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Abstract

In 1994, Y. Mansour conjectured that for every DNF formularorariables witht terms there exists
a polynomialp with t©(°8(1/9) non-zero coefficients such thBt,c (o 1= [(p(z) — f(2))?] < e. We
make the first progress on this conjecture and show thatriésfor several natural subclasses of DNF
formulas including randomly chosen DNF formulas and rédaaNF formulas for constarit.

Our result yields the first polynomial-time query algoritfon agnostically learning these subclasses
of DNF formulas with respect to the uniform distribution 6 1}™ (for any constant error parameter).

Applying recent work on sandwiching polynomials, our résimply that at—©(°& /<) -biased dis-
tribution fools the above subclasses of DNF formulas. Thisgpseudorandom generators for these
subclasses with shorter seed length than all previous work.

1 Introduction

Let f : {0,1}" — {0,1} be a DNF formula,.e., a function of the formZ} Vv --- v T; where eachl;
is a conjunction of at most literals. In this paper we are concerned with the followingestion: How
well can a real-valued polynomial approximate the Boolean functigff? This is an important problem
in computational learning theory, as real-valued polyradsplay a critical role in developing learning
algorithms for DNF formulas.

Over the last twenty years, considerable work has gone imdaniy polynomial with certain properties
(e.g.,low-degree, sparse) such that

2
@) — f@)] < e

In 1989, Linialet al.[LMN93] were the first to prove that for artyterm DNF formulaf, there exists a
polynomialp : {0,1}" — R of degreeD(log(t/¢)?) such thatl,.c 1 13~ [(p(x) — f(2))?] < e. They showed
that this type of approximation implies a quasipolynontiale algorithm for PAC learning DNF formulas
with respect to the uniform distribution. Kalat al. [KKMSO08] observed that this fact actually implies
something stronger, namely a quasipolynomial-time agmtesrning algorithm for learning DNF formulas
(with respect to the uniform distribution). Additionallihe above approximation was used in recent work
due to Bazzi Baz07 and RazboroviRaz0§ to show that bounded independence fools DNF formulas.

Three years later, building on the work of Liniat al. Mansour Man93 proved that for any DNF
formula witht terms, there exists a polynomialefined over0, 1} with sparsityt©(loglogtlog(1/€)) gych
that E, ¢ (o 137 [(p(x) — f(2))?] < e (for 1/e = poly(n)). By sparsity we mean the number of non-zero
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Fourier coefficients op. This result implied a nearly polynomial-timguery algorithm for PAC learning
DNF formulas with respect to the uniform distribution.

Mansour conjectured\an94 that the above bound could be improved#'°¢1/<), Such an improve-
ment would imply a polynomial-time query algorithm for laarg DNF formulas with respect to the uniform
distribution (to within any constant accuracy), and leagnDNF formulas in this model was a major open
problem at that time.

In a celebrated work from 1994, Jeff Jackson proved that Ddtfidilas were learnable in polyno-
mial time (with queries, with respect to the uniform distiiion) without proving the Mansour conjecture.
His “Harmonic Sieve” algorithm Jac97 used boosting in combination with some weak approximation
properties of polynomials. As such, for several years, Maris conjecture remained open and attracted
considerable interest, but its resolution did not imply aew results in learning theory.

In 2008, Gopalaret al. [GKKO08b] proved that a positive resolution to the Mansour conjextaiso
implies an efficient query algorithm fagnosticallylearning DNF formulas (to within any constant error
parameter). The agnostic model of learning is a challentgagiing scenario that requires the learner to
succeed in the presence of adversarial noise. Roughly,|&ogtzal. showed that if a class of Boolean func-
tionsC can bec-approximated by polynomials of sparsitythen there is a query algorithm for agnostically
learningC in time poly(s, 1/€) (since decision trees are approximated by sparse polytgrttiay obtained
the first query algorithm for agnostically learning deamstoees with respect to the uniform distribution on
{0,1}"). Whether DNF formulas can be agnostically learned (witerigs, with respect to the uniform
distribution) still remains a difficult open probler®KK084].

1.1 Our Results

We prove that the Mansour conjecture is true for several-staliiied subclasses of DNF formulas. As far
as we know, prior to this work, the Mansour conjecture wasknotvn to be true for any interesting class of
DNF formulas.

Our first result shows that the Mansour conjecture is trudi®class of randomly chosen DNF formulas:

Theorem 1. Let f : {0,1}" — {0,1} be a DNF formula wittt = n°(1) terms where each term is chosen
independently from the set of all terms of lengibg ¢ |. Then with probabilityl — n~) (over the choice
of the DNF formula), there exists a polynomjawith sparsityt©(1°21/€) such thatB[(p(z) — f(z))?] < e.

Fort = n®M), the conclusion of Theorerhholds with probability at least — n—2(1°8*), Our second
result is that the Mansour conjecture is true for the clagsad4 DNF formulas:

Theorem 2. Let f : {0,1}" — {0, 1} be a DNF formula witht terms where each literal appears at mast
times. Then there exists a polynomyalith sparsityt©(16" 1051/€) such thatE[(p(z) — f(z))?] < e.

Even for the cas& = 1, Mansour’s conjecture was not known to be true. Mansdlar{93 proves
that any polynomial that approximates read-once DNF foasitibe accuracy must havdegreeat least
d = Q(logtlog(1l/e)/loglog(1/e€)). He further shows that a “low-degree” strategy of selectufigof a
DNF formula’s Fourier coefficients of monomials up to degeeresults in a polynomiap with sparsity
tOloglogtlog1/e) for 1 /¢ = polyn. It is not clear, however, how to improve this to the desirfgd°s /)
bound.

As mentioned earlier, by applying the result of Gopataal. [ GKK08D], we obtain the first polynomial-
time query algorithms for agnostically learning the abolasses of DNF formulas to within any constant
accuracy parameter. We consider this an important stepdsveegnostically learning all DNF formulas.



Corollary 3. LetC be the class of DNF formulas with= n©() terms where each term is randomly chosen
from the set of all terms of lengthiog ¢ |. Then there is a query-algorithm for agnostically learnifigvith
respect to the uniform distribution of0, 1}" to accuracye in time poly(n) - t9(°&1/¢) with probability

1 — n~% (over the choice of the DNF formula).

We define the notion of agnostic learning with respect to oangl chosen concept classes in Section
Fort = n®(), Corollary 3 holds for al — n—*(°g?) fraction of randomly chosen DNF formulas. We also
obtain a corresponding agnostic learning algorithm fod#e®NF formulas:

Corollary 4. LetC be the class of read-DNF formulas witht terms. Then there is a query-algorithm for

agnostically learning” with respect to the uniform distribution o), 1}" to accuracye in time poly(n) -
+0(16% log1/€)

Our sparse polynomial approximators can also be used imgotipn with recent work due to Det al.
to show that for randomly chosen polynomial-size DNF forasubr reade DNF formulasf, at—©(eg1/e)-
biased distribution foolg (for £ = O(1)):

Theorem 5. Let f be a randomly chosen polynomial-size DNF formula or a réaddNF formula. Then
(with probability 1 — n =) for random DNF formulas) there exists a pseudorandom geoe(a such that

P [F(G) =1 - _Pr [£(z)=1] <

with s = O(logn + log t - log(1/e)).

Previously it was only known that these types of biased ibligions fool read-once DNF formulas
[DETTOY.

1.2 Related Work

As mentioned earlier, Mansour, using the random restriati@chinery of Hastad and Liniat al. [Has86
LMN93] had shown that for any DNF formulg, there exists a polynomial of sparsit§(loslogtlog1/¢) that
approximates.

The subclasses of DNF formulas that we show are agnostiealipable have been well-studied in the
PAC model of learning. Monotone re&dbNF formulas were shown to be PAC-learnable with respect
to the uniform distribution by Hancock and Mansout\91], and random DNF formulas were recently
shown to be learnable on average with respect to the unifestritdition in the following sequence of work
[JS05 JLSWO08§ Sel0g Sel0g.

Recently (and independently) @ al. proved that for any read-once DNF formufathere exists an
approximating polynomiap of sparsityt©(°g1/¢) More specifically, Det al. showed that for any class of
functionsC fooled by j-biased sets, there exist sparse, sandwiching polynoriaats where the sparsity
depends om@. Since they show that (o2 1/¢)_piased sets fool read-once DNF formulas, the existence of a
sparse approximator for the read-once case is impliciteir thiork.

1.3 Our Approach

As stated above, our proof does not analyze the Fourier cigffs of DNF formulas, and our approach is
considerably simpler than the random-restriction metla&en by Mansour (we consider the lack of Fourier
analysis a feature of the proof, given that all previous wmrlhis problem has been Fourier-based). Instead,
we use polynomial interpolation.



A Basic Example. Consider a DNF formulgf = Ty Vv --- v T; where eacHl; is on a disjoint set of
exactlylog t variables (assumeis a power of2). The probability that each term is satisfied j&, and the
expected number of satisfied terms is one. Further, sindertims are disjoint, with high probability over the
choice of the random input, only a few—say-terms will be satisfied. As such, we construct a univariate
polynomialp with p(0) = 0 andp(i) = 1 for 1 < i < d. Thenp(T; + - - - + 1) will be exactly equal tof

as long as at mostterms are satisfied. A careful calculation shows that thatBywherep is incorrect will

not contribute too much t&[(f — p)?], as there are few of them. Setting parameters approprigilys a
polynomialp that is both sparse and arapproximator off.

Random and read-once DNF formulas. More generally, we adopt the following strategy: given a DNF
formula f (randomly chosen or read-once) either (1) with sufficiehifyh probability a random input does
not satisfy too many terms of or (2) f is highly biased. In the former case we can use polynomial
interpolation to construct a sparse approximator and inather case we can simply use the constaat 1
function.

The probability calculations are a bit delicate, as we muasuge that the probability of many terms
being satisfied decays faster than the growth rate of ounpatyal approximators. For the case of random
DNF formulas, we make use of some recent work due to Jackisalhon learning random monotone DNF
formulas pLSWO04g.

Read+ DNF formulas. Read# DNF formulas do not fit into the above dichotomy so we do notthse
sumT; + - - - + T; inside the univariate polynomial. Instead, we use a suforfiulas(rather than terms)
based on a construction froR§z08. We modify Razborov’s construction to exploit the factttherms in

a readk DNF formula do not share variables with many other terms. @&halysis shows that we can then
employ the previous strategy: either (1) with sufficientlgthprobability a random input does not satisfy
too many formulas in the sum or (2)is highly biased.

2 Preliminaries

In this paper, we will primarily be concerned with Booleamdtions f : {0,1}" — {0,1}. Letxy, ... ,x,

be Boolean variables. Ateral is either a variablec; of its negationz;, and atermis a conjunction of
literals. Any Boolean function can be expressed as a dispmof terms, and such a formula is said to be a
disjunctive normal fornfor DNF) formula. A reads DNF formula is a DNF formula in which the maximum
number of occurrences of each variable is bounded.b% Boolean function is monotone if changing the
value of an input bit fron®) to 1 never causes the value of f to change frbtn 0. The following consequence
[Kle66, ASOQ of the Four Functions Theorem will be useful in our study afrmatone functions.

Theorem 6. Lete, f, =g, and —=h be monotone Boolean functions ougr, 1}". Then for any product
distribution D over{0,1}", Prple A f] > Prple] Prp[f], Prp[g A h] > Prplg] Prp[h], andPrp[f A g] <
Prp[f]Prp[g].

2.1 Sparse Polynomials

Every functionf : {0,1}" — R can be expressed by its Fourier expansiff:) = > F(S)xs(z) where
xs(x) = [lieg(—1)% for S C [n], andf(S) = E[f - xs]. The Fourier expansion gf can be thought of as
the unique polynomial representation fobver {+1, —1}" under the map; — 1 — 2z;.



Mansour conjectured that polynomial-size DNF formuladddae approximated bgparsepolynomials
over {+1,—1}". We say a polynomiap : {+1,—1}"—R has sparsity if it has at mosts non-zero
coefficients. We state Mansour’s conjecture as originadigeal in Man94, which uses the convention of
representingALSE by +1 andTRUE by —1.

Conjecture 7 ([Man94). Let f : {+1,—1}" — {+1,—1} be any function computable bytgerm DNF
formula. Then there exists a polynomjal {41, —1}" — R witht?(°81/¢) terms such thaE[(f —p)?] < e.

We will prove the conjecture to be true for various subclasggolynomial-size DNF formulas. In our
setting, Boolean functions will outpotfor FALSE and1 for TRUE. However, we can easily change the range
by settingf* := 1 — 2 - f. Changing the range tp+1, —1} changes the accuracy of the approximation by
at most a factor of: E[((1 —2f) — (1 —2p))?] = 4E[(f — p)?], and it increases the sparsity by at most 1.

Given a Boolean functioif, we construct a sparse approximating polynomial dvet, —1}" by giving
an approximating polynomial : {0,1}"—R with real coefficients that has small spectral norm. The rest
of the section gives us some tools to construct such polyalgnaind explains why doing so yields sparse
approximators.

Definition 8. TheFourier/;-norm(also called thespectral normof a functionp : {0,1}"—R is defined to
be||pll1 := >_4|p(S)|. We will also use the following minor variadtpﬂf@ =5 pP(S)]-

The following two facts about the spectral norm of functienl allow us to construct polynomials over
{0,1}" naturally from DNF formulas.

Fact 9. Letp : {0,1}""—R be a polynomial with coefficienfss € R for S C [m], andq,...,qm :
{0,1}"—{0, 1} be arbitrary Boolean functions. Thefqi,...,qm) = > gps[lics @ is a polynomial
over{0, 1}" with spectral norm at most

Z ps| H lgill1-

SClm)] €S
Proof. The fact follows by observing that for amyq : {0, 1}"—R, we have{|p + q||1 < ||p||: + ||¢||: and
lpally < llpllillgll1- m
Fact 10. LetT : {0,1}"—{0, 1} be an AND of a subset of its literals. Theg#||; = 1.

Finally, using the fact below, we show why approximatingypamials with small spectral norm give
sparse approximating polynomials.

Fact 11([KM93]). Given any functiory : {0,1}"—R ande > 0, letS = {S C [n] : 17(S)] > €/},
andg(z) = Yges f(9)xs(z). ThenE[(f — g)] < e, and|S| < [|f][F/e.
Now, given functionsf, p : {0, 1}"—R such thatE[(f — p)?] < ¢, we can construct &-approximator

for f with sparsity||p||3/e by definingp’(z) = Y ¢ 5P(S)xs(z) as in Factll Clearlyp’ has sparsity
|IplI% /e, and

E[(f=p)1=Elf —p+p—p)] <ER(f —p)+ (p—P)?)] < 4e,

where the first inequality follows from the inequality + b)? < 2(a? + v?) for any realsz andb.



2.2 Agnostic learning

We first describe the traditional framework for agnosticdfarning concept classes with respect to the
uniform distribution and then give a slightly modified defiion for an “average-case” version of agnostic
learning where the unknown concept (in this case a DNF fagmalrandomly chosen.

Definition 12 (Standard agnostic model).et D be the uniform distribution of+1,—1}", and let f :
{+1,-1}" — {+1, -1} be an arbitrary function. Define

opt = min Prlc(z) # f(2)].
That is, opt is the error of the best fitting concept (hwith respect toD. We say that an algorithmi
agnostically learn€ with respect tdD if the following holds for anyf: if A is given black-box access jo
then with high probabilityA outputs a hypothesis such thatPr,.p[h(z) # f(x)] < opt + €.

The intuition behind the above definition is that a learneiveiy access to a concepte C where an
n fraction of¢’'s inputs have been adversarially corrupted—should stilable to output a hypothesis with
accuracyy + € (achieving error better thapmay not be possible, as the adversary could embed a conypletel
random function on an fraction of¢’s inputs). Herey plays the role obpt.

This motivates the following definition for agnosticallyak®ing a randomly chosen concept from some
classC:

Definition 13 (Agnostically learning random conceptd)et C be a concept class and chooseandomly
from C. We say that an algorithmil agnostically learns random concepts frammif with probability at
least1 — & over the choice ot the following holds: if the learner is given black-box aczés ¢ and
Prycii1,—1yr[c(z) # (x)] < n, thenA outputs a hypothesik such thatPr,c (4 1y [h(z) # ¢ (2)] <
n+e.

We are unaware of any prior work defining an agnostic framkviar learning randomly chosen con-
cepts.

The main result we use to connect the approximation of DNRidas by sparse polynomials with
agnostic learning is due to Gopalanal. [ GKKO08L:

Theorem 14 ([GKKO08h]). LetC be a concept class such that for everg C there exists a polynomial
such that|p[; < s andE,ci1 1y [[p(z) — ¢(x)|?] < €2/2. Then there exists an algorithii such that
the following holds: given black-box access to any Booleaetion f : {+1,—-1}"—{+1,—1}, Brunsin
timepoly(n, s, 1/¢) and outputs a hypothesis: {+1, —1}"—{+1, —1} with

B ) £ S @) < ot e

3 Approximating DNFs using univariate polynomial interpolation

Let f = Ty VTy VvV --- V T; be any DNF formula. We sa¥;(z) = 1 if « satisfies the ternT;, and 0
otherwise. Lety : {0,1}" — {0,... ,t} be the function that outputs the number of termg sftisfied by
z,i.e.,yr(r) = Th(x) + To(x) + - - + Ti(z).

Our constructions will use the following univariate polynial P, to interpolate the values gfon inputs
{z 2 yp(z) < d.



Fact 15. Let ) 5 J

Pd(y) — (_1)d+1 (y_ )(y _d')"'(y_ ) +1. (1)
Then, (1) the polynomiaP; is a degreed polynomial iny; (2) P4(0) = 0, Py(y) = 1 fory € [d], and for
y e[\ [d, Pa(y) = —(¥;") +1 < 0if dis even andPy(y) = (Y,') + 1 > 1if dis odd; and (3) the sum
of the magnitudes aP;’s coefficients igl.

Proof. Properties (1) and (2) can be easily verified by inspectioxpaBding the falling factorial, we get
that(y — 1)(y —2)---(y — d) = Z?ZO(—l)d‘j [?ﬁ] y?, where[7] denotes a Stirling number of the first
kind. The Stirling numbers of the first kind count the numbigp@mutations of; elements with disjoint
cycles. Thereforez;.l:0 [?Iﬂ = (d + 1)! [GKP94. The constant coefficient af, is 0 by Property (2),
thus the sum of the absolute values of the other coefficieritd H- 1)! — d!)/d! = d. [ |

For anyt-term DNF formulaf, we can construct a polynomial 4 : {0,1}"—R defined apy 4 :=
Pjoy;. A simple calculation, given below, shows that thenorm ofp; 4 is polynomial int and exponential
ind.

Lemma 16. Let f be at-term DNF formula, ther(p 4|1 < t°(@).

Proof. By Factl5, P, is a degreet univariate polynomial withl non-zero coefficients of magnitude at most
d. We can view the polynomial; 4 as the polynomiaP; (T, ..., T;) := Py(T1 + - - - + T;) over variables
T; € {0,1}. Expanding outP; gives us at mostt? monomials with coefficients of magnitude at mdst
Now each monomial oP; is a product off}’s, so applying Facts0and9 we have thalip; 4[1 < t°@. W

The next two sections will show that the polynomjgl, (for d = ©(log 1/¢)) is in fact a good approxi-
mation for random DNF formulas and (with a slight modificadiéor read4x DNF formulas. As a warm-up,
we will show the simple case of read-once DNF formulas.

3.1 A Simple Case: Read-Once DNF Formulas

For read-once DNF formulas, the probability that a term iisfead is independent of whether or not any of
the other terms are satisfied, and tifus unlikely to have many terms satisfied simultaneously.

Lemma 17. Let f = TyV,--- ,VT; be a read-once DNF formula of sizesuch thatPr[f] < 1 — €. Then
the probability over the uniform distribution ofv, 1}" that some set of > eln 1/¢ terms is satisfied is at

eln1/e\’
most(—j ) .

Proof. For any assignment to the variables of, lety(x) be the number terms satisfied finBy linearity
of expectation, we have thait, [y, (z)] = >'_, Pr[T; = 1]. Note thatPr[-f] = [['_, (1 — Pr[T}]), which
is maximized when eacRr[T;] = E[y;]/t, hencePr[-f] < (1 — E[ys]/t)! < e~ Elwsl. Thus we may
assume thaE[y¢] < In1/e, otherwisePr[f] > 1 —e.

AssumingE[ys] < In1/e, we now bound the probability that some setjof eln 1/e terms of f is
satisfied. Since all the terms are disjoint, this probabibty . s/=; [L;es Pr[T3], and the arithmetic-
geometric mean inequality gives that this is maximized Wh&'ryPrfTZ—] = E[yy|/t. Then the probability
of satisfying some set gfterms is at most:

() () =3 (=) - (2

which concludes the proof of the lemma. |




The following lemma shows that we can skto be fairly small,©(log 1/¢), and the polynomiap; 4
will be a good approximation for any DNF formufa as long as is unlikely to have many terms satisfied
simultaneously.

Lemma 18. Let f be anyt-term DNF formula, and lefl = [4e? In 1/¢]. If

(elnjl/e)j

for everyd < j < t, then the polynomiap; , satisfiesE[(f — pf.4)?] < e.

Priys () = j]

IN

Proof. We condition on the values af¢(x), controlling the magnitude ab; 4 by the unlikelihood ofy
being large. By Fact5, ps q(x) will output O if 2 does not satisfyf, pr q(x) will output 1 if y¢(x) € [d],
and|py.q(z)| < (%) for ys(x) € [t] \ [d]. Hence:

t

IF ~psall® < Zl(§>2<eln.l/e>j

j=d+ J

t

[ elnl/e \?
2% [
< Zl <4e3ln1/e>

j=d+

[
Combining Lemmad6, 17, and18 gives us Mansour’s conjecture for read-once DNF formulas.

Theorem 19. Let f be any read-once DNF formula withterms. Then there is a polynomia} ; with
pralls < tO08l/) andE[(f — pra)?] < eforall e > 0.

4 Mansour’s Conjecture for Random DNF Formulas

In this section, we establish various properties of randdifBormulas and use these properties to show
that for almost allf, Mansour’s conjecture holds. Roughly speaking, we willvghbat a random DNF
formula behaves like a read-once DNF formula, in that anyga set of terms is unlikely to be satisfied
by a random assignment. This notion is formalized in Len#faFor such DNF formulas, we may use
the construction from Sectiahto obtain a good approximating polynomial fémwith small spectral norm
(Theoremz4).

Throughout the rest of this section, we assume that = n°("). For brevity we writet for t(n). Let
D! be the probability distribution overterm DNF formulas induced by the following process: eachmte
is independently and uniformly chosen at random frorrt@(ljg t) possible terms of size exactlyg ¢t over
{z1,...,x,}. FoOr convenience, we assume thatt is an integer throughout our discussion, although the
general case is easily handled by taking terms of lengi¢ . If the terms are not of siz€(log n), then
the DNF will be biased, and thus be easy to learn. We referdhédar to JS09 for a full discussion of the
model.



If ¢ grows very slowly relative ta, sayt = n°(), then with high probability { — n*!)) a randomf
drawn fromDﬁL will be a read-once DNF formula, in which case the resultsaafti®n3.1 hold. Therefore,
throughout the rest of this section we will assume thatin factn®®).

To prove Lemma&2, we require two lemmas, which are inspired by the results 80§ and [JLSWO04.
Lemma20 shows that with high probability the terms of a random DNFfala are close to being disjoint,
and thus cover close tplog ¢ variables.

Lemma 20. With probability at leastl — /e’ 1°8%(jlog t)°8t /nloet over the random draw of from DY,
at leastj logt — (log t)/4 variables occur in every set gfdistinct terms off. The failure probability is at
mostl /nf21°e?) for anyj < clog n, for some constant.

Proof. Let k := logt. Fix a set ofj terms, and let < jk be the number of distinct variables (negated
or not) that occur in these terms. We will bound the probgbthatv > w := jk — k/4. Consider any
particular fixed set ofv variables. The probability that none of thigéerms include any variable outside of
thew variables is precisely (%) /(}))’. Thus, the probability that < w is by the union bound:

() () < oy (- st o

k

Taking a union bound over all (at mag) sets, we have that with the correct probability every sgttefms
contains at leasb distinct variables. |

We will use the method of bounded differences (a.k.a., Mobid’s inequality) to prove Lemma2.

Proposition 21 (McDiarmid’s inequality) Let X1, ...,X,, be independent random variables taking values
inasetX, and letf : X™ — R be such that for ali € [m], |f(a) — f(a')| < d;, whenever,a’ € X™
differ in just theith coordinate. Then for att > 0,

Pr[f>Ef+T]§exp< >andPr[f<Ef—T]§exp< i)

_2r .
Zi d? 22 dzz
The following lemma shows that with high probability oveetbhoice of random DNF formula, the
probability that exactly terms are satisfied is close to that for the “tribes” functi(njt@t‘j (1—1/t)t,

Lemma 22. There exists a constantsuch that for anyj < clog n, with probability at leastl — 1 /nQ(log )
over the random draw of from D!, the probability over the uniform distribution of), 1}" that an input
satisfies exactly distinct terms off is at most2 (;)t‘j(l —1/t)t.

Proof. Let f = Ty Vv --- V T}, and let3 := t7(1 — 1/t)!7. Fix anyJ C [t] of sizej, and letU; be the
probability overz € {0,1}" that the termd; for i € J are satisfied and no other terms are satisfied. We
will show thatU; < 24 with high probability; a union bound over all possible sétef sizej in [t] gives
thatlU; < 273 for every.J with high probability. Finally, a union bound over 451) possible sets of terms
(where the probability is taken ove) proves the lemma.

Without loss of generality, we may assume thiat [j]. For any fixedr, we have:

Pr [z satisfies exactly the terms iff = 3,
feDy,

and thus by linearity of expectation, we haklgcp: [U;] = 3. Now we show that with high probability
that the deviation ot/ ; from its expected value is low.

9



Applying Lemma20, we may assume that the terffis - - - , 7; contain at leasf log ¢ — (log t) /4 many
variables, and thaf U T; forall : = j + 1,--- , ¢ includes at leas{j + 1) logt¢ — (log¢)/4 many unique
variables, while increasing the failure probability byy)ml/nﬂ(k’gt). Note that conditioning on this event
can change the value &f; by at mostt/n1°s?) < 13, so under this conditioning we hal&P;] > 1 5.
Conditioning on this event, fix the term§, --- ,7;. Then the termd’;y,--- ,T; are chosen uniformly
and independently from the set of all terffioof lengthlog ¢ such that the union of the variablesJrandT
includes at leastj + 1) logt — (log t)/4 unique variables. Call this séf.

We now use McDiarmid’s inequality where the random varialzee the termg)_+,...,T; randomly
selected from¥, letting ¢(Tj41,--- ,T¢) = Uy andg(Tj41,- -, Tim1, T}, Tig1,- -+, Ty) = U for all
i=j+1,...,t. We claim that:

) £1/4

‘UJ—UJ‘ Sdz = tﬂﬁ
This is becaus@’’; can only be larger thali; by assignments which satist, - - - , 7y and7;. Similarly,
U’, can only be smaller thall; by assignments which satisf;,--- ,7; and7;. SinceT; and7; come

from X', we know that at leastj + 1)t — (log ¢)/4 variables must be satisfied.
Thus we may apply McDiarmid’s inequality with= %ﬂ, which gives thaPr¢[U; > 23] is at most

—2932 —9vt(1 — 1/t)%(t=9)
1
exp <t3/2/t2j+2> < exp ( 5 :

Combining the failure probabilities over all trﬁjé) possible sets, we get that with probability at least

B\ (L o ~ovia-iyepe-app) _ 1
j n(logt) n(logt)’

over the random draw of from D¢, U for all J C [t] of sizej is at most23. Thus, the probability that a

random input satisfies exactly soméistinct terms off is at most2 (5)5 [ |

Using these properties of random DNF formulas we can now shiamma analogous to Lemma for
random DNF formulas.

Lemma 23. Let f be any DNF formula witt = n°() terms, and lete > 0 which satisfiesl /e =
o(loglogn). Then setl = [4e3In1/€] and/ = clog n, wherec is the constant in Lemm2. If

elnl/e)j

Prlyy (2) = j) < ( j

for everyd < j < ¢, then the polynomiab; 4 satisfiesE[(f — pr.q)?] < e.

Proof. We condition on the values af¢(x), controlling the magnitude ab; 4 by the unlikelihood ofy
being large. By Fact5, ps q(x) will output O if 2 does not satisfyf, pr q(x) will output 1 if y¢(x) € [d],

10



and|py.q(x)| < () forys(z) € [t] \ [d]. Hence:

TIPS @2<61I}1/6>j+<2>2'Pr[yf2“

Jj=d+1
/-1 In1 i
< Z 22j <423I11n {;E> + n—Q(loglogn)
j=d+1
-1 1
< e]_zd;rl S+ p~oglogn) ¢

We can now show that Mansour’s conjectukéan94 is true with high probability over the choice ¢f
from DL.

Theorem 24. Let f : {0,1}™ — {0,1} be at = n®M-term DNF formula where each term is chosen
independently from the set of all terms of lenth¢. Then with probability at least — n—(°g%) over the
choice off, there exists a polynomialwith ||p||; < t©(°81/9) such thatB[(p(x) — f(z))?] < e.

Proof. Let d := [4e®In(1/€)] andp; 4 be as defined in Sectioh Lemmalé tells us that|psqli <
tOUog1/¢) We show that with probability at least— n=¥°¢?) over the random draw of from D%, p; 4
will be a good approximator fof. This follows by Lemma&2; with probability at least — (clog(n) —d —
1)/nMoet) — 1 — p=oet) e havePr[y = j] for all d < j < clog(n). Thus for suchf Lemma18tells
us thatE[(f — pr.a)?] <e. |

5 Mansour’s Conjecture for Read+« DNF Formulas

In this section, we give am-approximating polynomial for any redd-DNF formula and show that its
spectral norm is at mogf 2 log1/e) - Thjs implies that Mansour’s conjecture holds for all réa®NF
formulas where is any constant.

Read# DNF formulas may not satisfy the conditions of Lemfifa so we must change our approach.
Instead of usingZﬁlei inside our univariate polynomial, we use a different sumijclwhs based on a
construction from [Raz0§ for representing any DNF formula. We modify this represéioh to exploit
the fact that for read- DNF formulas, the variables in a term can not share variabléstoo many other
terms. Unlike for read-once DNF formulas, it is not cleat the number of terms satisfied in a readNF
formula will be extremely concentrated on a small range. Wéshow to modify our construction so that
a concentration result does hold.

Let f =T V--- VT, be anyt-term readk DNF formula, and letT;| denote the number of variables in
the termT;. We assume that the terms are ordered from longest to shaees?;| > |T;| for all j < 4. For
any term{; of f, let¢; be the DNF formula consisting of those terms (at least as las@;) in 71, --- ,7;_1
that overlap withr;, i.e.,

¢i:=\/ Ty, forC; = {j <i|T;NT; # 0}
JEC;
We defined; := T; A ~¢; andz; := S°i_, A;. The functionz; : {0,1}" — {0,...,t} outputs the number
of disjoint terms off satisfied by (greedily starting froni}). Note that if f is a read-once DNF formula,
thean =Y.

11



Observe that eacl; can be represented by the polynomial- Hjeci(l — Tj) (and soz; can be
represented by a polynomial), and tj@l — 7;)||; < 2 for all j. As f is a readk DNF formula, eachp;
has at mosk|T;| terms, and4; has small spectral norm:

Fact 25. Let f =Ty V --- V T; be at-term readk DNF formula. Then each; has a polynomial represen-
tation, and||4;||; < 2T,

As we did in SectiorB, we can construct a polynomia} ; : {0,1}"—R defined agjs 4 := P; o zy for
anyt-term readk DNF formula f. The following lemma shows that; ; has small spectral norm.

Lemma 26. Let f be at-term readk DNF formula with terms of length at most. Then|lgsqll1 <
90(d(log t-+kw))

Proof. By Fact15, P, is a degreet univariate polynomial withi terms and coefficients of magnitude at
mostd. We can view the polynomiaj; ; as the polynomialP}(Ai, ..., A;) = Py(A1 +--- + A;) over
variablesA4; € {0, 1}. Expanding out (but not recombining), gives us at mosit? monomials of degreé
(over variablesA;) with coefficients of magnitude at mogt

We can now apply Fac5and9 to bound the spectral norm gf ;. SinceP;, has at mosit? monomials

each of degreel (over 4;), fnd each4; satisfies||4;||; < 2", we have thaf|g; |1 < 2%vdtd =
90(d(log t-+kw)) [

We will show that Mansour’s conjecture holds for réa®NF formulas by showing that; = >"i_, A,
behaves much likgy = 2521 T; would if f were a read-once DNF formula, and thus we can use our
polynomial P; (Equationl) to approximatef.

One crucial property of our construction is that only disj@ets of terms can contribute 1¢.

Claim 27. LetTy V - -- vV T; be at-term DNF formula. Then for any C [t], Pr[AiesAi] < [],cq Pr[Ti].

Proof. If there is a pairj,k € S such thatl; N T}, # () for somej < k, then¢; containsT; and both
T; A —¢; andT), A ¢y, cannot be satisfied simultaneously,}agA;csA;] = 0. If no such pair exists, then
all the terms indexed by are disjoint. Thus,

PrAicsAi] < Pr[niesTi] = [ [ Pr(Ti),
i€S
as was to be shown. [ |

The following lemma was communicated to us by Omid Etesamidames CookedC1(.

Lemma 28. Let f = T V...V T; be at-term readk DNF formula, and letf’ = 77 v ... vV T/ be the
monotone formula obtained froghby replacing all the negative literals by their positive oterparts. Then
Pr(f'] < Pr(f].

Proof. Foreach) < i < n, definef®) as the DNF formula obtained frofhwhen replacing each occurrence
of ~x; by x; forall 1 < j <. In particular,f®) = fand f™ = f'. Let f0~Y) = (g4, A 23) V (g, A
—z;) V gy Whereg,, A z; is the OR of all terms fronyf (=) that have the literat;, g, A —z; is the OR
of all terms that have the literalz;, andg is the OR of all terms that neither contain nor contain—zx;.
Note thatf®) = ((gs, V g—o;) A xi) V gg. Thus

- 1 1
Pr [f @ 1)} =3 Prlg.; A —gp] + 3 Pr(g—a; A —gp] + Pr[gg],
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and )
Pr [f (’)] = 5 Prl(ge; V g-) A 0] + Prlgg].

A union bound on the eventg,, A —gy) and (g-., A —gp) tells us thatPr[f¢~Y] > Pr[f?)], and thus
Pr[f©] > Pr[f(M). u

As in the read-once case, we will prove that for any réddNF formula f, if ZZ | Pr[T;] is large then
f is biased towards one (Lemn38d). To do so we will prove this for monotone read®NF formulas and
then use Lemma&s to obtain the general case. Before we prove LendMave need the following claim,
which tells us that for a real-monotoneDNF formula, the probability of satisfying; compared to that of
satisfyingT; is only smaller by a constant (for constant

Claim 29. LetT; V - -- v T; be at-term monotone rea@-DNF formula. Ther2=* Pr[T;] < Pr[4;].

Proof. Let I be the set of indices of the termsdn. For eachl; € ¢;, letT beT; with all the variables of
T; setto 1, and lep) = v{joje@}T;. (For example, ifl; = z1x9x3 andT; = xox4x5 is a term ofgp;, then
¢ contains the terml; = x4x5.) Observe thaPr[A;] = Pr[T; A —¢;] = Pr[T; A —¢}] = Pr[T;] Pr[=¢;].
Thus it suffices to show thdtr[—¢}] > 274,

Let a; be the number of variables ifi; N 7;. By the definition ofp;, 1 < a; < |T;| — 1, and note that
Pr[T]f] = 2%~|T5l Applying the Four Functions Theorem (Theorémwe obtain:

Pri~¢/] > [ Pri-zj) = [0 - 29710 = TJaa - 20717,
jel jel jeI
We partition! into two sets:J = {j : a; < |T;|/2} andJ’ = {j : a; > |T;|/2}. (Assume tha{T;| > 4
or else we are done, because there can be at4rdstms.) Asg; is a readk DNF formula, we have that
> jeraj < k|T;], and thugJ’| < 2k, and|J| < k|T;)|.
We will lower bound the products over each set of indices iseply. For those terms ih, we have that
Pr[T]] < 2-ITil/2 hence

H(l — Pr[T H —ITl/2y > (1 — 2= ITl/2)kIT] > 92k
JjeJ JjeJ

For those termd, j € J’ (which share many variables wiff}), we use the facts that eath|7’ ] <1/2
and that there are at mast such terms, so that

[T@-Prz)]) > 272"
jeJ’

Taking the product over the sétU J' completes the proof of the claim. |

Finally, we will prove that for any read-DNF formula f, if ZZ | Pr[T;] is large thenf is biased
towards one. Using Lemmz0 with Claim 27, we can prove a lemma analogous to Lemhiay a case
analysis onle Pr[T;]; either it is large and’ must be biased toward one, or it is smallzs0ois usually
small.

Lemma 30. Let f be at-term readk DNF formula. Then,

ZPr ] <2%1n <Pr[1ﬂf]> .
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Proof. First, let us consider the case whgrms monotone. Lep; be those terms amorig, ..., 7T;_; that
are not present in;. We can upper-bountr[—f] by:

t

Pr[-f] = H (1 =Pr[T; | =i A =pil)

1=1

t t
< H(l—Pr[T/\—'qS,]—'pZ Hl—PrT]ﬂp,]Pr[ i | T; N —pi)
i=1 i=1
t t
< [J@-PrzPrl=¢: | T3]) =[] (1 — Pr[A
1=1

1=1

The first inequality comes frofr[A | BA C] > Pr[A A B | C] forany A, B, andC'. The last inequality
holds becausBr[T; | —p;] = Pr[T;] (by the mutual independence Bfandp;) andPr[—¢; | T;] < Pr[—¢; |
T; A —p;]. The last fact may be obtained by applying the Four Funcfidreorem to-¢; and—p; under the
product distribution induced by setting all the variablégpto be true.

We apply Claim29 to obtainPr[-f] < []'_,(1 — Pr[T;]2=*), and the arithmetic-geometric mean
inequality shows that our upper-bound Bri— f] is maximized when all th®r[T;] are equal, hence:

Pr(~f] < (1 - 2““@@) < exp (—2‘4'“ Zt: Pf[TJ) :

Solving for>>'_, Pr[T;] yields the lemma.
Now let f be a non-monotone DNF formula, and [Etbe the monotonized version ¢f Then by
Lemma28 we have:

gpr[ Zpr <24k1“<13r[1f/]>SQ%I“(Pr[lﬂf])’

as was to be shown. [ |

Lemma 31. Let f = 71 Vv --- V T} be a readk DNF formula of sizef such thatPr[f] < 1 —e. Then
the probability over the uniform distribution of0, 1}" that z; > j (for anyj > 2%*eIn(1/e)) is at most

<24kel;1(1/5))j_

Proof. By Lemmas30, Ty := Y__, Pr[T;] < 2% In(1/e). The probability that some set pt4,’s is satisfied
is at mostzsgms‘:j Pr[AiesA;i]. Applying Claim27, we have:

Z Pr[/\,-eSAi] Z H PI‘

SCIt],|S|=j SCIt],|S|=ji€S

The arithmetic-geometric mean inequality shows that thandgjty is maximized when alPr[7;] are equal,
hence: ' ,
J 4k J
=TI () () = () < (2)
SCIH],|S|=j i€S J J

14



We can now show that Mansour’s conjecture holds for re@NF formulas with any constarit

Theorem 32.Letf : {0,1}" — {0, 1} be any readk DNF formula with¢ terms. Then there is a polynomial
afd with qu,dHl = to(24k log1/e) andE[(f — Qf’d)z] <eforall e > 0.

Proof. If Pr[f = 1] > 1 — ¢, the constant 1 is a suitable polynomial. Lebe the DNF formulaf
after dropping terms of length greater than:= log(2t/¢). (This only changes the probability ly2.)
Letd := [4e32% In(2/¢)] andg, 4 be as defined at the beginning of SectinLemma26 tells us that

gg.all1 < t0@"181/9) and LemmaB1 combined with Lemma8tells us thatE[(g — g,.4)%] < /2. W

6 Pseudorandomness

Deet al.[DETTO0Y recently improved long-standing pseudorandom genesatgainst DNF formulas.
Definition 33. A probability distributionX over{0,1}" e-fools a real functionf : {0,1}" — R if

[E[f(X)] - E[f({Un)]] <e

If C is a class of functions, then we say tBate-foolsC if X e-fools every functiorf € C.
We say a probability distributiodX over {0, 1}" is e-biasedif it e-fools the character functiory s for
everyS C [n].

De et al. observed that the result of Baz#4z07 implied a pseudorandom generator tlhgbols ¢-
term DNF formulas over variables with seed lengt® (log n - log?(t/3)), which already improves the
long-standing upper bound 6f(log*(tn/€)) of Luby et al.[LVW93]. They go on to show a pseudorandom
generator with seed length(log n + log?(t/¢) log log(t/e)).

They prove that a sufficient condition for a functigro bee-fooled by an-biased distribution is that the
function be “sandwiched” between two bounded real-valuggttions whose Fourier transform has small
/1 norm:

Lemma 34 (Sandwich Bound[DETT0Y). Supposef, fr, fu : {0,1}" — R are three functions such that
for everyz € {0,1}", fo(z) < f(z) < fu(z), E[fu(Un)] - E[f(Uy)] < €, andE[f (U,)] — E[fo(Un)] < €.
Let L = max(|| f2|77, I £/ 7%). Then anys-biased probability distributior{c + 3L)-fools f.

Naor and NaorIN93] prove that arc-biased distribution oven bits can be sampled using a seed of
O(log(n/€)) bits. Using our construction from Sectidnwe show that random DNF formulas aréooled
by a pseudorandom generator with seed leiddtlog n + log(t) log(1/¢)):

Theorem 35. Let f = Ty V --- V T; be a random DNF formula chosen frof, for ¢t = n®M. For
1 < d < t, with probability 1 — 1/22(°2%) over the choice of, 3-biased distributions) (244 4+ 3td)-
fool f. In particular, we care-fool mostf € Dt by at~9(°e(l/)-piased distribution.

Proof. Let d™ be the first odd integer greater thdnand letd— be the first even integer greater thanLet
Ju = psq+ andf, = ps - (Wherepy 4 is defined as in Sectiog). By Lemmals6, the/;-norms of f, and
fr aret®@. By Fact15, we know thatPy: (y) = (Y;') +1 > 1andP-(y) = —(Y;') +1 < 0 for
y € [t] \ [d], hence:

Bl (V)] — Bl () = gl ((F") +1-1) P =i

j=
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which with probabilityl — 1/n(1°2) gver the choice of is at mos2—*4) by the analysis in Lemmas.
The same analysis applies ffi, thus applying Lemma4 gives us the theorem. |

De et al. match our bound for random DNF formulas for the special cdseanl-once DNF formulas.
Using our construction from Sectidnand a similar proof as the one above, we can show that monotone
read4 formulas are-fooled by a pseudorandom generator with seed le6Xjthg n + log(t) log(1/¢)).

Theorem 36. Let f = T V --- V T; be a readk DNF formula for constank. For 1 < d < t, 8-biased
distributionsO(2=%(@ + gt%)-fool £. In particular, we care-fool read+ DNF formulas by a—©(ee(1/¢)).
biased distribution.

7 Discussion

On the relationship between Mansour’'s Conjecture and the Eiropy-Influence Conjecture. As a final
note, we would like to make a remark on the relationship betwdansour’s conjecture and the entropy-
influence conjecture. Thepectral entropyof a function is defined to b&(f) := "¢ —f(S)? log(f(S)?)
and thetotal influenceto be I(f) := > ¢ |S|£(S)2. The entropy-influenceconjecture is that(f) =
O(I(f)) [FK96].! Boppana showed that the total influencet-¢érm DNF formulas isD(log t) [Bop97.
From this it follows that Mansour’s conjecture is implied e entropy-influence conjecture.

It can be shown that far©()-size DNF formulas Mansour’s conjecture implies an uppemigoon the
spectral entropy 0O (logn). Thus, for the class of DNF formulas we consider in Sectigwhich have
total influence2(log n)), our results imply that the entropy-influence conjectsrerue.
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