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Abstract

In 1994, Y. Mansour conjectured that for every DNF formularorariables witht terms there exists
a polynomialp with t©(1°e(1/<)) non-zero coefficients such thB,c 1y~ [(p(z) — f(z))?] < e. We
make the first progress on this conjecture and show thatriésfor several natural subclasses of DNF
formulas including randomly chosen DNF formulas and rédaaNF formulas for constarit.

Our result yields the first polynomial-time query algoritfon agnostically learning these subclasses
of DNF formulas with respect to the uniform distribution fi 1}" (for any constant error parameter).

Applying recent work on sandwiching polynomials, our résimply that at—©(°21/¢)_pjased dis-
tribution fools the above subclasses of DNF formulas. Thisgpseudorandom generators for these
subclasses with shorter seed length than all previous work.

1 Introduction

Let f : {0,1}" — {0,1} be a DNF formulaj.e., a function of the formi} Vv --- v T; where each;
is a conjunction of at most literals. In this paper we are concerned with the followingestion: how
well can a real-valued polynomial approximate the Boolean functigff? This is an important problem
in computational learning theory, as real-valued polyradsplay a critical role in developing learning
algorithms for DNF formulas.

Over the last twenty years, considerable work has gone imdaniiy polynomial with certain properties
(e.g.,low-degree, sparse) such that
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In 1989, Linialet al. [LMN93] were the first to prove that for anyterm DNF formulaf, there exists
a polynomialp : {0,1}" — {0,1} of degreeO(log(t/¢)?) such thatE,c (o 1y~ [(p(z) — f(2))?] < e. They
showed that this type of approximation implies a quasipogial-time algorithm for PAC learning DNF
formulas with respect to the uniform distribution. Kaktial. [KKMSO08] observed that this fact actually
implies something stronger, namely a quasipolynomiaétiagnostic learning algorithm for learning DNF
formulas (with respect to the uniform distribution). Additally, the above approximation was used in
recent work due to BazziBaz07 and RazborovRaz0§ to show that bounded independence fools DNF
formulas.

Three years later, building on the work of Liniat al. Mansour Man93 proved that for any DNF
formula witht terms, there exists a polynomialdefined over0, 1} with sparsityt©(leglogtlog(1/€)) gych
that E,c (0,13~ [(p(z) — f(2))?] < e. By sparsity we mean the number of nonzero coefficients. ofhis
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result implied a nearly polynomial-timgueryalgorithm for PAC learning DNF formulas with respect to the
uniform distribution.

Mansour conjecturedjan94 that the bound above could improvedi{d!°e1/¢) . Such an improvement
would imply a polynomial-time query algorithm for learnifi@NF formulas with respect to the uniform
distribution (to within any constant accuracy), and leagnDNF formulas in this model was a major open
problem at that time.

In a celebrated work from 1994, Jeff Jackson proved that Ditfdilas were learnable in polynomial
time (with queries, uniform distributionyithout proving the Mansour conjecture. His “Harmonic Sieve”
algorithm Pac97 used boosting in combination with some weak approximatimperties of polynomials.
As such, for several years, Mansour’s conjecture remaipet and attracted considerable interest, but its
resolution did not imply any new results in learning theory.

In 2008, Gopalaret al. [GKKO08h] proved that a positive resolution to the Mansour conjectailiso
implies an efficient query algorithm fagnosticallylearning DNF formulas (to within any constant error
parameter). The agnostic model of learning is a challentgagiing scenario that requires the learner to
succeed in the presence of adversarial noise. Roughly,|&ogizal. showed that if a class of Boolean func-
tionsC can bec-approximated by polynomials of sparsitythen there is a query algorithm for agnostically
learningC in time poly(s, 1/€) (since decision trees are approximated by sparse polyt&rttiay obtained
the first query algorithm for agnostically learning deamstoees with respect to the uniform distribution on
{0,1}"). Whether DNF formulas can be agnostically learned (geetiaiform distribution) still remains a
difficult open problem GKKO084|.

1.1 Our Results

We prove that the Mansour conjecture is true for several-stalied subclasses of DNF formulas. As far
as we know, prior to this work, the Mansour conjecture wasknotvn to be true for any interesting class of
DNF formulas.

Our first result shows that the Mansour conjecture is truéh®class of randomly chosen DNF formulas:

Theorem 1. Let f : {0,1}" — {0,1} be a DNF formula witht terms where each term is chosen indepen-
dently from the set of all terms of lenglbg ¢t. Then with probabilityl — n2(°e?) (over the choice of the
DNF formula). there exists awith ||p||; = t©(°21/9) such that®[(p(x) — f(z))?] < e.

By ||p|l1 we mean the sum of the absolute value of the coefficients lifis easy to see that this implies
that f is e-approximated by a polynomial of sparsity at mgigi||; /¢)2. We choose the terms to be of length
O©(logt) so that the expected value pfis bounded away from either O or 1.

Our second result is that the Mansour conjecture is truehfoclass of rea@-DNF formulas:

Theorem 2. Let f : {0,1}" — {0,1} be a DNF formula witht terms where each literal appears at mast
times. Then there existspawith ||p||; = t9*1°81/<) such thatE[(p(z) — f(x))?] < e.

Even for the cas& = 1, Mansour’s conjecture was not known to be true. Mansdlar[93 proves
that any polynomial that approximates read-once DNF foasmtibe accuracy must havdegreeat least
Q(logtlog(1/€)/loglog(1/€)). He further shows that a “low-degree” strategy of selectiigf a DNF’s
Fourier coefficients of monomials up to degreeesults in a polynomiab with ||p||; = tOoglogtlogl/e) ¢
is not clear, however, how to improve this to the desitéé¢1/€) bound.

As mentioned earlier, by applying the result of Gopataal.[GKK08h], we obtain the first polynomial-
time query algorithms for agnostically learning the abolasses of DNF formulas to within any constant
accuracy parameter. We consider this an important stepdsveegnostically learning all DNF formulas.
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Corollary 3. LetC be the class of DNF formulas witlterms where each term is randomly chosen from the
set of all terms of lengtlog ¢t. Then there is a query-algorithm for agnostically learnifigvith respect to
the uniform distribution or{0, 1}" to accuracye in time poly(n) - t?(1°81/¢) with probability 1 — nfos?)
(over the choice of the DNF formula).

We define the notion of agnostic learning with respect to oanlg chosen concept classes in Section
We also obtain a corresponding agnostic learning algorfirmead# DNF formulas:

Corollary 4. LetC be the class of read-DNF formulas witht terms. Then there is a query-algorithm for

agnostically learning” with respect to the uniform distribution o), 1}" to accuracye in time poly(n) -
tO(klog l/e).

Our sparse polynomial approximators can also be used iuotipn with recent work due to Deet
al. to show that for any randomly chosen or rda®NF f, a1/t(°e1/¢)_biased distribution foolg (for
k=0()):

Theorem 5. Let f be a randomly chosen DNF formula or a read®NF formula. Then there exists a
pseudorandom generat@¥ such that

P [(G) =1~ _Pr [f(z)=1] <<

with s = O(logn + log t - log(1/e)).

Previously it was only known that these types of biased itifions fool read-once DNF formulas
[DETTOY.

1.2 Related Work

As mentioned earlier, Mansour, using the random restriati@chinery of Hastad and Liniat al. [Has86
LMN93] had shown that for any DNF formulf, there exists a of sparsitytC(loglogtlog1/e) that approxi-
matesf.

The subclasses of DNF formulas that we show are agnostitsdiyable have been well-studied in
the PAC model of learning. ReddDNF formulas were shown to be PAC-learnable with respechéo t
uniform distribution by Hancock and Mansouitf191], and random DNF formulas were recently shown to
be learnable on average with respect to the uniform digtobun the following sequence of workl$05
JLSWO08 Sel0§ Sel09.

Recently (and independently) @ al. proved that for any read-once DNF formufathere exists an
approximating polynomiap of sparsityt©(°g1/¢) More specifically, Det al. showed that for any class of
functionsC fooled by §-biased sets, there exist sparse, sandwiching polynoffidals where the sparsity
depends on. Since they show thal/to(logl/e)—biased sets fool read-once DNF formulas, the existence of
a sparse approximator for the read-once case is impliditair tvork.

1.3 Our Approach

As stated above, our proof does not analyze the Fourier ciggffs of DNF formulas, and our approach is
considerably simpler than the random-restriction metla&edn by Mansour (we consider the lack of Fourier
analysis a feature of the proof, given that all previous wmrlhis problem has been Fourier-based). Instead,
we use polynomial interpolation.



A Basic Example. Consider a DNF formulg = T3 Vv - - - V Ty where eacl; is on a disjoint set of exactly
log t variables. For simplicity assume none of the literals agaterl. Then the probability that each term is
satisfied isl /¢, and the expected number of satisfied terms is one. Furthee the terms are disjoint, with
high probability over the choice of random input, only a fesayd—terms will be satisfied. As such, we
construct a univariate polynomiglwith p(0) = 0 andp(i) = 1 for 1 <i < d. Thenp(T} + - -- + T;) will

be exactly equal tg as long as at most terms are satisfied. A careful calculation shows that thatgp
wherep is incorrect will not contribute too much #8[( f —p)?], as there are few of them. Setting parameters
appropriately yields a polynomialthat is both sparse and arapproximator off.

Random and read-once DNF formulas. More generally, we adopt the following strategy: given a DNF
formula f (randomly chosen or read-once) either (1) with sufficiehifyh probability a random input does
not satisfy too many terms of or (2) f is highly biased. In the former case we can use polynomial
interpolation to construct a sparse approximator and inatter case we can simply use the constaat 1
function.

The probability calculations are a bit delicate, as we muasuge that the probability of many terms
being satisfied decays faster than the growth rate of ounpatyal approximators. For the case of random
DNF formulas, we make use of some recent work due to Jackisalhon learning random monotone DNF
formulas pLSWO04g.

Read+ DNF formulas. Read# DNF formulas do not fit into the above dichotomy, so we do netthe
sumT; + - - - + T; inside the univariate polynomial. Instead, we use a suforofiulas(rather than terms)
based on a construction froR§z08. We modify Razborov’s construction to exploit the factttherms in

a readk DNF formula do not share variables with many other terms. &alysis shows that we can then
employ the previous strategy: either (1) with sufficientlgthprobability a random input does not satisfy
too many formulas in the sum or (2)is highly biased.

2 Preliminaries

In this paper, we will primarily be concerned with Booleamdtions f : {0,1}" — {0,1}. Letzy, ... ,x,

be Boolean variables. Ateral is either a variablec; of its negationz;, and atermis a conjunction of
literals. Any Boolean function can be expressed as a dispmof terms, and such a formula is said to
be adisjunctive normal form(or DNF) formula. A reads DNF formula is a DNF formula in which the
maximum number of occurrences of each variable is bounded by

2.1 Sparse Polynomials

Every functionf : {0,1}" — R can be expressed by its Fourier expansiff:) = Y f(S)Xs(a:) where
xs(z) = [ieg(—1)% for S C [n], andf(S) = E[f - xs]. The Fourier expansion gf can be thought of as

the unique polynomial representation obver{+1, —1}" under the map; — 1‘2“.

Definition 6. TheFourier¢;-norm (also called thespectral normof f is defined to bd f||; := Zsyf(S)].
We will also use the following minor variaritf[|7° := 3| f(S)]-

We will use the same notation for polynomials {0,1}" — R (so||p||; here is the sum of the absolute
value of the coefficients of the polynomig), which is justified by the following lemma.



Fact 7. Given a polynomiap : {0,1}" — R with ||p||; = L, the spectral norm g is alsoL.

Proof. We can obtain the Fourier representatiom bl replacing each term of the polynomial by the Fourier
expansion for the term. It is easy to see that the spectrat mba conjunction id. |

We are interested in the spectral norm of functions becawsetibns with small spectral norm can be
approximated by sparse polynomials oyerl, —1}".

Fact 8 ([KM93]). Given any function WItlE[f2] < 1ande > 0, letS = {S C [n] : [f(S)] > ¢/ fI1},
andg(z) = Y ges [(S)xs(x). ThenE[(f — g)’] <€, and|S| < (|| fll1/¢)®

In Mansour’s setting, Boolean functions output for FALSE and—1 for TRUE. Mansour conjectured
that polynomial-size DNF formulas could be approximatedparse polynomials over1, —1}".

Conjecture 9 ([Man94). Letf : {+1,—1}" — {+1,—1} be any function computable bytgerm DNF
formula. Then there exists a polynomjad {+1, —1}" — R witht©(°1/¢) terms such thaE[( f —p)?] < e.

We will prove the conjecture to be true for various subclassepolynomial-size DNF formulas. In
our setting, Boolean functions will outpu@sfor FALSE and 1 for TRUE. However, we can easily change
the range by setting® := 1 — 2 - f. Thus, given a DNF formulg : {0,1}" — {0, 1}, we will exhibit
a polynomialp : {0,1} — R with |[p||; = t©U°e1/¢) that approximateg in the /,-norm to withine/s.
Changing the range to+1, —1} will change the accuracy of the approximation by at most #ofaaf 4:
E[((1 —2f) — (1 — 2p))]? = 4E[(f — p)?] < ¢/2, and it will change thé;-norm of p by at most a factor
of 2. Finally, changing the domain @p — 1 to {+1, —1}" won’t change the-norm ofp (Fact7), and by
Fact8 there is a polynomial witfi2t @08 1/))2(2 /¢)2 = $OUoe1/<) terms over 41, —1}" that approximates
1 — 2p to within €/2, thus proving Mansour’s conjecture.

2.2 Agnostic learning

We first describe the traditional framework for agnosticdlarning concept classes with respect to the
uniform distribution and then give a slightly modified defiion for an “average-case” version of agnostic
learning where the unknown concept (in this case a DNF famjrislrandomly chosen.

Definition 10 (Standard agnostic modell.et D be the uniform distribution o040, 1}". Let f : {0,1}" —
{0, 1} be an arbitrary function. Define

opt = min Prlc(z) # f(2)].
That is, opt is the error of the best fitting concept (hwith respect toD. We say that an algorithml
agnostically learn€ with respect tdD if the following holds for anyf: if A is given black-box access jo
then with high probabilityA outputs a hypothesis such thatPr,.p[h(z) # f(x)] < opt + €.

The intuition behind the above definition is that a learneiveig access to a concepte C where an
7 fraction of¢'s inputs have been adversarially corrupted—should stilable to output a hypothesis with
accuracyy + € (achieving error better thapmay not be possible, as the adversary could embed a comypletel
random function on an fraction of¢’s inputs). Here) plays the role obpt.

This motivates the following definition for agnosticallyalming a randomly chosen concept from some
classC:



Definition 11 (Agnostically learning random conceptd)et C be a concept class and chooseandomly
from C. We say that an algorithril agnostically learns random concepts frammif with probability at
least1 — & over the choice ot the following holds: if the learner is given black-box aczés ¢ and
Prc o137 [c(w) # ¢/(x)] < n, thenA outputs a hypothesis such thatPr,c (o 132 [2(z) # ¢/ (2)] <7+ e

We are unaware of any prior work defining an agnostic framkvar learning randomly chosen con-
cepts.

The main result we use to connect the approximation of DNfdas by sparse polynomials with
agnostic learning is due to Gopalanal. [ GKKO08L:

Theorem 12([GKKO08h]). LetC be a concept class such that for everg C there exists a polynomial
such thatp[; < s andE,ci1_1y=[|p(z) — ¢(z)|?] < €2/2. Then there exists an algorithi such that
the following holds: given black-box access to any Booleaction f : {+1, —1}"—{+1,—1}, B runsin
timepoly(n, s, 1/¢) and outputs a hypothesis: {+1, —1}"—{+1, —1} with

B ) £ S @) < ot e

3 Approximating DNFs using univariate polynomial interpolation

Let f = Ty VTy VvV --- V T; be any DNF formula. We sa¥;(z) = 1 if « satisfies the ternT;, and 0
otherwise. Lety; : {0,1}" — {0,. ..t} be the function that outputs the number of termg sftisfied by
z,i.e.,yr(r) = Ti(x) + To(x) + - - + Ti(x).

Our constructions will use the following univariate polynial Py to interpolate the values gfon inputs
{2 ys(x) < d}.

Fact 13. Let ( 1( 2. ( "
y —_ y — .. y J—

Paly) i= (~1)**! =

Then, (1) the polynomiaP; is a degreed polynomial iny; (2) P;(0) = 0, Py(y) = 1 for y € [d], and

fory € [t]\ [d], Paly) = —(¥;") + 1 < 0if dis even andPy(y) = (¥;') + 1 > 1if d is odd; and (3)

|1 Pal[r = d.

1 (1)

Proof. Properties (1) and (2) can be easily verified by inspectioxpaBding the falling factorial, we get
that(y — 1)(y —2)---(y — d) = Z?ZO(—l)d‘j [?ﬁ] y’, where[}] denotes a Stirling number of the first
kind. The Stirling numbers of the first kind count the numbigp@mutations of; elements with disjoint
cycles. Thereforez;l:0 [‘jﬁ] = (d + 1)! [GKP94. The constant coefficient af, is 0 by Property (2),
thus the sum of the absolute values of the other coefficieritd H- 1)! — d!)/d! = d. [ |
For anyt-term DNF formulaf, we can construct a polynomigl 4 : {0,1}"—R defined ap; 4 :=
Pyoy;. A simple calculation, given below, shows that thenorm ofp; ; is polynomial int and exponential

ind.

Lemma 14. Let f be at-term DNF formula, ther(p 4| = t°(@.

Proof. By Fact13, P; is a univariate polynomial witki-terms and coefficients of magnitude at mdst
We can view the polynomiab; ; as the polynomialP) (T, ..., ;) := Py(T1 + --- + T;) over variables
T; € {0,1}. Expanding out (but not recombining!P; gives us at mostit? terms with coefficients of

magnitude at mosi. Now each term of?; is a product of at mosf 7;’s, thuspy 4 is a polynomial over
{0, 1}™ with at mostdt? terms with coefficients of magnitude at mastand thus|p 4|, = t°(4. n
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The following lemma shows that we can skto be fairly small,©(log 1/¢), and the polynomiap; 4
will be a good approximation for any DNF formufa as long as is unlikely to have many terms satisfied
simultaneously.

Lemma 15. Let f be any DNF formula witht = poly(n) terms,d = 4e?In1/¢, and? = (1/8) log n. If

e in € ]
Prlyy(z) = ] < lj” ) ,

for everyd < j < ¢, then the polynomiab; 4 satisfiesE[(f — pr.q)?] < e.

Proof. We condition on the values af(x), controlling the magnitude ab; 4 by the unlikelihood ofy
being large. By Fact3, py 4(z) will output 0 if z does not satisfyf, py 4(z) will output 1 if y;(z) € [d],
and|py q(z)| < (%) for ys(z) € [t] \ [d]. Hence:

ol < S @2<61I}1/6>j+<fz>2'myf”]

Jj=d+1
/-1 Inl j
< Z 22j <423r11n {;6> + n—Q(loglog n)
j=d+1
£—1 1
= —Q(loglogn)
< ej_zd;rl o +n < €.

For f satisfying the condition in LemmEb, we may takel = ©(log 1/€) and apply Lemma4to obtain
ane-approximating polynomial fof with spectral normt©Ueg1/e).

4 Mansour’s Conjecture for Random DNF Formulas

In this section, we establish various properties of randdifBormulas and use these properties to show
that for almost allf, Mansour’s conjecture holds. Roughly speaking, we willvghbat a random DNF
formula behaves like the “tribes” function, in that any Yal set of terms is unlikely to be satisfied by a
random assignment. This notion is formalized in Lemb®& For such DNF formulas, we may use the
construction from Sectio to obtain a good approximating polynomial f@rwith small spectral norm
(Theoreml9).

Throughout the rest of this section we assume tfat< t(n) < n’ for any constants, b > 0. For
brevity we writet for ¢(n). Let D be the probability distribution overterm DNF formulas induced by
the following process: each term is independently and umifpp chosen at random from a‘l(lo’; t) possible
terms of size exactog t over{zy,...,x,}.

If ¢ grows very slowly relative ta, sayt = O(n!/*), then with high probability a randorfidrawn from
D; will be aread-once DNF formula, in which case the resultsaaft®n5 hold. If the terms are not of size
©(logn), then the DNF will be biased, and thus be easy to learn. We tie¢ereader toJS03 for a full
discussion of the model.

To prove Lemmad.8, we require two Lemmas, which are inspired by the result§ 80§ and [JLSWO04.
Lemmal6 shows that with high probability the terms of a random DNFfala are close to being disjoint,
and thus cover close tplog t variables.



Lemma 16. With probability at leastl — t/e/ %8t (jlog t)°8¢ /nl°&t over the random draw of from D¢,
at leastj logt — (log t)/4 variables occur in every set gfdistinct terms off. The failure probability is at
mostl /nf¥1°8?) for anyj < (In(2)/4) log n.

Proof. Let k := logt. Fix a set ofj terms, and lev < jk be the number of distinct variables (negated
or not) that occur in these terms. We will bound the probgbthatv > w := jk — k/4. Consider any
particular fixed set ofv variables. The probability that none of thi¢erms include any variable outside of
thew variables is precisely(%)/(}))’. Thus, the probability that < w is by the union bound:

<”> (@)J < (ﬂ>w <ﬂ>ik _ IRk (K — k/4)k/4 g ejk(jk)k/{

w (2‘) w n nk/4 nk/4

Taking a union bound over all (at mag) sets, we have that with the correct probability every sgttefms
contains at leasb distinct variables. |

We will use the method of bounded differences (a.k.a., Mobid’s inequality) to prove Lemmas.

Proposition 17 (McDiarmid’s inequality) Let X1, ...,X,, be independent random variables taking values
inasetX, and letf : X™ — R be such that for ali € [m], |f(a) — f(a')| < d;, whenever,a’ € X™
differ in just theith coordinate. Then for att > 0,

Pr[f>Ef+T]§exp< >andPr[f<Ef—T]§exp< i)

N

The following lemma shows that with high probability oveetbhoice of random DNF formula, the
probability that exactly terms are satisfied is close to that for the “tribes” functi(J;Ijt‘j (1—1/t)t,

272
> d

Lemma 18. For anyj < (In(2)/4) log n, with probability at leastt — 1/n21°8) over the random draw of
f from D!, the probability over the uniform distribution g, 1}" that an input satisfies exactjydistinct
terms off is at mos ()¢ ~/ (1 — 1/t)"7.
Proof. Let f = Ty v --- VT3, and let3 := t—7(1 — 1/t)!=J. Fix anyJ C [t] of sizej, and letU be the
probability overz € {0,1}" that the termd; for i € J are satisfied and no other terms are satisfied. We
will show thatU; < 24 with high probability; a union bound over all possible sétef sizej in [t] gives
thatU; < 20 for everyJ with high probability. Finally, a union bound over 4;1) possible sets of terms
(where the probability is taken ove) proves the lemma.

Without loss of generality, we may assume thiat [j]. For any fixedr, we have:

Pr [z satisfies exactly the terms iff = (3,
feDy,

and thus by linearity of expectation, we hakle.p: [U;] = 3. Now we show that with high probability
that the deviation ot/ ; from its expected value is low.

Applying Lemmal6, we may assume that the terffis - - - , 7 contain at leasj log ¢ — (log ) /4 many
variables, and thaf U T; foralli = j + 1,--- ,t includes at leastj + 1) logt¢ — (logt)/4 many unique
variables, while increasing the failure probability by ynl/nf¥1°2%) . Note that conditioning on this event
can change the value &f; by at mostl /n(°s?) < 13, so under this conditioning we hal&P;] > 1 5.
Conditioning on this event, fix the terns,--- ,7;. Then the termqg,4,--- ,7T; are chosen uniformly
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and independently from the set of all terffiof lengthlog ¢ such that the union of the variablesjrandT
includes at leastj + 1) logt — (log t)/4 unique variables. Call this séf.

We now use McDiarmid’s inequality where the random variatzee the term&),...,T; randomly
selected from¥, letting g(Tj41,--- ,17;y) = Uy andg(Tj1,- -+, Tim1, 1), Tig1,- - , Ty) = U/, for all
i=j4+1,...,t. We claim that:

£1/4
This is becaus&’, can only be larger thali; by assignments which satist, - - - , 7y andZ;. Similarly,
U’ can only be smaller thall; by assignments which satisf;,--- ,7; and7;. SinceT; and7; come

from X', we know that at leastj + 1)t — (log ¢)/4 variables must be satisfied.
Thus we may apply McDiarmid’s inequality with= %5, which gives thaPr¢[U; > 23] is at most

—2932 —9Vt(1 — 1/t)2(t=9)
1
exp <t3/2/t2j+2> < exp < 5 :

Combining the failure probabilities over all trﬁjé) possible sets, we get that with probability at least

BN (L ovia—yprenp) - 1
j n(logt) n(logt)”’

over the random draw of from D!, U for all J C [t] of sizej is at most23. Thus, the probability that a

random input satisfies exactly soméistinct terms off is at most2 (;)ﬁ [ |

Using these properties of random DNF formulas we can now gshatiMansour’s conjecturé/[an94
is true with high probability over the choice ¢ffrom D,.

Theorem 19. Let f : {0,1}" — {0, 1} be at-term DNF formula where each term is chosen independently
from the set of all terms of lengtbg ¢. Then with probability at least — n—*(°¢%) over the choice of,
there exists a polynomial with [|p||; = tO°&1/9) such thatE[(p(z) — f(x))?] < e.

Proof. Letd := 4¢3 In(1/¢) andp; 4 be as defined in Sectich Lemmal4tells us that|p 4[|, = t©(e1/¢).
We show that with probability at least— n~+() over the random draw of from D! , pr,q Will be a good
approximator forf. This follows by Lemmal8; with probability at least — (£ — d — 1) /n®(logt) =1 —
n~Het) we havePr[y = j] for all d < j < £. Thus for suchf Lemmal5tells us thaB[(f — pf.q)?] < e.

|

5 Mansour’s Conjecture for Read+« DNF Formulas

In this section, we give am-approximating polynomial for any redd-DNF formula and show that its
spectral norm is at mogf’(*1eg1/€) - This implies that Mansour’s conjecture holds for all réa®NF
formulas where: is any constant.

We first illustrate the intuition behind the general case tyvimg Mansour’s conjecture for read-once
DNF formulas. To do this we show that, like random DNF fornsuleead-once DNF formulas satisfy the
conditions of Lemmad.5, and thus we can use our construction from Secsion

Read% DNF formulas, in contrast, may not satisfy the conditiond.emmal5, so we must change
our approach. Instead of usi@fz1 T; inside our univariate polynomial, we use a different sumichlis
based on a construction froR§z0§ of representing any DNF formula. We modify this represgaitato
exploit the fact that for read-DNF formula, the variables in a term can not share variablgs wo many
other terms. The details are given in Sectioh



5.1 Read-once DNF Formulas

For a read-once DNF formula, the probability that a term t&s8Bad is independent of whether or not any
of the other terms are satisfied, and we take advantage déttiis

Lemma 20. Let f = T}V, --- ,VT; be a read-once DNF formula of sizesuch thatPr[f] < 1 — e. Then
the probability over the uniform distribution of, 1}" that some set of > eln 1/ terms is satisfied is at

most(elnl/s)]
—5 ) -

Proof. For any assignment to the variables of, lety(x) be the number terms satisfied finBy linearity
of expectation, we have thait, [y, (z)] = >'_, Pr[T; = 1]. Note thatPr[-f] = [['_, (1 — Pr[T}]), which
is maximized when eacRr[T;] = E[y;]/t, hencePr[-f] < (1 — E[ys]/t)! < e~ Elwsl. Thus we may
assume thaE[ys] < In1/e, otherwisePr[f] > 1 —e.

AssumingE[ys] < In1/e, we now bound the probability that some setjof eln1/e terms of f is
satisfied. Since all the terms are disjoint, this probabibty ¢, 5= [ L,es Pr[7i], and the arithmetic-
geometric mean inequality gives that this is maximized wiesryPr[7;] = E[y¢]/t. Then the probability
of satisfying some set gfterms is at most:

()5 =(3) () (3.

which concludes the proof of the lemma. |

Theorem 21. Let f be any read-once DNF formula withterms. Then there is a polynomia} ;4 with
pralls = t°08l/) andE[(f — py.a)?] < eforall e > 0.

Proof. This follows immediately by combining Lemmas, 14, and15. |

5.2 Read% DNF Formulas

Unlike for read-once DNF formulas, it is not clear that thentner of terms satisfied in a readdNF formula
will be extremely concentrated on a small range. In thisiseate show how to modify our construction so
that a concentration result does hold.

Let f be anyt-term readk DNF formula. For any ternT; of f, let ¢; be the DNF formula consisting of
those terms iffy, - - - , T;_1 that overlap withr}, i.e.,

¢i=\ Tj, forC; = {j <i| T, NT; #0}.

JEC;

We defined; := T; A ~¢; andz; := S°i_, A;. The functionz; : {0,1}" — {0, ...t} outputs the number
of disjoint terms off satisfied byx (greedily starting froni;). Note that if f is a read-once DNF formula
Af=Yf

As we did in Sectior8, we can construct a polynomia} 4 : {0,1}"—R defined agjs 4 := P; o z for
anyt-term readk DNF formula f. The following lemma shows that the spectral normypf := P; o 2
remains small.

Lemma 22. Let f be at-term readk DNF formula with terms of length at most. Then|gsq|l1 =
90(d(log t-+kw))

10



Proof. By Fact13, P, is a degreet univariate polynomial withd terms and coefficients of magnitude at
mostd. We can view the polynomiaj; ; as the polynomialP;(A;, ..., A) = Py(A; +--- + A;) over
variablesA; € {0, 1}. Expanding out (but not recombining), gives us at mosit? terms with coefficients
of magnitude at most.

Becausef is a readk DNF, eachp; has at moskw terms. We can represent eaghasT; - HTjeci (1—

Tj), which expanded out has at mast’ terms each with coefficient 1. Now each termRffis a product of
atmostd A;’s. Thereforey; ; is a polynomial ovefz, . .. ,z,, } with at mos2**?dt¢ terms with coefficients
of magnitude at most, and||q; 4||; = 2F*ddt? = 20(dlogt+kw)), |

In order to show that Mansour’s conjecture holds for réddNF formulas, we show thaty = >"/_, A;
behaves much likg, = 2321 T; would if f were a read-once DNF formula, and thus we can use our
polynomial P; (Equationl) to approximatef. The following claim formalizes the intuition tha} behaves
like v would if the T} s were independent.

Claim 23. Forany S C [t], Pr[AjesAi] < [Licq Pr(T; | —¢4).

Proof. If there is a pairj,k € S such thatl; N T}, # () for somej < k, then¢, containsT; and both
T; A =¢; andT}, A —¢y, cannot be satisfied simultaneously. Herleg;csA4;] = 0.
We proceed to bounBr[A;c54;] assuming no such pair exists, which means all the terms @by
S are disjoint. Observe that in this case, the eventtha satisfied is independent of 4l} for i # j € S.
Let T be the last term (according to the order the terms appefy @i S, and condition on the event that
A, is satisfied:
Pr{AjesAil = PrlAies (s} Ai | Ts A —s] Pr[Ty | =¢,] Pr[=g,). )

Now, consider anyl; A —¢; for i € S\ {s}. The termT; is independent of s, and any term inp; that
overlaps withT is also contained i,. Hence, conditioning onl, is equivalent to conditioning of¢s,
ie.,

Pr{Aies\s3Ai | As] = Pr{Aies(s)Ai | —s)-

Substituting this into Equatiol and observing thaPr[A;c o\ (3 Ai | ~¢s] Pr[—¢s] < Pr[A;eq (53 Ail, we
have:
PrAiesAi] < Pr[Aies\(syAi] Pr[Ts | —¢s].

Repeating this argument for the remaining terms'ins yields the claim. |

Using Claim23, we can prove alemma analogous to Lenftfiay a case analysis §F:_, Pr[T; | —¢i];
either it is large ang’ must be biased toward one, or it is smallzgds usually small.

Lemma 24. Letf = T1V, -+, VT, be a readk DNF formula of size such thatPr[f] < 1 —e. Then the
probability over the uniform distribution of0, 1} thatz; > j (for anyj > eln1/¢) is at most(eln1/€> .

Proof. First, we show that iy := >.'_, Pr[Ti|~¢;] > In1/e, thenPr[f] > 1 — e. To do this, we bound
Pr[-f] using the fact that th& s are independent of any terrii$ ¢ ¢; with j < i

Pr[~f] = Pr [Al_,~T}] = ﬁ(l—Pr[TW 1ﬂT]) f[ (1 — Pr [T} ~¢i]) .
i=1

i=1

11



This quantity is maximized when ea&h[T; | —¢;] = T'4/t, hence:

Pr[-f] < <1 - ln:/6>t <e.

We now proceed assuming thB < In1/e. The probability that some set gfA;’s is satisfied is at
mostzsgﬂ’w:j Pr[AiesA;]. Applying Claim23, we have:

> Prvesdl < > [ PrIT | -l

SC[t],|S|=4 SC[H,|S|=ji€S

The arithmetic-geometric mean inequality shows that thasngjty is maximized when alPr[T; | —¢;] are

equal, hence: | | |
> [einiol< () (2) < (DY < (1Y

SCt],|S|=j i€S

We can now show that Mansour’s conjecture holds for re@NF formulas with any constarit

Theorem 25. Let f : {0,1}" — {0, 1} be any readk DNF formula witht terms. Then there is a polynomial
afd with qu,dHl = tO(MOg 1/€) andE[(f — Qf7d)2] <eforall e > 0.

Proof. If Pr[f = 1] > 1 — ¢, the constant 1 is a suitable polynomial. lebe the DNF formulaf after
dropping terms of length greater than:= log(2¢/¢). (This only changes the probability ly2.) Letd :=
4¢3 1n(2/¢) andg, 4 be as defined at the beginning of SectioR Lemma22 tells us that|q, 4||; = tO*9),
and Lemma4 combined with Lemma5tells us thatE[(g — g,.4)%] < /2. |

6 Pseudorandomness

Deet al.[DETTO09 recently improved long-standing pseudorandom genesatgainst DNF formulas.

Definition 26. A probability distributionX over{0,1}" e-fools a real functionf : {0,1}" — R if

[E[f(X)] - E[f({Un)]] <e

If C is a class of functions, then we say théte-foolsC if X e-fools every functiorf € C.
We say a probability distributiodX over {0, 1}" is e-biasedif it e-fools the character functiory s for
everyS C [n].

De et al. observed that the result of Baz#4z07 implied a pseudorandom generator thgbols ¢-
term DNF formulas over variables with seed lengt® (log n - log?(t/3)), which already improves the
long-standing upper bound 6f(log*(tn/€)) of Luby et al.[LVW93]. They go on to show a pseudorandom
generator with seed length(log n + log?(t/¢) log log(t/e)).

They prove that a sufficient condition for a functigo bee-fooled by ane-biased distribution is that the
function be “sandwiched” between two bounded real-valuetttions whose Fourier transform has small
/1 norm:

12



Lemma 27 (Sandwich Bound[DETT0Y). Supposef, fr, fu : {0,1}" — R are three functions such that
foreveryz € {0,1}", fi(z) < f(x) < fu(z), E[fu(Un)] —E[f(Uy,)] < e, andE[f(U,)] —E[fo(U,)] < e.
Let L = max(|| £, I £/ 7%). Then anys-biased probability distributior{c + 3L)-fools f.

Naor and NaorIN93] prove that arc-biased distribution oven bits can be sampled using a seed of
O(log(n/€)) bits. Using our construction from Sectidnwe show that random DNF formulas aréooled
by a pseudorandom generator with seed leiddtlog n + log(t) log(1/¢)):

Theorem 28. Let f = 11 V --- V T; be a random DNF formula chosen froﬁﬁb. Forl < d < t, with
probability 1 — 1 /n(°s") over the choice of, S-biased distributions) (2= + gtd)-fool f. In particular,
we cane-fool mostf € D! by at~©(os(1/<)piased distribution.

Proof. Let d™ be the first odd integer greater thdnand letd— be the first even integer greater thanLet
fu=psq+ andf, = py 4 (Wherepy 4 is defined as in SectioB). By Lemmal4, the/;-norms off,, and f,
aret®(@. By Fact13, we know thatf,(y) = (Y;') + 1 > landf(y) = —(¥;') + 1 < 0fory € [t] \ [d],
hence:

i) Bl = Y (7,1 +1-1) =,

j=d+1

which with probabilityl — 1/n(°2) gver the choice of is at mos2—*4) by the analysis in Lemmas.
The same analysis applies ffi, thus applying Lemma7 gives us the theorem. |

De et al. match our bound for random DNF formulas for the special cdseanl-once DNF formulas.
Using our construction from Sectioh and a similar proof as the one above, we can show that kead-
formulas are-fooled by a pseudorandom generator with seed le@gthg n + log(t) log(1/¢)).

Theorem 29. Let f = T V --- V T; be a readk DNF formula for constank. For 1 < d < t, 8-biased
distributionsO(2=%(@ + gt%)-fool £. In particular, we care-fool read% DNF formulas by a—©(ee(1/¢)).
biased distribution.

7 Discussion

On the relationship between Mansour’s Conjecture and the Etropy-Influence Conjecture. As a final
note, we would like to make a remark on the relationship betwdansour’s conjecture and the entropy-
influence conjecture. Thepectral entropyof a function is defined to b&(f) := "¢ —£(S)? log(£(S5)?)
and thetotal influenceto be I(f) = ) ¢ |S|f(S)2. The entropy-influenceconjecture is thate(f) =
O(I(f)) [FK96].! Boppana showed that the total influencetaérm DNF formulas isO(logt) [Bop97.
From this it follows that Mansour’s conjecture is implied e entropy-influence conjecture.

It can be shown that fopoly(n)-size DNF formulas Mansour’s conjecture implies an uppemigoon
the spectral entropy @ (log n). Thus, for the class of DNF formulas we consider in Sectigwhich have
total influence2(log n)), our results imply that the entropy-influence conjectsrerue.

Acknowledgments. Thanks to Sasha Sherstov for important contributions ataaly stage of this work,
and Omid Etesami for pointing out an error in an earlier warsif this paper.

http://terrytao. wordpress. com 2007/ 08/ 16/ gi | - kal ai - t he- ent r opyi nf | uence- conj ect ur e/

13


http://terrytao.wordpress.com/2007/08/16/gil-kalai-the-entropyinfluence-conjecture/

References

[Baz07]

[Bop97]

[DETTO9]

[FK96]

[GKKO8a]

[GKKO8b]

[GKP94]

[Has86]
[HMO1]

[Jac97]

[JLSWO8]

[JS05]

Louay Bazzi. Polylogarithmic independence carl oblF formulas. InProc. 48th IEEE
Symposium on Foundations of Computer Science (FO8&28gs 63—73, 2007.

Ravi B. Boppana. The average sensitivity of boundepith circuits.Information Processing
Letters 63(5):257-261, 1997.

Anindya De, Omid Etesami, Luca Trevisan, and Madhulsiani. Improved pseudorandom
generators for depth 2 circuits. Technical Report 141, tEdaic Colloquium on Computational
Complexity (ECCC), 2009.

Ehud Friedgut and Gil Kalai. Every monotone graphgay has a sharp thresholBroceed-
ings of the American Mathematical Societ4(10), 1996.

Parikshit Gopalan, Adam Kalai, and Adam R. Klivan8 query algorithm for agnostically
learning DNF? IrR1st Annual Conference on Learning Theory - COLT 2008, HidlgFinland,
July 9-12, 2008pages 515-516. Omnipress, 2008.

Parikshit Gopalan, Adam Tauman Kalai, and Adam Rvafs. Agnostically learning decision
trees. InProceedings of the 40th Annual ACM Symposium on Theory opQtimy, Victoria,
British Columbia, Canada, May 17-20, 20Q&ges 527-536. ACM, 2008.

Ronald L. Graham, Donald E. Knuth, and Oren Pat&shdoncrete Mathematics: A Founda-
tion for Computer Sciencédddison-Wesley, 1994.

Johan HastadComputational Limitations for Small Depth Circuit®!IT Press, 1986.

Thomas Hancock and Yishay Mansour. Learning moneten DNF formulas on product dis-
tributions. InProc. of the 4th Annual Conference on Computational Leayfiheory (COLT,)
pages 179-183, 1991.

Jeffrey C. Jackson. An efficient membership-quéggridhm for learning DNF with respect to
the uniform distribution.Journal of Computer and System Scien&#g3):414-440, 1997.

Jeffrey C. Jackson, Homin K. Lee, Rocco A. Servedind Andrew Wan. Learning random
monotone DNF. Irl1th International Workshop on Approximation Algorithras €ombinato-
rial Optimization Problems and 12th International Workgran Randomization and Computa-
tion (RANDOM-APPROX)pages 483—-497. Springer-Verlag, 2008.

Jeffrey C. Jackson and Rocco A. Servedio. On leamgsingom DNF formulas under the uni-
form distribution. In8th International Workshop on Approximation Algorithms €@ombi-
natorial Optimization Problems and 9th International Welkbp on Randomization and Com-
putation (RANDOM-APPROX)olume 3624 ofLecture Notes in Computer Sciengeges
342-353. Springer-Verlag, 2005.

[KKMSO08] A. Kalai, A. Klivans, Y. Mansour, and R. Servedio. ghostically learning halfspacesSIAM

Journal on Computing37(6):1777-1805, 2008.

14



[KM93]

[LMNO3]

[LVW93]

[Man94]

[Man95]

[NN93]

[Raz08]

[Sel0g]

[Sel09]

Eyal Kushilevitz and Yishay Mansour. Learning deois trees using the Fourier spectrum.
SIAM Journal on Computing22(6):1331-1348, December 1993. Prelim. verPioc. of
STOC91

N. Linial, Y. Mansour, and N. Nisan. Constant depttcaits, Fourier transform and learnability.
Journal of the ACM40(3):607—620, 1993.

Michael Luby, Boban Velickovic, and Avi WigdersorDeterministic approximate counting of
depth-2 circuits. INSTCS 1993pages 18-24, 1993.

Y. Mansour. Learning Boolean functions via the Fourier transfqrpages 391-424. Kluwer
Academic Publishers, 1994.

Yishay Mansour. ArD(n'°¢1°8™) learning algorithm for DNF under the uniform distribution.
Journal of Computer and System Scien&&s543-550, 1995. Prelim. ver.roc. of COLT’92

Joseph Naor and Moni Naor. Small-bias probabilitacgs: Efficient constructions and appli-
cations.SIAM Journal on Computing2(4):838—-856, 1993.

A. Razborov. A simple proof of Bazzi's theorem. Teiclal Report 81, Electronic Colloquium
on Computational Complexity (ECCC), 2008.

Linda Sellie. Learning random monotone DNF underuhiform distribution. IrProc. of the
21th Annual Conference on Computational Learning Theo®UT), pages 181-192, 2008.

Linda Sellie. Exact learning of random DNF over tinéarm distribution. InProc. 41st Annual
ACM Symposium on Theory of Computing (STQ@pes 45-54, 2009.

15

ECCC ISSN 1433-8092
http://eccc.hpi-web.de




