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Abstract. We introduce a new lower bound method for bounded-error quantum communi-
cation complexity, the singular value method (svm), based on sums of squared singular values
of the communication matrix, and we compare it with existing methods.

The first finding is a constant factor improvement of lower bounds based on the spectral
norm. This is exemplified with an n/2 — O(1) lower bound for the inner product function
mod two.

As our main result we exhibit a function based on quasi-random graphs such that svin yields
a linear lower bound while the spectral norm method only yields a constant lower bound.
In addition, we discuss the strength of svm and show that the class of languages with a low
svm value is as hard as the communication complexity version of the polynomial hierarchy.
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1 Introduction

In communication complexity theory [1| communication models are studied where several
players want to cooperatively solve a problem. The resource under consideration is com-
munication, i.e. the number of communicated (quantum) bits. In general, the players have
to communicate because the input is distributed among them. The arguably simplest com-
munication model is Yao’s model [2] where two players Alice and Bob want to compute the
value f(z,y) of a function f: X x Y — Z. Here, Alice has x € X and Bob has y € ), and
they may send each other messages according to a fixed protocol. Several variants of this
deterministic model exist: In the public-coin randomized model the players are allowed to
use a public source of randomness; in the private-coin model each player has his own source
of randomness unknown to the other player. The deterministic model can also be enriched
with guess strings. Here, the players want to solve a decision problem. They may guess bits
and the acceptance of an input is determined by an acceptance mode. Yao [3| also intro-
duced a quantum model where the players can send quantum bits instead of classical bits.
Two variants are distinguished depending on whether the players share entangled states
(e.g. Einstein-Podolsky-Rosen pairs) prior to communication or not. _

All these models induce communication complexity measures. In particular, RE™(f) is
the e-error private-coin randomized communication complexity of f; Q:(f) is the e-error
quantum communication complexity of f without prior shared entanglement, and QX(f) is
the one where prior shared entanglement is allowed.

For these complexities many lower bound methods have been developed. Some of them
are based on notions of approximate rank, see e.g. Lee and Shraibman [4]. In this paper
we use the Frobenius rank, which lower bounds several known approximate ranks. The
advantage of this notion of approximate rank is a characterization via an expression in
the singular values of the corresponding matrix that can be computed efficiently. We call
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this expression the singular value method (sum). It has not appeared in the published
literature before! as a lower bound method for bounded-error randomized or quantum
communication complexity.

The purpose of this contribution is to explore the capabilities of svm as a new method
in communication complexity, that is, to derive high lower bounds with it, to study the
strength of this method, and to compare it with existing other methods. Our main findings
are the following:

We obtain constant factor improvements of existing lower bounds for randomized and
quantum communication complexity. First of all, we improve the spectral norm method of
Krause for bounded-error private-coin randomized communication complexity by a factor
of eight. Secondly, several lower bound methods for bounded-error quantum communication
complexity are based on spectral norms. We improve such bounds by a factor of two. In
particular, we show with ease an n/2 — O(1) lower bound for the bounded-error quantum
communication complexity of the inner product function mod two.

Using singular values to lower bound quantum communication complexity is not a
new idea. For example, almost a decade ago Klauck [6] introduced several such methods,
one uses the entropy of the squared normalized singular values, another one uses Ky Fan
norms. The novelty in our approach is how singular values are used in the computation of
a lower bound. As our main result we present gaps between svm and previous approaches,
i.e. we exhibit an explicit function F' such that svin yields a linear lower bound on the
quantum communication complexity of F' while the spectral norm method and Klauck’s
Ky Fan method only yield constant lower bounds. Klauck’s entropy method yields a bound
of ©(n/logn). This function F' is not an exception to the rule, but a representative of a
large class of functions based on communication games on quasi-random graph families
that lead to similar lower bounds.

We also study the strength of svm with structural means. (For definitions of commu-
nication complexity classes see, e.g., Babai et al. |[7].) If problems with a low, i.e. polylog,
singular value bound are collected in a communication complexity class Fr — let us call
it Frobenius class —, then we show that this class is as hard as the the communication
complexity version PH® of the polynomial hierarchy. This shows that on the one hand,
svin does not characterize randomized or quantum communication complexity. Instead, it
gives high lower bounds only for problems far away from communication complexity classes
like BQP or NP““. On the other hand, svm might turn out to be a useful tool in sep-
arating complexity classes not amenable to current methods, for example separating the
polynomial hierarchy PH® from polynomial space PSPACE°.

Note that in a few places of this contribution some of the details had to be omitted
due to limitations in space. In these cases, appropriate references are given.

2 Preliminaries

We mainly work over the Boolean alphabet B := {0, 1} and the sign alphabet S .= {—1,+1}.
Accordingly, we call functions with range B Boolean, and functions with range S sign

! We recently noticed that Lokam defined Frobenius rank and rigidity in a survey paper [5] under the
names “lo-rank” and “lo-rigidity”, respectively, and gave a characterization of {3-rigidity via singular
values. Lemma 3.5 of his contribution is a reformulation of the Theorem of Eckart and Young. Lokam
compared f-rigidity with geometric rigidity, but did not give any applications of ¢>-rigidity. In particular,
he did not develop from this a lower bound method in communication complexity as is done in the paper
at hand.
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functions. We adopt the same terminology for matrices. By d,,3 we denote the Kronecker
Delta, which is defined as 0, =1 if @ = 3, and 0, g := 0 otherwise. By |- | we denote the
Hamming weight of Boolean vectors. More generally, for arbitrary matrices A we define the
Hamming weight wt(A) as the number of nonzero entries in A. As usual, [n] := {1,...,n}.
Occasionally, in order to avoid ugly case distinctions we use Iverson’s bracket [P] defined
on predicates P, which evaluates to 1, if P is true, and to 0 otherwise.

2.1 Matrix theory

The aim of this subsection is to clarify our notation concerning matrices and to recall some
definitions and results of major importance for our work. For a thorough introduction to
matrix theory we refer the reader to [8-11].

For complex matrices A € C™*" A* denotes the conjugate transpose of A; entrywise
complex conjugation is indicated by a bar, as in A. For n-square matrices A we denote by
A(A), ..., A (A) the eigenvalues of A, including repeated ones. In case A is a Hermitian
matrix, its eigenvalues are real numbers, and we order them such that A;(A) > -+ > A\, (4).
By tr(A) we denote the trace of A.

In particular, A*A is Hermitian and positive semidefinite for all A € C™*™. This jus-
tifies the definition of the singular values of an m x n matrix A as 0;(A) = /\;(4*A),
i € [n]. Thus, we have 01(A) > -+ > 0,(A) > 0 by definition. We denote by o(A) =
(01(A),...,0n(A)) the row vector containing the singular values of A in decreasing order.
Every complex m x n matrix A has a singular value decomposition A = UXV, where
U e C™™ and V € C™™ are unitary matrices, and X' € R™*" is diagonal with entries
01 (A)v -+ Omin{m,n} (A)

Let A € C™*" be a matrix. We denote by [|A[ls, == (Zi,j|AiJ ) 1P p > 1, the £, vector
norm of A. In particular, the Frobenius or Hilbert-Schmidt norm is defined as |A|lp =
|| All¢, - It has the additional property of being a matrix norm, and it can also be regarded as
the norm derived from the Frobenius or Hilbert-Schmidt inner product for complex m x n
matrices A and B, which by definition reads (A, B) = tr(A*B) = 331" | Y% A; jBi ;. An
important class of matrix norms on C™*™ are the Schatten p-norms. They are defined as
the ¢, norms of the singular values: ||A]l, = [lo(A)|, = (X, Uip(A))l/p, p > 1. Two
examples of Schatten norms are the trace norm ||Al|; = 01(A)+- - -+0,(A) and the spectral
norm ||A|lec = 01(A). It is straightforward to show that ||A]l2 = ||A|lr and ||Al| = ||A4]],
where [[A| denotes the operator norm [A| = supsec |||, =1/lAz[ls,. We will use the
Theorem of Eckart and Young [12] to characterize a variant of rigidity that we define in
the next section. According to Horn and Johnson |9], an analogon [13] of the theorem was
discovered by E. Schmidt 30 years earlier in the context of integral equations.

Fact 2.1 (Eckart and Young [12]). For every real m x n matriz A we have

n

min ||A-BJ3 = E o?(A).
BeR™*™ <
rank(B)<r i=r+l

This fact will allow us to express lower bounds on communication complexity in terms of
singular values.

2.2 Fourier transform

For an overview of Fourier analysis on B™ and its applications in computer science we
refer the reader to [14]. Here, we give the definition of Fourier coefficients, which will be
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sufficient in this contribution. On the 2"-dimensional vector space of functions f: B" — C,
an inner product is given by (f, g) = 5= >.,cpn f(2)g(x). For each o € B", the character
Xa: B™ — S is the function x,(x) = (—1)®%1F+an?n Tt ig straightforward to show that
(XasXB8) = 0q,8, that is, the 2" characters make up an orthonormal basis — the so-called
Fourier basis — for the space of all complex-valued functions on B™. The expansion of f in

this basis reads f(z) = Y cpn (Xar f) Xa(T) = > 4cpn f(a) xa(z), where the coefficients
f(a) = (Xa, f) are known as the Fourier coefficients of f.

3 Approximate ranks and rigidities as lower bounds

The concept of (matrix) rigidity was introduced by Valiant [15] as a tool to derive lower
bounds in circuit complexity. A matrix has high rigidity, if small perturbations do not lower
the rank much. Thereby, “small perturbations” means that only a small number of the
matrix entries may be modified. Proving a strong enough lower bound on the rigidity of a
matrix implies a non-trivial lower bound, i.e. a superlinear size or a superlogarithmic depth,
on the complexity of any linear circuit computing the set of linear forms associated with
it. Although it has been shown that most matrices have high rigidity, despite considerable
efforts by many researchers no explicit construction of a rigid family of matrices over finite
fields is known. For infinite fields Lokam [16] was able to derive quadratic lower bounds
for the rigidity of explicit matrix families.
The formal definition of matrix rigidity is given below for the sake of completeness.

Definition 3.1 (Rigidity). Let M be a matriz over a field F. The (matriz) rigidity RY,
of M is defined as RE,(r) = min {wt(M — M) ‘ F-rank(M) < r, M a matriz over F}. In
other words, the rigidity of M is the minimum number of entries that must be changed in
order to reduce the rank to r.

The first connection between matrix rigidity and communication complexity was estab-
lished by Razborov [17]. He showed that high lower bounds for the rigidity over a finite
field of an explicit matrix family would yield a language outside the communication com-
plexity theoretic analogon PH of the polynomial hierarchy. It was shown in [18,19] that
this result is a corollary of a slight generalization of Toda’s First Theorem in communi-
cation complexity, PH® C BP - MOD,, - P, because rigidity over the finite field I, is a
lower bound for the BP - MOD,, - P“ communication complexity.

Lokam [20] defined weak variants of matrix rigidity over the field of real numbers R
and was able to complement and strengthen the result of Razborov.

To each notion of rigidity there is an equivalent notion of approximate rank, and vice
versa. Several notions of approximate rank have been defined to lower bound communica-
tion complexities. The most important ones are

Definition 3.2 (Approximate rank). Let A be a real m x n matriz, and let o > 1. We
define

rank®(A) := min{rank(B) | B€ R™*",1 < A4; ;B; ; < a},

rank™(A) := min{rank(B) | Be R"™*" 1 < A, ;B; ;}.
The former is called a-approzimate rank of A, the latter sign rank of A.

Obviously, rank® is a monotonically decreasing function with respect to a. Paturi and
Simon [21] gave a characterization of unbounded-error randomized communication com-
plexity U(f) = inf.1/o RE"V(f) via the sign rank of the communication matrix M/ =

(f(x’y))w,y of f.
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Fact 3.3 (Paturi and Simon [21]).
For every sign function f, U(f) = logy rank™ (M) + O(1).

Let us define the spectral norm method as follows:

Definition 3.4 (Spectral norm method). We define spec(A) = || A|lr/||A| for every
m x n matriz A. For functions f we introduce the abbreviation spec(f) = spec (M/).

Krause [22| defined a slight variant of rank® and proved a lower bound for the bounded-
error private-coin randomized communication complexity of a sign function. In particular,
he showed that the (1/2 — d)-error private-coin randomized communication complexity of
a sign function f is at least (1/4)(logs spec (f) — (1/2)logy(1/6) — 2).

An adaptation to the a-approximate rank, rank®(M7), yields

Fact 3.5 (Krause [4,22]). For every sign function f and every e € [0,1/2),
RPV(f) > logy rank® (MY), . :=1/(1 — 2¢).

In a breakthrough work Forster [23| showed that the spectral norm method is even a
lower bound for unbounded-error randomized communication complexity.

Fact 3.6 (Forster [23]). For every m x n sign matriz A we have

rank™(A) > spec(A) = % (1)

In particular, by (3.3) for every sign function f we have U(f) > log, spec (f).

For A € R™*" and € > 0, Buhrman and de Wolf [24| defined a notion of approximate
rank by rg;ke(A) = min{rank(B) | B € R™*", ||A — B|ls., < €}. They showed that
for every Boolean function f, their approximate rank is a lower bound for the bounded-
error quantum communication complexity, Q<(f) > %logg rank.(M7). An adaptation to
the a-approximate rank, rank®(M7), of sign functions f yields

Fact 3.7 (Buhrman and de Wolf [4,24]). For every sign function f and ¢ € [0,1/2),

Q-(f) > 5 logy rank™* (M), 0 i=1/(1 — 22)

4 The singular value method

In this section, we introduce our singular value method. For sign matrices this method lower
bounds bounded-error quantum communication complexity without prior entanglement.

Definition 4.1 (Frobenius rigidity and rank). Let A be a real m xn matriz. We define
the Frobenius rigidity of A by

. - |A-BJ3
rigidity®y () == Bel?gglxn WPF
rank(B)<r F

The Frobenius rank is analogously defined by

rank! (A) := min { rank(B) | B € R™",||A — B||} <¢||A|3} .
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Thus, unlike the rigidity Rﬁ/[ and the a-approximate and sign ranks, the Frobenius rigidity
and rank employ ||A—B||r to define a notion of closeness of the matrices A and B. From the
definition of approximate rank and rigidity it follows that the two concepts are essentially
equivalent:

rank! (A) < r <= rigidity’y(r) <e. (2)

The Theorem of Eckart and Young immediately yields the following characterization of
Frobenius rigidity:

rigidity™ (r TATZ Z (3)

Fz r+1

Fortunately, there are simple connections between Frobenius rank and different notions
of approximate ranks.

Proposition 4.2. For every sign matriz A and every ¢ > 0 we have

rank_(A) > rank’ (A) . (4)
Proof. Let A be an m X n sign matrix, and let B be an m x n real matrix such that
rank.(A) = rank(B) and |A—Blj,,, < e. Note that |[A—B|/% < &% -mn =& ||A||2. This
shows rank’s (4) < rank(B). 0
Proposition 4.3. For every sign matriz A and every o > 1 we have

rank®(A) > rank’, | (A). (5)

Proof. Let A be an m X n sign matrix, and let B be an m X n real matrix such that
rank®(A4) = rank(B) and 1 < A, ;B;; < a. We have [|[A—B|% = >i(Aij — B;j)? =
> Af’j +2i BZ-QJ- =23, A4iBij <mn+ a?mn —2mn = (o — 1) |A||%. This shows
rank’, | (A) < rank(B). 0

Definition 4.4 (Singular value method). Let A be a real mxn matriz, and let € € [0, 1].
We define the singular value method (svm) by

svimg(A) :==max {7’ >1 ‘ rigidity®y (r — 1) > E}
= min {7‘ >1 ‘ rigidity®) () < E}
—m1n{r>1 Za —£)- ||A||F} .

For a function f we define svm.(f) = svim.(M/).

Note that the maximum in the definition of the singular value method always exists, since
0f(A)+ -+ 02(A) = ||A||%. If A is a sign matrix, we have ||A||% = mn, whereas ||A||Z is
the number of ones in A if A is Boolean.

Observation 4.5. Due to the connection (2) between Frobenius rigidity and Frobenius
rank, the singular value method coincides with Frobenius rank, i.e. we have svm.(A) =
rank’ (A) for all real matrices A.
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The singular value method is in some respect similar to a lower bound of Lokam [20,
Lemma 3.4] for the minimum size of a depth d linear circuit computing a linear transfor-
mation. While many methods for randomized or quantum communication complexity have
been developed that involve singular values, to the authors’ knowledge our singular value
method has not appeared in the published literature before.

Theorem 4.6 (Quantum lower bound). For every sign function f and every e €
[0,1/2 — 1/V/8] we have
1 1
Q:(f) = S logysvmez 1(f), e = 15
Proof. Combining Fact 3.7, Proposition 4.3 and Observation 4.5 we conclude
Q:(f) > 1 log, rank®™ (Mf) > 11log, rankgz_l(Mf) = 1 log, svimgz_ (f) -

(6)

O
Theorem 4.7. For every m x n sign matriz A and all € € [0,1], sum is lower bounded by
svm.(A) > (1-¢) - (spec(4))”. (7)
Furthermore, the approzimate rank satisfies the inequality
rank®(A) > (2 — a?) - (spec(A))2 (8)
for all o € [1,V/2].

Proof. By the definition of the singular value method and the spectral method, in conjunc-
tion with the monotonicity of the singular values, we obtain (7):

svmg(A)
svin,(A) 2(A)
—— = =svmn.(A4) > >1—c¢.
(spec(4))? ) HA”F ; HAHF
We have seen in the proof of Theorem 4.6 that svm,2_; is a lower bound for rank®. Thus,
(8) is a consequence of (7). O

We note that (8) in conjunction with Fact 3.5 implies RP™Y (f) > 2log, spec(f)+logy(2—
a?), improving the original bound of Krause by a factor of 8. Furthermore, inequality (8)
provides an additional exponent of two, compared to the statement rank®(A) > spec(A)
that can be obtained from lower bounding rank® by rank® and then applying (1).

5 Lower bound for the inner product function mod two

The inner product function mod two by definition reads IP,,: B" x B" — S, IP,(z,y) =
1 -2, z;y; mod 2 = 1]. We will recall the lower bounds on Q.(IP,) obtainable by
previously known methods, and subsequently show that the singular value method also
leads to the best of these bounds.

The lower bound by Buhrman and de Wolf (Fact 3.7), in conjunction with the mono-
tonicity of rank® and the result of Forster (Fact 3.6), leads to

1 1
Q:(IP,) > 3 log, rank™ (MIP") > 3 log, spec (IP,,) .

It is easily verified that all singular values of M= are equal. Thus, spec (IP,,) = 2"%/2, so
that the old results only lead to a bound of Q.(IP,) > n/4.
In contrast, using svm, we obtain the following
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Theorem 5.1. For arbitrary € € [0, 1/2 — 1/\/§[, the quantum communication complexity
of IP,, without prior entanglement is lower bounded by Q.(IP,) > 2 + % logy(2 — a2).

Proof. The proof is based on Theorems 4.6 and 4.7:

Qu(TP) > 5 logy svingz 1 (IPy) > 1 Togy (2~ a2) (spec(TP,))?)
= log, spec(IP,,) + % log, (2 — ag) .

As stated above, the spectral norm method for IP,, is spec(IP,) = 2/, O

Now consider the factorization norm lower bound of Linial and Shraibman [25]. This
method is in fact a lower bound on Q. Since QX(f) < [n/2] + 1 for all functions f: B"x
B™ — S by superdense coding, the factorization norm method cannot lead to a lower bound
greater than [n/2] 4+ 1. The same holds for the discrepancy lower bound [26], since it is
subsumed by the factorization norm method [25].

6 Comparison with other singular value methods

In order to prove large gaps between svm and other methods based on singular values, we
consider the following communication game on a graph G = (V, E). Alice has z € V', Bob
has y € V and they want to know if {z,y} is an edge in G. Clearly, if EDGEg(z,y) =
1 —2[{z,y} € E] denotes the sign version of this game, then MEPGEc = J — 2A4C where
AG is the adjacency matrix of G and J is the all-one matrix.

We get large gaps for graphs with a single large eigenvalue and and a high spectral gap.
For this we consider quasi-random graphs [27] and choose as a representative the following
one: For a prime power g and a natural number k < g, the Delsarte-Goethals-Turyn graph,
Gy, as defined in [27, p. 23-24, 5.], is a regular graph of degree D(G, 1) = k(¢ — 1) on
[V(Ggx)| = ¢? nodes, and the eigenvalues of its adjacency matrix are A (A%*) = D (Gyx)
and \;(A%*) € {—k,q — k} for i > 2.

For n > 2 we define ¢ = ¢(n) == 2", k = k(n) := ¢/4, and finally F5, := EDGE¢q,, . -
Then oy (M) = A\ (MPr) = |[V(Ggr)| — 2M (A%+) = (¢% + q)/2 and X\ (M) €
{qa/2,-3q/2}, i > 2. Thus, q/2 < o;(M*r) < 3¢/2 for i > 2. In addition, || M*n|% =
V(G = g,

First of all, we calculate the spectral norm method for Fs,: We have spec (Fy,) =
22/(¢2 +q) < 2

In contrast, the singular value method yields a linear lower bound: Let 7 > 1 be minimal
such that 7, o2 (MFen) > (1 —¢) - |MPor||%. Then 2(¢% + q)2 + (r — 1)3¢% > (1 —€)¢*,
and thus r > § (3 — ) ¢2. For e.g. € = 1/3 we obtain log, svmy 3 (F2,) = 2n — O(1).
Theorem 6.1 (Arbitrary gap). There ewists an explicit function Fp,: B?" x B?" — S,
n > 2, such that the singular value method yields logy sviny /3 (Fap) = 2n — O(1) while the
spectral norm method only yields log, spec (Fa,) = O(1).

Note that in order to obtain this statement, we could have chosen any D-regular dense
quasi-random graph on N nodes with high spectral gap such that D is bounded away from
N/2.

Klauck [6, Thm. 6.10| defined two lower bound methods for bounded-error quantum
communication complexity via singular values. For a function f: B" x B" — S, he defined
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normalized singular values 6;(f) == o;(M/)/2",i € [2"]. Then 6%(f) == (63(f), ..., 5% (f))
is a probability distribution. Let H(p1,...,pmn) denote the Shannon entropy of a proba-
bility distribution pi, ..., pm, and let x(f) = >.'_,5;(f) denote the I-th Ky Fan norm.
Klauck proved the following result:

Theorem 6.2 (Klauck [6]). For a sign function f: B" x B" — S we have
Qe(f) = Q(H(5°(f))/logn) - (9)

Let k= ri(f). If i > Q(V1), then Q-(f) > Q(log(ry)).
If 5 < O(V1), then Qe(f) > Q(log(ky)/(log(v1) — log(r) + 1)).

We note that Klauck’s entropy bound achieves H(52(Fs,)) = ©(n/logn), because of

H (6° (Fon)) < —i (1 + é)Qlogz (% <1 + $>2> +(*—1)- (4%) log, (4¢°)

=0(logq) = O
while his Ky Fan bound k; (Fa,) <

n)

(
% + %é only yields a constant lower bound.

7 On the strength of svin

In this section, we show for which functions one can expect the singular value method
to provide high lower bounds. In particular, we show that all problems in PH® can be
solved by protocols in P if we admit oracle queries to a function with low svm value.
To keep notation concise, we introduce the communication complexity class of languages
that exhibit an svm value at most polylogarithmic in n. Here, a language L := (L, )nen is
defined as a family of functions L,,: B" x B" — S. We define the Frobenius class Fr as

Fre = {L | L = (Lp)nen, logy svm%_Q(l)(Ln) = polylog(n)} .

Theorem 7.1 (Strength of svm). The polynomial hierarchy is contained in the Turing
closure of the Frobenius class, PH® C P (Fr®), i.e. the Frobenius class is as hard as the

polynomaal hierarchy.

This result shows that on the one hand Frobenius rank does not characterize bounded-
error randomized or quantum communication complexity. It only gives high lower bounds
for problems far away from communication complexity classes like BQP or NP. On
the other hand, the singular value method might turn out to be a useful tool in separating
complexity classes not amenable to current methods. Recall that Lokam’s results [20], in
particular high lower bounds for weak notions of rigidity, were derived using singular values.
Thus, there might be a connection between svm and these rigidity variants.

Proof. We prove Theorem 7.1 using three Claims. First of all, we give an example of a
function in Fr® — the Hamming function HD defined below. Afterwards, it will suffice to
show PH® C P(HD) in order to prove the theorem.

The majority function mayj, : B" — S is defined by maj,(z) :=1—2[> ", z; > n/2],
that is, maj, () = —1 if and only if at least half of the x; are 1. The Fourier coefficients
ao = (Xa,maj, ) of the majority function for odd n are

(=192 (jal-1)!_ (n—]al)!

= B ) ()

(10)

Ao =
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if |af is odd, and a, = 0 if |a] is even [28]. We define the Hamming function by means
of the majority function, HD,: B" x B™ — S, HD,(z,y) = maj,(z1 B Y1, -, Tn B Yn)-
Thus, the Hamming function HD := (HD,, )¢ is the function that Alice and Bob have to
compute if they are to decide whether their inputs differ in more than half of the entries.

Claim 1: HD € Fr®. The singular values of the corresponding communication matrix
MHDn are the absolute values of the Fourier coefficients a, times 2" |25, Section 6.2|.
Therefore by (10) we obtain for odd n the singular values

n

k

with multiplicity < > for 1 <k <mn, kodd,

and the singular value 0 with multiplicity 27—1. We will show that this leads to a logarithmic
lower bound for log, svim.(HD,,). To this end, denote the singular values of MHDP» by
Oa = 2"|ay], and consider the sum of the squared singular values corresponding to k = 1,

—1\1? 4n=1 9
b)) e
2

7T—
jol=1 2

where we have used the asymptotic behavior of the central binomial coefficient. Since
(2/m)4n > (1—¢)[[MHPn||Z for ¢ > 1—(2/m), we find that for all ¢ > 1—(2/7) and
sufficiently large values of n, svm.(HD,,) < n. Consequently, HD € Fr®.

The communication version of the majority function MAJ := (MAJ,,)nen is defined as

MAJ,: B"xB" — S, MAJ,(z,y) == maj(ziy1,...,Tn¥n) =1 — 2> ,xy; > n/2] .

Claim 2: MAJ € P°(HD). We specify a deterministic protocol for MAJ, (z,y) that
uses the oracle HD. First, Alice sends |z|, then Bob sends |y|, which will require at most
2 [logy n| bits of communication. If they observe that |x| < n/2 or |y| < n/2, the output
of the protocol is +1. Otherwise they both compute ¢ := |z| + |y| — n + 1. Now note that
S zy — 2% = 2(|z| + [yl — n — |z ®y[). This implies the equivalence MAJ,(z,y) =
-1 <= |z@y| < t. Therefore, Alice and Bob can complete the computation by
executing the oracle query HDy(,_s)(20n=2¢, y1n=2t) if ¢ < n/2 and HDy(20%—", y0%—")
if t > n/2, respectively, upon which they output —1 if and only if the query result was +1.

Claim 3: MAJ is PP -complete. See |1, Example 4.45| for a proof that can easily be
converted into a proof of the lemma. Thereby note that the problems in PP can be solved
by efficient guess protocols that accept an input if and only if the majority of the guess
strings lead to acceptance [7].

Finally, recall Toda’s Theorem, PH® C P“(PP), in the communication complexity
setting [29]. This completes our proof of Theorem 7.1:

PH® C P<(PP%) = P“(MAJ) C P(HD) C P (Fr®).
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