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ALEXANDER A. SHERSTOV�

ABSTRACT. The threshold degree of a function f W f0; 1gn ! f�1; C1g is the least de-
gree of a real polynomial p with f .x/ � sgn p.x/: We prove that the intersection of two
halfspaces on f0; 1gn has threshold degree ˝.n/; which matches the trivial upper bound
and completely answers a question due to Klivans (2002). The best previous lower bound
was ˝.

p
n/: Our result shows that the intersection of two halfspaces on f0; 1gn only

admits a trivial 2�.n/-time learning algorithm based on sign-representation by polynomi-
als, unlike the advances achieved in PAC learning DNF formulas and read-once Boolean
formulas. The proof introduces a new technique of independent interest, based on Fourier
analysis and matrix theory.

1. INTRODUCTION

A well-studied notion in computational learning theory is that of a perceptron. This
term stands for the representation of a given Boolean function f W f0; 1gn ! f�1; C1g in
the form f .x/ � sgn p.x/ for a real polynomial p of some degree d: The least degree
d for which f admits such a representation is called the threshold degree of f; denoted
deg˙.f /: In other words, deg˙.f / is the least degree of a real polynomial that agrees with
f in sign. Perceptrons are appealing from a learning standpoint because they immediately
lead to efficient learning algorithms. In more detail, let f W f0; 1gn ! f�1; C1g be an
unknown function of threshold degree d: Then by definition, f has a representation of the
form

f .x/ � sgn

� X
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�

for some reals λS and is thus a halfspace in N D
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�
C
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�
dimensions. As a

result, f can be PAC learned in time polynomial in N; using any of a variety of halfspace
learning algorithms. (Throughout this paper, the term “PAC learning” refers to Valiant’s
standard model [40] of learning under arbitrary distributions.)

The study of perceptrons dates back forty years to the seminal monograph of Minsky
and Papert [25], who examined the threshold degree of several common functions. Today,
the perceptron-based approach yields the fastest known PAC learning algorithms for sev-
eral concept classes. One such is the class of DNF formulas of polynomial size, posed a
challenge in Valiant’s original paper [40] and extensively studied over the past two decades.
The fastest known algorithm for PAC learning DNF formulas runs in time expf QO.n1=3/g

and is due to Klivans and Servedio [18]. Specifically, the authors of [18] prove an upper
bound of O.n1=3 log n/ on the threshold degree of polynomial-size DNF formulas, which
essentially matches a classical lower bound of ˝.n1=3/ due to Minsky and Papert [25].
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2 A. A. SHERSTOV

Another success story of the perceptron-based approach is the concept class of Boolean
formulas, i.e., Boolean circuits with fan-out 1 at every gate. O’Donnell and Servedio [29]
proved an upper bound of

p
s logO.d/ s on the threshold degree of Boolean formulas of

size s and depth d; giving the first subexponential algorithm for a family of formulas of
superconstant depth. This upper bound on the threshold degree was improved to s0:5Co.1/

for any depth d by Ambainis et al. [2], building on a quantum query algorithm of Farhi et
al. [10]. More recently, Lee [24] sharpened the upper bound to O.

p
s/; which is tight. This

line of research gives the fastest known algorithm for PAC learning Boolean formulas.
Another extensively studied problem in computational learning theory, and the sub-

ject of this paper, is the problem of learning intersections of halfspaces, i.e., conjunctions
of functions of the form f .x/ D sgn.

P
αi xi � θ/ for some reals α1; : : : ;αn;θ: While

solutions are known to several restrictions of this problem [7, 23, 41, 3, 17, 19, 16], no
algorithm has been discovered for PAC learning the intersection of even two halfspaces in
time faster than 2�.n/: Progress on proving hardness results has also been scarce. Indeed,
all known hardness results [8, 1, 20, 14] either require polynomially many halfspaces or
assume proper learning. In particular, we are not aware of any representation-independent
hardness results for PAC learning the intersection of O.1/ halfspaces.

Our Results. Since the perceptron-based approach yields the fastest known algorithms
for PAC learning DNF formulas and read-once Boolean formulas, it is natural to wonder
whether it can yield any nontrivial results for the intersection of two halfspaces. Letting
D.n/ stand for the maximum threshold degree over all intersections of two halfspaces
on f0; 1gn; the question becomes whether D.n/ is a nontrivial (sublinear) function of the
dimension n: This question has been studied by several authors, as summarized in Ta-
ble 1. Forty years ago, Minsky and Papert [25] used a compactness argument to show that
D.n/ D ω.1/; the function in question being the intersection of two majorities on disjoint
sets variables. O’Donnell and Servedio [29] studied the same function using a rather dif-
ferent approach and thereby proved that D.n/ D ˝.log n= log log n/: No nontrivial upper
bounds on D.n/ being known, Klivans [15, �7] formally posed the problem of proving a
lower bound substantially better than ˝.log n/ or an upper bound of o.n/:

It was recently shown in [34] that D.n/ D ˝.
p

n/; solving Klivans’ problem and ruling
out an no.

p
n/-time PAC learning algorithm based on perceptrons. It is clear, however, that a

PAC learning algorithm for the intersection of two halfspaces in time n�.
p

n/ would still be
a breakthrough in computational learning theory, comparable to the advances in the study
of DNF formulas and read-once Boolean formulas. The main contribution of this paper
is to prove that D.n/ D ˝.n/; which matches the trivial upper bound and definitively
rules out the perceptron-based approach for learning the intersection of two halfspaces in
nontrivial time.

Result Reference
D.n/ D ω.1/ [25]
D.n/ D ˝.log n= log log n/ [29]
D.n/ D ˝.

p
n/ [34]

D.n/ D �.n/ this paper

Table 1: Lower bounds for the intersection of two halfspaces.
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THEOREM 1 (Main result). For n D 1; 2; 3; : : : ; let D.n/ denote the maximum thresh-
old degree of a function of the form f .x/ ^ g.x/; where f; gW f0; 1gn ! f�1; C1g are
halfspaces. Then

D.n/ D �.n/:

To be more precise, we give a randomized algorithm which with probability at least
1 � e�n=12 constructs two halfspaces on f0; 1gn whose intersection has threshold degree
�.n/: In Section 6, we develop several refinements of Theorem 1. For example, we show
that the intersection of two halfspaces on f0; 1gn requires a perceptron with expf�.n/g

monomials, i.e., does not have a sparse sign-representation. We also give an essentially
tight lower bound on the threshold degree of the intersection of a halfspace and a majority
function, improving quadratically on the previous bound in [34].

In summary, unlike DNF formulas and read-once Boolean formulas, the intersection of
two halfspaces does not admit a nontrivial sign-representation. Apart from computational
learning theory, lower bounds on the threshold degree have played a key role in several
works on circuit complexity [30, 39, 21, 22, 36], Turing complexity classes [4, 6, 5], and
communication complexity [36, 35, 37, 31]. For this reason, we consider Theorem 1 and
the techniques used to obtain it to be of interest outside of computational learning.

Theorem 1 and much previous work suggest that the nature of a PAC learning prob-
lem changes significantly when, instead of Valiant’s original arbitrary-distribution setting,
one considers learning with respect to restricted distributions. For example, the uniform
distribution on the sphere Sn�1 or hypercube f0; 1gn allows the use of tools other than
sign-representing polynomials, such as Fourier analysis. In particular, polynomial-time
algorithms are known for the uniform-distribution learning of intersections of a constant
number of halfspaces on the sphere [7, 41] and hypercube [17]. Furthermore, if member-
ship queries are allowed, DNF formulas are known to be learnable in polynomial time with
respect to the uniform distribution on the hypercube [12].

Our Techniques. Let f ^ f denote the conjunction of two copies of a given Boolean
function f; each on an independent set of variables. It was shown in [34] that the thresh-
old degree of f ^ f equals, up to a small multiplicative constant, the least degree of a
rational function R with kf � Rk∞ 6 1=3: With this characterization in hand, the equal-
ity deg˙.f ^ f / D �.

p
n/ was derived in [34] by solving the rational approximation

problem for the halfspace

f .x/ D sgn

�
1 C

p
nX

iD1

p
nX

j D1

2i xij

�
:

Unfortunately, the �.
p

n/ barrier is fundamental to the analysis in [34]. To prove that in
fact D.n/ D �.n/; we pursue a rather different approach.

The intuition behind our work is as follows. Let α1;α2; : : : ;αn be given nonzero in-
tegers, and let f W f0; 1gn ! f�1; C1g be a given Boolean function such that f .x/ is
completely determined by the sum

P
αi xi : When approximating f pointwise by polyno-

mials and rational functions of a given degree, can one restrict attention to those approx-
imants that are, like f; functions of the sum

P
αi xi alone rather than the individual bits

x1; x2; : : : ; xn? If true, this claim would dramatically simplify the analysis of the threshold
degree of f by reducing it to a univariate question. Minsky and Papert [25] showed that
the claim is indeed true in the highly special case α1 D α2 D � � � D αn: For the purposes of
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this paper, however, the nonzero coefficients α1;α2; : : : ;αn must be of increasing orders
of magnitude and in particular must satisfy

max
i;j

ˇ̌̌̌
αi

αj

ˇ̌̌̌
> expf˝.n/g:

Minsky and Papert’s argument breaks down completely in this setting, and with good rea-
son: coefficients α1; : : : ;αn are easily constructed [5] for which the passage to univariate
approximation increases the degree requirement from 1 to n:

To overcome this difficulty, we use techniques from Fourier analysis and matrix pertur-
bation theory. Specifically, we define an appropriate distribution on n-tuples .α1; : : : ;αn/

and study the behavior of the sum
P
αi xi as the vector x ranges over f0; 1gn: We prove

that for a typical n-tuple .α1; : : : ;αn) and any collection of sums S � Z of interest, the
subset XS � f0; 1gn that induces the sums in S is highly random in that membership
in XS is uncorrelated with any polynomial of degree up to �.n/: With some additional
work, this allows the sought passage to a univariate question. In particular, we are able
to prove the existence of a halfspace f W f0; 1gn ! f�1; C1g such that any multivariate
rational approximant for f gives a univariate rational approximant for the sign function on
f˙1; ˙2; ˙3; : : : ; ˙2�.n/g with the same degree and error. The univariate question being
well-understood, we infer that f requires a rational function of degree ˝.n/ for point-
wise approximation within 1=3 and hence deg˙.f ^ f / > ˝.n/ by the characterization
from [34].

2. PRELIMINARIES

Notation. We will view Boolean functions as mappings X ! f0; 1g or X ! f�1; C1g

for some finite set X; where the output value 1 corresponds to “true” in the former case
and “false” in the latter. We adopt the following standard definition of the sign function:

sgn x D

�
�1; x < 0;

0; x D 0;

1; x > 0:

The complement of a set S is denoted S: We denote the symmetric difference of sets S

and T by S ˚ T D .S \ T / [ .S \ T /: For a finite set X; the symbol P.X/ denotes the
family of all 2jX j subsets of X: For functions f; gW X ! R on a finite set X; we use the
notation

hf; gi D
1

jX j

X
x2X

f .x/g.x/:

We let log x stand for the logarithm of x to the base 2: The binary entropy function
H W Œ0; 1� ! Œ0; 1� is given by H.p/ D �p log p � .1 � p/ log.1 � p/ and is strictly
increasing on Œ0; 1=2�: The following bound is well known [13, p. 283]:

kX
iD0

 
n

i

!
6 2H.k=n/n; k D 0; 1; 2; : : : ; bn=2c:(2.1)

For elements x; y of a given set, we use the Kronecker delta

δx;y D

(
1; x D y;

0; x ¤ y:



SIGN-REPRESENTING THE INTERSECTION OF TWO HALFSPACES BY POLYNOMIALS 5

The symbol Pk stands for the family of all univariate real polynomials of degree up to k:

The majority function MAJnW f0; 1gn ! f�1; C1g has the usual definition:

MAJn.x/ D

(
�1; x1 C x2 C � � � C xn > n=2;

1; otherwise:

Fourier transform. Consider the vector space of functions f0; 1gn ! R; equipped with
the inner product

hf; gi D 2�n
X

x2f0;1gn

f .x/g.x/:

For S � f1; 2; : : : ; ng; define χS W f0; 1gn ! f�1; C1g by χS .x/ D .�1/
P

i2S xi : Then
fχS gS�f1;2;:::;ng is an orthonormal basis for the inner product space in question. As a
result, every function f W f0; 1gn ! R has a unique representation of the form

f D

X
S�f1;2;:::;ng

Of .S/χS ;

where Of .S/ D hf;χS i. The reals Of .S/ are called the Fourier coefficients of f: The
orthonormality of fχS g immediately yields Parseval’s identity:X

S�f1;2;:::;ng

Of .S/2
D hf; f i D E

x2f0;1gn
Œf .x/2�:(2.2)

Matrices. The symbol Rm�n refers to the family of all m � n matrices with real entries.
A matrix A 2 Rn�n is called strictly diagonally dominant if

jAi i j >

nX
j D1
j ¤i

jAij j; i D 1; 2; : : : ; n:

A well-known result in matrix perturbation theory, due to Gershgorin [11], states that the
eigenvalues of a matrix lie in the union of certain disks in the complex plane centered
around the diagonal entries of the matrix. We will need the following very special case,
which corresponds to showing that the eigenvalues are all nonzero.

THEOREM 2.1 (Gershgorin). Let A 2 Rn�n be strictly diagonally dominant. Then A is
nonsingular.

Proof (Gershgorin). Fix a nonzero vector x 2 Rn and choose i such that jxi j D kxk∞:

Then by strict diagonal dominance,

j.Ax/i j D

ˇ̌̌̌
ˇ̌ nX
j D1

Aij xj

ˇ̌̌̌
ˇ̌ > jAi i jkxk∞ �

nX
j D1
j ¤i

jAij jkxk∞ > 0;

so that Ax ¤ 0:
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Rational approximation. The degree of a rational function p.x/=q.x/; where p and q

are polynomials on Rn; is the maximum of the degrees of p and q: Consider a function
f W X ! f�1; C1g; where X � Rn: For d > 0; define

R.f; d/ D inf
p;q

sup
x2X

ˇ̌̌̌
f .x/ �

p.x/

q.x/

ˇ̌̌̌
;

where the infimum is over multivariate polynomials p and q of degree up to d such that q

does not vanish on X: In words, R.f; d/ is the least error in an approximation of f by a
multivariate rational function of degree up to d: A closely related quantity is

RC.f; d/ D inf
p;q

sup
x2X

ˇ̌̌̌
f .x/ �

p.x/

q.x/

ˇ̌̌̌
;

where the infimum is over multivariate polynomials p and q of degree up to d such that q

is positive on X: These two quantities are related in a straightforward way:

RC.f; 2d/ 6 R.f; d/ 6 RC.f; d/:

The second inequality here is trivial. The first follows from the fact that every rational
approximant p.x/=q.x/ of degree d gives rise to a degree-2d rational approximant with
the same error and a positive denominator, namely, fp.x/q.x/g=q.x/2:

The infimum in the definitions of R.f; d/ and RC.f; d/ cannot in general be replaced
by a minimum [32], even when X is finite subset of R: This contrasts with the more familiar
setting of a finite-dimensional normed linear space, where least-error approximants are
guaranteed to exist.

For S � R; we let

RC.S; d/ D inf
p;q

sup
x2S

ˇ̌̌̌
sgn x �

p.x/

q.x/

ˇ̌̌̌
;

where the infimum ranges over p; q 2 Pd such that q is positive on S: The study of the
rational approximation of the sign function dates back to seminal work by Zolotarev [42]
in the late 19th century. A much later result due to Newman [28] gives highly accurate es-
timates of RC.Œ�n; �1� [ Œ1; n�; d/ for all n and d: Newman’s work in particular provides
upper bounds on RC.f˙1; ˙2; : : : ; ˙ng; d /; which in [34] were sharpened and comple-
mented with matching lower bounds to the following effect:

THEOREM 2.2 (Sherstov). Let n; d be positive integers, R D RC.f˙1; ˙2; : : : ; ˙ng; d /:

For 1 6 d 6 log n;

exp
�

��

�
1

n1=.2d/

��
6 R < exp

�
�

1

n1=d

�
:

For log n < d < n;

R D exp
�

��

�
d

log.2n=d/

��
:

For d > n;

R D 0:

Theorem 2.2 has the following corollary [34, Thm. 1.7], in which we adopt the notation
rdegε.f / D minfd W RC.f; d/ 6 εg:
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THEOREM 2.3 (Sherstov). Let MAJnW f0; 1gn ! f�1; C1g denote the majority function.
Then

rdegε.MAJn/ D

†
�

�
log

�
2n

log.1=ε/

�
� log

1

ε

�
; 2�n < ε < 1=3;

�

�
1 C

log n

logf1=.1 � ε/g

�
; 1=3 6 ε < 1:

Threshold degree. Let f W X ! f�1; C1g be a given Boolean function, where X � Rn

is finite. The threshold degree of f; denoted deg˙.f /; is the least degree of a polyno-
mial p.x/ such that f .x/ � sgn p.x/: The term “threshold degree” appears to be due to
Saks [33]. Equivalent terms in the literature include “strong degree” [4], “voting polyno-
mial degree” [21], “polynomial threshold function degree” [29], and “sign degree” [9].

Given functions f W X ! f�1; C1g and gW Y ! f�1; C1g; we let the symbol f ^ g

stand for the function X � Y ! f�1; C1g given by .f ^ g/.x; y/ D f .x/ ^ g.y/: Note
that in this notation, f and f ^ f are completely different functions, the former having
domain X and the latter X � X: An elegant observation, due to Beigel et al. [6], relates
the notions of sign-representation and rational approximation for conjunctions of Boolean
functions.

THEOREM 2.4 (Beigel, Reingold, and Spielman). Let f W X ! f�1; C1g and gW Y !

f�1; C1g be given functions, where X; Y � Rn: Let d be an integer with RC.f; d/ C

RC.g; d/ < 1: Then

deg˙.f ^ g/ 6 2d:

Proof (Beigel, Reingold, and Spielman). Consider rational functions p1.x/=q1.x/ and
p2.y/=q2.y/ of degree at most d such that q1 and q2 are positive on X and Y; respec-
tively, and

sup
X

ˇ̌̌̌
f .x/ �

p1.x/

q1.x/

ˇ̌̌̌
C sup

Y

ˇ̌̌̌
g.y/ �

p2.y/

q2.y/

ˇ̌̌̌
< 1:

Then

f .x/ ^ g.y/ � sgnf1 C f .x/ C g.y/g � sgn
�

1 C
p1.x/

q1.x/
C

p2.y/

q2.y/

�
:

Multiplying the last expression by the positive quantity q1.x/q2.y/ gives f .x/ ^ g.y/ �

sgnfq1.x/q2.y/ C p1.x/q2.y/ C p2.y/q1.x/g:

We will also need a converse to Theorem 2.4, proved in [34, Thm. 3.9].

THEOREM 2.5 (Sherstov). Let f W X ! f�1; C1g and gW Y ! f�1; C1g be given func-
tions, where X; Y � Rn are arbitrary finite sets. Assume that f and g are not identically
false. Let d D deg˙.f ^ g/: Then

RC.f; 4d/ C RC.g; 2d/ < 1:

Symmetric functions. Let Sn denote the symmetric group on n elements. For σ 2 Sn

and x 2 f0; 1gn, we denote σx D .xσ.1/; : : : ; xσ.n// 2 f0; 1gn: For x 2 f0; 1gn; we define
jxj D x1 Cx2 C� � �Cxn: A functionφW f0; 1gn ! R is called symmetric ifφ.x/ D φ.σx/

for every x 2 f0; 1gn and every σ 2 Sn: Equivalently, φ is symmetric if φ.x/ is uniquely



8 A. A. SHERSTOV

determined by jxj: Symmetric functions on f0; 1gn are intimately related to univariate poly-
nomials, as borne out by Minsky and Papert’s symmetrization argument [25]:

PROPOSITION 2.6 (Minsky and Papert). Let φW f0; 1gn ! R be a polynomial of degree d:

Then there is a polynomial p 2 Pd such that

E
σ2Sn

Œφ.σx/� D p.jxj/; x 2 f0; 1g
n:

We will need the following consequence of Minsky and Papert’s technique for rational
functions, pointed out in [34, Prop. 2.7].

PROPOSITION 2.7. Let n1; : : : ; nk be positive integers. Consider a function F W f0; 1gn1 �

� � � � f0; 1gnk ! f�1; C1g such that F.x1; : : : ; xk/ � f .jx1j; : : : ; jxkj/ for some
f W f0; 1; : : : ; n1g � � � � � f0; 1; : : : ; nkg ! f�1; C1g: Then for all d;

RC.F; d/ D RC.f; d/:

3. ANALYSIS OF RANDOM HALFSPACES

In this section, we prove a certain structural property of random halfspaces. Specifically,
we will fix integers w1; w2; : : : ; wn at random from a suitable range and analyze the sum

nX
iD1

wi xi

as x ranges over f0; 1gn: Our objective will be to show that, for a typical choice of the
weights w1; w2; : : : ; wn; the distribution of this sum modulo 2�.n/ is highly random. More
precisely, we will show that the subset Xs � f0; 1gn that induces any particular sum s

modulo 2�.n/ is relatively large and that membership in Xs is almost uncorrelated with
any polynomial of low degree. We start with a technical lemma.

LEMMA 3.1. Let f; gW f0; 1gn ! f0; 1g be given functions. Fix an integer k with 0 6 k 6
n=2: For a set S � f1; 2; : : : ; ng; define FS W f0; 1gn ! f0; 1g by

FS .x/ D f .x/ ^

 
g.x/ ˚

M
i2S

xi

!
:

Fix a real ζ > 0: Then with probability at least 1 � 2�nCH.k=n/nC2ζ n over a uniformly
random choice of S 2 P.f1; 2; : : : ; ng/; one hasˇ̌̌̌

OFS .T / �
1

2
Of .T /

ˇ̌̌̌
6 2�ζ n�1; jT j 6 k:(3.1)

Proof. Define φW f0; 1gn ! Œ�1=2; 1=2� by φ.x/ D f .x/g.x/ �
1
2
f .x/: Define S �

P.f1; 2; : : : ; ng/ by S D fS W j Oφ.S/j > 2�ζ n�1g: By Parseval’s identity (2.2),

jS j 6 4ζ n:(3.2)

Since FS .x/ D
1
2
f .x/ C .�1/

P
i2S xiφ.x/; we haveˇ̌̌̌

OFS .T / �
1

2
Of .T /

ˇ̌̌̌
D j Oφ.S ˚ T /j; S; T � f1; 2; : : : ; ng:(3.3)
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For a uniformly random S 2 P.f1; 2; : : : ; ng/; the set fS ˚ T W jT j 6 kg contains any
fixed element of P.f1; 2; : : : ; ng/ with probability 2�n

Pk
iD0

�
n
i

�
: By the union bound, we

infer that

P
S

ŒfS ˚ T W jT j 6 kg \ S ¤ ∅� 6 jS j 2�n

kX
iD0

 
n

i

!
;

which in view of (2.1) and (3.2) is bounded from above by 2�nCH.k=n/nC2ζ n: This obser-
vation, along with (3.3), completes the proof.

Using Lemma 3.1 and induction, we now obtain a key intermediate result.

LEMMA 3.2. Fix an integer k > 0 and reals ε; ζ 2 .0; 1=2/: Choose sets S0; S1; : : : ; Sk 2

P.f1; 2; : : : ; ng/ uniformly at random. Fix any integer s and define f W f0; 1gn ! f0; 1g

by

f .x/ D 1 ,

kX
iD0

2i
X

j 2Si

xj � s .mod 2kC1/:(3.4)

Then with probability at least 1�.k C1/2�nCH.ε/nC2ζ n over the choice of S0; S1; : : : ; Sk ;

one has ˇ̌̌̌
Of .T / �

δT;∅

2kC1

ˇ̌̌̌
6 2�ζ n; jT j 6 εn:(3.5)

Proof. In view of the modular counting in (3.4), one may assume that 0 6 s < 2kC1 and
therefore s D

Pk
iD0 2i bi for some b0; b1; : : : ; bk 2 f0; 1g: The proof of the lemma is by

induction on k for a fixed s:

The base case k D 0 corresponds to f .x/ D
1
2

C
1
2
.�1/b0χS0

.x/: One obtains (3.5)
by conditioning on the event jS0j > εn; which in view of (2.1) occurs with probability no
smaller than 1 � 2�nCH.ε/n:

We now consider the inductive step. Define f 0W f0; 1gn ! f0; 1g by

f 0.x/ D 1 ,

k�1X
iD0

2i
X

j 2Si

xj �

k�1X
iD0

2i bi .mod 2k/:

Let E1 be the event, over the choice of S0; : : : ; Sk�1; that jbf 0.T / � 2�kδT;∅j 6 2�ζ n for
jT j 6 εn: By the inductive hypothesis,

PŒE1� > 1 � k2�nCH.ε/nC2ζ n:(3.6)

Let E2 be the event, over the choice of S0; : : : ; Sk ; that j Of .T / �
1
2
bf 0.T /j 6 2�ζ n�1 for

jT j 6 εn: In this terminology, it suffices to show that

PŒE1 ^ E2� > 1 � .k C 1/2�nCH.ε/nC2ζ n:(3.7)

Observe that

f .x/ D f 0.x/ ^

 
g.x/ ˚

M
i2Sk

xi

!
;

where gW f0; 1gn ! f0; 1g is the function such that g.x/ D 1 if and only if bk is the
.k C 1/st least significant bit of the integer

Pk�1
iD0 2i

P
j 2Si

xj : As a result, Lemma 3.1
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shows that PŒE2� > 1 � 2�nCH.ε/nC2ζ n: This bound, along with (3.6), settles (3.7) and
thereby completes the induction.

We have reached the main result of this section.

THEOREM 3.3 (Key property of random halfspaces). Fix an integer k > 0 and reals ε; ζ 2

.0; 1=2/: Choose integers w1; w2; : : : ; wn uniformly at random from f0; 1; : : : ; 2kC1 � 1g:

For s 2 Z; define fs W f0; 1gn ! f0; 1g by

fs.x/ D 1 ,

nX
iD1

wi xi � s .mod 2kC1/:(3.8)

Then with probability at least 1 � .k C 1/2�nCH.ε/nC2ζ nCkC1 over the choice of
w1; w2; : : : ; wn; one hasˇ̌̌̌

Ofs.T / �
δT;∅

2kC1

ˇ̌̌̌
6 2�ζ n; jT j 6 εn; s 2 Z:

Proof. In view of the modular counting in (3.8), it suffices to prove the theorem for s 2

f0; 1; : : : ; 2kC1 � 1g: The functions fs have the following equivalent definition: pick sets
S0; S1; : : : ; Sk 2 P.f1; 2; : : : ; ng/ uniformly at random and define

fs.x/ D 1 ,

kX
iD0

2i
X

j 2Si

xj � s .mod 2kC1/:

The proof is now complete by Lemma 3.2 and the union bound over s:

4. ZEROING OUT CORRELATIONS BY A CHANGE OF DISTRIBUTION

Recall the setting of the previous section, where we fixed integers w1; w2; : : : ; wn at
random from a suitable range and analyzed the sum

Pn
iD1 wi xi as x ranged over f0; 1gn:

We showed that the subset Xs � f0; 1gn that induces any particular sum s modulo 2�.n/

is relatively large and that membership in Xs has almost zero correlation with any given
polynomial of low degree. For the purposes of this paper, the correlations with low-degree
polynomials need to be exactly zero. In this section we show that, with respect to a suitable
distribution µs on each Xs; membership in Xs will indeed have zero correlation with any
low-degree polynomial.

A starting point in our discussion is a general statement on zeroing out the correlations
of given Boolean functions χ1;χ2; : : : ;χk with another Boolean function f: Recall that
for functions f; gW X ! R on a finite set X; we use the notation

hf; gi D
1

jX j

X
x2X

f .x/g.x/:
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THEOREM 4.1. Let f;χ1; : : : ;χk W X ! f�1; C1g be given functions on a finite set X:

Suppose that

kX
iD1

jhf;χi ij <
1

2
;(4.1)

kX
j D1
j ¤i

jhχi ;χj ij 6
1

2
; i D 1; 2; : : : ; k:(4.2)

Then there exists a probability distribution µ on X such that

E
µ

Œf .x/χi .x/� D 0; i D 1; 2; : : : ; k:

REMARK 4.2. A comment is in order on the hypothesis of Theorem 4.1. The theorem
states that if χ1;χ2; : : : ;χk each have a small correlation with f and, in addition, have
small pairwise correlations, then a distribution exists with respect to which f is completely
uncorrelated with χ1;χ2; : : : ;χk : The latter part of the hypothesis, namely the requirement
(4.2) of small pairwise correlations for χ1;χ2; : : : ;χk ; may seem unnecessary at first. In
actuality, it is vital. Exponential lower bounds on the weights of linear perceptrons [27, 38]
imply, by linear programming duality, the existence of functions f;χ1;χ2; : : : ;χk W X !

f�1; C1g such that jhf;χi ij D expf��.k/g; i D 1; 2; : : : ; k; and yet

f .x/ � sgn

 
kX

iD1

αiχi .x/

!
(4.3)

for some fixed reals α1; : : : ;αk : In this construction, the correlation of f with each χi is
small, in fact exponentially smaller than what is assumed in Theorem 4.1; nevertheless,
the representation (4.3) rules out a distribution µ with respect to which f could have zero
correlation with each χi ; for such a distribution µ would have to obey

0 < E
µ

"ˇ̌̌̌
ˇ

kX
iD1

αiχi .x/

ˇ̌̌̌
ˇ
#

D E
µ

"
f .x/

kX
iD1

αiχi .x/

#
D

kX
iD1

αi E
µ

Œf .x/χi .x/� D 0:

Proof of Theorem 4.1. Consider the linear system

Mα D γ(4.4)

in the unknown α 2 Rk ; where M D Œhχi ;χj i�i;j is a matrix of order k and γ D

.hf;χ1i; : : : ; hf;χki/ 2 Rk : Then (4.2) shows that M is strictly diagonally dominant and
hence nonsingular by Theorem 2.1. Fix the unique solution α to the system (4.4). Then
2jαi j �

Pk
j D1jαj hχi ;χj ij 6 jhf;χi ij for i D 1; 2; : : : ; k: Summing these k inequalities,

we obtain

2

kX
iD1

jαi j �

kX
j D1

jαj j

kX
iD1

jhχi ;χj ij 6
kX

iD1

jhf;χi ij;
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which in view of (4.1) and (4.2) shows that
Pk

iD1jαi j < 1: Therefore, the functionµW X !

R given by

µ.x/ D ε

 
1 � f .x/

kX
iD1

αiχi .x/

!
is a probability distribution on X for a suitable normalizing factor ε > 0: At last,

E
µ

Œf .x/χi .x/� D εjX j

0@hf;χi i �

kX
j D1

αj hχi ;χj i

1A D 0;

where the final equality holds by (4.4).

We are now in a position to prove the main result of this section.

THEOREM 4.3. Let α > 0 be a sufficiently small absolute constant. Choose integers
w1; w2; : : : ; wn uniformly at random from f0; 1; : : : ; 2bαncC1 � 1g: For s 2 Z; define

Xs D

(
x 2 f0; 1g

n
W

nX
iD1

wi xi � s .mod 2bαncC1/

)
:(4.5)

Then with probability at least 1 � e�n=3 over the choice of w1; w2; : : : ; wn; there is a
distribution µs on Xs .for each s/ such that

E
µs

Œp.x/� D E
µt

Œp.x/�(4.6)

for any s; t 2 Z and any polynomial p of degree at most bαnc:

Proof. Let α > 0 be sufficiently small. We will assume throughout the proof that n > 1=α;

the theorem being trivial otherwise. Set ε D 2α; ζ D 1=5; and k D bαnc in Theorem 3.3.
Then with probability at least 1 � e�n=3 over the choice of w1; w2; : : : ; wn; one hasˇ̌̌̌

Ofs.T / �
δT;∅

2bαncC1

ˇ̌̌̌
6 2�n=5; jT j 6 2αn; s 2 Z;(4.7)

where fs W f0; 1gn ! f0; 1g is given by fs.x/ D 1 , x 2 Xs : It follows that for each s;

jXsj D 2n Ofs.∅/ > 2n.2�bαnc�1
� 2�n=5/:(4.8)

For f; gW f0; 1gn ! R; we will write hf; giXs
D jXsj�1

P
x2Xs

f .x/g.x/: Let S �

P.f1; 2; : : : ; ng/ be the system of nonempty subsets of at most αn elements. Fix any
T 2 S : Then for each s;X

S2S
S¤T

jhχS ;χT iXs
j D

2n

jXsj

X
S2S
S¤T

j Ofs.S ˚ T /j 6
2n

jXsj
� jS j 2�n=5 <

1

2
;(4.9)

where the final two inequalities follow from (2.1), (4.7), and (4.8). Similarly, for each s;X
S2S

jhfs;χS iXs
j D

2n

jXsj

X
S2S

j Ofs.S/j 6
2n

jXsj
� jS j 2�n=5 <

1

2
:(4.10)

In view of (4.9) and (4.10), Theorem 4.1 provides a distribution µs on f0; 1gn that is sup-
ported on Xs and obeys Oµs.S/ D 0 for S 2 S : Since µs is a probability distribution, we
additionally have Oµs.∅/ D 2�n for all s: In particular, the distributions µs have identical
Fourier spectra up to coefficients of order αn; which is another way of stating (4.6).
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5. REDUCTION TO A UNIVARIATE PROBLEM

Recall from the Introduction that the crux of our proof is to establish the existence of a
halfspace f W f0; 1gn ! f�1; C1g that requires a rational function of degree �.n/ for point-
wise approximation within 1=3: The purpose of this section is to reduce this task, for a suit-
ably chosen random halfspace, to a univariate problem. The univariate problem pertains to
the uniform approximation of the sign function on the set f˙1; ˙2; ˙3; : : : ; ˙2�.n/g and
has been solved in previous work. Key to this univariate reduction will be the construction
of probability distributions in the previous two sections.

THEOREM 5.1 (Reduction to a univariate problem). Put k D bαnc; where α > 0 is the
absolute constant from Theorem 4.3. Choose w1; w2; : : : ; wn uniformly at random from
f0; 1; : : : ; 2kC1 � 1g: Define f W f0; 1gn � f0; 1; 2; : : : ; ng ! f�1; C1g by

f .x; t/ D sgn

 
1

2
C

nX
iD1

wi xi � 2kC1t

!
:

Then with probability at least 1 � e�n=3 over the choice of w1; w2; : : : ; wn; one has

RC.f; d/ > RC.f˙1; ˙2; ˙3; : : : ; ˙2k
g; d /; d D 0; 1; : : : ; k:(5.1)

Proof. For s D ˙1; ˙2; ˙3; : : : ; ˙2k ; define Xs � f0; 1gn by (4.5). Then by Theo-
rem 4.3, with probability at least 1 � e�n=3 there is a distribution µs on Xs for each s such
that

E
µs

Œp.x/� D E
µr

Œp.x/�(5.2)

for any s; r 2 f˙1; ˙2; ˙3; : : : ; ˙2kg and any polynomial p of degree no greater than k:

In the remainder of the proof, we will work with a fixed choice of weights w1; w2; : : : ; wn

for which the described distributions µs exist.
Suppose that RC.f; d/ < ε where 0 < ε < 1 and 0 6 d 6 k: Then there are degree-d

polynomials p; q on Rn � R such that on the domain of f;

0 < .1 � ε/q.x; t/ 6 p.x; t/f .x; t/ 6 .1 C ε/q.x; t/:(5.3)

On the support of µs (for s D ˙1; ˙2; ˙3; : : : ; ˙2k), the linear form

`.x; s/ D 2�k�1

 
nX

iD1

wi xi � s

!
obeys `.x; s/ 2 f0; 1; 2; : : : ; ng and f .x; `.x; s// D sgn s: Letting t D `.x; s/ in (5.3) and
passing to expectations,

0 < E
x�µs

�
q.x; `.x; s//

�
.1 � ε/ 6 E

x�µs

�
p.x; `.x; s//

�
sgn s

6 E
x�µs

�
q.x; `.x; s//

�
.1 C ε/:

It follows from (5.2) that Eµs
Œp.x; `.x; s//� D P.s/ and Eµs

Œq.x; `.x; s//� D Q.s/ for
some P; Q 2 Pd and all s: As a result, RC.f˙1; ˙2; ˙3; : : : ; ˙2kg; d / 6 ε; the approx-
imant in question being P=Q:

It remains to rewrite the previous theorem in terms of functions on the hypercube
f0; 1g2n rather than the set f0; 1gn � f0; 1; 2; : : : ; ng:
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THEOREM 5.2. Put k D bαnc; where α > 0 is the absolute constant from Theo-
rem 4.3. Choose w1; w2; : : : ; wn uniformly at random from f0; 1; : : : ; 2kC1 � 1g: Define
f W f0; 1g2n ! f�1; C1g by

f .x/ D sgn

 
1

2
C

nX
iD1

wi xi � 2kC1

2nX
iDnC1

xi

!
:

Then with probability at least 1 � e�n=3 over the choice of w1; w2; : : : ; wn; one has

RC.f; d/ > RC.f˙1; ˙2; ˙3; : : : ; ˙2k
g; d /; d D 0; 1; : : : ; k:

Proof. Immediate from Proposition 2.7 and Theorem 5.1.

6. MAIN RESULT AND GENERALIZATIONS

We now combine the newly obtained result on rational approximation with known re-
sults from Section 2 to prove the main theorem of this work.

THEOREM 6.1 (Main result). Fix sufficiently small absolute constants α > 0 and β D

β.α/ > 0: Choose integers w1; w2; : : : ; wn 2 f0; 1; : : : ; 2bαncC1�1g uniformly at random.
Then with probability at least 1 � e�n=3; the function f W f0; 1g2n ! f�1; C1g given by

f .x/ D sgn

 
1

2
C

nX
iD1

wi xi � 2bαncC1

2nX
iDnC1

xi

!
obeys

deg˙.f ^ f / > bβnc:(6.1)

Proof. Theorem 5.2 shows that with probability at least 1 � e�n=3 over the choice of
w1; w2; : : : ; wn; one has

RC.f; d/ > RC.S; d/; d D 0; 1; : : : ; bαnc;(6.2)

where S D f˙1; ˙2; ˙3; : : : ; ˙2bαncg and α > 0 is the absolute constant from Theo-
rem 4.3. In the remainder of the proof, we will condition on this event.

Suppose now that deg˙.f ^ f / < bβnc; where β is a constant to be chosen later
subject to 0 < β < α=4: Then Theorem 2.5 implies that RC.f; b4βnc/ < 1=2; which in
view of (6.2) leads to RC.S; b4βnc/ < 1=2: The last inequality violates Theorem 2.2 for
small enough β > 0: Thus, (6.1) holds for β small enough.

Recall that the technical crux of this paper is an optimal lower bound for the rational
approximation of a halfspace. We will have occasion to appeal to this result again, and for
this reason we formulate it as a theorem in its own right.

THEOREM 6.2. A family of halfspaces hnW f0; 1gn ! f�1; C1g; n D 1; 2; 3; : : : ; exists
such that

RC.hn; d / D 1 � exp
n
��

� n

d

�o
; d D 1; 2; : : : ; �.n/:(6.3)

Proof. The lower bound in (6.3) is immediate from Theorem 5.2 and the univariate lower
bounds in Theorem 2.2.
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Next, every halfspace hnW f0; 1gn ! f�1; C1g constructed in Theorem 5.2 trivially
obeys RC.hn; 1/ < 1�expf��.n/g: For 0 < ξ < 1; Newman’s classical work [28] shows
that RC.Œ�1; �ξ �[ Œξ ; 1�; d/ 6 1�ξ �.1=d/; whence by composition of the approximants
one obtains the upper bound in (6.3).

Mixed intersection. Theorem 6.1 shows that the intersection of two halfspaces has the
asymptotically highest threshold degree. At the same time, Beigel et al. [6] showed that
the intersection of a constant number of majority functions on f0; 1gn; which are particu-
larly simple halfspaces, has threshold degree O.log n/: We now derive a lower bound of
˝.
p

n log n/ on the threshold degree of the intersection of a halfspace and a majority func-
tion, which improves quadratically on the previous bound in [34] and essentially matches
the upper bound, O.

p
n log n/; given below in Remark 6.4.

THEOREM 6.3. A family of halfspaces hnW f0; 1gn ! f�1; C1g; n D 1; 2; 3; : : : ; exists
such that

deg˙.hn ^ MAJn/ D �.
p

n log n/:(6.4)

Proof. The lower bound in (6.4) is immediate from Theorems 2.3, 2.5, and 6.2. The upper
bound in (6.4) is immediate from Theorems 2.3, 2.4, and 6.2.

REMARK 6.4. The construction of Theorem 6.3 is essentially best possible in that every
sequence of halfspaces hnW f0; 1gn ! f�1; C1g; n D 1; 2; 3; : : : ; obeys

deg˙.hn ^ MAJn/ D O.
p

n log n/:(6.5)

To derive this upper bound, recall that RC.hn; 1/ < 1 � expf��.n log n/g for every
halfspace hnW f0; 1gn ! f�1; C1g; by a classical result due to Muroga [26]. Since
RC.Œ�1; �ξ � [ Œξ ; 1�; d/ < 1 � ξ �.1=d/ for 0 < ξ < 1 by Newman [28], we obtain
by composition of approximants that RC.hn; d / < 1 � expf��.fn log ng=d/g: This set-
tles (6.5) in view of Theorems 2.3 and 2.4.

Threshold density. In addition to threshold degree, several other complexity measures
are of interest when sign-representing Boolean functions by real polynomials. One such
complexity measure is density, i.e., the least k for which a given function can be sign-
represented by a linear combination of k parity functions. Formally, for a given function
f W f0; 1gn ! f�1; C1g; the threshold density dns.f / is the minimum size jS j of a family
S � P.f1; 2; : : : ; ng/ such that

f .x/ � sgn

 X
S2S

λSχS .x/

!
for some reals λS ; S 2 S : It is clear from the definition that dns.f / 6 2n for all functions
f W f0; 1gn ! f�1; C1g; and we will show that the intersection of two halfspaces on f0; 1gn

has threshold density 2�.n/:

To this end, we recall an elegant technique for converting Boolean functions with high
threshold degree into Boolean functions with high threshold density, due to Krause and
Pudlák [21, Prop. 2.1]. Their construction sends a function f W f0; 1gn ! f�1; C1g to the
function f KPW .f0; 1gn/3 ! f�1; C1g given by

f KP.x; y; ´/ D f .: : : ; .´i ^ xi / _ .´i ^ yi /; : : : /:
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THEOREM 6.5 (Krause and Pudlák). Every function f W f0; 1gn ! f�1; C1g obeys

dns.f KP/ > 2deg˙.f /:

We are now in a position to obtain the desired density results.

THEOREM 6.6. A family of halfspaces hnW f0; 1gn ! f�1; C1g; n D 1; 2; 3; : : : ; exists
such that

dns.hn ^ hn/ > expf�.n/g;(6.6)

dns.hn ^ MAJn/ > expf�.
p

n log n/g:(6.7)

Proof. The parity of several parity functions is another parity function. As a result,

max
hn

fdns.hn ^ hn/g > max
F

fdns.F ^ F /g;(6.8)

where the maximum on the left is over all halfspaces hnW f0; 1gn ! f�1; C1g and the
maximum on the right is over arbitrary functions F W f0; 1gm ! f�1; C1g (for arbitrary m)
such that dns.F / 6 n: For each n D 1; 2; 3; : : : ; Theorem 6.1 ensures the existence of
a halfspace fnW f0; 1gn ! f�1; C1g with deg˙.fn ^ fn/ > ˝.n/: By Theorem 6.5, the
function .fn ^fn/KP D fn

KP
^fn

KP has threshold density expf˝.n/g: Since dns.fn
KP/ 6

4n C 1; the right member of (6.8) is at least expf˝.n/g:

This completes the proof of (6.6). The proof of (6.7) is closely analogous, with Theo-
rem 6.3 used instead of Theorem 6.1.

The lower bounds in Theorem 6.6 are essentially optimal. Specifically, (6.6) is tight
for trivial reasons, whereas the lower bound (6.7) nearly matches the upper bound of
expf�.

p
n log2 n/g that follows from (6.5).

We also note that Theorem 6.5 readily generalizes to linear combinations of conjunc-
tions rather than parity functions. In other words, if a function f W f0; 1gn ! f�1; C1g has
threshold degree d and f KP.x; y; ´/ � sgn.

PN
iD1 λi Ti .x; y; ´// for some conjunctions

T1; : : : ; TN of the literals x1; y1; ´1; : : : ; xn; yn; ´n; :x1; :y1; :´1; : : : ; :xn; :yn; :´n;

then N > 2˝.d/: With this remark in mind, Theorem 6.6 and its proof readily carry over
to this alternate definition of density.
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