
On a singular value method in quantum
ommuni
ation 
omplexityHenning Wunderli
h and Stefan ArnoldUniversität Ulm, Fakultät für Ingenieurwissens
haften und Informatik,Institut für Theoretis
he Informatik, Oberer Eselsberg, D-89069 Ulm,{henning.wunderli
h, stefan.arnold}�uni-ulm.deAbstra
t. We introdu
e a new lower bound method for bounded-error quantum 
ommuni-
ation 
omplexity, the singular value method (svm), based on sums of squared singular valuesof the 
ommuni
ation matrix, and we 
ompare it with existing methods.The �rst �nding is a 
onstant fa
tor improvement of lower bounds based on the spe
tralnorm. This is exempli�ed with an n/2 − O(1) lower bound for the inner produ
t fun
tionmod two.As our main result we exhibit a fun
tion based on quasi-random graphs su
h that svm yieldsa linear lower bound while the spe
tral norm method only yields a 
onstant lower bound.In addition, we dis
uss the strength of svm and show that the 
lass of languages with a lowsvm value is as hard as the 
ommuni
ation 
omplexity version of the polynomial hierar
hy.Key words: Quantum Communi
ation Complexity, Singular Value Method, Lower BoundMethod1 Introdu
tionIn 
ommuni
ation 
omplexity theory [1℄ 
ommuni
ation models are studied where severalplayers want to 
ooperatively solve a problem. The resour
e under 
onsideration is 
om-muni
ation, i.e. the number of 
ommuni
ated (quantum) bits. In general, the players haveto 
ommuni
ate be
ause the input is distributed among them. The arguably simplest 
om-muni
ation model is Yao's model [2℄ where two players Ali
e and Bob want to 
ompute thevalue f(x, y) of a fun
tion f : X ×Y → Z. Here, Ali
e has x ∈ X and Bob has y ∈ Y, andthey may send ea
h other messages a

ording to a �xed proto
ol. Several variants of thisdeterministi
 model exist: In the publi
-
oin randomized model the players are allowed touse a publi
 sour
e of randomness; in the private-
oin model ea
h player has his own sour
eof randomness unknown to the other player. The deterministi
 model 
an also be enri
hedwith guess strings. Here, the players want to solve a de
ision problem. They may guess bitsand the a

eptan
e of an input is determined by an a

eptan
e mode. Yao [3℄ also intro-du
ed a quantum model where the players 
an send quantum bits instead of 
lassi
al bits.Two variants are distinguished depending on whether the players share entangled states(e.g. Einstein-Podolsky-Rosen pairs) prior to 
ommuni
ation or not.All these models indu
e 
ommuni
ation 
omplexity measures. In parti
ular, Rpriv
ε (f) isthe ε-error private-
oin randomized 
ommuni
ation 
omplexity of f ; Qε(f) is the ε-errorquantum 
ommuni
ation 
omplexity of f without prior shared entanglement, and Q∗

ε(f) isthe one where prior shared entanglement is allowed.For these 
omplexities many lower bound methods have been developed. Some of themare based on notions of approximate rank, see e.g. Lee and Shraibman [4℄. In this paperwe use the Frobenius rank, whi
h lower bounds several known approximate ranks. Theadvantage of this notion of approximate rank is a 
hara
terization via an expression inthe singular values of the 
orresponding matrix that 
an be 
omputed e�
iently. We 
all
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2 Henning Wunderli
h and Stefan Arnoldthis expression the singular value method (svm). It has not appeared in the publishedliterature before1 as a lower bound method for bounded-error randomized or quantum
ommuni
ation 
omplexity.The purpose of this 
ontribution is to explore the 
apabilities of svm as a new methodin 
ommuni
ation 
omplexity, that is, to derive high lower bounds with it, to study thestrength of this method, and to 
ompare it with existing other methods. Our main �ndingsare the following:We obtain 
onstant fa
tor improvements of existing lower bounds for randomized andquantum 
ommuni
ation 
omplexity. First of all, we improve the spe
tral norm method ofKrause for bounded-error private-
oin randomized 
ommuni
ation 
omplexity by a fa
torof eight. Se
ondly, several lower bound methods for bounded-error quantum 
ommuni
ation
omplexity are based on spe
tral norms. We improve su
h bounds by a fa
tor of two. Inparti
ular, we show with ease an n/2−O(1) lower bound for the bounded-error quantum
ommuni
ation 
omplexity of the inner produ
t fun
tion mod two.Using singular values to lower bound quantum 
ommuni
ation 
omplexity is not anew idea. For example, almost a de
ade ago Klau
k [6℄ introdu
ed several su
h methods,one uses the entropy of the squared normalized singular values, another one uses Ky Fannorms. The novelty in our approa
h is how singular values are used in the 
omputation ofa lower bound. As our main result we present gaps between svm and previous approa
hes,i.e. we exhibit an expli
it fun
tion F su
h that svm yields a linear lower bound on thequantum 
ommuni
ation 
omplexity of F while the spe
tral norm method and Klau
k'sKy Fan method only yield 
onstant lower bounds. Klau
k's entropy method yields a boundof Θ(n/ log n). This fun
tion F is not an ex
eption to the rule, but a representative of alarge 
lass of fun
tions based on 
ommuni
ation games on quasi-random graph familiesthat lead to similar lower bounds.We also study the strength of svm with stru
tural means. (For de�nitions of 
ommu-ni
ation 
omplexity 
lasses see, e.g., Babai et al. [7℄.) If problems with a low, i.e. polylog,singular value bound are 
olle
ted in a 
ommuni
ation 
omplexity 
lass Frcc � let us 
allit Frobenius 
lass �, then we show that this 
lass is as hard as the the 
ommuni
ation
omplexity version PHcc of the polynomial hierar
hy. This shows that on the one hand,svm does not 
hara
terize randomized or quantum 
ommuni
ation 
omplexity. Instead, itgives high lower bounds only for problems far away from 
ommuni
ation 
omplexity 
lasseslike BQPcc or NPcc. On the other hand, svm might turn out to be a useful tool in sep-arating 
omplexity 
lasses not amenable to 
urrent methods, for example separating thepolynomial hierar
hy PHcc from polynomial spa
e PSPACEcc.Note that in a few pla
es of this 
ontribution some of the details had to be omitteddue to limitations in spa
e. In these 
ases, appropriate referen
es are given.2 PreliminariesWemainly work over the Boolean alphabet B := {0, 1} and the sign alphabet S := {−1,+1}.A

ordingly, we 
all fun
tions with range B Boolean, and fun
tions with range S sign1 We re
ently noti
ed that Lokam de�ned Frobenius rank and rigidity in a survey paper [5℄ under thenames �ℓ2-rank� and �ℓ2-rigidity�, respe
tively, and gave a 
hara
terization of ℓ2-rigidity via singularvalues. Lemma 3.5 of his 
ontribution is a reformulation of the Theorem of E
kart and Young. Lokam
ompared ℓ2-rigidity with geometri
 rigidity, but did not give any appli
ations of ℓ2-rigidity. In parti
ular,he did not develop from this a lower bound method in 
ommuni
ation 
omplexity as is done in the paperat hand.
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tions. We adopt the same terminology for matri
es. By δα,β we denote the Krone
kerDelta, whi
h is de�ned as δα,β := 1 if α = β, and δα,β := 0 otherwise. By | · | we denote theHamming weight of Boolean ve
tors. More generally, for arbitrary matri
es A we de�ne theHamming weight wt(A) as the number of nonzero entries in A. As usual, [n] := {1, . . . , n}.O

asionally, in order to avoid ugly 
ase distin
tions we use Iverson's bra
ket [P ] de�nedon predi
ates P , whi
h evaluates to 1, if P is true, and to 0 otherwise.2.1 Matrix theoryThe aim of this subse
tion is to 
larify our notation 
on
erning matri
es and to re
all somede�nitions and results of major importan
e for our work. For a thorough introdu
tion tomatrix theory we refer the reader to [8�11℄.For 
omplex matri
es A ∈ C
m×n, A∗ denotes the 
onjugate transpose of A; entrywise
omplex 
onjugation is indi
ated by a bar, as in Ā. For n-square matri
es A we denote by

λ1(A), . . . , λn(A) the eigenvalues of A, in
luding repeated ones. In 
ase A is a Hermitianmatrix, its eigenvalues are real numbers, and we order them su
h that λ1(A) ≥ · · · ≥ λn(A).By tr(A) we denote the tra
e of A.In parti
ular, A∗A is Hermitian and positive semide�nite for all A ∈ Cm×n. This jus-ti�es the de�nition of the singular values of an m × n matrix A as σi(A) :=
√

λi(A∗A),
i ∈ [n]. Thus, we have σ1(A) ≥ · · · ≥ σn(A) ≥ 0 by de�nition. We denote by σ(A) :=
(σ1(A), . . . , σn(A)) the row ve
tor 
ontaining the singular values of A in de
reasing order.Every 
omplex m × n matrix A has a singular value de
omposition A = UΣV , where
U ∈ C

m×m and V ∈ C
n×n are unitary matri
es, and Σ ∈ R

m×n is diagonal with entries
σ1(A), . . . , σmin{m,n}(A).Let A ∈ C

m×n be a matrix. We denote by ‖A‖ℓp
:=
(∑

i,j|Ai,j |p
)
1/p, p ≥ 1, the ℓp ve
tornorm of A. In parti
ular, the Frobenius or Hilbert-S
hmidt norm is de�ned as ‖A‖F :=

‖A‖ℓ2 . It has the additional property of being a matrix norm, and it 
an also be regarded asthe norm derived from the Frobenius or Hilbert-S
hmidt inner produ
t for 
omplex m×nmatri
es A and B, whi
h by de�nition reads 〈A,B〉 := tr(A∗B) =
∑m

i=1

∑n
j=1 Āi,jBi,j. Animportant 
lass of matrix norms on C

m×n are the S
hatten p-norms. They are de�ned asthe ℓp norms of the singular values: ‖A‖p := ‖σ(A)‖ℓp
=
(∑n

i=1 σp
i (A)

)
1/p, p ≥ 1. Twoexamples of S
hatten norms are the tra
e norm ‖A‖1 = σ1(A)+· · ·+σn(A) and the spe
tralnorm ‖A‖∞ = σ1(A). It is straightforward to show that ‖A‖2 = ‖A‖F and ‖A‖∞ = ‖A‖,where ‖A‖ denotes the operator norm ‖A‖ := supx∈Cn ,‖x‖ℓ2

=1‖Ax‖ℓ2 . We will use theTheorem of E
kart and Young [12℄ to 
hara
terize a variant of rigidity that we de�ne inthe next se
tion. A

ording to Horn and Johnson [9℄, an analogon [13℄ of the theorem wasdis
overed by E. S
hmidt 30 years earlier in the 
ontext of integral equations.Fa
t 2.1 (E
kart and Young [12℄). For every real m × n matrix A we have
min

B∈Rm×n

rank(B)≤r

‖A−B‖2
F =

n∑

i=r+1

σ2
i (A) .This fa
t will allow us to express lower bounds on 
ommuni
ation 
omplexity in terms ofsingular values.2.2 Fourier transformFor an overview of Fourier analysis on B

n and its appli
ations in 
omputer s
ien
e werefer the reader to [14℄. Here, we give the de�nition of Fourier 
oe�
ients, whi
h will be
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ient in this 
ontribution. On the 2n-dimensional ve
tor spa
e of fun
tions f : B
n → C,an inner produ
t is given by 〈f, g〉 := 1

2n

∑
x∈Bn f(x)g(x). For ea
h α ∈ B

n, the 
hara
ter
χα : B

n → S is the fun
tion χα(x) := (−1)α1x1+...+αnxn . It is straightforward to show that
〈χα, χβ〉 = δα,β, that is, the 2n 
hara
ters make up an orthonormal basis � the so-
alledFourier basis � for the spa
e of all 
omplex-valued fun
tions on B

n. The expansion of f inthis basis reads f(x) =
∑

α∈Bn 〈χα, f〉 χα(x) =
∑

α∈Bn f̂(α)χα(x), where the 
oe�
ients
f̂(α) := 〈χα, f〉 are known as the Fourier 
oe�
ients of f .3 Approximate ranks and rigidities as lower boundsThe 
on
ept of (matrix) rigidity was introdu
ed by Valiant [15℄ as a tool to derive lowerbounds in 
ir
uit 
omplexity. A matrix has high rigidity, if small perturbations do not lowerthe rank mu
h. Thereby, �small perturbations� means that only a small number of thematrix entries may be modi�ed. Proving a strong enough lower bound on the rigidity of amatrix implies a non-trivial lower bound, i.e. a superlinear size or a superlogarithmi
 depth,on the 
omplexity of any linear 
ir
uit 
omputing the set of linear forms asso
iated withit. Although it has been shown that most matri
es have high rigidity, despite 
onsiderablee�orts by many resear
hers no expli
it 
onstru
tion of a rigid family of matri
es over �nite�elds is known. For in�nite �elds Lokam [16℄ was able to derive quadrati
 lower boundsfor the rigidity of expli
it matrix families.The formal de�nition of matrix rigidity is given below for the sake of 
ompleteness.De�nition 3.1 (Rigidity). Let M be a matrix over a �eld F. The (matrix) rigidity RF

Mof M is de�ned as RF
M (r) := min

{
wt(M̃−M)

∣∣ F-rank(M̃ ) ≤ r, M̃ a matrix over F
}. Inother words, the rigidity of M is the minimum number of entries that must be 
hanged inorder to redu
e the rank to r.The �rst 
onne
tion between matrix rigidity and 
ommuni
ation 
omplexity was estab-lished by Razborov [17℄. He showed that high lower bounds for the rigidity over a �nite�eld of an expli
it matrix family would yield a language outside the 
ommuni
ation 
om-plexity theoreti
 analogon PHcc of the polynomial hierar
hy. It was shown in [18,19℄ thatthis result is a 
orollary of a slight generalization of Toda's First Theorem in 
ommuni-
ation 
omplexity, PHcc ⊆ BP · MODp · Pcc, be
ause rigidity over the �nite �eld Fp is alower bound for the BP · MODp · Pcc 
ommuni
ation 
omplexity.Lokam [20℄ de�ned weak variants of matrix rigidity over the �eld of real numbers Rand was able to 
omplement and strengthen the result of Razborov.To ea
h notion of rigidity there is an equivalent notion of approximate rank, and vi
eversa. Several notions of approximate rank have been de�ned to lower bound 
ommuni
a-tion 
omplexities. The most important ones areDe�nition 3.2 (Approximate rank). Let A be a real m× n matrix, and let α ≥ 1. Wede�ne

rankα(A) := min{rank(B) | B ∈ R
m×n, 1 ≤ Ai,jBi,j ≤ α} ,

rank∞(A) := min{rank(B) | B ∈ R
m×n, 1 ≤ Ai,jBi,j} .The former is 
alled α-approximate rank of A, the latter sign rank of A.Obviously, rankα is a monotoni
ally de
reasing fun
tion with respe
t to α. Paturi andSimon [21℄ gave a 
hara
terization of unbounded-error randomized 
ommuni
ation 
om-plexity U(f) := infε<1/2 Rpriv

ε (f) via the sign rank of the 
ommuni
ation matrix Mf :=
(f(x, y))x,y of f .
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t 3.3 (Paturi and Simon [21℄).For every sign fun
tion f , U(f) = log2 rank∞(Mf ) + O(1).Let us de�ne the spe
tral norm method as follows:De�nition 3.4 (Spe
tral norm method). We de�ne spec(A) := ‖A‖F/‖A‖ for every
m × n matrix A. For fun
tions f we introdu
e the abbreviation spec(f) := spec (Mf ).Krause [22℄ de�ned a slight variant of rankα and proved a lower bound for the bounded-error private-
oin randomized 
ommuni
ation 
omplexity of a sign fun
tion. In parti
ular,he showed that the (1/2 − δ)-error private-
oin randomized 
ommuni
ation 
omplexity ofa sign fun
tion f is at least (1/4)(log2 spec (f) − (1/2) log2(1/δ) − 2).An adaptation to the α-approximate rank, rankα(Mf ), yieldsFa
t 3.5 (Krause [4,22℄). For every sign fun
tion f and every ε ∈ [0, 1/2),

Rpriv
ε (f) ≥ log2 rankαε(Mf ), αε := 1/(1 − 2ε) .In a breakthrough work Forster [23℄ showed that the spe
tral norm method is even alower bound for unbounded-error randomized 
ommuni
ation 
omplexity.Fa
t 3.6 (Forster [23℄). For every m × n sign matrix A we have

rank∞(A) ≥ spec(A) =

√
mn

‖A‖ . (1)In parti
ular, by (3.3) for every sign fun
tion f we have U(f) ≥ log2 spec (f).For A ∈ Rm×n and ε ≥ 0, Buhrman and de Wolf [24℄ de�ned a notion of approximaterank by r̃ankε(A) := min { rank(B) | B ∈ R
m×n, ‖A − B‖ℓ∞ ≤ ε }. They showed thatfor every Boolean fun
tion f , their approximate rank is a lower bound for the bounded-error quantum 
ommuni
ation 
omplexity, Qε(f) ≥ 1

2 log2 r̃ankε(Mf ). An adaptation tothe α-approximate rank, rankα(Mf ), of sign fun
tions f yieldsFa
t 3.7 (Buhrman and de Wolf [4,24℄). For every sign fun
tion f and ε ∈ [0, 1/2),
Qε(f) ≥ 1

2
log2 rankαε(Mf ), αε := 1/(1 − 2ε) .4 The singular value methodIn this se
tion, we introdu
e our singular value method. For sign matri
es this method lowerbounds bounded-error quantum 
ommuni
ation 
omplexity without prior entanglement.De�nition 4.1 (Frobenius rigidity and rank). Let A be a real m×n matrix. We de�nethe Frobenius rigidity of A by

rigidityF
A(r) := min

B∈Rm×n

rank(B)≤r

‖A−B‖2
F

‖A‖2
F

.The Frobenius rank is analogously de�ned by
rankF

ε (A) := min { rank(B) | B ∈ R
m×n, ‖A − B‖2

F ≤ ε‖A‖2
F } .



6 Henning Wunderli
h and Stefan ArnoldThus, unlike the rigidity RF
M and the α-approximate and sign ranks, the Frobenius rigidityand rank employ ‖A−B‖F to de�ne a notion of 
loseness of the matri
es A and B. From thede�nition of approximate rank and rigidity it follows that the two 
on
epts are essentiallyequivalent:
rankF

ε (A) ≤ r ⇐⇒ rigidityF
A(r) ≤ ε . (2)The Theorem of E
kart and Young immediately yields the following 
hara
terization ofFrobenius rigidity:

rigidityF
A(r) =

1

‖A‖2
F

n∑

i=r+1

σ2
i (A) . (3)Fortunately, there are simple 
onne
tions between Frobenius rank and di�erent notionsof approximate ranks.Proposition 4.2. For every sign matrix A and every ε ≥ 0 we have

r̃ankε(A) ≥ rankF
ε2(A) . (4)Proof. Let A be an m × n sign matrix, and let B be an m × n real matrix su
h that

r̃ankε(A) = rank(B) and ‖A−B‖ℓ∞ ≤ ε. Note that ‖A−B‖2
F ≤ ε2 · mn = ε2 · ‖A‖2

F. Thisshows rankF
ε2(A) ≤ rank(B). ⊓⊔Proposition 4.3. For every sign matrix A and every α ≥ 1 we have

rankα(A) ≥ rankF
α2−1(A) . (5)Proof. Let A be an m × n sign matrix, and let B be an m × n real matrix su
h that

rankα(A) = rank(B) and 1 ≤ Ai,jBi,j ≤ α. We have ‖A−B‖2
F =

∑
i,j(Ai,j − Bi,j)

2 =∑
i,j A2

i,j +
∑

i,j B2
i,j − 2

∑
i,j Ai,jBi,j ≤ mn + α2mn − 2mn = (α2 − 1) ‖A‖2

F. This shows
rankF

α2−1(A) ≤ rank(B). ⊓⊔De�nition 4.4 (Singular value method). Let A be a real m×n matrix, and let ε ∈ [0, 1].We de�ne the singular value method (svm) by
svmε(A) :=max

{
r ≥ 1

∣∣∣ rigidityF
A(r − 1) > ε

}

=min
{

r ≥ 1
∣∣∣ rigidityF

A(r) ≤ ε
}

=min

{
r ≥ 1

∣∣∣∣∣

r∑

i=1

σ2
i (A) ≥ (1−ε) · ‖A‖2

F

}
.For a fun
tion f we de�ne svmε(f) := svmε(Mf ).Note that the maximum in the de�nition of the singular value method always exists, sin
e

σ2
1(A) + · · · + σ2

n(A) = ‖A‖2
F. If A is a sign matrix, we have ‖A‖2

F = mn, whereas ‖A‖2
F isthe number of ones in A if A is Boolean.Observation 4.5. Due to the 
onne
tion (2) between Frobenius rigidity and Frobeniusrank, the singular value method 
oin
ides with Frobenius rank, i.e. we have svmε(A) =

rankF
ε (A) for all real matri
es A.
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omplexity 7The singular value method is in some respe
t similar to a lower bound of Lokam [20,Lemma 3.4℄ for the minimum size of a depth d linear 
ir
uit 
omputing a linear transfor-mation. While many methods for randomized or quantum 
ommuni
ation 
omplexity havebeen developed that involve singular values, to the authors' knowledge our singular valuemethod has not appeared in the published literature before.Theorem 4.6 (Quantum lower bound). For every sign fun
tion f and every ε ∈
[0, 1/2 − 1/

√
8] we have

Qε(f) ≥ 1

2
log2 svmα2

ε−1(f) , αε :=
1

1 − 2ε
. (6)Proof. Combining Fa
t 3.7, Proposition 4.3 and Observation 4.5 we 
on
lude

Qε(f) ≥ 1
2 log2 rankαε

(
Mf
)
≥ 1

2 log2 rankF
α2

ε−1

(
Mf

)
= 1

2 log2 svmα2
ε−1(f) .

⊓⊔Theorem 4.7. For every m× n sign matrix A and all ε ∈ [0, 1], svm is lower bounded by
svmε(A) ≥ (1−ε) ·

(
spec(A)

)2
. (7)Furthermore, the approximate rank satis�es the inequality

rankα(A) ≥ (2 − α2) ·
(
spec(A)

)2 (8)for all α ∈ [1,
√

2].Proof. By the de�nition of the singular value method and the spe
tral method, in 
onjun
-tion with the monotoni
ity of the singular values, we obtain (7):
svmε(A)

(spec(A))2
= svmε(A)

σ2
1(A)

‖A‖2
F

≥
svmε(A)∑

i=1

σ2
i (A)

‖A‖2
F

≥ 1 − ε .We have seen in the proof of Theorem 4.6 that svmα2−1 is a lower bound for rankα. Thus,(8) is a 
onsequen
e of (7). ⊓⊔We note that (8) in 
onjun
tion with Fa
t 3.5 implies Rpriv
ε (f) ≥ 2 log2 spec(f)+log2(2−

α2
ε), improving the original bound of Krause by a fa
tor of 8. Furthermore, inequality (8)provides an additional exponent of two, 
ompared to the statement rankα(A) ≥ spec(A)that 
an be obtained from lower bounding rankα by rank∞ and then applying (1).5 Lower bound for the inner produ
t fun
tion mod twoThe inner produ
t fun
tion mod two by de�nition reads IPn : B

n× B
n → S, IPn(x, y) :=

1 − 2 [
∑n

i=1 xiyi mod 2 = 1]. We will re
all the lower bounds on Qε(IPn) obtainable bypreviously known methods, and subsequently show that the singular value method alsoleads to the best of these bounds.The lower bound by Buhrman and de Wolf (Fa
t 3.7), in 
onjun
tion with the mono-toni
ity of rankα and the result of Forster (Fa
t 3.6), leads to
Qε(IPn) ≥ 1

2
log2 rank∞

(
M IPn

)
≥ 1

2
log2 spec (IPn) .It is easily veri�ed that all singular values of M IPn are equal. Thus, spec (IPn) = 2n/2, sothat the old results only lead to a bound of Qε(IPn) ≥ n/4.In 
ontrast, using svm, we obtain the following
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h and Stefan ArnoldTheorem 5.1. For arbitrary ε ∈
[
0, 1/2 − 1/

√
8
[, the quantum 
ommuni
ation 
omplexityof IPn without prior entanglement is lower bounded by Qε(IPn) ≥ n

2 + 1
2 log2(2 − α2

ε).Proof. The proof is based on Theorems 4.6 and 4.7:
Qε(IPn) ≥ 1

2
log2 svmα2

ε−1(IPn) ≥ 1

2
log2

((
2 − α2

ε

) (
spec(IPn)

)2)

= log2 spec(IPn) +
1

2
log2

(
2 − α2

ε

)
.As stated above, the spe
tral norm method for IPn is spec(IPn) = 2n/2. ⊓⊔Now 
onsider the fa
torization norm lower bound of Linial and Shraibman [25℄. Thismethod is in fa
t a lower bound on Q∗

ε. Sin
e Q∗
ε(f) ≤ ⌈n/2⌉ + 1 for all fun
tions f : B

n×
B

n → S by superdense 
oding, the fa
torization norm method 
annot lead to a lower boundgreater than ⌈n/2⌉ + 1. The same holds for the dis
repan
y lower bound [26℄, sin
e it issubsumed by the fa
torization norm method [25℄.6 Comparison with other singular value methodsIn order to prove large gaps between svm and other methods based on singular values, we
onsider the following 
ommuni
ation game on a graph G := (V,E). Ali
e has x ∈ V , Bobhas y ∈ V and they want to know if {x, y} is an edge in G. Clearly, if EDGEG(x, y) :=
1 − 2 [{x, y} ∈ E] denotes the sign version of this game, then MEDGEG = J − 2AG, where
AG is the adja
en
y matrix of G and J is the all-one matrix.We get large gaps for graphs with a single large eigenvalue and and a high spe
tral gap.For this we 
onsider quasi-random graphs [27℄ and 
hoose as a representative the followingone: For a prime power q and a natural number k ≤ q, the Delsarte-Goethals-Turyn graph,
Gq,k, as de�ned in [27, p. 23�24, 5.℄, is a regular graph of degree D(Gq,k) = k(q − 1) on
|V (Gq,k)| = q2 nodes, and the eigenvalues of its adja
en
y matrix are λ1

(
AGq,k

)
= D (Gq,k)and λi

(
AGq,k

)
∈ {−k, q − k} for i ≥ 2.For n ≥ 2 we de�ne q = q(n) := 2n, k = k(n) := q/4, and �nally F2n := EDGEGq(n),k(n)

.Then σ1

(
MF2n

)
= λ1

(
MF2n

)
= |V (Gq,k)| − 2λ1

(
AGq,k

)
= (q2 + q)/2 and λi

(
MF2n

)
∈

{q/2,−3q/2}, i ≥ 2. Thus, q/2 ≤ σi

(
MF2n

)
≤ 3q/2 for i ≥ 2. In addition, ‖MF2n‖2

F =
|V (Gq,k)|2 = q4.First of all, we 
al
ulate the spe
tral norm method for F2n: We have spec (F2n) =
2q2/(q2 + q) < 2.In 
ontrast, the singular value method yields a linear lower bound: Let r ≥ 1 be minimalsu
h that ∑r

i=1 σ2
i

(
MF2n

)
≥ (1 − ε) · ‖MF2n‖2

F . Then 1
4(q2 + q)2 + (r − 1)9

4q2 ≥ (1 − ε)q4,and thus r ≥ 4
9

(
1
2 − ε

)
q2. For e.g. ε = 1/3 we obtain log2 svm1/3 (F2n) = 2n −O(1).Theorem 6.1 (Arbitrary gap). There exists an expli
it fun
tion F2n : B

2n × B
2n → S,

n ≥ 2, su
h that the singular value method yields log2 svm1/3 (F2n) = 2n −O(1) while thespe
tral norm method only yields log2 spec (F2n) = O(1).Note that in order to obtain this statement, we 
ould have 
hosen any D-regular densequasi-random graph on N nodes with high spe
tral gap su
h that D is bounded away from
N/2.Klau
k [6, Thm. 6.10℄ de�ned two lower bound methods for bounded-error quantum
ommuni
ation 
omplexity via singular values. For a fun
tion f : B

n ×B
n → S, he de�ned



On a singular value method in quantum 
ommuni
ation 
omplexity 9normalized singular values σ̃i(f) := σi(Mf )/2n, i ∈ [2n]. Then σ̃2(f) :=
(
σ̃2

1(f), . . . , σ̃2
2n(f)

)is a probability distribution. Let H(p1, . . . , pm) denote the Shannon entropy of a proba-bility distribution p1, . . . , pm, and let κl(f) :=
∑

l
i=1σ̃i(f) denote the l-th Ky Fan norm.Klau
k proved the following result:Theorem 6.2 (Klau
k [6℄). For a sign fun
tion f : B

n × B
n → S we have

Qε(f) = Ω
(
H(σ̃2(f))/ log n

)
. (9)Let κl := κl(f). If κl ≥ Ω

(√
l
), then Qε(f) ≥ Ω

(
log(κl)

).If κl ≤ O
(√

l
), then Qε(f) ≥ Ω

(
log(κl)/(log(

√
l) − log(κl) + 1)

).We note that Klau
k's entropy bound a
hieves H(σ̃2(F2n)) = Θ(n/ log n), be
ause of
H
(
σ̃2 (F2n)

)
≤ −1

4

(
1 +

1

q

)2

log2

(
1

4

(
1 +

1

q

)2
)

+
(
q2 − 1

)
·
(

9

4q2

)
log2

(
4q2
)

= O (log q) = O (n) ,while his Ky Fan bound κl (F2n) ≤ 1
2 + 3

2
l
q only yields a 
onstant lower bound.7 On the strength of svmIn this se
tion, we show for whi
h fun
tions one 
an expe
t the singular value methodto provide high lower bounds. In parti
ular, we show that all problems in PHcc 
an besolved by proto
ols in Pcc if we admit ora
le queries to a fun
tion with low svm value.To keep notation 
on
ise, we introdu
e the 
ommuni
ation 
omplexity 
lass of languagesthat exhibit an svm value at most polylogarithmi
 in n. Here, a language L := (Ln)n∈N isde�ned as a family of fun
tions Ln : Bn× Bn → S. We de�ne the Frobenius 
lass Frcc as

Frcc :=
{
L
∣∣ L = (Ln)n∈N, log2 svm 1

2
−Ω(1)(Ln) = polylog(n)

}
.Theorem 7.1 (Strength of svm). The polynomial hierar
hy is 
ontained in the Turing
losure of the Frobenius 
lass, PHcc ⊆ Pcc(Frcc), i.e. the Frobenius 
lass is as hard as thepolynomial hierar
hy.This result shows that on the one hand Frobenius rank does not 
hara
terize bounded-error randomized or quantum 
ommuni
ation 
omplexity. It only gives high lower boundsfor problems far away from 
ommuni
ation 
omplexity 
lasses like BQPcc or NPcc. Onthe other hand, the singular value method might turn out to be a useful tool in separating
omplexity 
lasses not amenable to 
urrent methods. Re
all that Lokam's results [20℄, inparti
ular high lower bounds for weak notions of rigidity, were derived using singular values.Thus, there might be a 
onne
tion between svm and these rigidity variants.Proof. We prove Theorem 7.1 using three Claims. First of all, we give an example of afun
tion in Frcc � the Hamming fun
tion HD de�ned below. Afterwards, it will su�
e toshow PHcc ⊆ Pcc(HD) in order to prove the theorem.The majority fun
tion majn : B

n → S is de�ned by majn(x) := 1 − 2 [
∑n

i=1 xi ≥ n/2],that is, majn(x) = −1 if and only if at least half of the xi are 1. The Fourier 
oe�
ients
aα := 〈χα,majn〉 of the majority fun
tion for odd n are

aα =
(−1)(|α|−1)/2

2n−1

(|α|−1)!(
|α|−1

2

)
!

(n−|α|)!(
n−|α|

2

)
!
(

n−1
2

)
!

(10)
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h and Stefan Arnoldif |α| is odd, and aα = 0 if |α| is even [28℄. We de�ne the Hamming fun
tion by meansof the majority fun
tion, HDn : B
n × B

n → S, HDn(x, y) := majn(x1 ⊕ y1, . . . , xn ⊕ yn).Thus, the Hamming fun
tion HD := (HDn)n∈N is the fun
tion that Ali
e and Bob have to
ompute if they are to de
ide whether their inputs di�er in more than half of the entries.Claim 1: HD ∈ Frcc. The singular values of the 
orresponding 
ommuni
ation matrix
MHDn are the absolute values of the Fourier 
oe�
ients aα times 2n [25, Se
tion 6.2℄.Therefore by (10) we obtain for odd n the singular values

2
(k−1)!(

k−1
2

)
!

(n−k)!(
n−k

2

)
!
(

n−1
2

)
!

with multipli
ity (n

k

) for 1 ≤ k ≤ n, k odd ,and the singular value 0 with multipli
ity 2n−1. We will show that this leads to a logarithmi
lower bound for log2 svmε(HDn). To this end, denote the singular values of MHDn by
σα := 2n|aα|, and 
onsider the sum of the squared singular values 
orresponding to k = 1,

∑

|α|=1

σ2
α = n

[
2

(
n−1
n−1

2

)]2

∼ 4n
4n−1

π n−1
2

∼ 2

π
4n ,where we have used the asymptoti
 behavior of the 
entral binomial 
oe�
ient. Sin
e

(2/π) 4n > (1− ε) ‖MHDn‖2
F for ε > 1− (2/π), we �nd that for all ε > 1− (2/π) andsu�
iently large values of n, svmε(HDn) ≤ n. Consequently, HD ∈ Frcc.The 
ommuni
ation version of the majority fun
tion MAJ := (MAJn)n∈N is de�ned as

MAJn : B
n× B

n → S , MAJn(x, y) := maj(x1y1, . . . , xnyn) = 1 − 2 [
∑

ixiyi ≥ n/2] .Claim 2: MAJ ∈ Pcc(HD). We spe
ify a deterministi
 proto
ol for MAJn(x, y) thatuses the ora
le HD. First, Ali
e sends |x|, then Bob sends |y|, whi
h will require at most
2 ⌈log2 n⌉ bits of 
ommuni
ation. If they observe that |x| < n/2 or |y| < n/2, the outputof the proto
ol is +1. Otherwise they both 
ompute t := |x| + |y| − n + 1. Now note that∑n

i=1 xiyi − n
2 = 1

2

(
|x| + |y| − n − |x⊕ y|

). This implies the equivalen
e MAJn(x, y) =
−1 ⇐⇒ |x⊕ y| < t. Therefore, Ali
e and Bob 
an 
omplete the 
omputation byexe
uting the ora
le query HD2(n−t)(x0n−2t, y1n−2t) if t ≤ n/2 and HD2t(x02t−n, y02t−n)if t > n/2, respe
tively, upon whi
h they output −1 if and only if the query result was +1.Claim 3: MAJ is PPcc-
omplete. See [1, Example 4.45℄ for a proof that 
an easily be
onverted into a proof of the lemma. Thereby note that the problems in PPcc 
an be solvedby e�
ient guess proto
ols that a

ept an input if and only if the majority of the guessstrings lead to a

eptan
e [7℄.Finally, re
all Toda's Theorem, PHcc ⊆ Pcc(PPcc), in the 
ommuni
ation 
omplexitysetting [29℄. This 
ompletes our proof of Theorem 7.1:

PHcc ⊆ Pcc(PPcc) = Pcc(MAJ) ⊆ Pcc(HD) ⊆ Pcc(Frcc) .
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