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Abstract

In 1994, Y. Mansour conjectured that for every DNF formulazorariables witht terms there exists
a polynomialp with t©(1°8(1/9)) non-zero coefficients such thBt,c (o 1= [(p(z) — f(2))?] < e. We
make the first progress on this conjecture and show thatitiesfor randomly chosen DNF formulas
and read-once DNF formulas.

Our result yields the first polynomial-time query algoritfon agnostically learning these subclasses
of DNF formulas with respect to the uniform distribution 6 1}™ (for any constant error parameter).

Applying recent work on sandwiching polynomials, our résimply that at—©(°& /<) -biased dis-
tribution fools the above subclasses of DNF formulas. Thiegpseudorandom generators for randomly
chosen DNF with shorter seed length than all previous work.

1 Introduction

Let f : {0,1}" — {0,1} be a DNF formula,.e., a function of the formZ} v --- v T; where eachl;
is a conjunction of at most literals. In this paper we are concerned with the followingestion: how
well can a real-valued polynomial approximate the Boolean functigff? This is an important problem
in computational learning theory, as real-valued polyradsplay a critical role in developing learning
algorithms for DNF formulas.

Over the last twenty years, considerable work has gone imdaniy polynomialg with certain properties
(e.g.,low-degree, sparse) such that

2
@) — F@)] < e

In 1989, Linialet al.[LMN93] were the first to prove that for artyterm DNF formulaf, there exists a
polynomialp : {0,1}" — R of degreeD(log(t/¢)?) such thatl,.c 1 13~ [(p(x) — f(2))?] < e. They showed
that this type of approximation implies a quasipolynontiale algorithm for PAC learning DNF formulas
with respect to the uniform distribution. Kalat al. [KKMSO08] observed that this fact actually implies
something stronger, namely a quasipolynomial-time agmtesrning algorithm for learning DNF formulas
(with respect to the uniform distribution). Additionallihe above approximation was used in recent work
due to Bazzi Baz07 and RazboroviRaz0§ to show that bounded independence fools DNF formulas.

Three years later, building on the work of Liniat al. Mansour Man93 proved that for any DNF
formula witht terms, there exists a polynomialefined over0, 1} with sparsityt©(loglogtlog(1/€)) gych
thatE, ¢ 0 13~ [(p(x) — f(2))?] < e. By sparsity we mean the number of non-zero Fourier coeffisiefp.
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This result implied a nearly polynomial-tinrgueryalgorithm for PAC learning DNF formulas with respect
to the uniform distribution.

Mansour conjecturedjan94 that the bound above could improvedi{g!°e1/¢) . Such an improvement
would imply a polynomial-time query algorithm for learnifi@NF formulas with respect to the uniform
distribution (to within any constant accuracy), and leagnDNF formulas in this model was a major open
problem at that time.

In a celebrated work from 1994, Jeff Jackson proved that Ddtfidilas were learnable in polyno-
mial time (with queries, with respect to the uniform distiion) without proving the Mansour conjecture.
His “Harmonic Sieve” algorithm Jac97 used boosting in combination with some weak approximation
properties of polynomials. As such, for several years, Maris conjecture remained open and attracted
considerable interest, but its resolution did not imply aew results in learning theory.

In 2008, Gopalaret al. [GKKO08b] proved that a positive resolution to the Mansour conjextaiso
implies an efficient query algorithm fagnosticallylearning DNF formulas (to within any constant error
parameter). The agnostic model of learning is a challentgagiing scenario that requires the learner to
succeed in the presence of adversarial noise. Roughly,|&ogtzal. showed that if a class of Boolean func-
tionsC can bec-approximated by polynomials of sparsitythen there is a query algorithm for agnostically
learningC in time poly(s, 1/€) (since decision trees are approximated by sparse polytgrttiay obtained
the first query algorithm for agnostically learning deamstoees with respect to the uniform distribution on
{0,1}"). Whether DNF formulas can be agnostically learned (witerigs, with respect to the uniform
distribution) still remains a difficult open probler®KK084].

1.1 Our Results

We prove that the Mansour conjecture is true for read-onder@amdomly chosen DNF formulas. As far as
we know, prior to this work, the Mansour conjecture was naivin to be true for any interesting class of
DNF formulas.

Theorem 1. Let f : {0,1}" — {0,1} be a DNF formula witht terms where each literal appears at most
once. Then there exists a polynomyakith sparsityt©1°% 1/¢) such thatE[(p(z) — f(x))?] < e.

Mansour Man99 proves that any polynomial that approximates read-oncé& Bimulas toe accuracy
must havedegreeat least(log t log(1/¢€)/ log log(1/¢)). He further shows that a “low-degree” strategy of
selecting all of a DNF’s Fourier coefficients of monomialstopdegreed results in a polynomiap with
sparsityt©Ueglogtlogl/e) it js not clear, however, how to improve this to the desitéd2 /<) bound.

Our next result shows that the Mansour conjecture is truthiclass of randomly chosen DNF formu-
las:

Theorem 2. Let f : {0,1}" — {0,1} be a DNF formula witht terms where each term is chosen indepen-
dently from the set of all terms of lenglbg t. Then with probabilityl — n2(°e%) (over the choice of the
DNF formula), there exists a polynomialwith sparsityt©(°81/€) such that®[(p(z) — f(z))?] < e.

As mentioned earlier, by applying the result of Gopataal. [ GKK08D], we obtain the first polynomial-
time query algorithms for agnostically learning the abolesses of DNF formulas to within any constant
accuracy parameter. We consider this an important steprdsvegnostically learning all DNF formulas.

Corollary 3. LetC be the class of DNF formulas witlterms where each term is randomly chosen from the
set of all terms of lengthog ¢t. Then there is a query-algorithm for agnostically learnifigvith respect to
the uniform distribution o0, 11" to accuracye in timepoly(n) - t2(°&1/€) with probability 1 — nf(ee?)
(over the choice of the DNF formula).



We define the notion of agnostic learning with respect to oangl chosen concept classes in Section
We also obtain a corresponding agnostic learning algorftimmead-once DNF formulas:

Corollary 4. LetC be the class of read-once DNF formulas witterms. Then there is a query-algorithm

for agnostically learning’ with respect to the uniform distribution d, 1}" to accuracye in timepoly(n)-
tO(log1/e)

Our sparse polynomial approximators can also be used imcotpn with recent work due to Det al.
to show that for any randomly chosen DNFa1 /(o2 1/¢)-piased distribution fools:

Theorem 5. Let f be a randomly chosen DNF formula. Then there exists a psandom generator>
such that

P [(G) =1~ _Pr [f(z)=1] <<

with s = O(logn + log t - log(1/e)).

Previously it was only known that these types of biased idigfions fool read-once DNF formulas
[DETTOY.

1.2 Related Work

As mentioned earlier, Mansour, using the random restriati@chinery of Hastad and Liniat al. [Has86
LMN93] had shown that for any DNF formul#, there exists @ of sparsityt©(leglogtlog1/e) that approxi-
matesf.

The subclasses of DNF formulas that we show are agnostitediynable have been well-studied in
the PAC model of learning. Read-once DNF formulas were shimMne PAC-learnable with respect to
the uniform distribution by Kearnst al. [KLPV87] and random DNF formulas were recently shown to
be learnable on average with respect to the uniform digtabun the following sequence of worki§05
JLSWO08§ Sel0§ Sel0g.

Recently (and independently) @ al. proved that for any read-once DNF formufathere exists an
approximating polynomiab of sparsityt©(°g1/€) . More specifically, Deet al. showed that for any class of
functionsC fooled by j-biased sets, there exist sparse, sandwiching polynoffimals where the sparsity
depends on. Since they show that/t©(°81/¢)_biased sets fool read-once DNF formulas, the existence of
a sparse approximator for the read-once case is impliditaim tvork.

1.3 Our Approach

As stated above, our proof does not analyze the Fourier ceefts of DNF formulas, and our approach is
considerably simpler than the random-restriction metla&drn by Mansour (we consider the lack of Fourier
analysis a feature of the proof, given that all previous wmrlthis problem has been Fourier-based). Instead,
we use interpolation to construct an approximating polymabtirectly.

Consider a DNF formulg = T Vv - - - vV T; where eaclf; is on a disjoint set of exactlig t variables.
The probability that each term is satisfied j&, and the expected number of satisfied terms is one. Further,
since the terms are disjoint, with high probability over tice of random input, only a few—saly—
terms will be satisfied. As such, we construct a univariatgrmomial p with p(0) = 0 andp(i) = 1 for
1 <i < d. Thenp(Ty + --- + T3) will be exactly equal tof as long as at most terms are satisfied. A
careful calculation shows that the inputs wheris incorrect will not contribute too much ®B[(f — p)?],



as there are few of them. Setting parameters appropriaielysya polynomiap that is both sparse and an
e-approximator off.

More generally, we adopt the following strategy: given a DidFmula f (randomly chosen or read-
once) either (1) with sufficiently high probability a randamput does not satisfy too many termsjobr (2)
fis highly biased. In the former case we can use polynomiatpiation to construct a sparse approximator
and in the latter case we can simply use the con$tantl function.

The probability calculations are a bit delicate, as we muasuee that the probability of many terms
being satisfied decays faster than the growth rate of ounpatyal approximators. For the case of random
DNF formulas, we make use of some recent work due to Jackisalhon learning random monotone DNF
formulas pLSWO04§.

2 Preliminaries

In this paper, we will primarily be concerned with Booleamdtions f : {0,1}" — {0,1}. Letxy, ... ,x,

be Boolean variables. Ateral is either a variabler; of its negationz;, and atermis a conjunction of
literals. Any Boolean function can be expressed as a dispmof terms, and such a formula is said to be
a disjunctive normal fornfor DNF) formula. A read-once DNF formula is a DNF formula itniah each
variable occurs at most once.

2.1 Sparse Polynomials

Every functionf : {0,1}" — R can be expressed by its Fourier expansiff:) = Y f(S)Xs(x) where
xs(x) = [lieg(—=1)" for S C [n], andf(S) = E[f - xs]. The Fourier expansion gf can be thought of as
the unique polynomial representation obver{+1, —1}" under the map; — 1 — 2x;.

Mansour conjectured that polynomial-size DNF formuladdde approximated bgparsepolynomials
over {+1,—1}". We say a polynomiap : {+1,—1}"—R has sparsity if it has at mosts non-zero
coefficients. We state Mansour’s conjecture as originadigeal in Man94, which uses the convention of
representingFALSE by +1 and TRUE by —1.

Conjecture 6 ([Man94). Letf : {+1,—1}" — {+1,—1} be any function computable bytgerm DNF
formula. Then there exists a polynomjad {+1, —1}" — R witht©(°81/¢) terms such thaB[( f —p)?] < e.

We will prove the conjecture to be true for various subclasggolynomial-size DNF formulas. In our
setting, Boolean functions will outpotfor FALSE and1 for TRUE. However, we can easily change the range
by settingf* := 1 — 2 - f. Changing the range tpt-1, —1} changes the accuracy of the approximation by
at most a factor of: E[((1 —2f) — (1 —2p))?] = 4E[(f — p)?], and it increases the sparsity by at most 1.

Given a Boolean functioif, we construct a sparse approximating polynomial dvet, —1}" by giving
an approximating polynomial : {0, 1}"—R with real coefficients that has small spectral norm. The rest
of the section gives us some tools to construct such polyalenaind explains why doing so yields sparse
approximators.

Definition 7. TheFourier/;-norm(also called thespectral normof a functionp : {0,1}"—R is defined to
be|p|li := >_4[p(S)|. We will also use the following minor variadtpr@ =2 g5.glP(9)]-

The following two facts about the spectral norm of functievil allow us to construct polynomials over
{0,1}" naturally from DNF formulas.



Fact 8. Letp : {0,1}""—R be a polynomial with coefficientss € R for S C [m|, andq1,...,qm :
{0,1}"—{0, 1} be arbitrary Boolean functions. The®qi,...,qm) = > gps]lics @ is a polynomial
over{0, 1}" with spectral norm at most

Z ‘pS‘HHQiHl-
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Proof. The fact follows by observing that for amyq : {0,1}"—R, we have{|p + q||1 < ||p||: + ||¢||: and
Ilpalls < flpll1llalh- n

Fact 9. LetT : {0,1}"—{0,1} be an AND of a subset of its literals. Thg#||; = 1.

Finally, using the fact below, we show why approximatingypmamials with small spectral norm give
sparse approximating polynomials.

Fact 10([KM93]). Given any functiory : {0, 1}"—R ande > 0, letS = {S C [n] : £ > €/|IfI}
andg(z) = Y ges F(S)xs(x). ThenE[(f — g)’] < ¢, and|[S| < || f|[/e.

Now, given functionsf,p : {0,1}"—R such thatE[( f — p)?] < ¢, we may construct dec-approximator
for f with sparsity||p||3/e by definingp’(z) = Y g 5P(S)xs(z) as in FactlO. Clearlyp’ has sparsity
Ipll3/e, and

E[(f—p)1=E[f-p+p—0)] <ER((f - p)°+ (p—1))] <4,

where the first inequality follows from the inequality + b)? < 2(a? + v?) for any realsz andb.

2.2 Agnostic learning

We first describe the traditional framework for agnosticddarning concept classes with respect to the
uniform distribution and then give a slightly modified defiomn for an “average-case” version of agnostic
learning where the unknown concept (in this case a DNF fagralrandomly chosen.

Definition 11 (Standard agnostic model).et D be the uniform distribution of+1, —1}", and let f :
{+1,-1}" — {41, —1} be an arbitrary function. Define

opt = min Prlc(z) # f(z)].
That is, opt is the error of the best fitting concept (hwith respect toD. We say that an algorithr
agnostically learng€ with respect tdD if the following holds for anyf: if A is given black-box access jo
then with high probability4 outputs a hypothesis such thatPr,p[h(z) # f(z)] < opt + €.

The intuition behind the above definition is that a learneiveig access to a concepte C where an
7 fraction of¢'s inputs have been adversarially corrupted—should stilable to output a hypothesis with
accuracyy + € (achieving error better thapmay not be possible, as the adversary could embed a comypletel
random function on an fraction of¢’s inputs). Here) plays the role obpt.

This motivates the following definition for agnosticallyalming a randomly chosen concept from some
classC:



Definition 12 (Agnostically learning random conceptd)et C be a concept class and chooseandomly
from C. We say that an algorithril agnostically learns random concepts frammif with probability at
least1 — & over the choice ot the following holds: if the learner is given black-box aczés ¢ and
Prycii1,—1ynlc(z) # c/(x)] < n, thenA outputs a hypothesik such thatPr e 1y [h(z) # ¢ (2)] <
n+ e

We are unaware of any prior work defining an agnostic framkviar learning randomly chosen con-
cepts.

The main result we use to connect the approximation of DNRidas by sparse polynomials with
agnostic learning is due to Gopalanal. [GKK08b]:

Theorem 13([GKKO08h]). LetC be a concept class such that for everyg C there exists a polynomial
such that|p[; < s andE,c(;1 1y [[p(z) — ¢(z)|?] < €/2. Then there exists an algorithi such that
the following holds: given black-box access to any Booleaetion f : {+1,—1}"—{+1,—1}, Brunsin
timepoly(n, s, 1/¢) and outputs a hypothesis: {+1, —1}"—{+1, —1} with

:(:E{-q—];;r_l}n[h(w) 7& f(l’)] S Opt + €.

3 Approximating DNFs using univariate polynomial interpolation

Let f = Ty VT,V --- VT be any DNF formula. We sa¥;(z) = 1 if x satisfies the ternT;, and 0
otherwise. Lety; : {0,1}" — {0,... ,t} be the function that outputs the number of termg sftisfied by
z,i.e.,yp(r) = Ti(x) + To(x) + - - + Ti(z).

Our constructions will use the following univariate polynial P; to interpolate the values gfon inputs
{z 1 yp(x) < d}.

Fact 14. Let

y —_ 1 y — 2 .. y — d
Pd(y) — (_1)d+1( )( d') ( )
Then, (1) the polynomiaP; is a degreed polynomial iny; (2) P(0) = 0, Py(y) = 1 for y € [d], and for
y e [t]\[d], Pa(y) = —(¥;') + 1 < 0if dis even and?(y) = (Y;') + 1 > 1if dis odd; and (3) the sum
of the magnitudes aP;’s coefficients isl.

41 (1)

Proof. Properties (1) and (2) can be easily verified by inspectioxpaBding the falling factorial, we get
that (y — 1)(y — 2) -+ (y — d) = X 7_o(—1)~7 [{71]y, where[;] denotes a Stirling number of the first
kind. The Stirling numbers of the first kind count the numbiepermutations ot: elements withb disjoint
cycles. Therefore} {_ [17]] = (d + 1)! [GKP94. The constant coefficient P, is 0 by Property (2),
thus the sum of the absolute values of the other coefficieritd H- 1)! — d!)/d! = d. |
For anyt-term DNF formulaf, we can construct a polynomigl 4 : {0,1}"—R defined apy 4 :=
Pjoy;. A simple calculation, given below, shows that thenorm ofp; 4 is polynomial int and exponential

ind.
Lemma 15. Let f be at-term DNF formula, therip; 4|1 < tO@.

Proof. By Factl14, P, is a degreet univariate polynomial withl non-zero coefficients of magnitude at most
d. We can view the polynomial; ; as the polynomiaP;(T1,. .., T;) := Py(T1 + - - - + T}) over variables
T; € {0,1}. Expanding out?; gives us at most#t monomials with coefficients of magnitude at madst
Now each monomial of; is a product off;’s, so applying Fact8 and8 we have thatip 4|1 < t°d, m

6



The next section will show that the polynomjgl; (for d = ©(log 1/¢)) is in fact a good approximation
for random DNF formulas. As a warm-up, we will show the simgdese of read-once DNF formulas.

3.1 A Simple Case: Read-Once DNF Formulas

For read-once DNF formulas, the probability that a term iisfead is independent of whether or not any of
the other terms are satisfied, and tifuis unlikely to have many terms satisfied simultaneously.

Lemma 16. Let f = T}V, --- ,VT; be a read-once DNF formula of sizesuch thatPr[f] < 1 — €. Then
the probability over the uniform distribution of9, 1}" that some set of > eln 1/¢ terms is satisfied is at

eln1/e\’
most(—j ) .

Proof. For any assignment to the variables of, lety(x) be the number terms satisfied finBy linearity
of expectation, we have thai, [y, (z)] = >'_, Pr[T; = 1]. Note thatPr[-f] = [['_, (1 — Pr[T}]), which
is maximized when eacRr[T;] = E[y;]/t, hencePr[-f] < (1 — E[ys]/t)! < e~ Elwsl. Thus we may
assume thaE[ys] < In1/e, otherwisePr[f] > 1 —e.

AssumingE[y] < In1/e, we now bound the probability that some setjof eln1/e terms of f is
satisfied. Since all the terms are disjoint, this probabibty s s/=; [ L;es Pr[Z:], and the arithmetic-
geometric mean inequality gives that this is maximized wiesryPr(7;] = E[y¢]/t. Then the probability
of satisfying some set gfterms is at most:

() () (3 () - (3.

which concludes the proof of the lemma. |

The following lemma shows that we can skto be fairly small,©(log 1/¢), and the polynomiap; 4
will be a good approximation for any DNF formufg as long asf is unlikely to have many terms satisfied
simultaneously.

Lemma 17. Let f be anyt-term DNF formula, and letl = 4e3In1/e. If

Pry(z) = j] < <ehy/6>j7

for everyd < j < t, then the polynomiap ; satisfiesE[(f — pf.4)?] < e.

Proof. We condition on the values af¢(x), controlling the magnitude ab; 4 by the unlikelihood ofy
being large. By Faci4, pr () will output O if = does not satisfyf, ps 4(x) will output 1 if y,(x) € [d],
and|py.q(x)| < () forys(z) € [t] \ [d]. Hence:

J elnl/e
I -l < % (3) (2
Jj=d+1 J
. .
, Inl/e \’
0% ( CC
< Zl <4e3ln1/e>

j=d+




Combining Lemmagbs, 16, and17 gives us Mansour’s conjecture for read-once DNF formulas.

Theorem 18. Let f be any read-once DNF formula withterms. Then there is a polynomia} ; with
pralls < tO08l/) andE[(f — pra)?] < eforall e > 0.

4 Mansour’s Conjecture for Random DNF Formulas

In this section, we establish various properties of randdidfBormulas and use these properties to show
that for almost allf, Mansour’s conjecture holds. Roughly speaking, we willvghbat a random DNF
formula behaves like a read-once DNF formula, in that anyga set of terms is unlikely to be satisfied
by a random assignment. This notion is formalized in Len#haFor such DNF formulas, we may use
the construction from Sectiahto obtain a good approximating polynomial fémwith small spectral norm
(Theoremz3).

Throughout the rest of this section we assume tfat< t(n) < n’ for any constants, b > 0. For
brevity we writet for ¢(n). Let D! be the probability distribution overterm DNF formulas induced by
the following process: each term is independently and umifp chosen at random from atl(lo’; t) possible
terms of size exactljog t over{z1,...,x,}.

If ¢ grows very slowly relative ta, sayt = O(n1/4), then with high probability a randorfidrawn from
D; will be a read-once DNF formula, in which case the resultsexfti®n3.1 hold. If the terms are not of
size©(logn), then the DNF will be biased, and thus be easy to learn. We tie¢ereader toJS03 for a
full discussion of the model.

To prove Lemma1, we require two Lemmas, which are inspired by the result§ 80§ and [JLSWO04.
Lemmal9 shows that with high probability the terms of a random DNFfala are close to being disjoint,
and thus cover close tplog t variables.

Lemma 19. With probability at leastl — t/e/ %8t (jlog t)°8¢ /nl°&t over the random draw of from DY,
at leastj logt — (log t)/4 variables occur in every set gfdistinct terms off. The failure probability is at
mostl /n*(1°gY) for any j < clog n, for some constant

Proof. Let k := logt. Fix a set ofj terms, and lev < jk be the number of distinct variables (negated
or not) that occur in these terms. We will bound the probgbttiatv > w := jk — k/4. Consider any
particular fixed set ofv variables. The probability that none of thi¢erms include any variable outside of
thew variables is precisely(%)/(}))’. Thus, the probability that < w is by the union bound:

() (B < @y oy - b e

k

Taking a union bound over all (at mag) sets, we have that with the correct probability every sgttefms
contains at least distinct variables. |

We will use the method of bounded differences (a.k.a., Mobid's inequality) to prove Lemmal.

Proposition 20(McDiarmid’s inequality) Let X1, ...,X,, be independent random variables taking values
inasetX, and letf : X™ — R be such that for ali € [m], |f(a) — f(a')| < d;, whenever,a’ € X™
differ in just theith coordinate. Then for alt > 0,

2

Prf>Ef+7] <exp <—%

272
> andPr[f <Ef—17] <exp <_W>



The following lemma shows that with high probability oveetbhoice of random DNF formula, the
probability that exactly terms are satisfied is close to that for the “tribes” functi();r)t—j (1—1/t)t.

Lemma 21. There exists a constantsuch that for anyj < clog n, with probability at leastl — 1 /nf2(lo&?)
over the random draw of from D!, the probability over the uniform distribution of, 1}" that an input
satisfies exactly distinct terms off is at mos®(%)¢ (1 — 1/t)"/.
Proof. Let f = Ty Vv --- V T}, and let3 := t=7(1 — 1/t)!7. Fix anyJ C [t] of sizej, and letU be the
probability overz € {0,1}" that the termd; for i € J are satisfied and no other terms are satisfied. We
will show thatU; < 23 with high probability; a union bound over all possible sétsf sizej in [t] gives
thatU; < 20 for everyJ with high probability. Finally, a union bound over 451) possible sets of terms
(where the probability is taken ovej proves the lemma.

Without loss of generality, we may assume thiat [j]. For any fixedr, we have:

ijgt [z satisfies exactly the terms iff = 3,
€Dy,

and thus by linearity of expectation, we hallg.p: [U;] = 3. Now we show that with high probability
that the deviation of/; from its expected value is low.

Applying Lemmal9, we may assume that the terffis - - - , 7; contain at leasf log ¢ — (log t) /4 many
variables, and thaf U T; forall : = j + 1,--- , ¢ includes at leas{j + 1) logt — (log¢)/4 many unique
variables, while increasing the failure probability byy)ml/nﬂ(k’gt). Note that conditioning on this event
can change the value &f; by at mostt /n1°s9) < 13, so under this conditioning we hal&P;] > 1 5.
Conditioning on this event, fix the terms, --- ,7;. Then the termd’;y,--- ,T; are chosen uniformly
and independently from the set of all terffioof lengthlog ¢ such that the union of the variablesJrandT
includes at leastj + 1) logt — (log t)/4 unique variables. Call this séf.

We now use McDiarmid’s inequality where the random varialzee the termg)_+,...,T; randomly
selected from¥, letting g(Tj41,--- ,7;y) = Uy andg(Tjy1,- -+, Tim1, 1), Tig1,--- , Ty) = U/, for all
i=j4+1,...,t. We claim that:

) £1/4

‘UJ—UJ‘ Sdz = tﬂﬁ
This is becaus&’, can only be larger thali; by assignments which satist, - - - , 7y andZ;. Similarly,
U’ can only be smaller thall; by assignments which satisf;,--- ,7; and7;. SinceT; and7; come

from X', we know that at leastj + 1)t — (log ¢)/4 variables must be satisfied.
Thus we may apply McDiarmid’s inequality with= %5, which gives thaPr¢[U; > 23] is at most

—2932 —9Vt(1 — 1/t)2(t=9)
1
exp <t3/2/t2j+2> < exp < 5 :

Combining the failure probabilities over all trﬁjé) possible sets, we get that with probability at least

BN (L o ~ovi-epe-app) 1
j n(logt) n(logt)’

over the random draw of from D¢, U for all J C [t] of sizej is at most23. Thus, the probability that a

random input satisfies exactly soméistinct terms off is at most2 (;)ﬁ [ |




Using these properties of random DNF formulas we can now shimmma analgous to Lemni# for
random DNF formulas.

Lemma 22. Let f be any DNF formula witt = n°() terms, and lete > 0 which satisfiesl /e =
o(loglogn). Then setl = 4¢3 In1/¢ and/ = clog n, for any constant. Lemma21. If

Prys(z) = j] < <6lnj1/6>j7

for everyd < j < ¢, then the polynomiab; 4 satisfiesE[(f — pr.q4)?] < e.

Proof. We condition on the values afy(x), controlling the magnitude ab; 4 by the unlikelihood ofy;
being large. By Faci4, pr () will output O if = does not satisfyf, ps 4(x) will output 1 if y,(x) € [d],
and|py.q(x)| < () for ys(z) € [t] \ [d]. Hence:

If —pral® < § (‘2)2 (eln,1/€>j + <2>2.pr[yf > (]

j=d+1 J

£—1 i
< Z 22j< eln 1/6 )J +n—Q(log10gn)

4e31n1/e
j=d+1
/-1 1
= —Q(loglogn)
< € Z o +n < €.
Jj=d+1

We can now show that Mansour’s conjectukéajn94 is true with high probability over the choice ¢f
from DL.

Theorem 23. Let f : {0,1}* — {0,1} be at = n®M-term DNF formula where each term is chosen
independently from the set of all terms of lentgtly¢. Then with probability at least — n~(°8%) gver the
choice off, there exists a polynomiglwith ||p||; < t©(°81/€) such thatB[(p(x) — f(z))?] < e.

Proof. Recall that ift = O(n!/%), f is a read-once DNF formula with high probability and thus diieen18
holds.

Letd := 4e*In(1/e) andp; 4 be as defined in Sectich Lemmal5tells us that|p; 4||; < tOUesl/e),
We show that with probability at least— n~“(1) over the random draw of from D, py.q will be a good
approximator forf. This follows by Lemma1; with probability at least — (clog(n) — d — 1) /nf¥(gt) =
1 — n~oet) we havePr[y = j] for all d < j < clog(n). Thus for suchf Lemmal7 tells us that
E((f -pra)’] <e u

5 Pseudorandomness

Deet al.[DETTO0Y recently improved long-standing pseudorandom genesatgainst DNF formulas.
Definition 24. A probability distributionX over{0,1}" e-fools a real functionf : {0,1}" — R if

[E[f(X)] - E[f({Un)]] <e
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If C is a class of functions, then we say théte-foolsC if X e-fools every functiorf € C.
We say a probability distributiodX over {0,1}" is e-biasedif it e-fools the character functiory s for
everyS C [n].

De et al. observed that the result of Bazz4z07 implied a pseudorandom generator tlagbols ¢-
term DNF formulas over. variables with seed lengt®(log n - log?(t/3)), which already improves the
long-standing upper bound 6f(log?(tn/€)) of Luby et al. [LVW93]. They go on to show a pseudorandom
generator with seed length(log n + log?(t/¢) log log(t/e)).

They prove that a sufficient condition for a functigro bee-fooled by an-biased distribution is that the
function be “sandwiched” between two bounded real-valuetttions whose Fourier transform has small
/1 norm:

Lemma 25 (Sandwich Bound[DETT0Y). Supposef, fr, f. : {0,1}" — R are three functions such that
foreveryz € {0,1}", fo(z) < f(2) < fu(2), E[fu(Un)] —E[f(U,)] < e, andE[f(U,)] —E[fe(U,)] < e.
Let Z = max(|| £/|7°, | fulI7?). Then any3-biased probability distributiorfe + 3L)-fools f.

Naor and NaorIN93] prove that arc-biased distribution oven bits can be sampled using a seed of
O(log(n/€)) bits. Using our construction from Sectidnwe show that random DNF formulas aréooled
by a pseudorandom generator with seed leidgtlog n + log(t) log(1/¢)):

Theorem 26. Let f = Ty V --- V T; be a random DNF formula chosen fromtn. For1 < d < ¢, with
probability 1 — 1 /n(°8) gver the choice of, 5-biased distributiong) (2-(@ + t4)-fool £. In particular,
we cane-fool mostf € D! by at~©(os(1/<) _piased distribution.

Proof. Let d™ be the first odd integer greater thdnand letd— be the first even integer greater thanLet
Ju=psq+ andf, = ps 4 (Wherepy 4 is defined as in Sectiog). By Lemmals, the/;-norms of f, and
fr aret©@. By Fact14, we know thatPy: (y) = (Y;') +1 > 1andPs-(y) = —(Y;") +1 < 0 for
y € [t] \ [d], hence:

i) By = 3 ((57) +1-1) iy =,

j=d+1

which with probabilityl — 1/n(°2%) over the choice of is at mos2—*%(?) by the analysis in Lemma7.
The same analysis applies ffy, thus applying Lemmas gives us the theorem. |

De et al. match our bound for random DNF formulas for the special cdseanl-once DNF formulas.
We remark that our construction from Sectidrl can be used to recover the bound for read-once DNF
formulas as well.

6 Discussion

On the relationship between Mansour’s Conjecture and the Etropy-Influence Conjecture. As a final
note, we would like to make a remark on the relationship betwdansour’s conjecture and the entropy-
influence conjecture. Thepectral entropyof a function is defined to b&(f) := > "¢ —f(5)21og(f(S)?)
and thetotal influenceto be I(f) = ) ¢ |S|f(S)2. The entropy-influenceconjecture is thate(f) =
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O(I(f)) [FK96].! Boppana showed that the total influencetaérm DNF formulas isD(logt) [Bop97.
From this it follows that Mansour’s conjecture is implied e entropy-influence conjecture.

It can be shown that far©(!)-size DNF formulas Mansour’s conjecture implies an uppemigoon the
spectral entropy 0O (logn). Thus, for the class of DNF formulas we consider in Sectiqwhich have
total influence2(log n)), our results imply that the entropy-influence conjectsrerue.

Acknowledgments. Thanks to Sasha Sherstov for important contributions ataaly stage of this work,
and Omid Etesami for pointing out an error in an earlier warsif this paper.
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