Pr[7;] = E[y¢]/t. Then the probability
of satisfying some set of j terms is at most:

CY () =(5) () = (5

which concludes the proof of the lemma. |

Theorem 21. Let f be any read-once DNF formula with t terms. Then there is a polynomial py with
llpsllr < tOUY) and B[(f — ps)?] < e forall e > 0.

Proof. This follows immediately by combining Lemmas 20, 14, and 15. |

5.2 Read-%i DNF Formulas

Unlike for read-once DNF formulas, it is not clear that the number of terms satisfied in a read-k DNF formula
will be extremely concentrated on a small range. In this section we show how to modify our construction so
that a concentration result does hold.

Let f be any ¢-term read-k£ DNF formula. For any term 7T; of f, let ¢; be the DNF formula consisting of
those terms in 77, - - - , T;_1 that overlap with T}, i.e.,

b = \/ Tj, for C; = {j <i | T; N T; # 0}.
J€C;
Let A; := T; A —¢;. Note that ZEZI A; > 0if f is satisfied; and 25:1 A; = 0 otherwise. The following
lemma shows that the spectral norm of P () A;) is still small.

Lemma 22. Let f be a t-term read-k DNF formula, P be the polynomial defined in Equation 1, and
pr(x) := P(S'_, Ai(x)). Then ||ps||y < tO*D).

Proof. We can assume that the terms are of length at most w := log 2t /¢, as dropping terms of length greater
than s will change the probability of f being satisfied by at most €/2.

Because f is a read-k DNF, each ¢; has at most kw many terms, and may be exactly represented by a
polynomial py: {0,1}"—{0, 1} with 2***! terms, each having coefficient 1.

10



As a polynomial in Ay, ..., A;, P has degree d and has at most (d + 1)t? many terms. Since each ¢;
may be exactly represented by a 2**!-term polynomial in z, the polynomial p # has at most (d + 1)¢2d+k
terms with coefficients at most d<. |

In order to show that Mansour’s conjecture holds for read-k£ DNF formulas, we show that 22:1 A;
behaves much like Ele T; would if f were a read-once DNF formula, and thus we can use our polynomial
P (Equation 1) to approximate f. The following claim formalizes the intuition that 25:1 A; behaves like
St T; would if the T/'s were independent.

Claim 23. Forany S C [t], Pr[\;cq Ai] < [l;cs Pr[Ti | ~¢5]. In particular, if there is a pair j, k € S such
that T; N Ty, # 0 for some j < k, then Pr[)\, g A;] = 0.

Proof. 1f such a pair j, k exists in S, then ¢y, contains 7 and A; = T;(1 — ¢;) and Ay, = Tj,(1 — ¢,) cannot
be satisfied simultaneously. We proceed to bound Pr[/\; g A;] assuming no such pair exists, which means

all the terms indexed by .S are disjoint. Observe that in this case, the event that 7; is satisfied is independent
of all T; and ¢; fori # j € S. Hence:

PriNies(Ti A —¢s)] < PriAiesTi | Nies—¢i)
= Pr[Ajes\nTi|Ti A (Njes—9)| Pr[Ti| Ajes —d;]
= Pr{Ajes\inTjl(Ajes—d;)] Pr[Ti|—¢i]

- HPr[Ti\—mbi].

i€S

The first inequality is obtained through conditioning on A\, g —¢; and the fact that Pr[A\; g —¢3] < 1, and
the following equalities hold because the terms indexed by .S are disjoint. |

Using Claim 23, we can prove a lemma analogous to Lemma 20 by a case analysis of 22:1 Pr[T; | —¢il;
either it is large and f must be biased toward one, or it is small so 2221 A; is usually small.

Lemma 24. Let f = T1V,--- ,VT} be a read-k DNF formula of size t such that Pr[f] < 1 — e. Then the
probability over the uniform distribution on {0,1}" that Y'_| A; > j (for any j > elnl/e) is at most

(454)"

Proof. First, we show that if Ty := S"_, Pr[T;|=¢;] > In1/e, then Pr[f] > 1 — e. To do this, we bound
Pr[—f] using the fact that the 77 s are independent of any terms Tj ¢ ¢; with j < i

i~

t
Pr(-f] = Pr [N, -T] = [ (1 —Pr [m At ﬂTJD _
i=1 i=1

(1 —Pr[T;|=¢i]) -

This quantity is maximized when each Pr[T; | —¢;] = T'4/t, hence:

Pr[-f] < <1 - lni/ey <e.

We now proceed assuming that 74 < In1/e. The probability that some j-tuple of A’s is satisfied is at
most ng[t],\S\zj Pr[A;esAi] . Applying Claim 23, we have:

> Prinvesdil < > [P | -4l

SC[t],|S|=34 SC[t],|S|=7i€S

11



The arithmetic-geometric mean inequality shows that this quantity is maximized when all Pr[T; | —¢;] are

equal, hence: ' ' '
t T4\’ eT4\’ elnl/e)’
2, Lmiiiol < <J> <t> : (g) S( j )

SClt] |S|=j i€S

Combing Lemmas 15, 22 and 24, we have that Mansour’s conjecture holds for read-£ DNF formulas
with any constant k.

Theorem 25. Let f be any read-k DNF formula with t terms. Then there is a polynomial ps with ||p¢|[1 <
to(kbg 1/€) and E[(f — pf)2] S efor all e > 0.

6 Pseudorandomness

De et al. [DETT09] recently improved long-standing pseudorandom generators against DNF formulas.

Definition 26. A probability distribution X over {0,1}" e-fools a real function f : {0,1}" — R if

[E[f(X)] - E[f(Un)]| <e

If C is a class of functions, then we say that X e-fools C if X e-fools every function f € C.
We say a probability distribution X over {0,1}" is e-biased if it e-fools the character function xgs for
every S C [n].

De et al. observed that the result of Bazzi [Baz07] implied a pseudorandom generator that e-fools ¢-
term DNF formulas over n variables with seed length O(log n - log?(t/)), which already improves the
long-standing upper bound of O(log®*(¢n/€)) of Luby er al. [LVW93]. They go on to show a pseudorandom
generator with seed length O(log n + log?(t/e) loglog(t/e)).

They prove that a sufficient condition for a function f to be e-fooled by an e-biased distribution is that the
function be “sandwiched” between two bounded real-valued functions whose Fourier transform has small
£1 norm:

Lemma 27 (Sandwich Bound [DETTO09]). Suppose f, f¢, fu : {0,1}" — R are three functions such that
forevery x € {0,1}", fo(x) < f(2) < fu(x), B[fu(Un)] —E[f(Un)] < ¢ and E[f(U,)] —E[fe(Un)] < e
Let L = max(||fer®a Hfu”ié@) Then any [3-biased probability distribution (e + 3L)-fools f.

Naor and Naor [NN93] prove that an e-biased distribution over n bits can be sampled using a seed of
O(log(n/€)) bits. Using our construction from Section 4, we show that random DNF formulas are e-fooled
by a pseudorandom generator with seed length O(logn + log(t) log(1/€)):

Theorem 28. Let f = Ty \V --- \V T} be a random DNF formula chosen from D. For 1 < d < t, with
probability 1 —1/n¥1°8) over the choice of f, B-biased distributions O(2~® 4 5t%)-fool f. In particular,
we can e-fool most f € D! by a t—000s(1/e) _pigsed distribution.

Proof. Let f, = pfc (where py is defined as in Equation 1) and f, = —p?c. By Fact 13, we know that

fuly) < d? (Z)Z and fy(y) > —d? (2)2. Similarly, as in the proof of Lemma 14, the ¢1-norms of f,, and f,
are at most {O(4),

12



We also have:

t N 2
Bl (U) ~ BLW)) < Y (d?(ﬁl) —1) Prly = 5],

j=d+1

which with probability 1 — 1/ nf208t) gver the choice of f is at most 2724 by the analysis in Lemma 15.
The same analysis applies for f,, thus applying Lemma 27 gives us the theorem. |

De et al. match our bound for random DNF formulas for the special case of read-once DNF formulas.
Using our construction from Section 5 and a similar proof as the one above, we can show that read-k
formulas are e-fooled by a pseudorandom generator with seed length O(logn + log(t) log(1/¢)).

Theorem 29. Let f = 11V --- V T} be a read-k DNF formula. For 1 < d < t, 3-biased distributions
O(Q_Q(d) + pth)-fool f. In particular, we can e-fool read-k DNF formulas by a t—O00(1/) biased distri-
bution.

7 Discussion

On the relationship between Mansour’s Conjecture and the Entropy-Influence Conjecture. As a final
note, we would like to make a remark on the relationship between Mansour’s conjecture and the entropy-
influence conjecture. The spectral entropy of a function is defined to be E(f) := > ¢ — £(5)21og(f(5)?)
and the fotal influence to be I(f) = > ¢S] f(S)2. The entropy-influence conjecture is that E(f) =
O(I(f)) [FK96, Kal07]. Boppana showed that the total influence of ¢-term DNF formulas is O(logt)
[Bop97]. From this it follows that Mansour’s conjecture is implied by the entropy-influence conjecture.

It can be shown that for poly(n)-size DNF formulas Mansour’s conjecture implies an upper bound on
the spectral entropy of O(logn). Thus, for the class of DNF formulas we consider in Section 4 (which have
total influence Q2(logn)), our results imply that the entropy-influence conjecture is true.

Acknowledgments. Thanks to Sasha Sherstov for important contributions at an early stage of this work.
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