
On a singular value method in quantumommuniation omplexityHenning Wunderlih and Stefan ArnoldUniversität Ulm, Fakultät für Ingenieurwissenshaften und Informatik,Institut für Theoretishe Informatik, Oberer Eselsberg, D-89069 Ulm,{henning.wunderlih, stefan.arnold}�uni-ulm.deAbstrat. We introdue a new lower bound method for bounded-error quantum ommuni-ation omplexity, the singular value method (svm), based on sums of squared singular valuesof the ommuniation matrix, and we ompare it with existing methods.The �rst �nding is a onstant fator improvement of lower bounds based on the spetralnorm. This is exempli�ed with an n/2 − O(1) lower bound for the inner produt funtionmod two.As our main result we exhibit a funtion based on quasi-random graphs suh that svm yieldsa linear lower bound while the spetral norm method only yields a onstant lower bound.In addition, we disuss the strength of svm and show that the lass of languages with a lowsvm value is as hard as the ommuniation omplexity version of the polynomial hierarhy.Key words: Quantum Communiation Complexity, Singular Value Method, Lower BoundMethod1 IntrodutionIn ommuniation omplexity theory [1℄ ommuniation models are studied where severalplayers want to ooperatively solve a problem. The resoure under onsideration is om-muniation, i.e. the number of ommuniated (quantum) bits. In general, the players haveto ommuniate beause the input is distributed among them. The arguably simplest om-muniation model is Yao's model [2℄ where two players Alie and Bob want to ompute thevalue f(x, y) of a funtion f : X ×Y → Z. Here, Alie has x ∈ X and Bob has y ∈ Y, andthey may send eah other messages aording to a �xed protool. Several variants of thisdeterministi model exist: In the publi-oin randomized model the players are allowed touse a publi soure of randomness; in the private-oin model eah player has his own soureof randomness unknown to the other player. The deterministi model an also be enrihedwith guess strings. Here, the players want to solve a deision problem. They may guess bitsand the aeptane of an input is determined by an aeptane mode. Yao [3℄ also intro-dued a quantum model where the players an send quantum bits instead of lassial bits.Two variants are distinguished depending on whether the players share entangled states(e.g. Einstein-Podolsky-Rosen pairs) prior to ommuniation or not.All these models indue ommuniation omplexity measures. In partiular, Rpriv
ε (f) isthe ε-error private-oin randomized ommuniation omplexity of f ; Qε(f) is the ε-errorquantum ommuniation omplexity of f without prior shared entanglement, and Q∗

ε(f) isthe one where prior shared entanglement is allowed.For these omplexities many lower bound methods have been developed. Some of themare based on notions of approximate rank, see e.g. Lee and Shraibman [4℄. In this paperwe use the Frobenius rank, whih lower bounds several known approximate ranks. Theadvantage of this notion of approximate rank is a haraterization via an expression inthe singular values of the orresponding matrix that an be omputed e�iently. We all
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2 Henning Wunderlih and Stefan Arnoldthis expression the singular value method (svm). It has not appeared in the publishedliterature before1 as a lower bound method for bounded-error randomized or quantumommuniation omplexity.The purpose of this ontribution is to explore the apabilities of svm as a new methodin ommuniation omplexity, that is, to derive high lower bounds with it, to study thestrength of this method, and to ompare it with existing other methods. Our main �ndingsare the following:We obtain onstant fator improvements of existing lower bounds for randomized andquantum ommuniation omplexity. First of all, we improve the spetral norm method ofKrause for bounded-error private-oin randomized ommuniation omplexity by a fatorof eight. Seondly, several lower bound methods for bounded-error quantum ommuniationomplexity are based on spetral norms. We improve suh bounds by a fator of two. Inpartiular, we show with ease an n/2−O(1) lower bound for the bounded-error quantumommuniation omplexity of the inner produt funtion mod two.Using singular values to lower bound quantum ommuniation omplexity is not anew idea. For example, almost a deade ago Klauk [6℄ introdued several suh methods,one uses the entropy of the squared normalized singular values, another one uses Ky Fannorms. The novelty in our approah is how singular values are used in the omputation ofa lower bound. As our main result we present gaps between svm and previous approahes,i.e. we exhibit an expliit funtion F suh that svm yields a linear lower bound on thequantum ommuniation omplexity of F while the spetral norm method and Klauk'sKy Fan method only yield onstant lower bounds. Klauk's entropy method yields a boundof Θ(n/ log n). This funtion F is not an exeption to the rule, but a representative of alarge lass of funtions based on ommuniation games on quasi-random graph familiesthat lead to similar lower bounds.We also study the strength of svm with strutural means. (For de�nitions of ommu-niation omplexity lasses see, e.g., Babai et al. [7℄.) If problems with a low, i.e. polylog,singular value bound are olleted in a ommuniation omplexity lass Frcc � let us allit Frobenius lass �, then we show that this lass is as hard as the the ommuniationomplexity version PHcc of the polynomial hierarhy. This shows that on the one hand,svm does not haraterize randomized or quantum ommuniation omplexity. Instead, itgives high lower bounds only for problems far away from ommuniation omplexity lasseslike BQPcc or NPcc. On the other hand, svm might turn out to be a useful tool in sep-arating omplexity lasses not amenable to urrent methods, for example separating thepolynomial hierarhy PHcc from polynomial spae PSPACEcc.Note that in a few plaes of this ontribution some of the details had to be omitteddue to limitations in spae. In these ases, appropriate referenes are given.2 PreliminariesWemainly work over the Boolean alphabet B := {0, 1} and the sign alphabet S := {−1,+1}.Aordingly, we all funtions with range B Boolean, and funtions with range S sign1 We reently notied that Lokam de�ned Frobenius rank and rigidity in a survey paper [5℄ under thenames �ℓ2-rank� and �ℓ2-rigidity�, respetively, and gave a haraterization of ℓ2-rigidity via singularvalues. Lemma 3.5 of his ontribution is a reformulation of the Theorem of Ekart and Young. Lokamompared ℓ2-rigidity with geometri rigidity, but did not give any appliations of ℓ2-rigidity. In partiular,he did not develop from this a lower bound method in ommuniation omplexity as is done in the paperat hand.



On a singular value method in quantum ommuniation omplexity 3funtions. We adopt the same terminology for matries. By δα,β we denote the KronekerDelta, whih is de�ned as δα,β := 1 if α = β, and δα,β := 0 otherwise. By | · | we denote theHamming weight of Boolean vetors. More generally, for arbitrary matries A we de�ne theHamming weight wt(A) as the number of nonzero entries in A. As usual, [n] := {1, . . . , n}.Oasionally, in order to avoid ugly ase distintions we use Iverson's braket [P ] de�nedon prediates P , whih evaluates to 1, if P is true, and to 0 otherwise.2.1 Matrix theoryThe aim of this subsetion is to larify our notation onerning matries and to reall somede�nitions and results of major importane for our work. For a thorough introdution tomatrix theory we refer the reader to [8�11℄.For omplex matries A ∈ C
m×n, A∗ denotes the onjugate transpose of A; entrywiseomplex onjugation is indiated by a bar, as in Ā. For n-square matries A we denote by

λ1(A), . . . , λn(A) the eigenvalues of A, inluding repeated ones. In ase A is a Hermitianmatrix, its eigenvalues are real numbers, and we order them suh that λ1(A) ≥ · · · ≥ λn(A).By tr(A) we denote the trae of A.In partiular, A∗A is Hermitian and positive semide�nite for all A ∈ Cm×n. This jus-ti�es the de�nition of the singular values of an m × n matrix A as σi(A) :=
√

λi(A∗A),
i ∈ [n]. Thus, we have σ1(A) ≥ · · · ≥ σn(A) ≥ 0 by de�nition. We denote by σ(A) :=
(σ1(A), . . . , σn(A)) the row vetor ontaining the singular values of A in dereasing order.Every omplex m × n matrix A has a singular value deomposition A = UΣV , where
U ∈ C

m×m and V ∈ C
n×n are unitary matries, and Σ ∈ R

m×n is diagonal with entries
σ1(A), . . . , σmin{m,n}(A).Let A ∈ C

m×n be a matrix. We denote by ‖A‖ℓp
:=
(∑

i,j|Ai,j |p
)
1/p, p ≥ 1, the ℓp vetornorm of A. In partiular, the Frobenius or Hilbert-Shmidt norm is de�ned as ‖A‖F :=

‖A‖ℓ2 . It has the additional property of being a matrix norm, and it an also be regarded asthe norm derived from the Frobenius or Hilbert-Shmidt inner produt for omplex m×nmatries A and B, whih by de�nition reads 〈A,B〉 := tr(A∗B) =
∑m

i=1

∑n
j=1 Āi,jBi,j. Animportant lass of matrix norms on C

m×n are the Shatten p-norms. They are de�ned asthe ℓp norms of the singular values: ‖A‖p := ‖σ(A)‖ℓp
=
(∑n

i=1 σp
i (A)

)
1/p, p ≥ 1. Twoexamples of Shatten norms are the trae norm ‖A‖1 = σ1(A)+· · ·+σn(A) and the spetralnorm ‖A‖∞ = σ1(A). It is straightforward to show that ‖A‖2 = ‖A‖F and ‖A‖∞ = ‖A‖,where ‖A‖ denotes the operator norm ‖A‖ := supx∈Cn ,‖x‖ℓ2

=1‖Ax‖ℓ2 . We will use theTheorem of Ekart and Young [12℄ to haraterize a variant of rigidity that we de�ne inthe next setion. Aording to Horn and Johnson [9℄, an analogon [13℄ of the theorem wasdisovered by E. Shmidt 30 years earlier in the ontext of integral equations.Fat 2.1 (Ekart and Young [12℄). For every real m × n matrix A we have
min

B∈Rm×n

rank(B)≤r

‖A−B‖2
F =

n∑

i=r+1

σ2
i (A) .This fat will allow us to express lower bounds on ommuniation omplexity in terms ofsingular values.2.2 Fourier transformFor an overview of Fourier analysis on B

n and its appliations in omputer siene werefer the reader to [14℄. Here, we give the de�nition of Fourier oe�ients, whih will be



4 Henning Wunderlih and Stefan Arnoldsu�ient in this ontribution. On the 2n-dimensional vetor spae of funtions f : B
n → C,an inner produt is given by 〈f, g〉 := 1

2n

∑
x∈Bn f(x)g(x). For eah α ∈ B

n, the harater
χα : B

n → S is the funtion χα(x) := (−1)α1x1+...+αnxn . It is straightforward to show that
〈χα, χβ〉 = δα,β, that is, the 2n haraters make up an orthonormal basis � the so-alledFourier basis � for the spae of all omplex-valued funtions on B

n. The expansion of f inthis basis reads f(x) =
∑

α∈Bn 〈χα, f〉 χα(x) =
∑

α∈Bn f̂(α)χα(x), where the oe�ients
f̂(α) := 〈χα, f〉 are known as the Fourier oe�ients of f .3 Approximate ranks and rigidities as lower boundsThe onept of (matrix) rigidity was introdued by Valiant [15℄ as a tool to derive lowerbounds in iruit omplexity. A matrix has high rigidity, if small perturbations do not lowerthe rank muh. Thereby, �small perturbations� means that only a small number of thematrix entries may be modi�ed. Proving a strong enough lower bound on the rigidity of amatrix implies a non-trivial lower bound, i.e. a superlinear size or a superlogarithmi depth,on the omplexity of any linear iruit omputing the set of linear forms assoiated withit. Although it has been shown that most matries have high rigidity, despite onsiderablee�orts by many researhers no expliit onstrution of a rigid family of matries over �nite�elds is known. For in�nite �elds Lokam [16℄ was able to derive quadrati lower boundsfor the rigidity of expliit matrix families.The formal de�nition of matrix rigidity is given below for the sake of ompleteness.De�nition 3.1 (Rigidity). Let M be a matrix over a �eld F. The (matrix) rigidity RF

Mof M is de�ned as RF
M (r) := min

{
wt(M̃−M)

∣∣ F-rank(M̃ ) ≤ r, M̃ a matrix over F
}. Inother words, the rigidity of M is the minimum number of entries that must be hanged inorder to redue the rank to r.The �rst onnetion between matrix rigidity and ommuniation omplexity was estab-lished by Razborov [17℄. He showed that high lower bounds for the rigidity over a �nite�eld of an expliit matrix family would yield a language outside the ommuniation om-plexity theoreti analogon PHcc of the polynomial hierarhy. It was shown in [18,19℄ thatthis result is a orollary of a slight generalization of Toda's First Theorem in ommuni-ation omplexity, PHcc ⊆ BP · MODp · Pcc, beause rigidity over the �nite �eld Fp is alower bound for the BP · MODp · Pcc ommuniation omplexity.Lokam [20℄ de�ned weak variants of matrix rigidity over the �eld of real numbers Rand was able to omplement and strengthen the result of Razborov.To eah notion of rigidity there is an equivalent notion of approximate rank, and vieversa. Several notions of approximate rank have been de�ned to lower bound ommunia-tion omplexities. The most important ones areDe�nition 3.2 (Approximate rank). Let A be a real m× n matrix, and let α ≥ 1. Wede�ne

rankα(A) := min{rank(B) | B ∈ R
m×n, 1 ≤ Ai,jBi,j ≤ α} ,

rank∞(A) := min{rank(B) | B ∈ R
m×n, 1 ≤ Ai,jBi,j} .The former is alled α-approximate rank of A, the latter sign rank of A.Obviously, rankα is a monotonially dereasing funtion with respet to α. Paturi andSimon [21℄ gave a haraterization of unbounded-error randomized ommuniation om-plexity U(f) := infε<1/2 Rpriv

ε (f) via the sign rank of the ommuniation matrix Mf :=
(f(x, y))x,y of f .



On a singular value method in quantum ommuniation omplexity 5Fat 3.3 (Paturi and Simon [21℄).For every sign funtion f , U(f) = log2 rank∞(Mf ) + O(1).Let us de�ne the spetral norm method as follows:De�nition 3.4 (Spetral norm method). We de�ne spec(A) := ‖A‖F/‖A‖ for every
m × n matrix A. For funtions f we introdue the abbreviation spec(f) := spec (Mf ).Krause [22℄ de�ned a slight variant of rankα and proved a lower bound for the bounded-error private-oin randomized ommuniation omplexity of a sign funtion. In partiular,he showed that the (1/2 − δ)-error private-oin randomized ommuniation omplexity ofa sign funtion f is at least (1/4)(log2 spec (f) − (1/2) log2(1/δ) − 2).An adaptation to the α-approximate rank, rankα(Mf ), yieldsFat 3.5 (Krause [4,22℄). For every sign funtion f and every ε ∈ [0, 1/2),

Rpriv
ε (f) ≥ log2 rankαε(Mf ), αε := 1/(1 − 2ε) .In a breakthrough work Forster [23℄ showed that the spetral norm method is even alower bound for unbounded-error randomized ommuniation omplexity.Fat 3.6 (Forster [23℄). For every m × n sign matrix A we have

rank∞(A) ≥ spec(A) =

√
mn

‖A‖ . (1)In partiular, by (3.3) for every sign funtion f we have U(f) ≥ log2 spec (f).For A ∈ Rm×n and ε ≥ 0, Buhrman and de Wolf [24℄ de�ned a notion of approximaterank by r̃ankε(A) := min { rank(B) | B ∈ R
m×n, ‖A − B‖ℓ∞ ≤ ε }. They showed thatfor every Boolean funtion f , their approximate rank is a lower bound for the bounded-error quantum ommuniation omplexity, Qε(f) ≥ 1

2 log2 r̃ankε(Mf ). An adaptation tothe α-approximate rank, rankα(Mf ), of sign funtions f yieldsFat 3.7 (Buhrman and de Wolf [4,24℄). For every sign funtion f and ε ∈ [0, 1/2),
Qε(f) ≥ 1

2
log2 rankαε(Mf ), αε := 1/(1 − 2ε) .4 The singular value methodIn this setion, we introdue our singular value method. For sign matries this method lowerbounds bounded-error quantum ommuniation omplexity without prior entanglement.De�nition 4.1 (Frobenius rigidity and rank). Let A be a real m×n matrix. We de�nethe Frobenius rigidity of A by

rigidityF
A(r) := min

B∈Rm×n

rank(B)≤r

‖A−B‖2
F

‖A‖2
F

.The Frobenius rank is analogously de�ned by
rankF

ε (A) := min { rank(B) | B ∈ R
m×n, ‖A − B‖2

F ≤ ε‖A‖2
F } .



6 Henning Wunderlih and Stefan ArnoldThus, unlike the rigidity RF
M and the α-approximate and sign ranks, the Frobenius rigidityand rank employ ‖A−B‖F to de�ne a notion of loseness of the matries A and B. From thede�nition of approximate rank and rigidity it follows that the two onepts are essentiallyequivalent:
rankF

ε (A) ≤ r ⇐⇒ rigidityF
A(r) ≤ ε . (2)The Theorem of Ekart and Young immediately yields the following haraterization ofFrobenius rigidity:

rigidityF
A(r) =

1

‖A‖2
F

n∑

i=r+1

σ2
i (A) . (3)Fortunately, there are simple onnetions between Frobenius rank and di�erent notionsof approximate ranks.Proposition 4.2. For every sign matrix A and every ε ≥ 0 we have

r̃ankε(A) ≥ rankF
ε2(A) . (4)Proof. Let A be an m × n sign matrix, and let B be an m × n real matrix suh that

r̃ankε(A) = rank(B) and ‖A−B‖ℓ∞ ≤ ε. Note that ‖A−B‖2
F ≤ ε2 · mn = ε2 · ‖A‖2

F. Thisshows rankF
ε2(A) ≤ rank(B). ⊓⊔Proposition 4.3. For every sign matrix A and every α ≥ 1 we have

rankα(A) ≥ rankF
α2−1(A) . (5)Proof. Let A be an m × n sign matrix, and let B be an m × n real matrix suh that

rankα(A) = rank(B) and 1 ≤ Ai,jBi,j ≤ α. We have ‖A−B‖2
F =

∑
i,j(Ai,j − Bi,j)

2 =∑
i,j A2

i,j +
∑

i,j B2
i,j − 2

∑
i,j Ai,jBi,j ≤ mn + α2mn − 2mn = (α2 − 1) ‖A‖2

F. This shows
rankF

α2−1(A) ≤ rank(B). ⊓⊔De�nition 4.4 (Singular value method). Let A be a real m×n matrix, and let ε ∈ [0, 1].We de�ne the singular value method (svm) by
svmε(A) :=max

{
r ≥ 1

∣∣∣ rigidityF
A(r − 1) > ε

}

=min
{

r ≥ 1
∣∣∣ rigidityF

A(r) ≤ ε
}

=min

{
r ≥ 1

∣∣∣∣∣

r∑

i=1

σ2
i (A) ≥ (1−ε) · ‖A‖2

F

}
.For a funtion f we de�ne svmε(f) := svmε(Mf ).Note that the maximum in the de�nition of the singular value method always exists, sine

σ2
1(A) + · · · + σ2

n(A) = ‖A‖2
F. If A is a sign matrix, we have ‖A‖2

F = mn, whereas ‖A‖2
F isthe number of ones in A if A is Boolean.Observation 4.5. Due to the onnetion (2) between Frobenius rigidity and Frobeniusrank, the singular value method oinides with Frobenius rank, i.e. we have svmε(A) =

rankF
ε (A) for all real matries A.



On a singular value method in quantum ommuniation omplexity 7The singular value method is in some respet similar to a lower bound of Lokam [20,Lemma 3.4℄ for the minimum size of a depth d linear iruit omputing a linear transfor-mation. While many methods for randomized or quantum ommuniation omplexity havebeen developed that involve singular values, to the authors' knowledge our singular valuemethod has not appeared in the published literature before.Theorem 4.6 (Quantum lower bound). For every sign funtion f and every ε ∈
[0, 1/2 − 1/

√
8] we have

Qε(f) ≥ 1

2
log2 svmα2

ε−1(f) , αε :=
1

1 − 2ε
. (6)Proof. Combining Fat 3.7, Proposition 4.3 and Observation 4.5 we onlude

Qε(f) ≥ 1
2 log2 rankαε

(
Mf
)
≥ 1

2 log2 rankF
α2

ε−1

(
Mf

)
= 1

2 log2 svmα2
ε−1(f) .

⊓⊔Theorem 4.7. For every m× n sign matrix A and all ε ∈ [0, 1], svm is lower bounded by
svmε(A) ≥ (1−ε) ·

(
spec(A)

)2
. (7)Furthermore, the approximate rank satis�es the inequality

rankα(A) ≥ (2 − α2) ·
(
spec(A)

)2 (8)for all α ∈ [1,
√

2].Proof. By the de�nition of the singular value method and the spetral method, in onjun-tion with the monotoniity of the singular values, we obtain (7):
svmε(A)

(spec(A))2
= svmε(A)

σ2
1(A)

‖A‖2
F

≥
svmε(A)∑

i=1

σ2
i (A)

‖A‖2
F

≥ 1 − ε .We have seen in the proof of Theorem 4.6 that svmα2−1 is a lower bound for rankα. Thus,(8) is a onsequene of (7). ⊓⊔We note that (8) in onjuntion with Fat 3.5 implies Rpriv
ε (f) ≥ 2 log2 spec(f)+log2(2−

α2
ε), improving the original bound of Krause by a fator of 8. Furthermore, inequality (8)provides an additional exponent of two, ompared to the statement rankα(A) ≥ spec(A)that an be obtained from lower bounding rankα by rank∞ and then applying (1).5 Lower bound for the inner produt funtion mod twoThe inner produt funtion mod two by de�nition reads IPn : B

n× B
n → S, IPn(x, y) :=

1 − 2 [
∑n

i=1 xiyi mod 2 = 1]. We will reall the lower bounds on Qε(IPn) obtainable bypreviously known methods, and subsequently show that the singular value method alsoleads to the best of these bounds.The lower bound by Buhrman and de Wolf (Fat 3.7), in onjuntion with the mono-toniity of rankα and the result of Forster (Fat 3.6), leads to
Qε(IPn) ≥ 1

2
log2 rank∞

(
M IPn

)
≥ 1

2
log2 spec (IPn) .It is easily veri�ed that all singular values of M IPn are equal. Thus, spec (IPn) = 2n/2, sothat the old results only lead to a bound of Qε(IPn) ≥ n/4.In ontrast, using svm, we obtain the following



8 Henning Wunderlih and Stefan ArnoldTheorem 5.1. For arbitrary ε ∈
[
0, 1/2 − 1/

√
8
[, the quantum ommuniation omplexityof IPn without prior entanglement is lower bounded by Qε(IPn) ≥ n

2 + 1
2 log2(2 − α2

ε).Proof. The proof is based on Theorems 4.6 and 4.7:
Qε(IPn) ≥ 1

2
log2 svmα2

ε−1(IPn) ≥ 1

2
log2

((
2 − α2

ε

) (
spec(IPn)

)2)

= log2 spec(IPn) +
1

2
log2

(
2 − α2

ε

)
.As stated above, the spetral norm method for IPn is spec(IPn) = 2n/2. ⊓⊔Now onsider the fatorization norm lower bound of Linial and Shraibman [25℄. Thismethod is in fat a lower bound on Q∗

ε. Sine Q∗
ε(f) ≤ ⌈n/2⌉ + 1 for all funtions f : B

n×
B

n → S by superdense oding, the fatorization norm method annot lead to a lower boundgreater than ⌈n/2⌉ + 1. The same holds for the disrepany lower bound [26℄, sine it issubsumed by the fatorization norm method [25℄.6 Comparison with other singular value methodsIn order to prove large gaps between svm and other methods based on singular values, weonsider the following ommuniation game on a graph G := (V,E). Alie has x ∈ V , Bobhas y ∈ V and they want to know if {x, y} is an edge in G. Clearly, if EDGEG(x, y) :=
1 − 2 [{x, y} ∈ E] denotes the sign version of this game, then MEDGEG = J − 2AG, where
AG is the adjaeny matrix of G and J is the all-one matrix.We get large gaps for graphs with a single large eigenvalue and and a high spetral gap.For this we onsider quasi-random graphs [27℄ and hoose as a representative the followingone: For a prime power q and a natural number k ≤ q, the Delsarte-Goethals-Turyn graph,
Gq,k, as de�ned in [27, p. 23�24, 5.℄, is a regular graph of degree D(Gq,k) = k(q − 1) on
|V (Gq,k)| = q2 nodes, and the eigenvalues of its adjaeny matrix are λ1

(
AGq,k

)
= D (Gq,k)and λi

(
AGq,k

)
∈ {−k, q − k} for i ≥ 2.For n ≥ 2 we de�ne q = q(n) := 2n, k = k(n) := q/4, and �nally F2n := EDGEGq(n),k(n)

.Then σ1

(
MF2n

)
= λ1

(
MF2n

)
= |V (Gq,k)| − 2λ1

(
AGq,k

)
= (q2 + q)/2 and λi

(
MF2n

)
∈

{q/2,−3q/2}, i ≥ 2. Thus, q/2 ≤ σi

(
MF2n

)
≤ 3q/2 for i ≥ 2. In addition, ‖MF2n‖2

F =
|V (Gq,k)|2 = q4.First of all, we alulate the spetral norm method for F2n: We have spec (F2n) =
2q2/(q2 + q) < 2.In ontrast, the singular value method yields a linear lower bound: Let r ≥ 1 be minimalsuh that ∑r

i=1 σ2
i

(
MF2n

)
≥ (1 − ε) · ‖MF2n‖2

F . Then 1
4(q2 + q)2 + (r − 1)9

4q2 ≥ (1 − ε)q4,and thus r ≥ 4
9

(
1
2 − ε

)
q2. For e.g. ε = 1/3 we obtain log2 svm1/3 (F2n) = 2n −O(1).Theorem 6.1 (Arbitrary gap). There exists an expliit funtion F2n : B

2n × B
2n → S,

n ≥ 2, suh that the singular value method yields log2 svm1/3 (F2n) = 2n −O(1) while thespetral norm method only yields log2 spec (F2n) = O(1).Note that in order to obtain this statement, we ould have hosen any D-regular densequasi-random graph on N nodes with high spetral gap suh that D is bounded away from
N/2.Klauk [6, Thm. 6.10℄ de�ned two lower bound methods for bounded-error quantumommuniation omplexity via singular values. For a funtion f : B

n ×B
n → S, he de�ned



On a singular value method in quantum ommuniation omplexity 9normalized singular values σ̃i(f) := σi(Mf )/2n, i ∈ [2n]. Then σ̃2(f) :=
(
σ̃2

1(f), . . . , σ̃2
2n(f)

)is a probability distribution. Let H(p1, . . . , pm) denote the Shannon entropy of a proba-bility distribution p1, . . . , pm, and let κl(f) :=
∑

l
i=1σ̃i(f) denote the l-th Ky Fan norm.Klauk proved the following result:Theorem 6.2 (Klauk [6℄). For a sign funtion f : B

n × B
n → S we have

Qε(f) = Ω
(
H(σ̃2(f))/ log n

)
. (9)Let κl := κl(f). If κl ≥ Ω

(√
l
), then Qε(f) ≥ Ω

(
log(κl)

).If κl ≤ O
(√

l
), then Qε(f) ≥ Ω

(
log(κl)/(log(

√
l) − log(κl) + 1)

).We note that Klauk's entropy bound ahieves H(σ̃2(F2n)) = Θ(n/ log n), beause of
H
(
σ̃2 (F2n)

)
≤ −1

4

(
1 +

1

q

)2

log2

(
1

4

(
1 +

1

q

)2
)

+
(
q2 − 1

)
·
(

9

4q2

)
log2

(
4q2
)

= O (log q) = O (n) ,while his Ky Fan bound κl (F2n) ≤ 1
2 + 3

2
l
q only yields a onstant lower bound.7 On the strength of svmIn this setion, we show for whih funtions one an expet the singular value methodto provide high lower bounds. In partiular, we show that all problems in PHcc an besolved by protools in Pcc if we admit orale queries to a funtion with low svm value.To keep notation onise, we introdue the ommuniation omplexity lass of languagesthat exhibit an svm value at most polylogarithmi in n. Here, a language L := (Ln)n∈N isde�ned as a family of funtions Ln : Bn× Bn → S. We de�ne the Frobenius lass Frcc as

Frcc :=
{
L
∣∣ L = (Ln)n∈N, log2 svm 1

2
−Ω(1)(Ln) = polylog(n)

}
.Theorem 7.1 (Strength of svm). The polynomial hierarhy is ontained in the Turinglosure of the Frobenius lass, PHcc ⊆ Pcc(Frcc), i.e. the Frobenius lass is as hard as thepolynomial hierarhy.This result shows that on the one hand Frobenius rank does not haraterize bounded-error randomized or quantum ommuniation omplexity. It only gives high lower boundsfor problems far away from ommuniation omplexity lasses like BQPcc or NPcc. Onthe other hand, the singular value method might turn out to be a useful tool in separatingomplexity lasses not amenable to urrent methods. Reall that Lokam's results [20℄, inpartiular high lower bounds for weak notions of rigidity, were derived using singular values.Thus, there might be a onnetion between svm and these rigidity variants.Proof. We prove Theorem 7.1 using three Claims. First of all, we give an example of afuntion in Frcc � the Hamming funtion HD de�ned below. Afterwards, it will su�e toshow PHcc ⊆ Pcc(HD) in order to prove the theorem.The majority funtion majn : B

n → S is de�ned by majn(x) := 1 − 2 [
∑n

i=1 xi ≥ n/2],that is, majn(x) = −1 if and only if at least half of the xi are 1. The Fourier oe�ients
aα := 〈χα,majn〉 of the majority funtion for odd n are

aα =
(−1)(|α|−1)/2

2n−1

(|α|−1)!(
|α|−1

2

)
!

(n−|α|)!(
n−|α|

2

)
!
(

n−1
2

)
!

(10)



10 Henning Wunderlih and Stefan Arnoldif |α| is odd, and aα = 0 if |α| is even [28℄. We de�ne the Hamming funtion by meansof the majority funtion, HDn : B
n × B

n → S, HDn(x, y) := majn(x1 ⊕ y1, . . . , xn ⊕ yn).Thus, the Hamming funtion HD := (HDn)n∈N is the funtion that Alie and Bob have toompute if they are to deide whether their inputs di�er in more than half of the entries.Claim 1: HD ∈ Frcc. The singular values of the orresponding ommuniation matrix
MHDn are the absolute values of the Fourier oe�ients aα times 2n [25, Setion 6.2℄.Therefore by (10) we obtain for odd n the singular values

2
(k−1)!(

k−1
2

)
!

(n−k)!(
n−k

2

)
!
(

n−1
2

)
!

with multipliity (n

k

) for 1 ≤ k ≤ n, k odd ,and the singular value 0 with multipliity 2n−1. We will show that this leads to a logarithmilower bound for log2 svmε(HDn). To this end, denote the singular values of MHDn by
σα := 2n|aα|, and onsider the sum of the squared singular values orresponding to k = 1,

∑

|α|=1

σ2
α = n

[
2

(
n−1
n−1

2

)]2

∼ 4n
4n−1

π n−1
2

∼ 2

π
4n ,where we have used the asymptoti behavior of the entral binomial oe�ient. Sine

(2/π) 4n > (1− ε) ‖MHDn‖2
F for ε > 1− (2/π), we �nd that for all ε > 1− (2/π) andsu�iently large values of n, svmε(HDn) ≤ n. Consequently, HD ∈ Frcc.The ommuniation version of the majority funtion MAJ := (MAJn)n∈N is de�ned as

MAJn : B
n× B

n → S , MAJn(x, y) := maj(x1y1, . . . , xnyn) = 1 − 2 [
∑

ixiyi ≥ n/2] .Claim 2: MAJ ∈ Pcc(HD). We speify a deterministi protool for MAJn(x, y) thatuses the orale HD. First, Alie sends |x|, then Bob sends |y|, whih will require at most
2 ⌈log2 n⌉ bits of ommuniation. If they observe that |x| < n/2 or |y| < n/2, the outputof the protool is +1. Otherwise they both ompute t := |x| + |y| − n + 1. Now note that∑n

i=1 xiyi − n
2 = 1

2

(
|x| + |y| − n − |x⊕ y|

). This implies the equivalene MAJn(x, y) =
−1 ⇐⇒ |x⊕ y| < t. Therefore, Alie and Bob an omplete the omputation byexeuting the orale query HD2(n−t)(x0n−2t, y1n−2t) if t ≤ n/2 and HD2t(x02t−n, y02t−n)if t > n/2, respetively, upon whih they output −1 if and only if the query result was +1.Claim 3: MAJ is PPcc-omplete. See [1, Example 4.45℄ for a proof that an easily beonverted into a proof of the lemma. Thereby note that the problems in PPcc an be solvedby e�ient guess protools that aept an input if and only if the majority of the guessstrings lead to aeptane [7℄.Finally, reall Toda's Theorem, PHcc ⊆ Pcc(PPcc), in the ommuniation omplexitysetting [29℄. This ompletes our proof of Theorem 7.1:

PHcc ⊆ Pcc(PPcc) = Pcc(MAJ) ⊆ Pcc(HD) ⊆ Pcc(Frcc) .
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