
Oblivious RAMs without Cryptographic Assumptions 1

Miklós Ajtai
IBM Research, Almaden Research Center

ajtai@almaden.ibm.com

Abstract. We show that oblivious on-line simulation with only polylogarithmic increase
in the time and space requirements is possible on a probabilistic (coin flipping) RAM without
using any cryptographic assumptions. The simulation will fail with a negligible probability.
If n memory locations are used, then the probability of failure is at most n− logn. Pippenger
and Fischer has shown in 1979, see [11], that a Turing machine with one-dimensional tapes,
performing a computation of length n can be simulated on-line by an oblivious Turing machine
with two dimensional tapes, in time O(n log n), where a Turing machine is oblivious if the
movements of it heads as a function of time are independent of its input. For RAMs the notion
of obliviousness was defined by Goldreich in 1987 in [6], and he proved a simulation theorem
about it. A RAM is oblivious if the distribution of its memory access pattern, which memory
cells are accessed at which time, is independent of the program running on the RAM, provided
that the time used by the program is fixed. That is, an adversary watching the memory access
will not know anything about the program running on the machine apart from its total time.
Ostrovsky, improving Goldreich’s theorem, has shown in 1990, see [8], [9], [7], that a RAM
using n memory cells can a be simulated by an oblivious RAM with a random oracle (where the
random bits can be accessed repeatedly) so that the increase of the space and time requirement
is only about a factor of poly(log n) (Goldreich’s factor was about exp[(log n)1/2]). In both
cases the oblivious RAM with a random oracle, can be replaced, by an oblivious probabilistic
(coin-flipping) RAM, provided that we accept some unproven cryptographic assumptions, e.g.,
the existence of a one-way function. In this paper we show that simulation with an oblivious,
coin-flipping RAM, with only a factor of poly(log n) increase in time and space requirements, is
possible, even without any cryptographic assumptions.

In the theorems of Goldreich and Ostrovsky it is assumed that the oblivious RAM has a
protected CPU, that is, a constant number of registers, so that, the accesses to these registers
are not included into the memory access pattern, and so they are not available to the adversary.
We show that the protected CPU is not needed for the present, or former, results, since a
protected CPU can be simulated on a RAM, so that the time requirement is increasing only by
a constant factor, and the space requirement by an additive constant. In fact we may even let
the adversary know which instruction is executed at each time, and the results still remain the
same. (Note however, that the theorems of Goldreich and Ostrovsky hold even for an adversary
who can see the contents of all memory cells outside the protected CPU. There is no equivalent
statement in the present result.)

1An extended abstract of this paper will appear in the proceedings of STOC’2010

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 28 (2010)

The history of the problem. Pippenger and Fischer has shown in 1979, see [11], that
a Turing machine with one-dimensional tapes performing a computation of length n can be
simulated on-line by an oblivious Turing machine with two dimensional tapes in time O(n log n),
where a Turing machine is oblivious if the movements of its heads as a function of time are
independent of its output. Obliviousness means in other words that if an adversary is watching
an oblivious Turing machine but can see only the movements of the heads without seeing the
contents of the cells of the tapes, then, apart from n, the total time of computation on the
original machine, he will not gain any information about the input.

For RAM machines obliviousness was defined by Goldreich, see [6] or [7] as a natural exten-
sion of this concept as we will describe later. Theorems which can be considered as the analogue
of the mentioned theorems for Turing machine were proved by Goldreich and then improved
by Ostrovsky, see [6], [8], [9], [7]. To state these result we use the RAM model as defined in
[1]. Suppose that each memory cell of the machine contains a 0, 1 sequence of length q. For
the definition of obliviousness we divide the total memory into the CPU and the main memory.
The CPU contains a constant number of cells (their number is independent of q) that we will
call registers and the remaining memory cells form the memory of the machine. The registers
has the following roles, the results of the arithmetic operations always appear in a register, the
instruction pointer is a register, the read instruction puts the content of a memory cell into a
register etc. Apart from that, there may be a few registers for temporary storage.

The motivation of the definition of obliviousness is the assumption that there is an adversary
who does not see at all what happens in the CPU , but when the machine accesses a memory cell
to fetch its content to put it into a register or to store the content of a register in a memory cell,
then the adversary will know which memory cell was accessed. That is, the adversary knows
the access pattern of the memory cells but does not have any information about the accesses of
registers and instructions performed on their contents. Since the total time spent on a program
cannot be hidden efficiently, we assume that it is known to the adversary. Therefore, in the
following discussion, we will assume that the total time spent by the program is fixed. This
picture was partly motivated by the problem of software protection, where a physically protected
CPU is a natural and useful assumption, see [6], [8], [9],[7].

The RAM is oblivious in a deterministic sense if the access pattern of the memory cells
(outside the CPU) is independent of the program that is executed. To make an oblivious
RAM , in this deterministic sense, one solution is the following. At each time when an access
is needed, the CPU reads and rewrites the contents of all of the memory cells used by the
program, and this way it hides the single actual operation. There is no more efficient solution
in this deterministic sense. Goldreich proved however, see [6], [7], that if the RAM has access
to a random oracle then a much more efficient solution is possible. Namely, we will say that
a program is oblivious if the distribution of its memory access pattern is independent of the
of the program that is executed. Therefore the adversary does not gain any information about
the program apart from the time used by it. In Goldreich’s solution the time for executing the
program increases by a factor of 2

√
2 logn log logn, where the original program is using a RAM

with n memory locations. (The oblivious simulation is on-line in the sense that the simulating
program gets the input words and produces the output words in the same overall order than the
original program.)

2

Ostrovsky has improved the efficiency of the simulation so that the time requirement of
the oblivious simulation is increased only by a factor of poly(log n) and in fact if the time t
required by the machine is smaller than n, by a factor of poly(log t), and the space requirement
of the simulation is larger than the space requirement of the original program by the same
min{poly(log n),poly(log t)} factor. See [8], [9], [7]. Ostrovsky’s simulation is called the hierar-
chical algorithm because of the nature of the data structure used by the RAM. The hierarchical
algorithm is also using a random oracle. For a more practical solution (in both cases) the ran-
dom oracle may be substituted by a probabilistic (coin flipping) RAM, provided that we accept
some unproven cryptographic assumption, in the case of Ostrovsky’s theorem the existence of a
one-way function. Note that a machine using a random oracle has the advantage compared to
a coin flipping machine, that the random oracle remembers “for free” previous random steps,
while a coin flipping machine, if it does not store this information, then it cannot recover it later.
We also note that in the mentioned theorems the simulation can be performed with probability
one.

Oblivious simulations are also of interest as a possible defense against so called “cache at-
tacks”, see Osvik, Shamir, and Tromer [10], and in general keeping computation more secure.

The main result. We show that oblivious on-line simulation with polylogarithmic increase
in the time and space is possible on a probabilistic (coin flipping) RAM without using any
cryptographic assumptions. The simulation will fail with a negligible probability. If n mem-
ory locations are used, then the probability of failure is at most n− logn. In case of failure the
adversary will get some information about the input. The solution is an extension of Ostro-
vsky’s hierarchical algorithm, some parts of the proofs remain unchanged, but there are also
new difficulties leading to combinatorial problems. The most important change is that the
randomization is done in different way, so that the machine is now able to recover efficiently the
results of previously performed randomizations. This makes it possible to replace the random
oracle by coin flipping.

Another improvement is that the assumption about the existence of a protected CPU can
be dropped, we formulate the theorem directly on a RAM, that is, the adversary will also know
which registers are accessed at each time, and which instruction has been executed. However
for the proof we use the same protected CPU computational model as Goldreich and Ostrovsky
and then show, that in a RAM, a protected CPU can be simulated.

While preparing this manuscript the author has been informed of a recent independent work
about the same problem by Damg̊ard, Meldgaard, and Nielsen, see [5].

Computational Model. We use a von Nuemann type random access machine, where data
and program are not distinguished. For the definition for such a machine see e.g., in [1] the
random access stored program (RASP) machines, in the modified form where the contents of
the memory cells are not arbitrary integers, but integers in the interval [0, 2q − 1].

In order to present the main result concisely, without too many defintions, we restrict our
attention to one specific RAM described in [1], with the mentioned modifications. However
our results remain true for a very large class of machines including essentially every reasonable
defintion for a RAM. Later we will discuss what is ”reasonable” in more detail.

For each positive integer q ≥ 10, Mq is a machine with 2q memory cells each containing
a sequence of 0, 1 bits of length q. These cells will be called cell(0), cell(1), ..., cell(2q − 1).
We will consider the sequences contained in the cells as the binary representations of natural

3

numbers from the interval [0, 2q − 1], so if we say that a cell contains the natural number i,
we mean it contains its binary representation. (We may restrict the number of memory cells
if needed, by simply saying that a particular program is using only the first m cells for some
m < 2q. Therefore our requirement that the machine has 2q − 1 memory cells, is not a real
restriction). The state of the machine at each time is a function which assigns to each of memory
cells its content.
Mq has γ0 instructions. The names or encodings of these instructions are integers in [0, 2q−1].
cell(0) is called the accumulator of the machine and cell(1) the instruction pointer. (The

choice of these particular cells for the mentioned roles have no significance.)
The machineMq has six types of instructions. (a) arithmetic operations, (b) an instruction

to generate a random number, (c) instructions moving data between the memory cells, (d) control
transfer instructions, which determine which instruction will be executed next, (e) input/output
instructions, and (f) the halt instruction to terminate the execution of the program. We will
define each of these types later in more detail.

The machine Mq is working in cycles, each cycle counts as one time unit. In each cycle it
does the following. It checks the content of the instruction pointer. Its content is interpreted as
an address, of a memory cell, say, number i. Then the machine executes the instruction whose
name is in cell i. An instruction may have parameters (for the sake of simplicity we assume
that each instruction has at most one parameter). A parameter typically is the address of a
memory cell. The content of cell i + 1 is considered as the parameter of the instruction in cell
number i. The machine executes the instruction with the indicated parameter and then, if it is
not a control transfer instruction, it increases the content of the instruction pointer by 2. If it
is a control transfer instruction then the instruction defines the new content of the instruction
pointer. We will say that a memory cell or register is involved in an instruction if its content
is used by the machine to execute the instruction, or the result of the instruction is placed in
it. We will use this concept by considering an adversary who wants to get some information
about what the machine is doing, and at each instruction knows which memory cells/registers
are involved in the instructions, but does not know their contents.

(a) The arithmetic instructions are +,×,−, bx/yc, the constants 0, 1, and 2q − 1. In case of
the arithmetic operations of the form f(x, y), at the time when the machine reads the instruction,
which is in cell(i), x must be in the accumulator, and y must be in the memory cell whose
address is the parameter of the instruction, that is, y is in cell(a) where a is the content of
cell(i+1). The result appears in the accumulator. In the case of the constants, the result of the
instruction, that is, the constant, appears in the accumulator (and the value of the parameter
is irrelevant).

(b) an instruction to generate a random number. A random integer from the interval [0, 2q−1]
appears in the accumulator, the value of the parameter is irrelevant.

(c) instructions moving data between the memory cells. Read instruction: if the value of the
parameter is a, then the instruction puts the content of cell(a) into the accumulator. Write
instruction: if the value of the parameter is a, then the instruction puts the content of the
accumulator into cell(a).

(d) control transfer instructions, GOTO X instruction. If the value of the parameter is X
then the content of the intruction pointer is changed into a. “IF X = 0 THEN GOTO Y ”
instruction. If the content of the accumulator is 0 then the content of the instruction pointer is

4

changed into Y , where Y is the value of the parameter, otherwise the value of the instruction
pointer is increased by 2. “IF X > 0 THEN GOTO Y ” If the content of the accumulator is
greater than 0, then the content of the instruction pointer is changed into Y , where Y is the
value of the parameter, otherwise the value of the instruction pointer is increased by 2.

(e) input/output instructions. INPUT instruction. The input is written in the accumulator.
OUTPUT instruction. The value of the accumulator is given as output. In both cases the value
of the parameter is irrelevant.

(f) HALT instruction. Terminates the execution of the program.
The first few memory cells sometimes will be also called registers. (Intuitively this corre-

sponds to the CPU of a computer.)
A state of the machineMq, as we have indicated earlier, is a function which assigns to each

of it cells a possible content. A history of the machine Mq is a function defined on an inititial
segment I of the natural numbers which assigns a state S(t) to each t ∈ I with the following
property. Suppose that t, t + 1 ∈ I and in S(t) the content of the instruction pointer is a.
If a is the name of an instruction different of the input instruction and the random number
generator instruction, then we get S(t + 1) from S(t), by executing the instruction a with the
values contained in the memory cells ofMq defined by S(t). If a is the input or random number
generator instruction then S(t + 1) must be a state that is obtained from S(t) by executing
instruction a with the values of the memory cells described in S(t), and with a suitably chosen
value of the input or the generated random number.

Before the machine starts to work, a program P0 of constant length is placed in the memory.
We will call this the starting program. We may think that this is a small program, whose role is
to write in the memory a larger program P and data for P . When we will consider an adversary
who wants to get some information about what the machine is doing, we will assume that P0 is
known to the adversary. Because of this, the exact way as P0 gets into the machine is irrelevant.

We assume that a deterministic program P can run on the machine in the following way. (The
assumption that P is deterministic is not essential, we make it only for the sake of simplicity.)
Program P0, the starting program, is already in the machine and asks for inputs. The first
part of the input received by P0 is the program P , (when we say program P , some data for the
program may be included in it). P0 writes the program P into the memory and then transfers
the control to program P . While P is running it may ask for input and may also provide output.
In this situation we will say that the program P0 runs the program P . We assume that program
P does not use all of the 2q, q-bit words as possible outputs, say, P can use a q bit word in the
output only if its last bit is 0. The remaining q-bit words will be called exceptional words, we
will explain their roles later. (Actually only a single exceptional word will be needed.)

We will also consider cases when the starting program is not P0 but another program P1.
P1 will not run P in the sense described above, rather it will only simulate P in a sense that we
will define later.

In the cases of both P0 and P1, we define the history of the machineMq, as the sequence of
its states. The initial state of the machine Mq is the state when it starts to work. (E.g. it may
contain the program P0 or P1 in its initial sate.) Further states of the machine are uniquely
determined by its initial sate, by its inputs, and the results of the randomizations. A history
of the machine Mq is a sequence Ht, t = 0, 1, ..., where Ht describes the state of the machine
at time t, including whether it gives an output or gets an input and if yes what is its value.

5

H0 is the initial state of the machine. If in the initial state the machine contains the program
Pi and later it gets the program P and a sequence a as input, where a is intended as input for
P , then the corresponding history will be denoted by history(Pi, P, a). history(P1, P, a) is a
random variable, with respect to the random steps of P1, whose distribution will be denoted by
Λ(P1, P, a).

The visible history of the machine Mq is a sequence Vt, t = 0, 1, ..., where Vt consists of the
following information, encoded in some way.

(a) the name of the instruction that was executed at time t,
(b) the addresses of the memory cells that were involved in the instruction executed at time

t, together with their roles in the instruction, and the name of the intruction.
(c) if an exceptional output was given by the machine at time t, then this fact.
Λ′(P1, P, a) will denote the distribution on the visible histories induced by Λ(P1, P, a). The

expression “visible history” is motivated by the assumption that this is what an adversary can
see form the operation of the machine.

The input sequence of a history H of the machine is a sequence a0, a1,... containing all of
the inputs occurring in the history H in their order of occurrences. (The timing of the inputs
is not included in this sequence.) The sequence t0, t1, ..., where ti is the time when the machine
gets input ai, for i = 0, 1, ... will be called the input-time sequence of history H. We define the
analogue notions for output sequences as well. We get the input/output or i/o sequence of history
H, by merging its input and output sequences in the order of their timing, and attaching to each
element of the sequence an extra bit which tells whether the corresponding element represents
an input or an output. We define i/o-time sequence of history H in a similar way, by merging
the corresponding input-time an output-time sequences with the extra bits attached.

We will assume that each program P declares its memory requirements, that is, a natural
number n with the property that P during its execution will use only the first n memory cells
of Mq. We assume that the number n is known to P0, since it it is encoded in some way in
the program P . (This is not an essential requirement it can be avoided in the same way as it is
done in [8], [9] or [7], but for the sake of simplicity we leave this requirement in the formulation
of our results.)

The conceded history of program P at input a will be a triplet 〈n, T, ι〉, where (a) n is
the memory requirement of P , (b) T is the total time used by Mq, when executing P with
input a from the start of P0 till the machine halts, and (c) ι is the i/o-time sequence of
history(P0, P, a). Intuitively, the conceded history is the part of the history, which cannot be
hidden from the adversary, at least not without great loss of efficiency, and so we rather assume
that the adversary already knows it. Therefore we may assume that the conceded history is
fixed and consider the distribution of the visible history with the condition that the conceded
history is what we fixed.

Assume now that we replace P0 by another program P1 which does not run P only it tries to
simulate it in some way. In this case we also allow, that at an arbitrary time, P1 declares failure
by giving an exceptional output. (Intuitively this means that P1 says that “I cannot continue
the simulation in the required way”. This may happen if the randomizations, performed by P1,
created an unlikely situation, where P1 would need extra time to keep its data in working order,
but this extra time would give information to an adversary about the program P or its input.)
When failure is declared,Mq gives an exceptional output and then stops. Therefore the history

6

and even the visible history of the machine will always show if failure was declared and at what
time.

We will say that P1 is a correct simulating program, if for all program P and for all input
sequence a, history(P0, P, a) and history(P1, P, a) has the same input/output sequence with
probability 1, with respect to the randomization done by P1.

Consider now the situation when the input/output sequence of history(P1, P, a) may contain
an exceptional output (that is, a declaration of failure). The maximal initial segment of the
input/output sequence of history(P1, P, a) which does not contain a failure declaration will be
called the reliable i/o sequence of history(P1, P, a).

The program P1 is a partially correct simulating program if for all program P and for all
input sequence a, the reliable i/o sequence of history(P1, P, a) is identical to an initial segment
of the i/o sequence of history(P0, P, a) with probability 1, with respect to the randomization
done by P1.

Assume that ε(n) is a function, so that for all natural number n, ε(n) is a real in [0, 1]. We
will say that the program P1 is an oblivious simulating program with an ε(n) failure rate, if the
following conditions are satisfied:

(i) P1 is a partially correct simulating program,
(ii) for all programs P and input sequences a, if V is a random visible history according

to distribution Λ′(P1, P, a), then for each natural number t, the probability, that in V failure is
declared at time t, is at most ε(n), where n is the space requirement of P .

(iii) for each conceded history h, there exists a distribution Dh on the set of visible histories
so that the following holds. For all program P and input sequence a, if h is the conceded history
of history(P0, P, a), then the distribution Dh is identical to the conditional distribution of
Λ′(P1, P, a), with the condition that failure has not been declared. (That is, the distribution of
the visible history of history(P1, P, a), with the condition that there is no failure, is uniquely
determined by the conceded history.)

A simulating program as defined above, with high probability, will not give any information
about P and a to the adversary, who knows only the visible history, in addition to what is
already contained in the conceded history. Indeed, if the conceded history is fixed, then the
distribution of the visible history is also fixed. So the adversary only sees a random value of a
random variable whose distribution is known to him. Since the randomization is done by the
coin flipping of Mq, the result of it does not contain any additional information about P or a.

Suppose now that the total time in history(P0, P, a) is T . (T can be determined from
the conceded history of history(P0, P, a).) Assume also that the total time required for the
simulation is always at most T ′, that is, in history(P1, P, a) there is always a halt instruction
no later then time T ′. We claim that under these circumstances if P1 is an oblivious simulating
program with failure rate ε(n), and we choose the pair 〈P, a〉 at random, so that 〈P, a〉 =
〈P (i), a(i)〉 for i = 0, 1 with probabilities 1

2 , where the conceded history of history(P0, P
(i), a(i))

is the same h for i = 0, 1, then an adversary, knowing the visible history of history(P1, P, a),
cannot decide whether 〈P, a〉 = 〈P (0), a(0)〉 or 〈P, a〉 = 〈P (1), a(1)〉 with a greater probability
than 1

2 +T ′ε(n). Indeed, if S is a probabilistic strategy for the adversary, then we may consider
the probability of its success both with the condition that there is a failure of the simulation,
and with the condition that there is no failure. In the second case the conditional distribution
of the visible history of history(P1, P

(i), a(i)) is Dh for both i = 0 and i = 1. Because of the

7

symmetry the probability that S gives the correct answer is exactly 1
2 . Therefore by Bayes’

theorem, even if in the case of failure S always gives the correct answer, the probability of
success for S, without any conditions, will be at most (1− T ′ε(n))1

2 + T ′ε(n) ≤ 1
2(1 + T ′ε(n)).

Theorem 1 There exists c1, c2, c3 > 0, such that for all q > 10 there exists a program P1

of length at most c3 for the machine Mq, so that for all sufficiently large q, P1 is an oblivi-
ous simulating program with failure rate at most n− logn. Assume further that P is a program
with input “a” so that the space requirement of history(P0, P, a) is n, and its total time is
t. Then the space requirement of history(P1, P, a) is at most n(log n)c1 and the total time of
history(P1, P, a) is at most t(log n)c2.

Sketch of the proof of Theorem 1. First we formulate Lemma 1 below, that will show that the
existence of a protected CPU in the sense of [6], [8], [9], and [7] is not needed as an additional
assumption, since such a protected CPU can be simulated in Mq.

We have defined the history of Mq for the case, when at time 0 the program P0 or P1 is in
the memory of the machine, and it runs or simulates another program P , which may also get
some input a. Therefore, the history depended on three parameters Pi, P , and a. Below, we will
need the notion of history in a simpler case, when at time 0 the machine contains a program
Q, and while this program is running, there is no further input. The history and visible history
for this case is defined in the same way as earlier. We need this notion when we will consider a
time interval [t1, t2] from a history history(Pi, P, a), with the property that there is no input in
the interval [t1, t2]. The content of the memory of Mq, at time t1, can be viewed as a program
Q which is running on the machine till time t2. For discussing the program Q in itself only, we
measure the time in a different way, that is, we say that Q starts at time 0 and works till time
t2 − t1. The following general definition of a program is motivated by these considerations.

Definition. 1. A program P is a sequence of natural numbers in the interval [0, 2q]. When we
say that the machine Mq starts to work with P in its memory, then we mean that P occupies
an initial segment of the memory cells, and the contents of the remaining cells are 0s. If P is
deterministic and in the time interval [0, t] the program P does not ask for an input, then P
uniquely determines the sequence of the states ofMq in this interval, which is called the history
of the program P in the time interval [0, t], and is denoted by history[0,t](P). The visible
history in the same interval is the sequence whose ith element is the name of the instruction
which is executed by P at time i, together with the memory cells involved in it. (The earlier
defintion of “visible history” have had a larger number of parameters, so there is no danger that
two notion of “visible historry” could be confused.) length(P) will denote the length of the
program P , that is, the number of elements of the sequence P .

2. cont(H)
t (i) will denote the content of memory cell number i in history H at time t. If the

choice of history is clear from the context we may omit the subscript (H). If P , Q are programs
then P ◦Q will denote their concatenation as sequences.

3. Suppose that P is a program, t, i, j are nonnegative integers i ≤ j. Then state(P, t, i, j)
is a sequence of q bit words defined in the following way. Assume that Mq starts to work from
the initial state P , and works till time t without asking for input. Then state(P, t, i, j) is the
sequence contt(i), ..., contt(j).

4. The set of memory cells cell(0),, cell(i− 1) will be denoted by cellset(i).

8

Lemma 1 There exists a β > 0, and for for all positive integers α there exists a cα > 0,
such that for all q > 10 there exists a deterministic program P ′ for the machine Mq with
length(P ′) = β so that the following holds. For all deterministic programs P with length(P) ≤
α and for all positive integers t, statement (1) implies that both conditions (2) and conditions
(3) are statisfied, where

(1) if Mq starts to work from the initial state P , then Mq does not ask for any inputs, does
not give any outputs, in the interval [0, t], and all of the memory cells involved in the instructions
during the time interval [0, t] are in the set cellset(α).

(2) state(P, t, 0, α− 1) = state(P ′ ◦ P, cαt, β, β + α− 1)

(3) if H is the history of the machine Mq starting from the initial state P ′ ◦ P , then the
machine does not ask for any input during the time interval [0, cαt] in history H, and the visible
history of H in the interval [0, cαt] does not depend on P .

The lemma will be proved in the section “Simulating a protected CPU .”

Remark. 1. This lemma implies that a program P of constant size, whose execution involves
only those memory cells where the program is residing at the start, can be run by another
program efficiently in an oblivious way. (If α is not constant, then we may lose the efficiency,
since cα can be as large as α.)

2. Using this lemma we will be able to accomplish the same task obliviously on a RAM, that
can be accomplished by using a protected CPU, if our goal is to make the program oblivious.
Note that in [6], [8], [9], [7] the protected CPU is used for other tasks as well. Namely, with
the help of a protected CPU the contents of all other memory cells can be encrypted, and
so the adversary can even see the (encrypted) contents of all of the memory cells outside the
protected CPU , without gaining any meaningful knowledge about the input. In the present
context however, when we consider the knowledge of the adversary in an information theoretic
sense, without taking into account the limitation imposed by computation, such an encryption
is not possible.

3. In the proof of this lemma to access the memory cells obliviously is not a problem,
since at each step we may access all of them. The problematic instructions are the conditional
instructions of the type “IF X = 0 THEN GOTO Y ”. An adversary who knows the visible
history, knows e.g., where is the instruction pointer, may conclude from this whether X = 0
or not. Even, if the instruction pointer would not be available for the adversary, the problem
would remain, since the next memory cell used after the conditional instruction may be different
in the X = 0 and X 6= 0 cases.

4. We assumed that both P and P ′ are deterministic. We will be able to use the lemma
for probabilistic programs too in the following way. The randomizations will take place at
predetermined times and we will apply the lemma only for the time intervals between the
randomizations. P will work as a deterministic program, separately in each of these intervals,
and the previously chosen random values will be parts of the initial states of P in these intervals.

9

We will use the same solutions for input/output instructions and instructions involving cells not
in cellset(α). All of these instructions will be executed only at predetermined time and the
lemma will be applied only to the time interval between them.

Now we return to the sketch of the proof of Theorem 1. We are following the idea of using
Interactive Turing Machines, as described in [6], [8], [9], or [7], for the simulation. We present it
in an essentially equivalent but formally somewhat different computational model. The reason
why we use a different setup is to make it easier to express our present goals. We do not assume
that the reader is familiar with the notion of Interactive Turing Machines.

Suppose that γ̃ > 0 is a constant that we will choose later. P1 will simulate the program
P in the following way. We cut the memory of Mq into two parts. The first part consists of
the set of the first γ̃ memory cells, which we will call the CPU (and later will play the role of
a protected CPU). The second part consists of the remaining memory cells whose set will be
called the memory module. This partition will be used in the following way. history(P0, P, a)
is a sequence H0, H1, ..., where Ht is the state of the machine Mq at time t. P1 will represent
Ht with a data structure Rt stored in the memory module. During the simulation, when going
from time t to time t+ 1, P1 has to transform Rt into Rt+1 on the average in poly(log n) time.

The change in the history history(P0, P, a) from Ht to Ht+1 involves only the contents
of a constant number of memory cells. Namely those memory cells which are involved in the
execution of the instruction at time t. (This may include an input appearing in the accumulator.)
Therefore P1 will do the following. (a) Using the data structure Rt, it will determine the contents
of the memory cells which are involved in the instructions at time t in history(P0, P, t), and
copy them into the CPU . (b) In the CPU it will determine which memory cells are those whose
content are changing from Ht to Ht+1, and what are those changes. Then (c) based on the
results of the previous step it changes Rt into Rt+1.

The difficulty is that the representation Rt must be chosen in a way that all of these steps
can be carried out obliviously in the sense of Theorem 1. Step (b) can be carried out by using
Lemma 1. The computation done in the CPU with a constant number of registers, can be
transformed into an oblivious computation using the lemma, if we allow that the number of
registers is a larger constant. As we mentioned earlier all of the randomizations, input output
instructions and accesses for memory cells outside the CPU will be done at predetermined times
and we apply Lemma 1 only to the time intervals between them. Therefore the only problem is
to represent the states of the machine in history history(P0, P1, a) in a way that the necessary
changes can be made obliviously.

Since the total memory requirement of history(P0, P1, a) is n memory cells, the problem
can be formulated in the following way. There are n variables x0, ..., xn−1 with initial values 0,
whose values are sometimes changing. Rt has to represent somehow the current evaluation of
these variables so that the change of the value of a variable can be carried out obliviously in
poly(log n) time. Below we formulate this problem in a framework which makes its solution a
special case of Theorem 1.

This special case of Theorem 1 formulated in Lemma 2 has the following form. It restricts
the theorem to a single program P , and it also weakens the adversary. First we describe the
program P which will be used in Lemma 2. Program P does the following. If an input arrives
of the form 〈a, v, 0〉 then P puts the integer v into memory cell with address a + k0, where k0

is a fixed integer, and gives the output v. If an input arrives of the form 〈a, v, 1〉 then P reads

10

the content of memory cell number a+ k0 and gives its value as output. (We assume that the
initial content of each memory cell is 0)

If a is restricted to the interval [0, n − 1] then we can say that P is maintaining the values
of the variables x0, ..., xn−1, with initial values 0, so that if an input of the type 〈a, v, 0〉 arrives
a new value v is set for variable xa, while an input 〈a, v, 1〉 is interpreted as a question of the
present value of variable xa and P responds according to this. (In the first case the output v
has no function, and in the second case the input v has no function. They are included only to
make the lengths of the outputs and inputs the same in the two cases. This way the two cases
have identical conceded histories, and so an adversary knowing only this cannot tell, whether
in a specific instance the value of a variable was set, or a question was asked about it.) The
triplet 〈a, v, δ〉, δ = 0, 1 may be encoded in several actual input words. The actual encoding
is irrelevant the only important point is that the number of input words which code 〈a, v, δ〉 is
always the same. Assume that the values v are always integers in the interval [0, ℘]. A program
P which accomplishes the task described above, will be called a memory-maintenance program
with n variables and with values in [0, ℘]. Suppose that ℘ < 2q and n < 2q, then the memory
requirement of the memory maintenance program is n+ c memory cells, where c is a constant.

As we said earlier Lemma 2 is a special case of Theorem 1 in the sense that the adversary in
the lemma will be weaker than in the theorem. In the description of this weaker adversary, for
each natural number l, Ml will denote the set of all memory cells number i ofMq with i ≥ l. We
replace the notion visible history (in the definition of obliviousness) by the notion of k-visible
history, where the k-visible history of Mq is the sequence Vt, t = 0, 1, ..., where Vt consists of
the following information encoded in some way.

(a) the name of the instruction that was executed at time t, provided that at least one of
the memory cells involved in the instruction is in Mk.

(b) the addresses of those memory cells in Mk that were involved in the instruction executed
at time t

(c) if an exceptional output was given by the machine at time t, then this fact
We define now the notion of an k-oblivious simulating program the same way as an oblivious

simulating program, but we replace the notion of visible history everywhere with k-visible history.
In particular DO in properties (ii), (iii), and (iv) of the definition will be a distribution on k-
visible histories, and in property (iv) we are speaking about the distribution of the k-visible
history of history(P1, P, a).

In other words we have now an adversary who does not see what happens in the first k
memory cells. We will use this in the case when k is a constant. The machine this way will work
as if it had a protected CPU with k registers. (By Lemma 1, we will be able to simulate this
situation so that an adversary even with the complete original powers, that has been defined for
Theorem 1, will not get any additional information.)

Lemma 2 There exists a constant γ̃ > 0 so that Theorem 1 holds if P is a memory maintenance
program, and we require of P1 that it must be only a γ̃-oblivious simulating program.

Before we sketch the proof of Lemma 2 we give some simple definitions which will be useful
both in the sketch and the final proof.

11

Definition. We will assume that n = 2d is a power of 2. Part of the memory of the machine
Mq (outside the protected cells) is partitioned into blocks of poly(log n) memory cells, each will
be called a bucket. We have altogether 2n − 1 buckets. The set of buckets is partitioned into
d+ 1 classes B0,B1, ...,Bd called buffers. Buffer Bi contains exactly 2i buckets bi,0, ...,bi,2i−1.

Definition. 1. A tree T is partially ordered set with a largest element 1T and with the
property that for all a, b ∈ T if a, b ∈ T are incomparable then they do not have a common lower
bound in T .

Definition. We assume that d is a positive integer, n = 2d, and Tn is a binary tree of depth d
with 2n− 1 elements. The ith level of T will be denoted by L(Tn)

i . We have that |L(Tn)
i | = 2i for

i = 0, 1, ..., d. We will omit the subscript (Tn) if its choice is clear from the context. Assume that
τ ∈ Tn\Ld. The two successors of τ will be labelled by 0 and 1, and according to this denoted
by τ (0) and τ (1). Suppose that δ = 〈δ0, ...δd−1〉 is a 0, 1 sequence of length d. We associate with
the sequence δ a branch of the tree b0, ..., bd with the property that b0 = 1Tn and bi+1 = b

(δi)
i

for all i = 0, 1, ..., d − 1. Clearly bi ∈ Li. We will use the notation branch(δ) = {b0, ..., bd−1},
node(δ, i) = bi and leaf(δ) = bd−1. Lj = L(Tn)

j will denote the set
⋃
s≤j L

(Tn)
s . The ancestor

unique of an element τ ∈ Tn will be denoted by τ◦.
Sketch of the proof of Lemma 2. The program P1 of the lemma will maintain the values of

the variables almost the same way as the “hierarchical algorithm” given by Ostrovsky, see [8],
[9], [7]. The main difference will be in the randomization. Because of that, we add extra steps
to the hierarchical algorithm as explained below.

First we sketch the basic idea of Ostrovsky’s hierarchical algorithm in the present context.
We make some minor changes compared to the original formulation, however these do not affect
the substance.

Assume that the algorithm H, using a random oracle, wants to store and recall the values of
the variables x0, ..., xn−1 in an oblivious way. (The new algorithm with coin flipping only, will
be denoted by Y.) For the sake of simplicity and without the loss of generality we assume that
n = 2d, where d is an integer.

We will use the buckets and buffers defined earlier. In the case of algorithm H, a bucket will
contain O(log n) memory cells. The buckets will contain information about the values of the
variables in form of pairs 〈a, v〉, where a ∈ [0, n − 1], v ∈ [0, ℘]. These pairs are represented in
a way that a pair occupies only a constant number of memory cells. A bucket can contain only
one copy of a pair.

While H is working, at each time, and for each a ∈ [0, n − 1], there is exactly one pair of
the form 〈a, v〉 which is contained in one of the buckets, and it is contained only in one bucket.
If the pair 〈a, v〉 is contained in a bucket, at a time, then the value of the variable xa at this
time is v. Therefore the goal of algorithm H is to keep these pairs in places that can be found
in poly(log n) time on the average in an oblivious way. Algorithm H, using a random oracle,
accomplishes this in the following way.

Algorithm H will get, through its inputs, either a request for the value of a variable, or a
request for changing its value. These requests will be handled in a similar way, therefore we call
each of them a request for an access for the variable. The time of algorithm H (after an initial
setup) is partitioned into intervals A1,B1,A2,B2, ...,Ai,Bi, ... which are coming in the given
order. The ith request for an access of a variable will arrive at the beginning of interval Ai and

12

H completes the necessary changes and gives the required output in this interval. Therefore we
will call Ai an access interval. The length of the time interval Ai will be O(poly(log n)), and it
will be independent of i.

The intervals Bi are used for a random rearrangement of the pairs in the buckets. These
intervals are called epochs in Ostrovsky’s description of the hierarchical algorithm. Sometimes
we will also call them bookkeeping intervals. The length of an epoch Bi will depend on i in
a way that, for all k = 1, 2, ... the total length of epochs B1, ...,Bk will not be greater than
kpoly(log n). We will achieve this by requiring that |Bi| ≤ poly(log n)2a(i), where a(i) is the
largest integer so that 2a(i) is a divisor of both i and n = 2d.

First we describe what happens in an interval Bi. The algorithm H does not keep any
other data then i and the pairs in the buckets. In epoch Bi the algorithm H reorganizes the
contents of the buckets in the following way. H goes through all of the buckets in

⋃
j≤a(i) Bj in

a predetermined order. For each pair 〈a, v〉 that H finds in any of these buckets it randomly
chooses a new destination bucket, where they have to go, by the end of Bi. The randomization
is done by the random oracle by providing a value h(a, i) ∈ {0, 1, ..., 2a(i) − 1} with uniform
distribution. The meaning of the number h(a, i) is that the pair 〈a, v〉 must get into bucket
ba(i),h(a,i) of buffer Ba(i) by the end of epoch Bi. ba(i),h(a,i) will be called the destination bucket
of the pair 〈a, v〉. It is important that the random hash value h(a, i) depends only on a and i.
At this time only the random choice of the destination bucket takes place, so that each of the
destination buckets has uniform distribution on buffer Ba(i) and all of these choices are mutually
independent. H does not take out the pairs at this point from the buckets, it only attaches the
random destination to each pair, some way.

Since the buckets contain only O(log n) memory cells, this choice of and recording of des-
tinations can be done obliviously using poly(log n) time for each bucket that is altogether
2a(i)poly(log n) time.

The next phase of the algorithm, whose details are not sketched here, takes each pair to
its chosen destination. This is done by using several times, an oblivious sorting network e.g.,
Batcher’s algorithm or AKS network. A possible way to do this is described in [8], [9], and a
slightly different one in [7]. We will use this technique, with either of the two solutions, in the
present proof without any essential changes. For our purposes, it is enough to know, that each
pair gets into its chosen destination in a deterministic and oblivious way in time 2a(i)poly(log n).
This completes the description of H in the epoch Bi.

We note here that with a small probability it may happen that too many pairs has the same
destination bucket and, so there is not enough memory cells in the bucket to store all of the
pairs sent there, We will say in such a case that the bucket is overfilled. In algorithm H this does
not cause a serious problem, since if this happens, the whole randomization can be repeated and
the additional expected time will be very small. However in the new algorithm Y, using coin
flipping only, this treatment of overfilling could leak information to the adversary. Therefore
we will use in algorithm Y bigger buckets with size O(poly(log n)), and will show that with
high probability no buckets will be overfilled. (Since the randomization will be different this
requirement will create major difficulties in the proof.) If a bucket is still overfilled then the
algorithm Y will declare failure.

The described action of algorithm H in the epochs Bi has the result, that if a pair 〈a, v〉 is
not moved during the intervals Aj then during the various epochs it travels through the buffers

13

B0,B1, ...,Bd in this order and then it stays in Bd. Motivated by this we may define the initial
setup in a way that all of the pairs 〈a, 0〉, a ∈ [0, n− 1] are put in the buckets of Bd in a random
way. The randomization can be accomplished in a similar way, that we have described above.
Actually this initial setup can be avoided and the number of buffers and buckets can be increased
gradually putting only pairs 〈a, v〉 into them where there was already a request for access for
the value of xa, see [8], [9]. For the sake of a picture with less complicating factors for the coin
flipping algorithm that we will describe later, we allow an initial setup.

Now we describe the algorithm H in an access interval Aj . At the beginning of this interval
a request arrives concerning the value of the variable xaj . The algorithm H has to find a pair of
the form 〈aj , x〉 which must be in one of the 2n− 1 buckets. Since the time allowed for this step
is only poly(log n), H cannot look in all of the buckets. It searches for the pair in the following
way. H searches for the bucket containing 〈aj , x〉 in the buffers B0, ...,Bd in this order. When it
gets to buffer Br, for some fixed r = 0, 1, ..., d, H does the following. Knowing r and j, it finds
the largest integer ir < j so that a(ir) = r. The importance of this integer ir is that Bir was
the last epoch, when the destination buckets were in buffer Ba(ir) = Br. Therefore, if at the
beginning of Bir the pair 〈aj , x〉 was in a bucket in

⋃
s≤r Bs, then during Bir it got into a bucket

in buffer Br, namely into bucket br,h(aj ,ir). H using the random oracle determines h(aj , ir) and
checks whether the pair is really there. If H finds the pair it removes it and puts it into the
single bucket b0,0 of buffer B0.

Even if H has found a pair 〈aj , x〉 in one of the buffers, it repeats the same action for the
remaining buffers pretending still looking for the pair 〈aj , x〉 and pretending putting it into b0,0.

This action of H reveals for the adversary a bucket in each buffer Br that is searched by
H. This bucket is br,h(aj ,ir) in Br. For a fixed aj and ir, h(aj , ir) has uniform distribution on
[0, 2r − 1]. Therefore at this point the adversary gets the value of h(aj , ir). At other times
during the execution of the algorithm H the adversary will get other values h(u, v) but never
again with u = aj , v = ir. Therefore when the adversary gets the values of h, he will simply see
the values of independent random variables with predetermined distribution. Consequently the
adversary does not gain any information from the addresses of the buckets searched by H. The
search of the buckets and all of the other actions of H can be done in a way that the sequence
of these buckets uniquely determine the memory access pattern of H.

After all of the buffers have been searched in the described way, the pair 〈aj , x〉 is in the
bucket of B0. Changing x, if needed, and giving the appropriate output can be done obliviously
in a deterministic way. This describes the action of H in an access interval Aj .

Summarizing this process, in each access interval we bring the pair 〈a, x〉 to the buffer
B0, where xa is the variable to be accessed, and x is its current value. Later, during the
epochs Bj , the pair 〈a, y〉, where y is the new value of the variable xa will go through the
buffers B0,B1, ... with a random choice of the bucket where it is located, until there will be
a request again concerning xa. The algorithm is oblivious, because the only memory accesses
which are not known in advance are the accesses for the contents of the buckets br,h(aj ,ir),
i = 1, 2, ..., r = 1, 2, ...d described above, and, as we have seen, this sequence has a predetermined
distribution which is independent of the input.

Replacing the random oracle with coin flipping. We describe now an algorithm Y, with
coin flipping instead of using a random oracle, which essentially accomplishes the same thing
as algorithm H. Later we will modify algorithm Y because in the simple form presented here

14

the probability of overfilling of a bucket may be too high. However this modified algorithm
will differ from Y only in the choice of a parameter. The reason why the algorithm is working
remains the same.

Suppose that Y ′ is the algorithm that we get from H by simply using coin flipping instead of
a random oracle. The problem will be that algorithm Y ′ will not know what was the destination
of the pair 〈aj , x〉 when it was put into buffer Ba(i) = Br. To keep this information in the
memory even for buffer B1 with only 2 buckets, would require keeping n bits of information
in the memory so that they are available obliviously. This is a task almost as difficult as the
original problem. Therefore algorithm Y ′ does not meet our requirements.

To overcome this difficulty our solution is the following. Instead of putting the pairs 〈a, x〉
directly into a bucket in the physical memory of Mq, first we give them a symbolic address
(may be also called a logical address) which will be a node of the binary tree Tn defined earlier.
This symbolic address will depend only on a, and not on x, but it may change in each time
interval Ai or Bi, that is, it also depends on the time. The current symbolic address of an
a ∈ {0, 1, ..., n− 1} will be denoted by symb(a). If symb(a) = τ , then the pair 〈a, x〉 is at node
τ of the tree. This assignment of symbolic addresses will be done in a random way, as we will
describe below, but using only poly(log n) random bits, which can be kept in the memory so
that the symbolic addresses can be recalculated d-obliviously any time.

Recall that Li has denoted the ith level of the tree as defined in the definition of Tn. Sepa-
rately for each node τ of the tree in Li, i = 0, 1, ..., d we will select a random bucket p(τ) in Bi
with uniform distribution. The pair 〈a, x〉 with symb(a) = τ will be stored in bucket p(τ). So
we may say that the physical address of 〈a, x〉 will be p(τ), if symb(a) = τ . Y will select p(τ)
with uniform distribution on Bi, if τ ∈ Li. These selections will be mutually independent, and
also independent of the random selections of the symbolic addresses symb(a). p(τ) will change
during the execution of algorithm Y but only in the intervals Bi. Since Y has to know which
is the bucket p(τ), when it has to find a pair 〈a, x〉 with symb(a) = τ , the address of p(τ) in
Mq, that we will denote by p̄(τ), must be stored somewhere, and when needed recovered in an
oblivious way. For all possible τ ∈ Tn storing p̄(τ) obliviously requires altogether storing about
O(n log n) bits obliviously, just like in the original problem. Our solution will be, as we describe
in more details below, that we will store the addresses p̄(τ) in the buckets, the same way as we
store the data about the values of the variables xa. More precisely we will store pairs 〈τ̄ , p̄(τ)〉,
where the element τ of the tree will be represented by the integer τ̄ , in some efficient way. To
do that each node τ ∈ Tn, τ 6= 1 will have a symbolic address symbT (τ) which is an element
of the tree with symbT (τ) > τ and the pair 〈τ̄ , p̄(τ)〉 will be stored in the bucket p(symbT (τ)).
The requirement symbT (τ) > τ is very important. This will guarantee that as Y will go down
on a branch B of the tree starting from the root, and looking into all buckets p(σ) with σ ∈ B,
by the time Y reaches a τ ∈ B and needs to know what is p̄(τ) it already have seen it in a
bucket p(σ) for some σ > τ . We will describe below more precisely how this is done by Y. Since
p(1Tn) = b0,0, we do not need a symbolic address for 1Tn .

The algorithm Y generates a random function χ which assigns to each integer a ∈ [0, n−1] a
0, 1 sequence χ(a) of length d. We require from the function χ that for any subset A ⊆ [0, n− 1]
with |A| ≤ poly(log n) the random variables χ(a), a ∈ A are mutually independent. Such a
random function χ can be generated by selecting only poly(log n) random bits. For example
χ(a) can be the determined by the value of a random polynomial of degree (log n)c over the finite

15

field F2d . The coefficients are chosen uniformly from F2d and can be represented altogether by
(log n)c+1 random bits. The value of the polynomial is an element of the field which over a fixed
basis, can be interpreted as a 0, 1 sequence of length d. Therefore the random function χ can be
generated by poly(log n) coin flipping during the setup, the algorithm Y will keep the results of
these coinflips, and so it can recalculate χ(a) d-obliviously any time for each a ∈ [0, n− 1]. It is
very important that the randomization of χ will be performed only once and the same poly(log n)
random bits defining χ are used till Y halts.

Recall that a branch was assigned to each 0, 1 sequence s of length d, and denoted by
branch(s). Therefore by the randomization of χ we also assign a random branch branch(χ(a))
to each integer a ∈ [0, n− 1]. For such an integer a, symb(a) will be always in branch(χ(a)).

symb(a) for a ∈ [0, n− 1] will be determined in the following way. At the beginning symb(a)
is the leaf at the end of branch(χ(a)).

Suppose that in an interval Aj the input is 〈aj , vj ,Ψj〉. Then for all a ∈ [0, n − 1], if
symb(a) ∈ branch(χ(aj)) at the beginning of Aj then at the end of Aj , symb(a) is changed into
1Tn . The symbolic addresses of all of the other integers a ∈ [0, n− 1] remain unchanged.

In an epoch Bi the change is the following. If at the beginning of Bi we have τ = symb(a) ∈⋃
s≥a(i) Ls then symb(a) remains unchanged in Bi. Otherwise, that is, if τ ∈

⋃
s<a(i) Ls, symb(a)

is changed into the unique element of branch(χ(a)) ∩ La(i). This completes the description of
how the symbolic addresses are selected.

The selections of the buckets p(τ). We have to assign to each node τ ∈ Li a bucket p(τ)
in buffer Bi for i = 0, 1, ..., d. For each τ ∈ Li, p(τ) will be chosen at random with uniform
distribution from Bi and the choices will be mutually independent for τ ∈ Li, i = 0, 1, ..., d,
moreover they will be also independent of the choice of the function χ. At the startup we make
a random selection for p(τ), for each τ ∈ Tn, and update it only in the time intervals Bi. In the
access intervals Ai all physical addresses p(τ) remain unchanged.

In the epoch Bi algorithm Y updates the assigned addresses only for the nodes in
⋃
s≤a(i) Ls.

Y randomizes a new bucket p(τ) for each node τ ∈ Ls with uniform distribution on Bs, for s =
0, 1...,a(i). As in the startup these randomization are mutually independent, and independent of
all of the earlier randomizations. This completes the description of the selections of the buckets
p(τ). These randomizations are the analogues of the randomizations done by the hierarchical
algorithm H in the interval Bi using the random oracle and will be used for the same purpose.
In the present case however, the randomizations are done by coin flipping, so the algorithm Y
have to remember the results in some way.

We describe now how the algorithm Y stores the results of the randomizations of the buckets
p(τ). The current p̄(τ), that is, the address of the bucket assigned to the node τ , will be stored
in the form of a pair 〈τ̄ , p̄(τ)〉. Such a pair will be placed in a bucket in the same way as we
do with the pairs 〈a, v〉 storing the values of variables. Therefore τ will have symbolic address
symbT (τ) ∈ Tn and the pair 〈τ̄ , p̄(τ)〉 will be stored in the bucket assigned to symbT (τ), that is,
in p(symbT (τ)).

There is however an important complication. Namely, for each τ ∈ Tn the algorithm Y can
search the bucket p(τ) only once, otherwise the obliviousness of the algorithm is lost. Y may
search the same bucket as p(σ) for another node σ 6= τ of the tree, but in the role of p(τ). The
reason is that for the adversary a single search looks like searching in a randomly chosen bucket,
while repeated searches in the same bucket may indicate e.g., repetition in the input. (This is

16

the same situation as in [9] and [7].) The solution for Y will be that after it used the bucket
p(τ) once, it erases the pair 〈τ̄ , p̄(τ)〉. So the address of t(τ) is simply not available till the next
randomization of p(τ), when Y creates a new pair 〈τ̄ , p̄(τ)〉.

Changes of the symbolic address of symbT (τ) during the At the startup symbT (τ) = τ◦,
where τ◦ is the unique ancestor of τ . This can be done only if τ 6= 1T , but for τ = 1T , p(τ)
is always b0,0, so Y does not have to store this information. Therefore, at the beginning, the
pair 〈τ̄ , p̄(τ)〉 will be stored in the bucket assigned to the node τ◦, that is, in p(τ◦). When we
randomize a new p(τ) then the old pair 〈τ̄ , p̄(τ)〉 is erased from the memory.

algorithm Y. In an access interval Ai, with input 〈ai, vi,Ψi〉 the following happens. If
symbT (τ) ∈ branch(χ(ai)) then symbT (τ) will change into 1Tn at the end of Ai, otherwise it
remains unchanged.

We consider now the change of symbT (τ) in an epoch Bj . If symbT (τ) ∈
⋃
s≥a(i) Li, then

symbT (τ) remains unchanged in Bi. Otherwise, at the end of Bi it changes into ρ, where ρ is
the smallest node in

⋃
s≤a(i) Li which is larger than τ . This completes the definition of the

symbolic address of symbT (τ).
This definition implies that in the access interval Aj with input 〈aj , vj ,Ψj〉, the algorithm Y

will be able to go down the branch χ(aj) starting from 1T and check for each node τ the bucket
p(τ). Indeed, as we have seen, the pair 〈τ̄ , p̄(τ)〉 is always contained in a bucket p(ρ), for some
ρ ≥ τ◦ > τ , which is also on the branch, but comes earlier. Therefore when the algorithm Y
goes down the branch branch(χ(a)), looking in the buckets assigned to the nodes, by the time
it reaches the node τ it will know what is p̄(τ).

This completes the sketch of the coinflipping algorithm. The reason why it finds the pair
〈a, v〉 is the same as in the case of Ostrovsky’s hierarchical algorithm. The reason why it will be
oblivious is also the same. Namely once Y looks at a bucket bi,j , all of the symbolic addresses
symb(a) and symb(τ) whose value was bi,j till now, are changed into 1Tn . Therefore the bucket
in the same role will not be used again by Y. This implies that the buckets checked by Y are the
values of independent random variables with previously fixed distributions. So the adversary
does not gain any information from them. On the other hand if we fix the sequence of buckets
that Y checks, then Y is oblivious in a deterministic sense, and therefore there is no other
information available to the adversary than the bucket sequence.

Problems concerning the algorithm Y. As we have remarked earlier overfilling a bucket if
the algorithm is using an oracle is not a problem. For a detailed explanation see [8], [9] or [7].
The essential reason is that in case of an overfilling by H the randomization, which is a random
hashing, can be repeated. H can be executed in a way that the fact that there is an overfilling
gives only information about the randomization and not about the pairs 〈a, v〉 in the buckets.

This is not true for the algorithm Y. The randomization of χ creates a new problem. This
randomization cannot be repeated frequently, since such a repetition would involve relocating
all of the pairs 〈a, x〉 into new bucket, so it would take at least n log n time. An overfilling may
result, for example, from the event that for many of the arriving access requests 〈a, v〉, the set
branch(χ(a)) is the same. Therefore, if χ is not re-randomized then repeating the other part
of the randomization will not help. Consequently, to prove the theorem, we have to show that
with a probability higher than 1− n− logn, no overfilling will occur.

To prove this, first we have to show that

17

(4) for each fixed τ ∈ Tn the number of a ∈ [0, n − 1] with symb(a) = τ , will be at most
poly(log n).

(We will show that this implies that for each fixed τ ∈ Tn we have |{σ ∈ Tn | symbT (σ) =
τ}| ≤ poly(log n)). The randomization of the physical addresses p(τ) does not cause a serious
problem, it will only slightly increase the exponent in poly(log n) in the upper bound.

For the proof of the upper bound (4) we have to modify the algorithm Y. (The upper bound
may hold for the original form of Y as well, but the proof breaks down.) The disadvantage of
the presented form of the algorithm Y is that the expected number of pairs 〈a, x〉 in each bucket
bi,j is a constant. Moreover, if we fix χ, and consider only the other part of the randomization,
then the expected number of pairs in each fixed bucket, will depend on the choice of the bucket.
For some buckets, this expected number can be as high as about log n. On the other hand,
for the proof, at least with the technique that we will use, we need this expected number (for
buckets which do not correspond to the leaves of the tree) to be as low as (log n)−c1 , for some
constant c1 > 0, that will be selected later. The reason is that during the algorithm when we
move one pair 〈a, v〉 to the bucket b0,0 we will have to move others pairs 〈a′, v′〉 as well where
symb(a′) ∈ branch(χ(a)). This may lead to the situation that the evaluation pairs are moving
faster, or in larger numbers, to the top of the tree then they are moving downward towards the
leaves of the tree during the epochs Bi. One possible solution for the problem could be, that
after each access interval Ai, we will have not one but (log n)c1 epochs Bi. Actually we will use
an equivalent solution, instead of having many epochs after each access interval Ai, we will have
only one epoch Bi but in this epoch we move the symbolic addresses not from

⋃
s>a(i) Ls into

La(i), but from
⋃
s>κ(i) Ls into Lκ(i), where κ(i) is approximately a(i) + c1 log logn. This will

have the same effect as the solution with many epochs. We will denote this modified version of
the algorithm by A.

In the detailed proof we define A in several stages. Namely first we look at only the move-
ment of the symbolic adresses on the tree Tn during the algorithm without defining the physical
adresses at all. The algorithm which works with the symbolic addresses only will be called T .
The advantage of this approach is that the problem of overfilling, which is the main combina-
torial difficulty in the proof, can be formulated and solved already in this simplified framework.
Naturally the introduction of physical addresses will create a new overfilling problem, since the
physical addresses p(τ) associated by different nodes τ of the tree can be accidentally the same.
Since the choices of the buckets p(τ) are completely random and independent, this will not cause
a serious problem. End of sketch.

Later we will continue the sketch of the proof by giving more detailed information about
specific parts.

1 The proof of Lemma 2, basic definitions.

Lemma 2 states that a memory maintenance program P can be simulated by a program P1 with
certain properties. This simulation will be carried out in the following way. Suppose that P has
to keep record of the values of n variables x0, ..., xn−1. For the sake of simplicity, and without
the loss of generality, we assume that n is a power of 2, namely n = 2d, where d is an integer.
We describe an algorithm A which does the task of P in a γ̃-oblivious way. (In the “Sketch” we

18

first described an algorithm Y doing this and then its modified form, where at the end of epochs
we change symbolic addresses so that they will be in level Lκ(i) and not into level La(i), was the
algorithm A.) The first γ̃ memory cells will be called the protected cells. A will be implemented
by a program running on Mq. This will be the γ̃-oblivious simulating program P1 of Lemma
2. P1 will be a program of constant length l. One solution would be to make γ̃ larger than l
and this way the adversary wouldn’t get any information about the execution of P1 other than
the memory accesses outside the first γ̃ memory cells and the times of these accesses. However
it is not necessary to make γ̃ as large as P1. P1 can be kept outside the first γ̃ memory cells
and only those part of it brought in which are executed. Since l is a constant, this can be done
easily, without revealing which instruction of the program P1 is executed. Indeed, each time,
when a new instruction of P1 is needed, every memory cell in the block where the program is
P1 is stored will be accessed, but only those values copied into protected cells, which are needed
at that moment. The set of memory cells where the program of A is kept will be denoted by
M0. Apart from that A will use only the protected cells, that is, the first γ̃ memory cells, the
memory cells which are in the buckets, and another set poly(log n) cells. A subset of this last
poly(log n) cells will be the set X that will be used for temporary storage and that we will call
the tray.

Definition. An evaluation pair is a pair 〈a, v〉 with a ∈ {0, 1, ..., n− 1}, v ∈ [0, ℘]. The set
of all evaluation pairs will be denoted by E. With each node τ ∈ Tn we associate an abstract
element c(τ) that we will call a coupon, if τ 6= σ then c(τ) 6= c(σ). (If we want to represent the
coupons by sets, then e.g., c(τ) can be the pair 〈τ, ∅〉.) C will denote the set of all coupons.

Sketch of the proof continued. The motivation for the expression “evaluation-pair” is that
when such a pair 〈a, v〉 will be stored in the memory of A in a bucket, then the current value of
the variable xa is v. The word coupon is used because of the following reason. Recall that in the
Sketch we told that each τ ∈ Tn\{1Tn} has a symbolic address σ > τ . Moreover in the bucket
p(σ) a pair of the form 〈τ̄ , p̄(τ)〉 is stored. This pair tells what is the physical address of the
bucket assigned to τ . First we intend to give a completely abstract definition of the algorithm,
when there are no memory cells or buckets, and we are speaking about everything using only
the symbolic addresses. In this case the pair 〈τ̄ , p̄(τ)〉 will be replaced by the coupon c(τ), with
the meaning that if the algorithm has found the coupon c(τ) then it is able to found everything
which is stored at the symbolic address τ . In other words, the coupon is a promise that when
we translate the algorithm from symbolic addresses to physical addresses, then the coupon c(τ)
will be translated into the pair 〈τ̄ , p̄τ〉.

We will define the algorithm A in two steps. First we describe an algorithm T which does
not work on the machine Mq. It places evaluation pairs and coupons at the nodes of the tree
Tn and moves around these objects on the nodes of the tree. T will have inputs and outputs
and will handle them in the way that we expect from a memory maintenance program.

Then we define an algorithm A by a translating the algorithm T which is manipulating only
abstract objects into the algorithm A which works on Mq. For this translation we will need a
(random) function p which assigns to each node τ ∈ Li, i = 0, 1, ..., d a bucket p(τ) ∈ Bi. Each
pair, that was at the node τ in algorithm T , will get into the bucket p(τ) in algorithm D. Each
coupon c(τ) at a node σ in T will be replaced by a pair 〈τ̄ , p̄(τ)〉 in the bucket p(σ) in algorithm
D.

19

The algorithm A will work as expected from a memory maintenance program. We also have
to make sure also that it is γ̃-oblivious.

The advantage of this two step definition of A instead of defining A directly, is that all
of the critical and new steps of the proof are in the definition of T and the proof of its basic
properties. In particular we will show that T does not lead to overfilling, in the sense that, with
high probability, never will be more than poly(log n) objects at the same node of the tree. Once
we have proved the needed properties of T the remaining part of the proof, that is making sure
that the program A that we get after the translation is γ̃-oblivious, can be done by the methods
that has been introduced in [6], [8], [9], and [7]. In particular in this latter part of the proof we
will use the following facts/techniques (i) every program which uses only m consecutive memory
cells can be made oblivious in deterministic sense, so that the time of the program increases only
by a factor of O(m), (ii) the obliviousness of the whole program is proved by noticing that the
information that the adversary gets is uniquely determined by the sequence of buckets whose
contents the algorithm checks, and we can guarantee that the elements of these bucket sequence
are independent and they have predetermined distributions. For this we use only the fact each
randomly chosen bucket, in the role for which the randomization has been performed is used, in
a way visible to the adversary, at most once. (iii) The random rehashing of the contents of the
buckets can be done in an oblivious way using oblivious sorting networks.

Below we define the time intervals Ai,Bi, i > 0 that we will use for the algorithms T and
A in the roles that we described earlier. We will start with a finer division of the time into
intervals Ij , j ≥ 0. I0 will be a time interval before all of the intervals Ai, Bi. I0 will be used for
the startup, setting the initial values of the variables, and randomizing χ, and whatever needs
to be done a the beginning.

Ak will consist of d+3 subintervals Ak,0, ...,Ai,k+2. As we mentioned it earlier the algorithm
goes down on the branch branch(χ(ak)) of the tree where 〈ak, vk,Ψk〉 is the kth input that arrives
at the beginning of Ak,0. The action of the algorithm at level i on this branch will be done
in the interval Ak,i, for i = 0, ..., d. In interval Ad+2 the algorithm goes back to the root and
algorithm A puts data that it picked up in the earlier intervals in the bucket b0,0. (T will
perform an analogue task as we will define below.) In the time interval Ak,d+2 the algorithm
gives the output. End of sketch

The partition of the time into intervals. For the definition of the algorithms T and A we
partition the time interval I = [0,∞) into subintervals Ij , j = 0, 1, (We will use it with
superscripts I(T)

j , I(A)
j if we want to make the choice of the algorithm explicit. The various

algorithms will perform analogue tasks in these intervals.)
The time interval I0 will have a special role it is used to set up a data structure used later

and also for the choices of certain random values that the algorithm will use later.
For each k = 0, 1, ... the of intervals I(k−1)(d+4)+1, ..., I(k−1)k(d+4)+d+3 in this order will be

also denoted by Ak,0, ...,Ak,d+2 and we define the interval Ak by Ak =
⋃d+2
j=0 Ak,j . The interval

Ik(d+4) will be denoted by Bk. We will call Ak, k = 1, 2, 3, ... the kth access interval. The
algorithm will ask for the input 〈ak, vk,Ψk〉, (ak ∈ {0, 1, ..., n− 1}, vk ∈ [0, ℘], Ψk = 0, 1) at the
beginning of interval Ak, and if Ψk = 0 stores the value vk in the memory of M, in some way
to be described later. At the end of the time interval Ak, the algorithm provides the output zk,
where Ψk = 0 implies zk = vk and Ψk = 1 implies that zk is the current value of variable xak .

20

The time intervals Bk, k=1,2,... will be called epochs or bookkeeping intervals. In the interval
Bi the algorithm will update the data in the buckets in a way that depends on the value of i.

2 The symbolic algorithm T
The algorithm T as we will define below is “symbolic” in the sense that its memory is not the
memory of Mq but only a set of abstract objects. For the definition of algorithm T we need a
random hash function χ, which assigns to each i ∈ {0, 1, ..., n− 1} a 0, 1 sequence χ(i) of length
d. χ will be randomized with a distribution which has the following property.

Definition. Assume that χ is a random variable whose values are functions defined on
{0, 1, ..., n− 1}, and k ≤ n is a natural number. The random variable χ is k-wise independent if
for each fixed and distinct i0, ..., ik−1 ∈ {0, 1, ..., n− 1} the random variables χ(i0), ..., χ(ik−1),
are mutually independent.

For the algorithm T we will need a random function χ with (log n)λ-wise independence for
some constant λ > 0, which assigns to each i ∈ {0, 1, ..., n− 1} a 0, 1 sequence χ(i) of length d.
There are well-known methods for generating such a random function, the following one will be
suitable for our purposes, since it can be done obliviously and in time poly(log n).

Generating a random function χ with k-wise independence. χ will be a random polynomial
of degree at most k − 1 over the finite field Fn with n = 2d elements so that the coefficients
of the polynomial are chosen independently and have uniform distribution on Fn. (It may be
easier from the point of view of computations in the field if we use a field with p elements, where
p is a prime with n ≤ p < 2n.) k-wise independence follows from the fact that if we prescribe
arbitrary values from Fn to the points i0, ..., ik−1 ∈ Fn, then there exists a unique polynomial
of degree at most k − 1 over Fn that takes these values.

Motivation. For the following definition recall that E was defined as the set of all evaluation
pairs 〈a, v〉 and C as the set of all coupons c(τ). We define a machine whose each state can be
described as a placement of some elements of the set E ∪C by the various nodes of the tree Tn.
This will be described by a function F , so that F (τ), τ ∈ Tn is the subset of E ∪ C which is at
τ . One element of E ∪C can be at most at one node of Tn. Some of the elements which are not
at any of the nodes τ of the tree, will be in the set X, which will be called the tray, and will
have the role of a temporary storage while the elements of E ∪C are moved from one place on
the tree to another.

Definition. We define an algorithm T = T (χ,c1) which will depend on a function χ defined
on {0, 1, ..., n− 1} whose values are 0, 1-sequences of length n, and a constant c1 > 0 that we
will choose later. For the moment we assume that χ and c1 are fixed in an arbitrary way. The
algorithm T will work on a machine that we will denote by R and whose each possible state
is a pair 〈F,X〉, where X ⊆ E ∪ C and F is a function F so that the following conditions are
satisfied:

(a) domain(F) = Tn,
(b) each value of F is a subset of (E ∪ C)\X,
(c) the various values of F are pairwise disjoint.

When the machine R is in state 〈F,X〉, and τ ∈ Tn, we will say that the elements of F (τ) are

21

at the node τ of Tn, and the elements of X are in the tray. If a coupon c(τ) is at a node of Tn
or in the tray then we will say that the coupon is active otherwise it is passive.

We will define the algorithm T by defining the initial state of the machine R and then
describing how will the algorithm change an arbitrary state of the machine into the next one.
The algorithm T may also ask for inputs and then gets an input of the type 〈a, v,Ψ〉 that are
the inputs of a memory maintenance program, that is a ∈ [0, n− 1], v ∈ [0, ℘], Ψ ∈ {0, 1}.

The initial sate of T is the pair 〈F0, ∅〉, where F0(τ) = ∅ for all τ ∈ Tn.
In the time interval I0, the algorithm T does the following:

(5) T puts the evaluation-pair 〈a, 0〉 on leaf(χ(a)) for each a ∈ {0, 1, ..., n− 1}, and

(6) For each τ ∈ Tn\{1Tn}, T puts the coupon c(τ) on τ◦, the ancestor node of τ .

This defines the function F at the end of I0. Note that the tray X did not change according
to this rule during I0. Therefore we have X = ∅ at the end of I0.

As a result of this definition, at the end of I0, at each non-leaf node σ there are exactly two
coupons c(σ(0)) and c(σ(1)).

We want to define T in a way that at the beginning of each time interval Ai, Bi, i > 0, the
state 〈F,X〉 of R will satisfy the following conditions:

(7) X = ∅

(8) for each a ∈ {0, 1, ..., n− 1} there exists exactly one x ∈ [0, ℘] so that 〈a, x〉 ∈
⋃
τ∈Tn F (τ).

This unique pair 〈a, x〉 is at a node τ with τ ∈ branch(χ(a)).

(9) for each τ ∈ Tn\{1T }, if the coupon c(τ) is active then it is at a node σ, with σ > τ

(10) for all τ ∈ Tn\{1Tn} statement (a) implies statement (b), where
(a) F (τ) 6= ∅, that is, there exists either at least one evaluation-pair or at least one coupon

at node τ ,
(b) there exists a σ > τ so that c(τ) is at node σ.

Conditions (7), (8) (9), (10) will be called the basic conditions.

Remark. 1. Condition (10) will mean for the algorithm A that all of the information which
are stored in a bucket p(τ) can be found by A, if it goes down the branch leading to τ and
looks into each bucket p(σ) so that σ ≥ τ and A already knows the address of p(σ). Condition
(10) guarantees, that this cumulative process will eventually lead to the address of p(τ).

2. In condition (10), statement (b) does not imply statement (a) in general. Suppose for
example the two leafs τ1, τ2 has a common ancestor σ. If there exist no a ∈ {0, 1, ..., x− 1} and
j ∈ {1, 2} with leaf(χ(a)) = τj then after the initial setup at the beginning of interval I1, the
coupons c(τj), j = 1, 2 are at σ but there is nothing at τ1 and τ2.

Now we describe what the algorithm T is doing in each time interval Ai, that is, in an access
time interval. At the beginning of the interval the algorithm T gets the input 〈ai, vi〉. Then T
does the following. In this description the expression T “destroys a coupon/pair” means that
the coupon/pair will be neither at a node of Tn nor in the set X. (The coupon becomes passive.)

22

As we said earlier the time interval A(T)
i is partitioned into d + 3 subintervals

Ai,0, ...,Ai,d+1,Ai,d+2. We describe the behavior of T in each of these intervals separately.
We assume that at the beginning of interval Ai,0 the basic conditions are satisfied.

The definition T in interval Ai,0.

(11) T puts all the coupons and evaluation pairs that are at node 1Tn into the tray.

The definition of T in the interval Ai,s, for s = 1, 2, ..., d.

(12) Assume that L(Tn)
s ∩ branch(χ(ai)) = {τ}.

Case I. The coupon c(τ) is not in the tray at the beginning of Ai,s. In this case T does not
do anything.

Case II. The coupon c(τ) is in the tray at the beginning of Ai,s. In this case T puts all of
the coupons and evaluation pairs that are at node τ into the tray, and destroys the coupon c(τ).

The definition T in interval Ai,d+1.

(13) T puts down to the node 1Tn all of the coupons and evaluation-pairs that are in the tray.
(The tray becomes empty.)

We will show that it is a consequence of the basic conditions, that after step (13) there is
always a pair of the form 〈ai, x〉 at node 1T . Therefore, T is always able to execute the following
step.

The definition T in interval Ai,d+2.

(14) assume that 〈ai, x〉 is the unique evaluation pair at node 1Tn whose first element is ai. If
the input at the beginning of the interval Ai was 〈ai, vi,Ψi〉 with Ψi = 1, then T gives the output
x. If Ψi = 0 then T destroys the pair 〈ai, x〉, creates a pair 〈ai, vi〉, places it at node 1Tn, and
gives the output vi.

Now we describe what the algorithm T is doing in the epochs Bi, i = 1, 2,
The definition of T in the time interval B(T)

i . Let ` = `(i) be the largest power of two which
is a divisor of i, and let ν be the smallest positive integer with 2ν > dc1 . For all i = 1, 2, ... we
define an positive integer κ, depending on i, by κ = κ(i) = min{d, 1 + ν + log2 `(i)}. T executes
the following steps, in the given order, in the time interval B(T)

i ,

(15) T destroys all of the coupons c(τ), where τ ∈ Lκ =
⋃
j≤κ Lj.

(16) T for each ρ ∈ Lκ−1, if a coupon c(τ), is at the node ρ, then T puts c(τ) at the unique
node σ in Lκ with σ ≥ τ . (Such a node exists, otherwise c(τ) would have been destroyed in step
(15).)

(17) For all τ ∈ Lκ−1 and for all evaluation pairs 〈a, v〉 that are at node τ , T puts 〈a, v〉 to
the unique node of Lκ which is also in branch(χ(a)).

23

(18) For each τ ∈ Lκ ∈ \{1Tn}, T activates the coupon c(τ) and puts it on τ◦.

This completes the definition of the algorithm T . The definition of T depended on the
choice of a function χ defined on {0, 1, ..., n− 1} and with values in {0, 1}d, and on the choice
of a constant c1 > 0, If we want to make this dependence explicit we will write T (χ,c1) instead
of T .

Lemma 3 For all possible choices of the function χ and the constant c1 > 0, if T = T (χ,c1),
then the following holds. The basic conditions are satisfied at the end of time interval I0 of
algorithm T . Moreover, for each i ≥ 1, if the basic conditions are satisfied at the beginning of a
time interval Ai of T , they will be also satisfied at the end of the interval Ai, and the same is
true for all of the time intervals Bi, i ≥ 1. Consequently the algorithm T is well-defined and the
basic conditions remain true at the end of each time interval Ai,Bi, i ≥ 1 while T is working.

Proof. First we show that the basic conditions are satisfied at the end of time interval I0.
Condition (7) As we have noted already, at the initial state of the machine X = ∅, and

nothing is put in the tray during I0.
Condition (8). In step (5) for each a ∈ {0, 1, ..., n− 1} exactly one evaluation pair of the

form 〈a, x〉, namely 〈a, 0〉 is put down at a node of Tn, and in the remaining step (6) no evaluation
pairs are added or removed.

Condition (9). This is a consequence of the fact that all of the coupons which became active
in interval I0, were added in step (6), where coupon c(τ) is placed at node τ◦ > τ .

Condition (10). For interval I0 this is a consequence of condition (9), since in step (6) the
algorithm T makes all of the coupons c(τ) active for τ ∈ Tn\{1Tn}.

As a next step we show that the assumption that we have used in the definition Ai,d+2 (step
(14)) was justified. We have to show that

Proposition 1 Assume that the basic conditions are satisfied at the beginning of interval Ai.
The definition of the action of T in interval Ai,d+2 is well defined, that is after step (13) there
is always a pair of the form 〈ai, x〉 at node 1Tn.

To prove this first we prove the following fact.

Proposition 2 Assume that at the beginning of the time interval Ai, i ≥ 1, the basic conditions
are satisfied. Suppose further that w ∈ E ∪ C and w is at a node τ ∈ branch(χ(ai)) at the
beginning of interval Ai. If τ ∈ Ls, s ∈ {0, 1, ..., d}, then T puts the object w in the tray in the
time interval Ai,s.

Proof. We prove the proposition by induction on s. For s = 0 the statement of the proposition
is an immediate consequence of the definition of step (11) in the description of T . Assume that
the statement of the proposition holds if τ ∈

⋃
r<s Lr. Suppose that w ∈ E ∪ C and w is at the

node τ with τ ∈ Ls. Condition (10) of the “basic conditions” imply that at the beginning of Ai

the coupon c(τ) is at a node σ > τ , where σ ∈ Lr, r < s. Therefore by the inductive assumption
the coupon c(τ) was placed in the tray by T in the time interval Ai,r. The definition of step
(12), that is, the action of T in the intervals Ai,j for j = r, ..., s−1, implies that at the beginning

24

of Ai,s the coupon c(τ) is still in the tray. Therefore by Case II of step (12) w is put in the tray
in interval Ai,s as claimed. Q.E.D.(Proposition 2)

We can prove now proposition 1. At the beginning of Ai the basic conditions are satisfied so
by condition (8) there exists a τ ∈ branch(χ(a)) and an x ∈ [0, ℘] so that 〈ai, x〉 is at τ . Therefore
according to Proposition 2, in some of the intervals Ai,0, ...,Ai,d the pair 〈ai, x〉 is put in the
tray and according to the definition of step (12) it remains there till the beginning of interval
Ai,d+1. In Ai,d+1 the pair 〈ai, x〉 is put down at the node 1Tn as claimed. Q.E.D.(Proposition
1)

Now we show that at the end of Aj the state of the machine R, satisfies the basic conditions.
Condition (7) At the end of interval Ai,d+1 the tray is empty as it is described in step (13).

In the interval Ai,d+2 nothing is put into the tray according to the definition of step (14).
Condition (8). During the interval Ai no element 〈a, v〉 ∈ E was destroyed or created with

a 6= ai. Moreover all pairs in E which were moved during this interval were moved to the node
1Tn which is contained in all of the sets branch(χ(ai)). Therefore, for each a 6= ai, if condition
(8) was satisfied at the beginning of Ai it will be also satisfied at the end of this time interval.
Consequently we only have to check the statement for a = ai. Since at the beginning of Ai

the basic conditions were satisfied, there was a unique pair of the form 〈ai, x〉 in
⋃
Fτ∈Tn(τ) at

the beginning of Ai,d+2 since till then no element of E was created or destroyed. According to
the Proposition 1 at the beginning of interval Ai,d+2 there is a pair 〈ai, x〉 at node 1Tn . The
definition of step (14), implies that at the end of Ai,d+2 there is a unique pair of the form 〈ai, y〉
at 1Tn but no pair of this form at any other nodes. Since 1Tn ∈ branch(χ(ai)) this implies that
condition (8) is satisfied.

Condition (9). Assume that τ ∈ Tn\{1Tn} and the coupon c(τ) is active at the end of Ai.
If the coupon c(τ) was not moved during interval Ai then the condition is satisfied because it
was satisfied at the beginning of Ai. If the coupon was moved during Ai then it is at 1Tn , since
the only time when coupons were placed at nodes, during the time interval Ai, was in interval
Ai,d+1, in step (13). In the next interval, in interval Ai,d+2, no coupon was moved. Therefore
σ = 1Tn . Since τ 6= 1Tn we have σ > τ as claimed.

Condition (10). Suppose that τ 6= 1Tn and at the end of Ai statement (a) of condition (10)
holds. We claim that τ /∈ branch(χ(ai)). Indeed assume τ ∈ branch(χ(ai)). By Proposition 2
all of the objects form node τ was put into the tray in interval Ai,s where τ ∈ Ls. The only
node where objects are placed during Ai is 1Tn and τ 6= 1Tn . We reached a contradiction so
τ /∈ branch(χ(ai)).

Since the basic condition were satisfied at the beginning of interval Ai at that time the
coupon c(τ) was at a node σ > τ . If σ /∈ (branch(χ(ai))) then nothing was put in the tray from
the objects that are at σ during Ai so statement (b) of condition (10) holds with the same σ at
the end of Ai. Assume now that σ is in branch(χ(ai)). Then by Proposition 2 coupon c(τ) is
put in the tray by T . Some of the coupons are destroyed during the interval Ai,s as described in
Case II of step (12). However according to this definition a coupon c(τ) can be destroyed only
if τ ∈ branch(χ(ai)). Since we know that τ /∈ branch(χ(ai)), c(τ) is not destroyed, and so in
interval Ai,d+1 is placed at the node 1Tn where it remains in interval Ai,d+2. By the assumption
of condition (10) τ 6= 1Tn , consequently statement (b) of that condition holds at the end of time
interval Ai with σ = 1Tn .

This completes the proof of the fact that the basic conditions are satisfied at the end of time

25

interval Ai, provided that they were satisfied at the beginning of this time interval.
Assume that for some i = 1, 2, ... the basic conditions are satisfied at the beginning of the

time interval Bi. We show that they are also satisfied at the end of this time interval.
Condition (7) trivially holds because the tray was not used during the interval Bi

Condition (8). Assume that an a ∈ {0, 1, ..., n− 1} is fixed. During the time interval Bi, no
evaluation pairs are destroyed or created so the condition that there exists exactly one x ∈ [0, ℘]
with 〈a, x〉 ∈

⋃
τ∈Tn F (τ) trivially remains true at the end of Bi. Evaluation pairs are moved

only in step (17) during Bi. In this step if a pair 〈a, v〉 is moved at all, then it is placed at a
node in branch(χ(a)) and remains there till the end of Bi as claimed.

Condition (9). Assume that τ ∈ Tn\{1Tn} and the coupon c(τ) is active at the end of interval
Bi. We use the notation introduced in the definition of T in Bi. If τ ∈ Lκ then steps (15) and
(18) imply that the coupon c(τ) is on node τ◦ > τ satisfying condition (9).

Assume now that τ 6∈ Lκ and c(τ) is active at the end of Bi. The only step during Bi where
coupons are activated is step (18). The coupon c(τ), however was not activated here because
τ 6∈ Lκ. Therefore c(κ) was already active at the beginning of Bi. Assume that at that time it
was at node η ∈ Tn. Since (9) was satisfied at the beginning of Bi, we have that η > τ . Coupons
are moved only in step (16) during Bi. By the definition of this step if η /∈ Lκ−1 then c(τ) is
not moved during Bi so at the end of Bi condition (9) is satisfied with σ = η. Assume now that
η ∈ Lk−1. Then by step (16) c(τ) is moved to a node σ ∈ Lκ with σ ≥ τ . By our assumption
however τ 6∈ Lκ ⊇ Lκ therefore σ 6= τ , and so σ > τ as it is required.

Condition (10). Assume that τ ∈ Tn\{1Tn} and there is at least one element of the set E∪C
at τ . Suppose first that τ ∈ L(κ). In this case in step (18) the coupon c is placed at the node
τ◦ so statement (b) holds with σ = τ◦. Assume now that τ /∈ Lκ. Then by the definition of T
in Bi, nothing was placed at τ during Bi, therefore statement (a) of condition (10) was satisfied
at the beginning of Bi as well. Since the basic conditions were all satisfied at that time, we get
that statement (b) was true at the beginning of Bi, and so c(τ) was at a node σ with σ > τ .
If σ /∈ Lκ−1 then c(τ) is still at σ at the end of Bi. Assume now that σ ∈ Lκ−1. Then c(τ) is
moved in step (16) to an element of σ′ ∈ Lκ with σ′ ≥ τ and c(τ) remains there till the end of
Bi. Since τ /∈ Lκ ⊇ Lκ we have τ 6= σ′ and so τ < σ′. Consequently at the end of Bi statement
(b) is true with σ′ in the role of σ. Q.E.D.(Lemma A13)

Lemma 4 For all possible choices of the function χ and the constant c1 > 0, if T = T (χ,c1)

then the following holds. input sequence 〈a1, v1,Ψ1〉, ..., 〈am, vm,Ψm〉, with ai ∈ {0, 1, ..., n− 1},
vi ∈ [0, ℘], Ψi ∈ {0, 1} the program T gives the output zi in the interval Ai what is expected
from a memory maintenance program after the input 〈ai, vi,Ψi〉. More precisely the following
holds. If Ψi = 0 then the zi = vi. If Ψi = 1 and there exists a largest positive integer j with
“j < i ∧Ψj = 1 then zi = vj. Otherwise zi = 0.

Proof. The statement of the lemma is an immediate consequence of Proposition 1 and the
definition of T in the interval Ai,d+2 as described in step (14). Q.E.D.(Lemma 4)

Remark. The previous two lemmas were valid for each fixed choice of χ. The k-wise indepen-
dence property of χ will be used in the next lemma which says that with high probability the
total number of items, coupons and evaluation pairs, remain below a poly(log n) bound during
the execution of the tree algorithm T , if the number of inputs is only polynomial in n.

26

Definition. The set of all 0, 1-sequences of length i will be denoted by {0, 1}i.

Lemma 5 There exists c1 > 0, γ > 0 λ > 0 so that for all sufficiently large integers n and for
all input sequences 〈ai, vi,Ψi〉, i = 1, ..., j of length at most nlogn, if the values of the random
variable χ are functions defined on {0, 1, ..., n− 1} with values in {0, 1}n and χ is (log n)λ-wise
independent, then with a probability of at least 1 − n− logn the following holds. For all τ ∈ Tn
the number of evaluation pairs and coupons at the node τ , remains below (log n)γ during the
execution of algorithm T (χ,c1).

3 Proof of Lemma 5

Notation. Recall the following notation introduced in the definition of T (χ,c1) at the definition of
the action of T in the epoch Bi. ` = `(i) is the largest power of two which is a divisor of i, ν is the
smallest positive integer with 2ν > dc1 , and for all i = 1, 2, ..., κ = κ(i) = min{d, 1+ν+log2 `(i)}.

Definition. Each natural number m will be considered as the set of all natural numbers less
than m. That is 0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, . . . , m = {0, 1, ...,m− 1}.

Proof of Lemma 5. We reduce the lemma to special cases where the computation of proba-
bilities is easier.

Proposition 3 Assume that c1 ≥ 2.
(a) if Lemma 5 holds with the additional assumption τ 6= 1Tn , then it holds in its original

form as well.
(b) if Lemma 5 holds with the additional assumption τ /∈ Lν , then it holds in its original

form as well.

Proof of proposition 3. First we prove the weaker statement (a) of the proposition. Consider
the first time t when the number of evaluation-pairs at node 1Tn is greater than M , where
M > 2 is an arbitrary but fixed number. Clearly this cannot be in a bookkeeping interval Bi

since at the end of such an interval the number of objects at 1Tn is 0, namely the coupons of
the successors of 1Tn are there and nothing else.

Therefore t must be in an access interval Ai. Each interval Ai comes right after an interval
Bi−1 or the interval I0. In either case there are exactly two coupons at 1Tn at the beginning of
Ai and no other objects. Consequently if during Ai the number of objects at 1Tn reaches M ,
then at least M ′ = M − 2 of them is placed there during Ai.

Throughout interval Ai, the only occasion when algorithm T puts objects at the node 1Tn is
in interval Ai,d+1, when T puts the objects from the tray to node 1Tn . By the definition of T , T
puts an object q in the tray during Ai only if q was at a node in the branch B = branch(χ(ai))
at the beginning of Ai. Therefore the total number of objects at the d nodes of B\1Tn at the
beginning of Ai was at least M ′ and therefore there was a node in B with at least M ′/d objects
at the beginning of algorithm T . Consequently if we prove that the number of objects at each
node with the exception of 1Tn is at most dγ , then without the exception we will have the upper
bound 2 + dγ+1 ≤ dγ+2 if d ≥ 2, γ ≥ 1. This completes the proof of statement (a) of the
proposition.

27

Throughout interval Ai, the only occasion when algorithm T puts objects to a node of T is
in interval Ai,d+1, when T puts the objects from the tray to node 1Tn .

In a bookkeeping interval new objects appear at the nodes in the following way. At the end
of a bookkeeping interval Bi, at each node τ ∈ Lκ(i)−1 there are exactly two objects at τ , namely
the coupons c(τ (0)) and c(τ (1)), where τ (0) and τ (1) are the successors of τ. The definition of
κ(i) implies that Lν ⊆ Lκ(i)−1 for all i = 1, 2, ..., therefore at the end of a bookkeeping interval
the number of objects at each τ ∈ Lν is at most 2.

These two observations imply that if the number of objects are greater than 2 at a node
τ ∈ Lν then τ = 1Tn . This together with the already proven statement (a) implies statement
(b). Q.E.D.(Proposition 3)

The choice of λ. We estimate the number of objects at the nodes of Ld. The dλ-wise
independence implies that for each fixed b ∈ Ld the probability pb that there are at least k
integers a ∈ n with leaf(χ(a)) = b is at most

(n
k

)
n−k ≤ (k!)−1. For λ ≥ 2 and k = d2 we

get k! = ((log n)2)! ≥ (log n)
1
2

(logn)2 ≥ n
1
2

logn log logn which implies that pb ≥ n−
1
2

logn log logn.
Therefore

Proposition 4 with λ ≥ 2 in the choice of χ, the probability that

(19) there exists a leaf b ∈ Ld, so that that the number of integers |{a ∈ n | leaf(χ(a)) = b}| ≥
(log n)2

is at most n−
1
2

logn log logn ≥ n−4 logn.

At this point we do not fix yet λ, but we assume that it will be at least 2 and so, with
high probability for the randomization of χ, condition (19) will not hold. In Lemma 5 we are
speaking about the number of all objects evaluation pairs and coupons at a node τ of Tn the
following proposition shows that for a poly(log n) bound on this number it is sufficient to count
the evaluation pairs.

Proposition 5 During the execution of T , at each time t, and for each τ ∈ Tn, Ne(τ, t) denotes
the number of evaluation pairs at τ , and Nc(τ, t) denotes the number of coupons at τ . Let
M = maxτ,tNe(τ, t). Then maxt,τ Nc(τ, t) ≤ 1 + 2M log n. Consequently, it is sufficient to
prove Lemma 5, in the modified form, where its conclusion is the following. “For all τ ∈ Tn\Lν ,
the number of evaluation-pairs at τ remains below (log n)γ during the execution of algorithm
T .”

Proof of Proposition 5 We will call a coupon which has not been moved yet after its last
activation, a stationary coupon. We will need the following about stationary coupons.

Claim 1 for all τ ∈ Tn, while T is running, there can be at most 2 stationary coupons at τ .

Proof of Claim 1. The statement of the claim is a consequence of the fact that that coupons
are activated only in the epochs Bi and at the time when a coupon c(τ) is activated it is put
down at the node τ◦ together with the coupon c(τ ′), where τ ′ is the other successor of the node
τ◦. Moreover in this case we have τ ∈ Lκ(i), and so τ◦ ∈ Lκ(i)−1, and therefore all of the coupons

28

which previously were at τ◦ were destroyed (deactivated) earlier in Bi. This guarantees that
each coupon becomes active together with only a single other coupons at the same node, and
until it is destroyed other coupons are activated at the same node. This completes the proof of
Claim 1

For each a ∈ {0, 1, ..., n− 1} at each time while T is working we will denote by pair(a) the
unique evaluation pair of the form 〈a, v〉 so that there exists a τ ∈ Tn that 〈a, v〉 is at τ

Claim 2 Assume that a ∈ {0, 1, ..., n− 1}, a ∈ Tn and the coupon c(τ) is a stationary coupon
at the beginning of Ai, an during Ai both c(τ) and pair(a), where in Ai the input was 〈ai, vi,Ψ〉
with ai = a. Then τ◦ ∈ branch(χ(a)) and starting with the end of Ai till the time the coupon c
is first destroyed, the evaluation-pair pair(a) and the c(τ) are always at the same node.

Proof of Claim 2. The definition of T in Ai implies that both pair(a) and c(τ) are put
down from the tray to the node 1Tn at the end of Ai.

Assume now that c(σ) and pair(a) are together at the same node at the beginning of an
access interval Ai. If any of them is put into a the tray then the other one will be put there
as well, so at the end of the interval they will be again together at node 1Tn (unless c(τ) is
destroyed). If they are not put into the tray the naturally the will remain at the same node at
the end of Ai.

During an interval Bi the following happens. The fact that c(τ) was a stationary coupon
at the beginning of Ai implies that it was at node τ◦ at that time and so τ◦ ∈ branch(χ(a)).
Therefore the path between 1Tn and τ◦ is contained in branch(χ(a)). Consequently in Bi both
pair(a) and c(τ) are moved to the unique element of Lκ(i)∩branch(χ(a)) unless c(τ) is destroyed
at the beginning of Bi. Q.E.D.(Claim 2)

Assume that σ, τ ∈ Tn and at time t, c(τ) is a non-stationary coupon at σ. Since c(τ)
is not stationary it was put in the tray at some time, say, this happened first in interval Ai

where the input was 〈ai, vi,Ψi〉. By Claim 2 pair(ai) is also at σ at time t. The integer ai that
we defined this way depends in t, σ and τ , so we will denote it by a(t, σ, τ). By Claim 2, we
have τ◦ ∈ branch(χ(a(t, σ, τ))). Therefore for fixed t and σ, the number of different elements
τ ∈ Tn so that a(t, σ, τ) is the same can be at most 2 log n. Therefore the number of coupons
at time t at σ is at most the number of stationary coupons there plus 2 log n times the number
of evaluation pairs at σ at the same time. Claim 1 gives the upper bound 2 on the stationary
coupons, so we get the upper bound 2 + 2 log nM on the total number of coupons at time t at
σ. Q.E.D.(Proposition X0.2)

Assume that k0,M0 are positive integers, χ has k0-wise independence, u ∈ Tn\{Lν}. Let t
be a fixed time while the algorithm T is running. We estimate the probability (for fixed χ and a
fixed input, with respect to the randomizations in the bookkeeping intervals Bi) that it happens
first at time t, that the number of objects at u is greater than M0. The time t cannot be in
an access interval Ai, since in such an interval objects placed only to 1Tn . Therefore it may be
only in I0 or in a bookkeeping interval Bi. Proposition 4 implies that if k0 ≥ dλ,M0 ≥ dγ where
λ > 0, γ > 0 are sufficiently large constants then t cannot be in I0. Suppose that t is in the
interval Bi. We assume now that at the end of an interval Bi the number of objects at node u
is greater than M0.

The only level where the number of objects increases in interval Bi is Lκ(i). Recall that

29

κ(i) = min{d, 1 + ν + log2 `(i)}. For later use we note that it is a consequence of u /∈ Lν and
the definition of ν as the smallest integer with 2ν > dc1 , that for all sufficiently large n we have

(20) ν < κ(i), and dc1 < 2κ(i)−1

Since the number of evaluation pairs at u becomes greater than M0 the first time during
the execution of T in the interval Bi, we have u ∈ Lκ(i), otherwise the number of pairs couldn’t
have grown at u in Bi. We also know by Proposition 4 that with high probability for the
randomization of χ that κ(i) 6= d. We assume that such a function χ is fixed. Let µ = ν + 1.
We write i2µ in the form i2µ = αn + i′2µi, where α, i′ are natural numbers and i′2µ < n. Let
i′2µ =

∑r−1
j=0 2ψj , where κ(i) = ψ0 < ψ1 < ... < ψr−1 < d. κ(i) = ψ0 is a consequence of the

definition of κ(i) and ψ0 < d. We define ψr by ψr = d.
Let β0 = i and let 2µβj = i2µ − (2ψ0 + ... + 2ψj−1) for j = 1, ..., r. We may also write this

in the form

(21) βj = 2−µα+ 2ψr−1−µ + ...+ 2ψj+1−µ + 2ψj−µ

Clearly βr = αn2−µ. The definition of κ(βj) and ψ(j) ≤ d for j = 0, 1, ..., r−1 implies κ(βj) =
ψj for j = 0, 1, ..., r−1. We consider the bookkeeping intervals Bn/2µ = Bβr ,Bβr−1 ...,Bβ0 = Bi.
We claim that

Proposition 6 The number of access intervals Al between Bβj+1
and Bβj is at most βj−βj+1 =

2ψj−µ ≤ d−c12ψj .

Proof. The statement that the number of access intervals Al between Bβj+1
and Bβj is at

most βj − βj+1 is an immediate consequence of the fact that access and bookkeeping intervals
alternate. Q.E.D.(Proposition 7)

Proposition 7 Assume that βj+1 < ζ < βj. Then κ(ζ) < κ(βj) = ψj < κ(βj+1) = ψj+1.

Proof. By (21) we have βj = 2−µα + 2ψr−1−µ + ... + 2ψj+1−µ + 2ψj−µ and βj = 2−µα +
2ψr−1−µ + ...+ 2ψj+1−µ

The inequality βj+1 < ζ < βj implies that if 2z is the largest power of 2 which divides 2µζ
then 2z is smaller than 2ψj . Since ψj < d this implies κ(ζ) = z. Together with κβj = ψj and
κβj+1

= ψj+1 this implies the statement of the proposition. Q.E.D.(Proposition 7)
Let Aj be the set of all natural numbers in the interval [βj+1, βj]. Clearly s ∈ Aj iff the

access interval As is between the bookkeeping intervals Bβj+1
and Bβj . In the following lemma,

as before, we denote the input pair arriving in interval As by 〈as, vs〉

Lemma 6 Assume that a ∈ n so that at the end of Bi = Bβ0 there exists a pair 〈a, x〉 at node
u for a suitably chosen x. Then there exists a set of integers Ha ⊆

⋃r−1
j=0 Aj, with the following

properties:

(22) |Ha ∩Aj | ≤ 1 for all j = 0, 1, ..., r − 1

(23) for all h ∈ H, we have u ∈ branch(χ(ah))

30

(24) there exists an integer h ∈ Ha so that χ(ah) = χ(a)

(25) For all j = 0, 1, ..., r−1, h ∈ Ha∩Aj, let σh = branch(χ(ah))∩Lψj . Then, for all h ∈ Ha

with σh 6= u, there exists an integer g ∈ Ha so that leaf(χ(ag)) < σh < σg

Definition. An evaluation pair 〈a, v〉 will be called an a-type pair. The fact that at the end
of time interval I0 there exists a unique a-type pair for each a ∈ {0, 1, ..., n− 1}, implies that at
the end of each bookkeeping interval Bj there exists also a unique a-type pair, that we will call
the a-type pair at the end of Bj .

Proof of Lemma 6. We construct a set Ha with the required properties. For each j =
0, 1, ..., r− 1, let ρj be the node where the a-type pair is at the end of interval Bβj . Recall that
κ(βj) = ψj . By the definition of T during a bookkeeping interval we have that ρj ∈ branch(χ(a))
for all j ∈ r. We claim that either ρj ∈ Lψj or ρj = ρj+1. The reason for this is that according
to Proposition 7 if there is an interval Bζ with βj+1 < ζ < βj , so that the a-type pair moved
during one of these intervals then it ended in a level Ll with l < ψ(j) and so in the interval Bβj

it moved to Lκ(βj) = Lψj . On the other hand assume that the a-type pair did not move in any
of these intervals. At the end of interval Bβj+1

the a-type pair was in level Lκ(βj+1) = Lψj+1
or

below it. Since βj+1 < βj , this implies that the a-type pair did not move in the interval Bβj

either. Therefore ρj = ρj+1.
Let J be the set of all j = 0, 1, ..., r − 1 so that ρj 6= ρj+1. For each j ∈ J let s(j) be the

smallest integer in the set Aj so that as(j) = a. ρj 6= ρj+1 implies that such an integer s(j)
exists.

Let Ha = {s(j) | j ∈ J}. Conditions (22) hold since for each Aj if |H ∩Aj | is not empty then
it contains only the smallest element of a set. Condition (23) is an immediate consequences of
the fact that the a-type pair always moves along the branch branch(χ(a)).

Condition (24). At the end of Bβr = Bαn2−µ the a type elements was in Lκ(βj) = Ld, that
is it was at a leaf. Assume that it moved from here in interval As(j). Then χ(s(j)) = χ(a).

Condition (25). Suppose that a h ∈ Ha is given with σh 6= u, and h = s(j) ∈ Aj ∩ J . By the
definition of s(j) we have ρj 6= ρj+1 and so ρj ∈ Lκ(βj) = Lψj and clearly ρj ∈ branch(as(j)).
This implies ρj = σj . Since σh 6= u the a-type pair must be moved in an access interval from
the node σh = ρj therefore J ′ has at least one element j′ with j′ > j. Let j′ be the smallest
element of J with this property and let g = s(j′). Since the a-type pair is moved from ρj = σh
in interval Ag we have leaf(χ(ag)) ≤ σj < σg. ψl < d for l = 0, 1, ..., l − 1 and σj ∈

⋃r−1
l=0 Ll

implies that σj /∈ Ld, so we have leaf(χ(ag)) < σj < σg. Q.E.D.(Lemma 6)

Definition. 1. Assume that n, d, s are positive integers, n = 2d, L is a set whose elements are
levels of Tn, that is, L = Lϕ0 , ..., Lϕs−1 where ϕ0 < ... < ϕs−1. In this case we will say that L is
a level-set with parameters ϕ0 < ... < ϕs−1. In the following definitions we assume that such a
level set L is fixed.

2. A set K ⊆ Tn × Ld is called an L-tree, if the following conditions are satisfied:

(26) for all 〈τ, a〉 ∈ K, we have τ >Tn> a

(27) there exists exactly one τ ∈ Lϕ0 so that for a suitably chosen a ∈ Ld we have 〈τ, a〉 ∈ K

31

(28) for all 〈τ, a〉 ∈ K, either τ ∈ Lϕ0 or there exists a 〈σ, b〉 ∈ K with b <Tn τ <Tn σ

The unique element τ ∈ Lϕ0 with the property in condition (27) will be denoted by 1K

Lemma 7 Assume that we choose λ in the definition of χ with λ ≥ 2. Then for each fixed
input sequence 〈aj , vj〉, 1 ≤ j ≤ nlogn, and for the randomization of χ, the following holds with
a probability of at least 1−n−3 logn. Suppose that there exist a u ∈ Tn\Lµ and an i ∈ [1, n log n]
so that the number of evaluation pairs at the end of the bookkeeping interval Bi at node u is at
least M0. (We assume that, r, ψ0, ..., ψr−1, A0, ..., Ar−1 are defined from u and i as described
before Proposition 6.) Suppose further that L = Lψ0 ∪ ...∪Lψr−1 is the level set with parameters
ψ0, ..., ψr−1. Then

(29) there exists a set Z ⊆
⋃r−1
j=0 Aj with d−3M0 ≤ |Z| ≤ dM0 so that if for each s ∈ Aj ∩ Z,

j ∈ r, τs is the unique element of branch(χ(as)) ∩ Lψj , and bs = leaf(χa(s)), then K =
{〈τs, bs〉 | s ∈ Z} is an L-tree.

Proof. Let W ′ be the set of all a ∈ n, so that there exists an a-type evaluation pair at the
end of Bi at node u, and let W be a subset of W ′ with exactly M0 elements. By the assumptions
of the lemma such a set W exists. For each fixed a ∈ W Let Ha ⊆

⋃r−1
j=0 Aj be a set with the

properties stated in Lemma 6. The existence of such a set Ha is guaranteed by that lemma.
We define Z by Z =

⋃
a∈W Ha. Clearly |Z| ≤ |W |maxa∈W Ha. By the assumptions of the

present lemma we have |W | = M0. Ha ⊆
⋃r−1
j=0 Aj and condition (22) of Lemma 6 imply that

|Ha| ≤ r ≤ d, therefore |Z ≤ d|M0| as claimed..
To get a lower bound on |Z| we use condition (24) of Lemma 6. The assumption λ ≥ 2

together with Proposition 4 implies that with a probability of at least 1− n−4 logn we have that
for each leaf b of Tn, the number of all a ∈ n with leaf(χ(a)) = b is at most d2. Lemma 6
implies that {leaf(χ(a)) | a ∈ W ∈ Z} has at least M2

0 /d
2 elements. By condition (24) of

Lemma 6 each of these elements occur in a set Ga = {leaf(χ(g)) | g ∈ Ha} for some a ∈ Z.
Since a single Ga has at most d elements we have |Z| ≥ d−3M0.

Finally we have to show that K is an L-tree. First we show that for each fixed a ∈ W ,
Ka = {〈τs, bs〉 | s ∈ Z} is an L-tree. By the definition of τs and bs, both of them are on
branch(χ(as)), bs is a leaf, and since ψj < d for all j = 0, 1, ..., r − 1, τs is not a leaf. Therefore
bs < τs and so K satisfies condition from the definition of a tree. Conditions (27), (28) of the
definition is a consequence of condition (23) and (25) of Lemma 6.

K, the union of the L-trees Ka, a ∈ Z will be again a L tree since condition (27) of the
definition of an L-tree is satisfied in each of them with τ = u. The other two conditions of the
definition are trivially inherited for unions. Q.E.D.(Lemma 7)

Proof of Lemma 5. We will use the notation of Lemma 7. Assume that a u ∈ TnLµ and
an i ∈ [1, n log n] is fixed, and we randomize χ. We want to show that the probability of the
event Bu,i,γ is close to one, where Bu,i,γ ≡ “the number of evaluation pairs at u at the end of
the bookkeeping interval Bi will remain below dγ”. (γ > 0 is a constant that we will pick later.)
Lemma 7 shows with M0 = dγ , that if Bu,i,γ does not hold then there is a set Z ⊆ A =

⋃r−1
j=0 Aj

so that |Z| is around M0 = dγ , and K = {〈τs, bs〉 | s ∈ Z} is a K-tree. We will prove the
statement of Lemma 5 by showing that for the randomization of χ the probability that A has
such a subset Z is negligible.

32

We reformulate this statement. For each s ∈ A =
⋃r−1
i=0 let ξs be a random variable defined

in the following way. Suppose that u, i are fixed. They uniquely determine r, A0, ..., Ar−1,
ψ0, ..., ψr − 1, L =

⋃r−1
j=0 Lψj . We randomize now ψ with λ > γ + 1, λ ≥ 2. The value of

ξs is the pair 〈τs, bs〉 where, if s ∈ Aj , τs is the unique element of branch(χ(as)) ∩ Lψj , and
bs = leaf(χa(s)). The Lemma will 8 below will show that the probability that the values of
such random variables form an L-tree of the required size is very low.

The following Lemma 8 is completely self-contained, that is, we do not assume that
r, ψ0, ..., ψr−1, A0, ..., Ar−1, ξx are defined as in the previous lemmas or in the explanation
above, they are arbitrary integers sets and random variables with the properties only stated
in the lemma. We will apply the lemma however in a way when these elements will play the
roles indicated previously. This more general formulation of the lemma, perhaps shows, what is
the combinatorial problem that we have to solve for the proof of Lemma 5.

Lemma 8 Assume that d, n are positive integers with n = 2d, 0 < α < 1, k is a positive integer,
and L = {L(Tn)

ψ0
, ..., L

(Tn)
ψr−1
} is a level-set of the tree Tn with parameters ψ0 < ... < ψr−1 < d.

Suppose further that an u ∈ L(Tn)
ψ0

is fixed and A0, ..., Ar−1 are pairwise disjoint sets and for each
a ∈ A =

⋃r−1
i=0 Ai, ξais a random variable with the following properties:

(30) |Ai| ≤ α|Lψi | = α2ψi for all i = 0, 1, ..., r − 1

(31) For each i = 0, 1, ..., r−1 and a ∈ Ai, the random variable ξa takes its values on L(Tn)
ψi
×Ld

with uniform distribution on the set of all pairs 〈τ, b〉 ∈ Lψi × Ld with the property τ ≥Tn b.

(32) Suppose Y ⊆ A and |Y | ≤ k. Then the random variables in ξa, a ∈ Y are mutually
independent.

Let X be the set of all random variables ξa, a ∈ A. We randomize all of the random variables
in X. Then the probability of the following event is at most (αd2k)k:

(33) There exists a Z ⊆ A so that |Z| = k, and if K is the set of values of the random variables
ξa, a ∈ Z then (a) K is an L-tree, and (b) for each 〈τ, b〉 ∈ K we have τ ≤Tn u.

We will need the following definitions in the proof of the lemma.

Definition. Suppose that K is an L-tree. We define a directed graph on K. An edge points
from 〈τ1, b1〉 to 〈τ2, b2〉 iff b2 < τ1 < τ2. We will denote this directed graph by graph(K).

Remark. The directed graph graph(K) does not contain circles, since along a path 〈τi, bi〉,
i = 1, 2, ..., the elements τi form a strictly increasing sequence in the ordering ≤Tn . The definition
of an L-tree also implies that if there is no outgoing edge from an element 〈τ, b〉 ∈ K, then
τ ∈ Lψ0 . Therefore condition (28) implies that any directed path in graph(K) can be extended
into a path which ends in an element 〈τ, b〉 with τ ∈ Lψ0 .

Definition. Assume that K is an L-tree and F is a function defined on the totally ordered
set Γ with range(F) = K. The ordering on Γ will be denoted by ≤Γ. rankΓ(x) will denote
the integer |{y ∈ Γ | y <Γ x}|. We define a function ϕ on the set |Γ| = {0, 1, ..., |Γ| − 1} with

33

values in |Γ| × r. We define first two functions v(i) and s(i) on |Γ|, and then we define ϕ by
ϕ(i) = 〈v(i), s(i)〉 for all i ∈ |Γ|. Suppose that i ∈ |Γ| and γ ∈ Γ, rankΓ(γ) = i. Assume
that F (γ) = 〈τ, b〉. s(i) is the unique integer with τ ∈ Lψs(i) . If there is no outgoing edge in
graph(K) from F (γ) then v(i) = 0. Otherwise let δ be the smallest element of Γ with respect
to ≤Γ, with the property that b′ < τ < σ, where F (δ) = 〈σ, b′〉. According to condition (28)
of the definition of an L-tree such a δ always exists. We define v(i) by v(i) = rankΓ(δ). The
function ϕ defined above will be called the type of the function F . A type defined for functions
F with domain(F) = k, will be called a k-type

Remark. The type of F , if F is a function defined on Γ with range(F) = K, is a map from
|Γ| into r× |Γ|. Therefore the number of possible types of functions F defined on Γ, with values
in K is at most (r|Γ|)|Γ|. Therefore the number of k-types is at most (rk)k

Definition. 1. func(X,Y) will denote the set of all functions f with domain(f) = X and
range(f) ⊆ Y .

2. Suppose that f is a function, a /∈ domain(f) then f oa,b will denote the unique extension
of f to the set domain(f) ∪ {a} defined by f(a) = b.

Definition. Assume that 〈u0, v0〉, ..., 〈us−1, vs−1〉 is a sequence of pairs. We say that the
sequence is one-to-one if (a) the elements u0, ..., us−1 are distinct and (b) the elements v0, ..., vs−1

are also distinct. (It is possible that uj = vj for some i, j ∈ s.)

Lemma 9 Suppose that β > 0 is a real, and the following conditions are satisfied:

(34) k is a positive integer, J,H,W are finite sets, and |J | = k

(35) R is a symmetric k-ary relation on the set J×H so that R(〈ι0, h0〉, ..., 〈ιk−1, hk−1〉) implies
that 〈ι0, h0〉, ..., 〈ιk−1, hk−1〉 is a one-to-one sequence.

(36) for each w ∈ W , ηw is a random variable, which takes its values on the set H, and for
any subset Y of W with |Y | ≤ k, the random variables ηw are independent.

(37) Assume that for each j ∈ [0, k − 1), and for each one-to-one sequence
〈ι0, h0〉, ..., 〈ιj−1, hj−1〉 there exists an ιj ∈ J\{ι0, ..., ιj−1}, so that we have

∑
wj∈W qwj ,ιj < β,

where qwj ,ιj is the probability of the following event Qwj ,ιj with respect to the randomization of
ηwj :

There exist hj+1, ..., hk−1 ∈ H and ιj , ιj+1, ..., ιk−1 ∈ J so that

R(〈ι0, h0〉, ..., 〈ιj−1, hj−1〉, 〈ιj , ηwj 〉, 〈ιj+1, hj+1〉, ..., 〈ιk−1, hk−1〉)

Then the probability of the following event is at most βk. There exists a sequence
〈i0, v0〉, ..., 〈ik−1, vk−1〉 so that i0, ..., ik−1 is a permutation of the elements J , v0, ..., vk−1 ∈ W ,
and

R(〈i0, ηv0〉, ..., 〈ik−1, ηvk−1
〉)

34

Proof. We prove the lemma by induction on k. For k = 1 the assumptions of the lemma
imply that

∑
w∈W prob(R(〈0, ηw〉)) < β. Clearly the sum in this expression is also an upper

bound on prob(DR) = prob(∃w ∈ w,R(〈0, ηw〉)) which implies our statement.
Assume now that the lemma holds for k − 1 and we prove it for k. According to the

assumptions of the lemma with j = 1 there exists a ι0 ∈ J so that
∑
w∈W qw,ι0 < β. Let B be

the event in the conclusion of the lemma, and for each w ∈ W let Bι0,w be the event where in
the definition of B we include the additional requirement for each s = 0, ..., k−1, is = ι0 implies
ws = w.

In the definition of B i0, ..., ik−1 is a permutation of J , therefore there is always an s ∈ k
with is = ι0, and in this case B implies Bι0,ws . Hence we have prob(B) ≤

∑
w∈W prob(Bι0,w).

We randomize ηw. With a probability of 1 − qw,ι0 we get a value ηw which guarantees that
Bι,w does not hold. We use Bayes theorem for the randomization of ηw we get prob(Bι0,w =∑
h∈Hw prob(ηw = h)prob(Bι0,w|ηw = h), where Hw is the set of all h ∈ H with prob(ηw = h) 6=

0. Let H ′w be the set of all h ∈ Hw with prob(Bι0,w|ηw = h) > 0. According to our assumptions∑
w∈W prob(ηw ∈ H ′w) < β.

Therefore it is sufficient to show that for all h ∈ H ′w we have prob(Bι0,w|ηw = h) ≤
βk−1. Indeed, this would imply prob(B) ≤

∑
prob(Bι0,w) ≤

∑
w∈W

∑
h∈H′w prob(ηw =

h)prob(Bι0,w|ηw = h) ≤
∑
w∈W

∑
h∈H′w prob(ηw = h)βk−1 ≤ βk−1∑

w∈W prob(ηw ∈ H ′w) ≤
βk.

We show now that for each fixed w̃ ∈ W , h ∈ H ′w̃ we have prob(Bι0,w̃|ηw̃ = h) ≤ βk−1. We
apply the inductive assumption with k̄ = k− 1, J̄ = J\{ι0}. The sets W , H remain unchanged,
and the k−1 ary relation R̄ will hold on the sequence 〈i0, g0〉, ..., 〈ik−2, gk−2〉 iff the k-ary relation
R holds on the sequence 〈ι0, h〉, 〈i0, g0〉, ..., 〈ik−2, gk−2〉. For each w ∈W will η̄w will be a random
variable whose distribution is the conditional distribution of ηw with the condition ηw̃ = h.

We have to show that the conditions (34), (35), (36), (37) hold for these values as well.
The first two conditions are immediate consequences of the definitions. For the proof of con-
dition (36) let w0, ..., wk−2 ∈ H. Condition (36) for the original k-dimensional case implies
that ηw0 , ..., ηwk−2

, ηk are independent. Therefore if we consider the first k − 1 of these random
variables conditioned with an event about the last one, then they remain independent.

Finally we prove that condition (37) is satisfied. The statement for the relation R̄ is simply
a special case for the corresponding statement about the relation R since the independence of
ηw̃ and ηwj guaranteed by (36) for the k-dimensional statement implies that the distributions of
η̄wj and ηwj are the same. Q.E.D.(Lemma 9)

Proof of Lemma 8. We fix a total ordering ≤A of the set A. Assume that the random
variables ξa has been randomized and condition (33) is satisfied. Let F be the function which
assigns the value of ξa to the integer rankZ(a) ∈ k. F is a function whose range is an L-tree.
Let ϕ be the type of F under the ordering of Z induced by ≤A. The element of a of Z with
rank(a) = i will be denoted by zi.

For each k-type ϕ0 we estimate the probability pϕ0 that condition (33) holds with ϕ = ϕ0.
Since the number of k-types is at most (rk)k this will give an estimate on the probability that
condition (33) is satisfied (without any restrictions).

Assume now that a k-type ϕ0 is fixed. We apply Lemma 9, with β = 1
d k, J = {0, 1, ..., k−1},

H = (
⋃
i∈r Lψi) × Ld, W = A. The symmetric relation R is defined as follows: assume that

35

ιi ∈ k, hi ∈ H for i ∈ k. R(〈ι0, h0〉, ..., 〈ιk−1, hk−1〉) holds iff ι0, ..., ιk−1 is a permutation of
the elements of k and if the map F defined by F (ιi) = hi for all i ∈ k has type ϕ0, where we
consider the natural ordering on k.

Finally we will have ηa = ξa for all a ∈ A.
We have to show that conditions (34), (35), (36), and (37) are satisfied by these choices of the

parameters. The first three of these conditions are immediate consequences of the definitions.
Condition (37). Assume that 〈ι0, h0〉, ..., 〈ιj−1, hj−1〉 is a one-to-one sequence so that

ι0, ..., ιj−1 ∈ J = k, and h0, ..., hj−1 ∈ H = (
⋃
i∈r Lψi) × Ld. Now we have to select a ιj

from k with the properties described in the condition (37). ιj must be in the set k\{ι0, ..., ιj−1}.
For each element ι ∈ S we consider the pair ϕ0(ι) = 〈v(ι), s(ι)〉. ιj will be an arbitrary element
of S so that s(ιj) is maximal, that is, for all ι ∈ S, s(ιj0) ≥ s(ι).

We have to prove now the inequality
∑
wj∈A qwj ,ιj < α. Since s(ιj) is maximal, the definitions

of an L-tree and a k-type imply that either (a) s(ιj) = ψ0, or (b) there exists an x ∈ j with
v(ιj) = ιx.

Consider first the case when condition (b) holds. Assume that wj is fixed, if the conclusion
for (37) holds then ιi, hi can be defined for i = j, ..., k − 1 so that the map F (ιi) = hi, i ∈ k
has type ϕ0 and hj = ξwj . This would imply that if hx = 〈σ, b〉 and ξwj = hj = 〈τ, b′〉, then
σ > τ ≥ b. Let y be the unique element of Tn so that σ > y > b and y ∈ Ls(ιj). Clearly y = τ .

Therefore the random variable ξwj must take a value 〈y, b〉 otherwise the conclusion of (37)
cannot hold. This is a trivial consequence of condition (a) as well with y = u = 1K . Therefore
from now on we can consider cases (a) and (b) together.

This happens with nonzero probability only of wj ∈ Lm, where m = s(ιj), and in this case
according to condition (30) of Lemma 8 wj ∈ Am the probability of ξwj = 〈y, b′〉 for a suitably
chosen b′ is |Lψm |−1. On the other hand according to condition (30) of Lemma 8 we have
|Ai| ≤ α|Lm|. Therefore

∑
wj∈A qwj ,ιj =

∑
wj∈Am qwj ,ιj ≤ α|Lm||Lm|−1 ≤ α which completes

the proof of condition (37)
We have shown that Lemma 9 is applicable with the described values of the parameters.

The conclusion of Lemma9 in the present case is the following.
With a probability of at least 1−αk for the randomization of all of the random variables ξa,

a ∈ A, it is not possible to select v0, ..., vk−1 ∈ A so that the type of the function F , defined by
F (i) = ξvi , is ϕ0. This is true for each k-type ϕ0. The number of k-types is at most (kd)k(d)k.
Therefore the probability that there exists a set Z ⊆ W is at most αk(d2k)k = (αd2k)k.
Q.E.D.(Lemma 8)

Proof of Lemma 5 continued. Now we can apply Lemma 8 for the integers r, ψ0, ..., ψr−1,
and the sets A0, ..., Ar−1, that were used in Lemma 7 and defined before the statement of
Proposition 6. We use the random variables ξs, s ∈

⋃r−1
j=0 Aj as they were defined before the

statement of Lemma 8. Let k be an arbitrary but fixed integer in the interval [dγ−3, dγ+1], and
let α = 2−µ ≤ d−c1 . Then the assumption of Lemma 8 are satisfied, and so Lemma 8 implies that
the probability p for the randomization of χ that condition (29) of Lemma 7 holds with k = M0

is at most (αd2k)k ≤ (d−c1d2k)k. If we pick c1 with c1 > γ + 4 then we get p ≤ d−k ≤ d−d
γ−3

.
Therefore it γ ≥ 5 and c1 ≥ γ + 4 and λ ≥ γ + 3 then we have p ≤ n− logn log logn. Therefore for
M0 = ddγe, and for all fixed choices of i, u with i ∈ {1, nlogn}, u ∈ Tn using Lemma 7 we get
that the probability that there are at least M0 evaluation pairs at u at the end of interval Bi

is at most n−3 logn + n− logn log logn. Since the number of choices for u and i is at most n1+logn

36

this completes the proof of the lemma. Q.E.D.(Lemma 5)

4 The algorithm A
We want to define the algorithm A in a way that its input/output behavior is identical to the
algorithm T and at the same time it is γ̃-oblivious. We will define A by translating T into an
algorithm which works on Mq.

Motivation. As we explained in the sketch of the proof, the algorithm A will search (the
same way as algorithm Y) for a pair of the form 〈ai, v〉 in the interval Ai. Suppose that a
k = 1, ..., d is fixed, and τ is the unique element of Lk ∩ branch(χ(ai)). In the subinterval Ai,k

the following happens.
Case I. The coupon c(τ) is not in the tray at the beginning of Ai,k. In this case A searches

a random bucket b, with the only purpose of deceiving the adversary. The bucket b will be
selected by the random variable ζ̄i,k, to be defined below.

Case II. The coupon c(τ) is in the tray at the beginning of Ai,k. Then A searches for 〈ai, v〉
in the bucket p(τ). The bucket p(τ) was selected at random in an earlier time interval Bj .
In the following definition we define a random variable ζi,σ that determines the results of this
selection (with a different value for the parameter i).

Summarizing the two cases from the point of view of the adversary: the algorithm A searches
a bucket. This bucket will be determined by the random variable ηi,k,I , where I is the input
sequence, where ηi,k,I is defined from the values of the random variables ζi,k and ζ̄i,k. A
will be defined in a way that the only thing that the adversary will learn from the visible
history (in addition to the conceded history) is the value sequence of the random variable ηi,k,I .
Therefore our goal will be to show that the random variables ηi,k,I are mutually independent,
their distributions are predetermined (independently of the input), and if the values of the
random variables ηi,k,I are fixed, then the visible history is uniquely determined. In other words
with a fixed sequence ηi,k,I , A is oblivious in a deterministic sense.

Definition. In the following definitions we assume that a constant c1 > 0 is fixed for the
defintion of T (χ,c1).

1. We define κ(0) by κ(0) = d.
2. Assume that m is a positive integer. For all i = 0, 1, ...,m, σ ∈ Lκ(i), we define a

random variable ζi,σ. Let j be the unique integer with σ ∈ Lj . By definition, ζi,σ is a random
variable with uniform distribution in {0, 1, ..., 2j − 1}. We also define a random variable ζ̄i,k
for all i = 0, 1, ...,m and k = 0, 1, ..., d. ζ̄i,k is a random variable with uniform distribution in
{0, 1, ..., 2k − 1}. We assume that all of the random variables ζi,σ, ζ̄i,k, and the random variable
χ, used for the selection of the algorithm T (χ,c1), together are mutually independent.

3. Assume that I = 〈〈ai, vi,Ψi〉 | i = 1, ...,m〉 is an input sequence for T , that is, ai ∈
{0, 1, ..., n− 1}, vi ∈ [0, ℘],Ψi ∈ {0, 1} for i = 1, ...,m. We randomize all of the random variables
ζi,σ, ζ̄i,k and χ, for i = 0, 1, ...,m, σ ∈ Lκ(i), and k = 1, ..., d. Depending on the input I and
the results of these randomizations we define the integers ηi,k,I , i = 1, ...,m, k = 1, ..., d in the
following way. Suppose that a pair i, k is given with i ∈ {1, ...,m}, k ∈ {0, 1, ..., d}. To determine
the value of ηi,k,I we consider two separate cases.

37

Assume the algorithm T (χ,c1) is executed with the function χ provided by the randomization,
and with the input I. The unique element of the set Lk ∩ branch(χ(ai)) will be denoted by
τ(i, k).

Case I. At the beginning of interval Ai,k the coupon c(τ(i, k)) is not in the tray. In this
case the value of ηi,k,I is ζ̄i,k.

Case II. At the beginning of the interval Ai,k, the coupon c(τ(i, k)) is in the tray. In this
case let j(i, k) be the largest nonnegative integer so that j(i, k) < i and κ(j(i, k)) ≥ k. (Since
κ(0) = d such an integer always exists.) The value of ηi,k,I , by definition, is ζj(i,k),τ(i,k).

Lemma 10 Assume that c1 > 0, I = 〈〈ai, vi,Ψi〉 | i = 1, ...,m〉 is an input sequence for T ,
we randomize all of the random variables ζi,j , ζ̄i,k and χ, for i = 0, 1, ...,m, j = 1, ..., κ(i), and
k = 1, ..., d. We consider ηi,k,I , i = 1, ...,m, k = 1, ..., d with respect to this randomization as
random variables. Then the random variables ηi,k,I , i = 1, ...,m, k = 1, ..., d, and χ are mutually
independent, and ηi,k,I has uniform distribution on {0, 1, ..., 2k − 1}.

Proof. First we randomize χ and assume that we get the function χ0. It is sufficient to show
that for each possible choice of the function χ0, and the input I, the conditional distribution
of the random variables ηi,k i = 1, 2, ...,m, k = 1, ..., d with the condition χ = χ0 are mutually
independent and the conditional distribution ηi,k is uniform on {0, 1, ..., 2k − 1}.

First we note that the values of I and χ uniquely determine whether in the definition of ηi,k,
we have Case I or Case II, and if Case II must be considered what is the value of j(i, k). This
is true because these questions are determined by the history of T and the values of χ and I
(together with c1 which has been fixed) uniquely determine the history of T .

For each fixed k = 1, ..., d let Hk be the set of all i = 1,,m so that in the definition of
ηi,k, Case II holds. We claim that for i, i′ ∈ Hk, if i 6= i′ then 〈j(i, k), τ(i, k)〉 6= 〈j(i′, k), τ(i′, k)〉.
If τ(i, k) 6= τ(i′, k) then this trivially holds. Assume that τ(i, k) 6= τ(i′, k) = τ and e.g., i < i′.
According to the definition of Case II, at the beginning of interval Ai,k, the coupon τ = c(τ(i, k))
is in the tray. Then, as described in step (12) in the definition of the action of T in the interval
Ai,k, the coupon c(τ) is destroyed. Since in the interval Ai′ the coupon c(τ) is active, it must
have been reactivated in an epoch Br with i ≤ r < i′. Since τ ∈ Lk and τ is reactivated in Br,
by the defintion of T in Br, we have that τ ∈ Lk ⊆ L(κ(r)) and so k ≤ κ(r). This, together with
j(i, k) < i ≤ r < i′ and the definition of j(i′, k), implies that j(i′, k) ≥ i and so j(i, k) 6= j(i′, k)
as claimed.

We have proved that for a fixed k = 1, ..., d, all of the random variables ζj(i,k),τ(i,k), i ∈ Hk

are different. Of course if k 6= k′ then τ(i, k) ∈ Lk, τ(i, k′) ∈ Lk′ implies that τ(i, k) and τ(i, k′)
are different. Consequently all of the random variables ζj(i,k),τ(i,k) that are used in the definition
of the random variables ηi,k through Case II are different.

Therefore the first statement of the lemma can be formulated in the following way. Suppose
that depending on I and χ0 we take a subset Z of the set of random variables ζi,σ, ζ̄i,k, i =
0, 1, ...,m, σ ∈ Lκ(i), k = 1, ..., d. Then the conditional random variables in Z with the condition
χ = χ0 are mutually independent. This is true since the mutual independence of χ and all of
the other random variables imply that all of the conditional random variables are independent
and a subset of mutually independent random variables is also mutually independent. The
second statement that ηi,k has uniform distribution on 2k follows from the fact that both ζi,σ,

38

σ ∈ Lk and ζ̄i,k have uniform distribution on 2k, and they are independent of χ. Therefore their
distribution remain the same with the condition χ = χ0. Q.E.D.Lemma 10

We will define A in a way that A randomizes χ and ζi,σ, ζ̄i,k, i = 0, 1, ...,m, σ ∈ Lκ(i),
k = 1, ..., d. The values of these random variables uniquely determine the values of the random
variables ηi,k, i = 1, ...,m. We will define A so that if the values of ηi,k, i = 1, ...,m are fixed,
then A is γ̃-oblivious in a deterministic sense, that is, the access pattern of A (outside the first
γ̃ memory cells) depend only on the values of ηi,k, i = 1, ...,m. As Lemma 10 states the random
variables ηi,k are mutually independent, and their distributions are determined by the value of
k. This clearly implies the γ̃-obliviousness of A.

Motivation. The next definitions are motivated by the fact, that if a deterministic algorithm
uses only (log n)c memory cells whose set M is fixed in advance, then it is easy to simulate
it, so that the time is increasing only by about a factor of (log n)c. (This is used in [6], [8],
[9], [7] repeatedly.) Indeed, every time when we have to access a memory cell, we access all
of them but perform the required read or write operation only at the single place where it is
needed. Based on this observation, we define the algorithm A in two steps. First we define
an algorithm A′ whose time can be partitioned into intervals Ji, so that in each interval Ji the
algorithm accesses only memory cells form a set Mi, where |Mi| ≤ (log n)c, and the sequence
Mi is uniquely determined by the values of the random variables ηi,k,I . In the next step, in each
interval Ji we replace A′ with an oblivious algorithm as indicated above. End of motivation.

First we define another algorithm A′ and will get A by modifying A′. For the definition of
A′ we cut total the time, that is, the interval I0∪

⋃m
i=1 Ai∪Bi, into subintervals J0, ..., Jm′ , each

of length at most dα1 , where α1 > 0 is a constant. We define this division in a way that it is
uniquely determined by n, c1, and m. To each time interval Ji we assign a set of memory cells
Mi with the following properties:

(a) |Mi| ≤ dα1 ,
(b) Mi is uniquely determined by n, c1, and the values of the random variables ηi,k,I , i =

1, ...,m, k = 1, ..., d,
(c) the list of the addresses of the memory cells in Mi can be computed in time dα, using

only the first γ̃ memory cells and their contents at the beginning of time interval Ji.
We will define A′ so that in the time interval Ji, i = 1, ...,m′ it will access memory cells only

from Mi, apart from the first γ̃ memory cells. (It is also important that A′ will be implemented
by a program of constant size running on Mq.)

Suppose that we have defined A′ so that it has the same input/output behavior as T and
satisfies the conditions described above. We get A from A′ in the following way. In each time
interval Ji we replace A′ with an algorithm whose memory access pattern is uniquely determined
by Mj . This can be done by simply replacing each access by A for a memory cell in Mi by Mi

accesses of A to each of the memory cells in Mi. Since the list of memory cells can be computed
in time dα using only the first γ̃ cells, we get that A can perform this action altogether in time
d4α. Such an algorithm α will be oblivious since its access pattern does not reveal anything else
to the adversary then the sets Mi or equivalently the values of the random variables ηi,k.

The definition of the algorithm A′. Each interval Ai,k will be also an interval Jj . We will
describe later the divisions of the intervals Bi and I0 into subintervals Jj .

Assume that γ > 0 and λ > 0 are the constants whose existences are guaranteed in Lemma
5. χ will be dλ-wise independent. Assume that such a χ has been selected (the selection will

39

be done by A′ in interval I0 that we will describe later).
The algorithm A′ several times will choose a new value for p(τ) for all τ ∈ Tn with p(τ) ∈ Bk,

if τ ∈ Lk. If p(τ) = bk,j then we will say that 〈k, j〉 is the (current) address of the bucket, and
we will write p̄(τ) = 〈k, j〉.

The randomization of ζi,σ for i = 0, 1, ...,m, and σ ∈ Lκ,i will be done by A′ in interval Bi.
After this randomization the new value of p(σ) will be the bucket bk,ζi,σ and for p̄(σ) the pair
〈k, ζi,σ〉. This definition is also valid for i = 0, that is for B0 = I0 when the initial value of
p(σ) is set. This way we defined the value of p(σ), p̄(σ) while the algorithm is working. (This
was just an abstract definition in itself it does not guarantee that any of these values are easily
available for A′.)

We reserve a block of poly(log n) consecutive cells onMq where the information correspond-
ing the content of the tray of T will be kept. We denote this block of cells by tray. tray is
disjoint from all of the buckets and the set of first γ̃ memory cells.

Definition. 1. We assume that the elements of the tree Tn are encoded by elements of the set
{0, 1, ..., 2n−2}, in some efficient way, in the sense that the relations on the tree can be efficiently
computed using the encoding. The integer corresponding to the node τ will be denoted by τ̄ .

2. Let x → b[x] be a one-to-one map of the set 0, 1, ..., 2n − 2 into the set of all buckets
with the property that if τ ∈ Lk then b[τ̄] ∈ Bk. We also assume that from x the address of the
bucket b[x] can be efficiently computed.

We divide both the buckets and the tray into compartments each containing c2 memory
cells, where c2 > 0 is a constant. A compartment is called empty, if its cells contain only 0s. A
nonempty compartment in a bucket may contain one of the following two types of information
about the corresponding state of T :

(i) the evaluation pair 〈a, v〉 is at τ , where τ ∈ Tn, a ∈ {0, 1, ..., n− 1}, v ∈ [0, ℘]
(ii) p(τ) = b[x], where b[x] ∈ Bk if τ ∈ Lk. (This corresponds to the coupon c(τ).)
A nonempty compartment in the tray may contain one of the following two types of infor-

mation about the corresponding state of T :
(iii) the evaluation pair 〈a, v〉 is in the tray, where τ ∈ Tn, a ∈ {0, 1, ..., n− 1}, v ∈ [0, ℘]
(iv) p(τ) = b[x] is in the tray, where b[x] ∈ Bk if τ ∈ Lk.

The information of
type (i) will be represented by the quadruplet 〈1, a, v, τ̄〉,
type (ii) by the triplet 〈2, τ̄ , x〉,
type (iii) by the quadruplet 〈3, a, v, 0〉,
type (iv) by the triplet 〈4, τ̄ , x〉.

The set of all quadruplets and triplets of this type will be denoted by Q. The quadruplets in Q
will be called evaluation-quadruplets, and the triplets in Q will be called coupon-triplets. These
expressions refer to the role of the corresponding notions in the algorithm T .

At the beginning of each time interval Ai,k, and Bi we consider the state of the machine R,
where the algorithm T is running. We assume that T is running on R with the same input
sequence that is received by A′ on Mq. At the beginning of these intervals the state of the
machine R determines the contents of the buckets and the tray in the corresponding state of
A′ in the following way. What we describe below will determine only the set of elements of Q
that is contained in the compartments of a bucket or the tray. The same set naturally can be

40

realized in many different ways, by putting the same elements in the compartments in different
orders. We will also assume that one element of Q is contained only in a single compartment of
a bucket or the tray, and a compartment contains at most one such element.

The following rules define the contents of the buckets and the tray.
(a) if an evaluation pair 〈a, v〉 is at node τ then a compartment of the bucket p(τ) contains

the evaluation-quadruplet 〈1, a, v, τ̄〉,
(b) if a coupon c(τ) is at node σ then a compartment of the bucket p(σ) contains the coupon-

triplet 〈2, τ̄ , x〉, where p(τ) = b[x],
(c) if an evaluation pair 〈a, v〉 is in the tray, then a compartment of tray contains the

eavaluation-quadruplet 〈3, a, v, 0〉
(d) if a coupon c(τ) is in the tray, then a compartment of the tray contains the coupon-

triplet 〈4, τ̄ , x〉 where p(τ) = b[x],
(e) every compartment is empty unless it contains an element of Q according to rules

(a),(b),(c), or (d),
(f) there are no two different compartments of the same bucket or the tray containing iden-

tical elements of Q, and each compartment contains at most one element of Q
Assume that A′ is able to maintain the contents of the buckets and the tray as described.

Then A′ can give the correct output in interval Ai,d+2 the same way as it was given by T .
Indeed, the information what is needed for the correct output is in b0,0. (We assume that A′
always keeps the last input somewhere in the first γ̃ memory cells.)

We have to show that A′ is able to update the contents of the buckets and the tray as they
are determined by rules (a)-(f).

Below we describe what A is doing in each interval Ai,k. Ai,k will be also an element of
the sequence of intervals J0, J1, ..., say, Ai,k = Jh(i,k). When we define the action of A′ in
Ai,k = Jh(i,k) we will also tell what will be the set of memory cells Mh(i,k), that A′ is using in
this interval apart from the first γ̃ memory cells.

The defintion of A′ in the intervals Ai,0, i ≥ 1. Here only the tray and 1Tn are used by T .
Therefore A′ can execute the necessary changes in the memory ofMq in poly(log n) time with
Mh(i,0) = tray ∪ b0,0.

The definition of A′ in the intervals Ai,s, i ≥ 1, s = 1, ..., d. There are two cases. In both
cases Mh(i,s) = tray ∪Bs,ηi,s

Case I. The coupon c(τ) is not in the tray. In this case A′ does not do anything. (Of course
this will not be true for A)

Case II. The coupon c(τ) is in the tray. This means that the coupon-triplet 〈4, τ̄ , x〉 is in
the tray, where p(τ) = b[x] = bs,j and ηi,s = ζi,τ . This that implies A′ knows p(τ) ⊆ Mh(i,s)

and so A′ can execute the required changes in poly(log n) time.
In the last two intervals there is nothing problematic.
The definition of A′ in the intervals Ai,d+1. Mh(i,d+1) = b0,0 ∪ tray. A′ puts everything

from the tray into b0,0.
The definition of A′ in the intervals Ai,d+2, Mh(i,d+2) = b0,0. Here A′ gives the same output

as T .
Clearly the sets Mh(i,s), defined above, have all of the properties that have been expected of

them, in particular they can be defined from the random variables ηi,s,I .
The definition of A′ in the intervals Bi, i ≥ 1. To reflect the action of T in the corresponding

41

time interval, the contents of the buckets in the buffers B0, ...,Bκ(i) has to be changed, but the

contents of all of the other buckets will remain unchanged.
⋃κ(i)
j=0 Bj will be denoted by K.

Motivation. In this time interval the new value of p(τ) must be randomized for all τ ∈ Lκ(i).
Recall that p(τ) is a bucket where, e.g., the evaluation quadruplet 〈1, a, v, τ̄〉 must be kept,
whose meaning is that in the algorithm T the pair 〈a, v〉 is at node τ .

For the moment let us consider only the problem of randomization of the new value of p(τ)
and the movements of these quadruplets to their new locations. Form this point of view only,
the simplest solution would be for A′, to go along the buckets in B0, ...,Bκ(i) and if in a bucket
b a quadruplet 〈1, a, v, τ̄〉 is found, to randomize immediately the new value b′ of p(τ) and to
write it into an empty cell of all of the compartments of the bucket, where there is an element
of Q which has to go to b′. Then later, when this has been done for all of the buckets in
B0, ...,Bκ(i) the quadruplets can be taken obliviously to their new destinations determined by
the new value of p. An oblivious algorithm which does this step efficiently, the oblivious hashing,
was introduced by Ostrovsky, see [9] or [7], and we will use it in the form that will be described
later in Lemma 11. The problem of with this solution is that not all of the elements of Q that
must be taken into bucket b′ are in bucket b at the time of the randomization. For example
there may be coupon triplets that has to go there but a the moment they are not in b.

The solution for this problem is the following. Our first goal is to take everything whose final
destination is the new bucket p(τ) (which has not been randomized yet), to the bucket b[τ̄]. For
this step we use the mentioned oblivious hashing. This is possible since the function b[τ̄] can
be computed efficiently. Consequently A′ may write the address of b[τ̄] into each compartment,
where there is an element of Q, which has to go into b[τ̄] in this first step. This address written
into the compartments will be denoted by destination1. (Step (39) below.)

Then, when everything, whose final destination is in the new bucket p(τ), is in b[τ], the
algorithm A′ goes over all the buckets in B0, ...,Bκ(i), and at bucket b[τ] it randomizes the new
value of p(τ) and writes its address into all of the compartments where it is needed. (This
address will be denoted by destination2, see step (43) below.) Then, with another oblivious
hashing everything gets into its final place.

There is an additional complication. Namely, when a coupon c(τ) is activated, then for
the corresponding coupon triplet 〈2, τ̄ , p̄(τ)〉 must be put into the bucket p(τ◦). (Here at both
places the newly randomized values of the function p must be taken.) Therefore, for the proper
creation and placement of this coupon triplet, A′ must know the new value of p both at τ and τ◦

at the same time. This, however, will not cause a real problem, since the new p(τ) is randomized
in b[τ̄] and the new p(τ◦) is randomized in b[τ̄◦]. Therefore, if A′ once goes over all of the pairs
b(τ̄), b[τ̄◦], it may transfer the needed information into the buckets where the coupon triplets
will be created. (Step (42) below.) End of motivation.

We divide the action of A′ into the following phases

(38) A′ goes along all of the buckets in K, erases all of the coupon-triplets of the form 〈2, τ̄ , x〉,
where τ ∈ Lκ(i). (This correspond to step (15) of T , that is, the destruction of certain coupons.)

In case of step (38) the intervals Jj will be the intervals why while A is working on a single
bucket B. For such an interval, Mj = B. If A chooses the buckets in order of their addresses,

42

clearly the sequence Mj can be efficiently computed using only i, which can be stored in one of
the first γ̃ cells.

(39) A′ goes along all of the buckets in K. Suppose that in a compartment C, it finds a coupon-
triplet 〈2, τ̄ , x〉, where τ ∈ Tn\Lκ. Let σ be the unique element of Lκ(i) with σ ≥ τ . Assume
now that A′ finds an evaluation quadruplet 〈1, a, v, τ̄〉. In this case let σ be the unique element
of Lκ(i), so that σ ∈ branch(χ(a)). In both cases A′ writes σ̄ into compartment C, leaving there
also the element of Q which was contained in C at the beginning of this step. σ̄ will be denoted
by destination1(C).

The intervals Jj are defined in the same way as in step (38). The set Mj is the union of the
bucket in question, and the set M (χ) where the poly(log n) random bits defining the function χ
are stored.

(40) For each compartment C in the buckets of K, A′ does the following. Suppose that
destination1(C) = τ̄ . (By the definition of the function destination1 we have τ ∈ Lκ(i).)
Then A′ moves the contents of compartment C into an empty compartment C ′ of bucket b[τ̄],
then erases from C ′ the integer destination1(C), leaving there only a single element of Q. A′
does this in a way that each compartment will contain at most one element of Q. (We will
describe later the way this step can be accomplished by A′.)

(41) A′ goes over all of the of buckets in K and for each τ ∈ Lκ, τ ∈ Ls it takes a random
value of ζi,τ . (The new value of p(τ) is the bucket bs,ζi,τ). Suppose that bs,ζi,τ = b[x]. A′ writes
x into an empty compartment of b[τ̄]. We will denote this compartment by C0,τ

The intervals Jj and the sets Mj are defined as in step (38)

(42) A′ goes over all of the pairs of buckets b(τ̄), b[τ̄◦] in K and for each τ ∈ Lκ, it writes
in an empty compartment C of b[τ̄◦] the coupon-triplet 〈2, τ̄ , x〉, where x is the content of
compartment C0,τ , which is in b[τ̄].

The intervals Jj are the time intervals while a single τ ∈ Lκ is handled. The corresponding
Mj is b[τ̄] ∪ b[τ̄◦].

(43) A′ goes over all of the buckets in K and at bucket b[τ̄], at each compartment C which
contains an element of Q it writes into an empty memory cell of C the content of compartment
C0,τ . The content of this cell will be denoted by destination2(C). After that it erases the
content of C0,τ .

The time intervals Jj are the intervals while a single bucket is handled and the set Mj is the
bucket itself.

(44) For each compartment C in the buckets of K, A′ does the following. Suppose that
destination2(C) = τ̄ . (By the definition of the function destination2 we have τ ∈ Lκ(i).) A′
moves the content compartment C into an empty compartment C ′ of bucket b[τ̄], then erases
from C ′ the integer destination2(C), leaving in C ′ only a single element of Q. A′ does this
in a way that each compartment will contain at most one element of Q. (This step will be
accomplished in the same way as step (44).)

43

This, apart from the details of step (40) and (44) completes the definition of A′.
Both in step (40) and step (44) we have to move the contents of compartments into destina-

tion buckets, given by the functions destination1 and destination2. To do this we will use
Ostrovsky’s “oblivious hashing” method see [8], [9]. A slightly different version of the oblivious
hashing is given in [7]. Either one is suitable to prove the following lemma which can be used
in our case.

In the following definitions and in Lemma 11 below the words compartment and bucket
will be used only for blocks of memories without their special structure that we have used
till now. We will apply Lemma 11 however for this specific meaning of the words buckets and
compartments

Definition. 1. Assume that a part of the memory of Mq is divided into α consecutive
blocks B0, ..., Bα−1 called buckets and each bucket, is partitioned into β consecutive blocks
called compartments. Each compartment contains γ memory cells. The compartments in their
natural order, according their addresses will be denoted by C0, ..., Cαβ−1

Assume that an algorithm G changes the contents of the memory cells in the buckets. The
algorithm starts at time 0 and stops at time t̄. At time t the content of compartment Ci will be
denoted by contt(Ci) for i = 0, 1, ...,m− 1. The content of the first memory cell in Ci at time 0
will be denoted by destination(Ci). We assume that destination(Ci) ∈ {0, 1, ..., α−1}∪{∞},
for all i = 0, 1, ..., αβ − 1. The element ∞ can be encoded e.g., by 2q − 1. (Therefore if
destination(Ci) 6= ∞ we may think of destination(Ci) as one of the buckets B0, ..., Bα−1).
Let H = {i ∈ αβ | destination(Ci) 6=∞}.

We say that the algorithm G moves the contents of the compartments to their destinations,
if there exists a one-to-one map δ of H into αβ so that the following conditions are satisfied

(45) for each i ∈ H, compartment Cδ(i) is in bucket Bdestination(Ci) and contt̄(Cδ(i)) =
cont0(Ci)

(46) for all j ∈ αβ if there is no i ∈ H with j = δ(i), then contt̄(Cj) = 0.

2. We say that the function destination is contradictory if there exists a bucket Bj ,
j ∈ {0, 1, ..., α−1} so that the number of all compartments Ci, i ∈ αβ, with j = destination(Ci)
is more than β, the number of compartments in Bj .

Remark. According to this definition, G moves the contents of the compartments to their
destinations, if the content of each compartment is moved into a bucket, which is designated by
the function destination, at least for those buckets where such a destination is given, that is,
the value of the function is not∞. The function destination can be defined in a way that such
an algorithm G cannot exist. Namely, this is the case, if the contents of more compartments
should be taken into a single bucket than its capacity. In this case we say that the function
destination is contradictory. Obviously, if it is not contradictory, then there is an algorithm
G which moves the contents of the compartments to their destinations. The next lemma says
that there is such a deterministic algorithm G, which is also oblivious and efficient.

Lemma 11 There exists a c > 0 and a deterministic and oblivious algorithm G, so that for
all q, if we fix the values of the positive integers α, β, γ arbitrarily with αβγ < 2q−3, and if the

44

contents of the compartments C0, ..., Cαβ−1 are given in a way that the function destination
is not contradictory, then, in time cγαβ log(αβ) and using no more than cαβγ memory cells,
G moves the contents of the compartments Ci into their destinations.

The algorithm G in the lemma can be constructed and it correctness proved in the same
way, using oblivious sorting networks, as the oblivious hashing is done in [9] or [7]. To make the
paper more selfcontained we give a proof of lemma 11 following the ideas of the corresponding
proof in [7].

Proof of Lemma 11. We may assume that for some constant c2 whose value will be fixed
later, the the content of the last c2 memory cells of each compartment is 0. Indeed, if this does
not hold, G can copy everything into new buckets and compartments with larger sizes, and at the
end may copy back the result into the original compartments. All of this takes only space and
time linear in αβγ. The importance of this assumption is that G may strore extra information
in the last c2 cells of each compartment. The set of last c2 cells of compartment Ci will be
denoted by Di.

According to our definition, we have α buckets B0, ..., Bα−1. We create 3α new buckets
Bα, Bα+1, ..., B4α−1 of the same sizes as the original ones, that is, each new bucket ontains β com-
partments, each consisting of γ cells. Now we have altogether 4α buckets B0, ..., B4α−1. The new
compartments will be denoted by Cαβ, Cαβ+1, ..., C4αβ−1, where compartments Ckβ,...,(k+1)β−1

form the new bucket Bk, for k = α, ..., 4α − 1. Our first goal is to show that there exists an
algorithm G′, that may set the contents of the new 3n buckets, in an oblivious way, and within
the given bounds on space and time, so that the contents established this way, satisfy the
following conditions.

(47) For each i = α, ..., 4α − 1, the content of the first cell of Di is 1. (This distinguishes the
contents of the new compartments from the old ones.)

(48) Assume that we extend the function destination to the new compartments so that
the content of the first memory cell of Ci is destination(Ci) for all i = α, ..., 4α − 1.
Then, destination(Ci) ∈ {0, 1, ..., α− 1} ∪ {∞} for all j = 0, 1, ..., 4α − 1. Morevover for
each j = 0, 1, ..., α − 1 there exists exactly β elements i of the set {0, 1, ..., 4α− 1} so that
destination(Ci) = j

First we show that the existence of a deterministic algorithm G′ with the described conditions
implies the lemma. Assume that after the work of G′ the contents of the compartments satisfy
conditions (47) and (48).

After that G moves the contents of some compartments into other compartments so that at
the end the contents of the compartments are sorted according to the sizes of their destinations.
More precisely assume that at time t′ conditions (47) and (48) are satisfied. G works till time
t′′ so that, for a suitably chosen a permutation π of the set {0, 1, ..., 4α− 1} the following holds.

(49) for all i ∈ 4α, contt′′(C(i)) = contt′(Cπ(i))

(50) for all i, j ∈ 4α, i ≤ j implies destinationt′′(Ci) ≤ destinationt′′(Cj)

45

This sorting is done by G using an oblivious sorting network, e.g., Batcher’s algorithm, (see
[4]), or the AKS network, see [2]. With the latter one, we get a time upser boundO(αβγ(logαβ)).
With Batcher’s algorithm we will have only an O(αβγ(logαβ))2, time upper bound but for
practical values of α, β and γ this solution may be faster. The sorting network is used so that at
each step the contents of two predetermined compartments are either swapped or not depending
on the result of the comparison of their destinations. The expression “predetermined” means
that the sequence of pairs of compartments used in these comparisons depend only on α, β, and
γ. At the end, the contents are in the compartments, sorted according to the values of the
function destination. Condition (48) implies that each content got into the bucket determined
by its destination. After that G goes over all of the compartments in their natural order and
puts zeros where the content of Di indicates that it originated in a new compartment. This
completes the proof of the lemma if we accept the existence of G′ with the described properties.

We show now that there exists an algorithm G′ with the required properties. For each
j = 0, 1, ..., α − 1, we will denote by ht(j) the total number of compartments Ci (both old and
new) with destinationt(Ci) = j. G′ starts to work at time 0. the assumption that the function
destination is not contradictory implies that h0(j) ∈ [0, β] for all j ∈ α. We define G′ as
follows.

Phase I, in time interval [0, t1] G′ goes over the compartments Cαβ, Cαβ+1, ..., C2αβ−1 and,
for each i = αβ, ..., 2αβ − 1, changes the content of the first cell in Ci so that we get
destinationt1(Ci) = b i−αββ c. End of Phase I.

The action of G′ in Phase I implies that for all j = 0, 1, ..., α− 1 we have ht1(j) = h0(j) + β
and β ≤ ht1(j) ≤ 2β. The reason is, that among C0, ..., Cαβ−1 there exist at most β compart-
ments Ci with destinationt1(Ci) = j, and among Cαβ, ..., C2αβ−1 there exists exactly β such
compartments. For all i = 2αβ, ..., 4αβ − 1 we have destinationt1(Ci) =∞.

Phase II, time interval (t1, t2]. G′ sorts the contents of the compartments, according to the
values of the function destination, using the sorting techniques described earlier. End of Phase
II.

Clearly we have ht2(j) = h(t1)(j) = h0(j) + β for all j ∈ α.
Phase III, time interval (t2, t3]. G′ goes along the compartments C0, ..., C2αβ−1 in this

order and for each j = 0, 1, ..., α − 1 it counts how many compartments Ci exist with
destination(Ci) = j. (That is, it determines the determines the current value of value h(j).
Since the value of h will not change during this phase, h(j) always the same as h2(j).) Because of
the sorting performed by G′ in Phase II, we have that for a fixed j ∈ α, all of the compartments
Ci with destination(Ci = j) form a block of consecutive compartments. The length of this
block is in the interval [β, 2β]. When G′ realizes that a block has ended then it stores the pair
〈j, h(j)〉. For the storage of these pairs G′ is using a set Y of memory cells, which do not belong
to any of the buckets or compartment. Y contains only a constant number of memory cells. As
we describe below, pairs of the type 〈j, h(j)〉 will be regularly deleted from Y , to make space for
other pairs.

When G′ is at compartment Ckβ for some k = 1, ..., α it checks whether there is a pair
〈j, h(j)〉 in Y , and if the answer is yes, then G′ writes one of them, say, the pair of 〈j, h(j)〉 into
compartment Cαβ+2kβ using only cells of Dαβ+2kβ which has not been used yet for any other
purpose. After that it erases the pair 〈j, h(j)〉 from Y . The bound “β ≤ h(j) for all j ∈ α”,
implies that no more than one pair 〈j, h(j)〉 will be in Y at any time, and so after G′ performed

46

the described step for k = α the set Y is empty, and for each j = 0, 1, ..., α− 1 the pair 〈j, h(j)〉
was written into Di, for some i ∈ {2αβ, ..., 4αβ − 1}. End of Phase III

Note that ht3(j) = ht2(j) = h0(j) + β for all j ∈ α.
Phase IV, time interval (t3, t4] G′ goes over tha compartments C4αβ−1, ..., C2αβ in this order.

Assume that in compartment 2kβ−1 it finds the pairs 〈j, ht2(j)〉, where j ∈ α. Then G′ changes
the content of the first memory cells of compartments Cr into j for r = 2kβ− 1, ..., 2kβ− (2β−
ht2(j)). The result of this is that among the compartments C2kβ−1, ..., C2(k−1)β there will be
exactly 2β− ht2(j) compartment Cr with destinationt4(Cr) = j. (This step can be performed
since ht2(j) ∈ [β, 2β] implies that 2β − ht2(j) ∈ [0, β]. End of Phase IV

Note that ht4(j) = ht3(j) + 2β − ht2(j) = ht2(j) + 2β − ht2(j) = 2β
Phase V, time interval (t4, t5]. As a next step G′ changes the first cells, that is, the value

of destination(Ci) into ∞, for all i = 0, ..., 4αβ − 1, where the content of first element of Di

indicates that it originated in a new compartment. End of Phase V.
Since we have created exactly β new compartment with destination(Ci) = j, we have

ht5(j) = ht4(j)− β = β for all j ∈ α as required in the definition of
We claim that when all of these steps are completed at time t5, we will have ht5(j) = β for

all j = 0, 1, ..., α− 1 as required in the definition of G′. Q.E.D.(Lemma 11)
Using this lemma we get that both step (40) and step (44) can be performed by a determin-

istic and oblivious algorithm in poly(log n)2κ(i) times. Since A′ is oblivious and deterministic
in this interval, the time intervals Jj and the sets Mj can be trivially constructed, say each
instruction of A′ can be an interval Jj . This completes the definition of the algorithm A.

5 Simulating a protected CPU

Definition. 1. We assume that the machine Mq interpretes the q bits contained in a single
memory cell as a signed integer in the interval [−2q−1 + 1, 2q−1−1]. (An alternative assumption
could be that the q bit is interpreted as a nonnegativ integer in the interval [0, 2q−1]. Everything
that we prove in this section remains true for this situation as well, in fact the proof of the
analogue Lemma 13 is easier in that case.)

2. If q is a positive integer, then the set of all integers in the interval [−2q−1 + 1, 2q−1 − 1]
will be denoted by Uq. For each q the following functions, as computed by the corresponding
intructions ofMq, will be called basic q-arithmetic functions: the binary functions x+ y, x× y,
x−y, bx/yc as binary and the constants (0-ary functions) 0, 1, and 2q−1−1. The 0-ary function
2q−1 − 1 will be also denoted by cq.

Remark. 1. All of these functions can be computed by the machine Mq with a single
instruction. We may add a constant number of other arbitrary other functions f(x, y), defined
on Uq ,to the set of basic q-arithmetic functions, if we assume that the machine Mq has an
arithmetic instruction that computes f(x, y). Everything that we prove in this section remains
true for this extended notion of q-arithmetic functions and for the corresponding machinesMq.
Theorem 1 remain valid for this modified machineMq. For example the program P can use the
instruction

√
x, which gives an approximate value of the square root of x. In this case program

P1 of Theorem 1 can also use this instruction.

47

2. The assumption that the constant 2q−1 − 1 is included as an arithmetic instruction (a
built in constant) ofMq may seem arbitrary. If there is no such a built in constant, it is equaly
good if there are other built in constants so that 2q−1 − 1 can be computed from them with an
arithmetic expression of constant depth. If even this is not possible, then, when the machine
starts to work we may compute first 2q−1 − 1 and store it in a memory cell. This way, we will
be able to simulate the instruction which gives the value 2q−1 − 1 with a read instruction.

3. The arithmetic operations x+ y, xy, bx/yc, as defined in mathematics, cannot be always
performed on numbers given by at most q bits so that the result is well-defined and it also has
at most q bits. In such a case we say an “overflow” occured. We do not define howMq handles
the overflows, our algorithm in the proof of Lemma 2 has the property that overflow can never
occurs, However, the lemmas below are easier to formulate if we assume that the machine Mq

always provides a result for the arithmetic operations x + y, xy, bx/yc. The lemmas below, in
particular Lemma 13, hold independently of the definitions of these values.

Definition. 1. If we do not fix a value of q then x + y, x × y, x − y, bx/yc, 0, 1, and c
will denote the families of q-arithmetic functions, which has a unique element for each positive
integer q. A will denote the set of these families that is A = {x+ y, x× y, x− y, bx/yc, 0, 1, c}.

2. An arithmetic circuit C is a quadruplet C = 〈G,F, I ≤G〉 with the following properties:
G = 〈V,E〉 is a finite directed graph wihtout cycles,
F is a function defined on V with values in A,
I is a subset of V , so that each element of I has indegree 0.
≤G is an ordering of the set V ,
For each x ∈ V \I the indegree of x is equal to the arity of F (x).
The elements of I will be called the input nodes and the elements with outdegree 0 will be

called the output nodes of the circuit.
The depth of an element x is the maximal length taken for all of the directed paths which

end in x. This implies that the depth of all input nodes are 0. There may be other nodes x
whose depth is 0. For such a node x, F (x) is a 0-ary family of functions, e.g. the constant 1.

3. Suppose that C is an arithmetic circuit and q is a positive integer. If C has exactly k
input nodes x1 < ... < xk and it has exactly l output nodes y1 < ... < yl the we define a k-ary
function fC,q on Uq with values in U lq. Assume that a1, ..., ak ∈ Uq. fC,q(a1, ..., ak) is defined
as follows. By recursion on the depth of the element v ∈ V we attach to each element of v an
element gv depending on v1, ..., vk. If v is an input node then v = xj for exactly one j = 1, ..., k
and then by definition gv = aj . If v is a node of depth 0 which is not an input node, then gq(v)
is the value of the constant F (v) in Uq. Assume now that the depth of v is i > 0 and gu has
been already defined for each u ∈ v whose depth is less than i. Suppose that the indegree of v
is j and u1 <G< ... <G uj are all of the vertices that has an outgoing edge pointing to v. Then
gv = (F (v))(gu1 , ..., guj). Finally fC,q = 〈gy1 , ..., gyl〉.

4. The previous definition gives for each positive integer q a function fC,q. The family of
these functions for q = 1, 2, ... will be denoted by fC . If a family of functions for q = 1, 2, ... is
of the form fC for a suitably chosen arithmetic circuit C, then we will say that the family of
functions fC is arithmetic.

5. Assume that f (q)(x1, ..., xk), q = 1, 2, ... is an arithmetic family of functions and for
all i = 1, ...k, g(q)

i (zi,1, ..., zi,ji), q = 1, 2, ... is also and arithmetic family of functions. Then

48

the composition of these families defined as the family h
(q)

(z1,1, ..., z1,j1 , ..., zk,1, ..., zk,jk) =
f (q)(g(q)

1 (z1,1, ..., z1,j1), ..., g(q)
k (zk,1, ..., zk,jk)) q = 1, 2,

Proposition 8 The composition of arithmetic families of functions is also arithmetic.

Proof. The statement of the proposition is an immediate consequence of the fact that we can
build a circuit computing the composite function from the circuits computing its constituents.
Q.E.D.(Proposition PR0)

Proposition 9 For all m > 0 if P (X1, ..., Xm) is a propositional formula containing only the
boolean variables X1, ..., Xm (and no other atomic formulas), then then there is an arithmetic
family of functions f (q)(x1, ..., xm) so that for all 〈x1, ..., xm〉 ∈ {0, 1}m and for all q = 1, 2, ...,
we have that f (q)(x1, ..., xm) ∈ {0, 1} and f (q)(x1, ..., xm) = 1 iff P (x1, ..., xm) = 1.

Proof. We need only that the operations +,−,× are among the basic arithmetic instructions
of Mq, moreover, if we consider the boolean values TRUE and FALSE as the integers 1 and
0, then a ∧ b ≡ ab, ¬a ≡ 1− a, and a ∨ b = 1− (1− a)(1− b). Q.E.D.(Proposition 9)

Lemma 12 Assume that k is a positive integer. For all q > max{10, log2 k}, we define a
function Gq which maps Ukq into itself. Assume that a0, ..., ak−1 ∈ Uq. We consider the machine
Mq with state S, where the content of cell(i) is ai for i = 0, ..., k − 1, and the contents of the
other cells have arbitrary but fixed values. Strating from state S the machine Mq executes an
instruction. Suppose first that only the cells form the sets cell(0), ..., cell(k−1) will be involved
in the execution of this instruction, that is, the contents of the other cells neither influence the
outcome of the instruction nor will be changed as a result of the instruction, and moreover the
instruction is neither an input/output instruction nor a random number generator instruction.
In this case we define Gq(a0, ..., ak−1) by Gq(a0, ..., ak−1) = 〈b0, ..., bk−1〉, where bi is the content
of cell(i) after the instruction has been executed. Otherwise Gq(a0, ..., ak−1) = 〈0, ..., 0〉.

Then, there exists an arithmetic family of functions G(q), q = 1, 2, ..., so that for all q >
max{10, log2 k} we have Gq = G(q)

First accepting Lemma 12 we prove Lemma 1. Actually the use of Lemma 1 for the proof of
Theorem 1 can be avoided by applying directly the techniques used in the proof of Lemma 13.
We will tell about this later after the formulation of Lemma 13 below.

Proof of Lemma 1. According to Lemma 12 there is a family of arithmetic circuits C(q),
q = 1, 2, ... of size depending only on α, so that if the input of C(q) is the sequence of contents of
the memory cells cell(0), ..., cell(α−1) at time t′ then the output of C(q) is the sequence of the
contents of the same memory cells at time t′ + 1, for each t′ ∈ [0, t], provided that the machine
Mq works as described in condition (1) of Lemma 1. Therefore the program P ′, by evaluating
this arithmetic circuit repeatedly, can determine state(P, t, 0, α − 1). Indeed, the first input
of the circuit is the sequence of the initial contents of the memory cells cell(0), .., cell(α− 1)
at time 0 as given in the initial sate P . The output will be state(P, 1, 0, α − 1). Using now
this output as the input of the circiut P ′ gets state(P, 2, 0, α − 1), and repeating this process
at then at the end it gets state(P, t, 0, α− 1) as required in the lemma. A single evaluation of
the arithmetic circuit Cq can be done in time depending only in α, since the size of the circuit

49

also depended only on α. The output of an arithmetic circuit can be computed obliviously,
that is, in a way that the visible history of the computation is fixed. E.g., we order the nodes
of the circuit in a way that each edge in the directed graph, from the definition of the circuit,
points from a smaller node to a larger one. Then we evaluate the circuit by computing the value
corresponding to each node x by an arithmetic operation, using the already known values at the
tails of the edges whose head is x. Clearly the visible history of this computation depends only
on the circuit and not on the actual inputs. This implies that both conditions (1) and (2) can
be satsified by P ′ at the same time. Q.E.D.(Lemma 1)

The following lemma will be needed in the proof of Lemma 12

Lemma 13 The following family of functions defined on Uq = [−2q−1 + 1, 2q−1 − 1] are arith-
metic.

(51) f(X,Y) = 1 if X = Y , f(X,Y) = 0 otherwise.

(52) f(X,Y) = 1 if X ≤ Y , f(X,Y) = 0 otherwise.

Remark. This lemma can be used directly to prove Theorem 1, avoiding the use of both
Lemma 1 and Lemma 12. Each time, when the protected CPU is used, in the algorithm
provided in the proof of Lemma 2, we may avoid using conditional instructions. E.g., assume
that the algorithm has to put the value a into cell(s) iff u ≤ v, where u, v are in given memory
cells, then we can do the following. Say, the content of cell(s) is b. Using Lemma 13 we
compute obliviously f(u, v), where f(u, v) ∈ {0, 1} and f(u, v) = 1 iff u ≤ v. Then we compute
the value f(u, v)a+ (1− f(u, v))b and put it into cell(s). Clearly this sequence of instructions
perform the required task. This computation is also oblivious provided that the computation
of f(u, v) is oblivious, which follows from Lemma 13. Naturally the same thing can be done
with the equality relation or any boolean combinations of the equality and ordering relations.
Using this simple solution, we can move the contents of memory cells around obliviously, so that
the movements depend on conditions which are expressed in terms of the relation equality and
ordering. For example, we may swap or not the contents of two memory cells depending on such
a condition. Going through the algorithm it is easy to check that everything whih was done in
the protected CPU can be made oblivious this way. Naturally, if, depending on a condition, one
of two different computations must be performed, then, to make this oblivious, we always have
to perform both computations but using the result of only the required one, which can be done
in the described way. This method of making the computation oblivious requires more work in
the proof, so this is why we rather use the more general Lemma 1 and Lemma 12. However,
the algorithm obtained through the direct use of Lemma 13 is much more efficient, and so it is
more suitable for a practical implementation.

Proof. Assume that x1, ..., xc ∈ Uq and Rq is an a-ary relation on Uq where a is a constant,
and Bq ⊆ Uq. We will say that the family of relations Rq, q = 1, 2, ... is perfect with the condition
Bq, if there exists an arithmetic expression Φ (using the basic arithmetic functions) which gives
the truth value of Rq on the elements of Bq, for all q = 1, 2, If the family of relations
Rq is perfect with the condition Uq, then we will say that Rq is perfect. It is a consequence
of Proposition 9 that the boolean combinations of a finite number of perfect relations are also
perfect.

50

By definition bac is the largest integer not exceeding a. Therefore if u ∈ Uq = [−2q−1 +
1, 2q−1 − 1] then αu = b u

2q−1−1
c may take three possible values. For u ∈ [−2q−1 + 1,−1],

αu = −1, for u ∈ [0, 2q−1 − 2], αu = 0, and for u = 2q−1 − 1, αu = 1. Consequently

(53) αuu = |u| for all u ∈ Uq

Let f(x) = (x+1)(2−x)
2 and let βu = f(αu). We have that for u ∈ [−2q−1 + 1, 2q−1 − 1], u ≥ 0

implies βu = 1, u < 0 implies βu = 0, that is,

(54) βu is the boolean value of the relation u ≥ 0.

Therefore β−u is the boolean value of u ≤ 0 and βuβ−u of u = 0. Consequently

(55) all of the unary (family of) relations u ≤ 0, u < 0, u = 0, u > 0, u ≥ 0, are perfect.

Our next goal is to prove that

(56) the family of relations relation u ≤ v is perfect

We claim that we can express the relation u ≤ v as a boolean combination of the perfect
relations listed in (55) and the relation |u| ≤ |v|.

Indeed u ≤ v iff at least one of the following three conditions are satisfied
(i) u ≥ 0 ∧ v ≥ 0 ∧ |u| ≤ |v|
(ii) u ≤ 0 ∧ v ≤ 0 ∧ |v| ≤ |u|
(iii) u ≤ 0 ∧ 0 ≤ v

Therefore, in order to prove that the relation u ≤ v is perfect, it is sufficient to prove, that
the relation |u| ≤ |v| is perfect. (We cannot use u ≤ v iff u − v ≤ 0 since u − v may cause an
overflow.)

Assume now that u, v ∈ B = [0, 2q−1 − 2]. Then u < v iff b1+u
1+v c < 1. (For u = 2q−1 − 1 this

would cause overflow.) Consequently the relation x < y is perfect with the condition B and so
all of the relations x < y, x ≤ y, x = y are perfect with condition B, since they are boolean
combinations of relations which are perfect with condition B. (Namely x ≤ y ≡ ¬(y < x), and
x = y ≡ x ≤ y ∧ y ≤ x.)

For u, v ∈ D = [0, 2q−1 − 1], we use that u = 2bu2 c + u − 2bu2 c, v = 2bv2c + v − 2bv2c, and
u < v iff ⌊

u

2

⌋
<

⌊
v

2

⌋
∨
(⌊

u

2

⌋
=
⌊
v

2

⌋
∧ u− 2

⌊
u

2

⌋
< v − 2

⌊
v

2

⌋)
All of the four integers bu2 c, u − 2bu2 c, b

v
2c, v − 2bv2c occurring in the comparisons are in the

interval B = [0, 2q−1 − 2], therefore using the already proven fact that x < y and x = y are
perfect with condition B we get that u < v is perfect with condition D. By (53) this implies
that |u| < |v| is perfect and so |u| ≤ |v| ≡ ¬|v| < |u| is also perfect. Therefore we have proved
that the family of relations u ≤ v, u, v ∈ Uq, q = 1, 2, ... is perfect which implies condition (52).
Condition (51) is an immediate consequence of condtion (52) and Proposition 9. Q.E.D.(Lemma
13)

51

Remark. 1. The lemma also holds with Uq = [0, 2q − 1], and everything that we need for its
proof was already described in the proof given above. We have defined the set B = [0, 2q−1 − 2]
in the proof of the Uq = [−2q−1 +1, 2q−1−1] case. If we define B by B = [0, 2q−2] and follow the
proof only from this point with appropriate changes then we get a proof of the Uq = [0, 2q − 1]
case.

2. Most of the difficulties in the proof of Lemma 13 was created by the possibility of an
overflow. Therefore if we may assume that the contents of the memory cells are always in
a smaller interval, e.g., in (−2bq/2c, 2bq/2c), then the proof and the circuit computating f(x, y)
become significantly simpler.

Definition. 1. Suppose that, g(q)
0 , ..., g

(q)
σ−1 are the basic arithmetic functions defined on Uq.

Assume further that the arity of g(q)
i is ai for i = 0, 1, ..., σ−1, q = 1, 2, Let L be a firstorder

language with equality whose function symbols are f0, ..., fσ−1 with arities a0, ..., aσ−1, and whose
only relation symbol (apart from equality) is the binary relation symbol ≤.

2. µq will be the unique interpretation of L so that universe(µq) = Uq, µq(fi) = g
(q)
i for

i = 0, 1, ..., σ − 1, and µq(≤) is the natural ordering of the integers restricted to Uq.

Lemma 14 Assume that k is a positive integer, P1(x1, ...xk), ..., Pm(x1, ..., xk) are propositional
formulas of the language L, and t1(x1, ..., xk), ..., tm+1(x1, ..., xm) are terms of the language L,
containing no other free variables than x1, ..., xk. For each q = 1, 2..., we define a k-ary function
F (q) on Uq with values in Uq in the following way. For each a1, ..., ak if i is the smallest element
of {1, ..., k} with µq |= Pi(a1, ..., ak) then Fq(a1, ..., ak) = ti(a1, ..., ak). If such an integer i does
not exist, then Fq(a1, ..., ak) = tm+1(a1, ..., ak).

Then the family of functions Fq, q = 1, 2, ... is arithmetic.

Proof. The only atomic formulas that occur in the propositional formulas Pi are of the form
s = t or s ≤ t where s, t are terms of L. Therefore Lemma 13 and Proposition 9 together imply
that for each i = 1, ...,m there exists an arithmetic family of functions h(q)

i (x1, ..., xm) so that
for all q = 1, 2, ..., and for all a1, ..., am, we have that h(q)

i (a1, ..., am) ∈ {0, 1} and h
(q)
i = 1 iff

µq |= Pi(a1, ..., ak). We define a function h
(q)
m+1 by h(q)

m+1(x1, ..., xk) = 1 for all x1, ..., xk ∈ Uq.
Proposition 8 implies that for each i = 1, ...,m+ 1 there is an arithmetic family of functions

τ
(q)
i so that for each q = 1, 2, ... and for each a1, ..., ak ∈ Uq we have µq |= ti(a1, ..., ak) =
τ

(q)
i (a1, ..., aq). The definition of Fq implies that

Fq(a1, ..., ak) =
m+1∑
j=1

h
(q)
j (a1, ..., ak)τ

(q)
j (a1, ..., ak)

j−1∏
i=1

(1− h(q)
i (a1, ..., ak))

Therefore, using Proposition 8 and the facts that multiplication and addition are basic arithmetic
functions, we get that the family Fq, q = 1, 2, ... is arithmetic. Q.E.D.(Lemma 14)

Proof of Lemma 12. The statement of the lemma is a consequence of Lemma 14. Indeed,
all of the definitions of the instructions of M (provided that they do not involve memory cells
other than cell(0), ..., cell(k − 1)), can be expressed by propositional statements using the
only atomic formulas of the type s = t and s ≤ t, where s, t are terms of L. (Here we use
that each of the integers 0, 1, ..., k−1 can be considered 0-ary arithmetic family of functions, for

52

q = 1, 2, E.g., for each i ∈ {0, 1, ..., k− 1}, uq = i, q = 0, 1, ... is such a family. We get it with
composition from the basic arithmetic functions.) The mentioned propositional definitions can
be easily transformed in the form required by Lemma 14. Q.E.D.(Lemma 12)

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974.

[2] M. Ajtai, J. Komlós, E. Szemerédi, An O(n log n) sorting network., 15th STOC. pp. 1-9,
1983.

[3] N. Alon, J. Spencer The Probabilistic method, John Wiley & Sons Inc. New York, 1992.
1993.

[4] K. Batcher Sorting networks and their applications, AFIPS Spring Joint Computer Confer-
ence, Vol. 32, AFIPS Press, Richmond, Va., pp. 307-314, 1968.

[5] I. Damg̊ard, S. Meldgaard, and J. Nielsen, Perfectly Secure Oblivious RAM Without Random
Oracles, Cryptology ePrint Archive, Report 2010/108, 2010,

[6] O. Goldreich, Towards a Theory of Software Protection and Simulation by Oblivious RAMs
Proc. of the 19th STOC, pp. 182-194, 1987

[7] O. Goldreich, R. Ostrovsky, Software Protection and Simulation on Oblivious RAMs Journal
of the Association for Computing Machinery, Vol 43, No 3, May 1996, pp. 431-473.
See also http://www.wisdom.weizmann.ac.il/ oded/PS/soft.ps

[8] R. Ostrovsky, Efficient Computation on Oblivious RAMs, Proceedings of the 22nd STOC,
pp. 514-523, 1990.

[9] R. Ostrovsky, Software Protection and Simulation on Oblivious RAMs, MIT Ph.D. Thesis,
Computer Science, May 1992,
see http://www.cs.ucla.edu/ rafail/PUBLIC/09.pdf

[10] D. A. Osvik, A. Shamir, and E. Tromer, Cache Attacks and Countermeasures: the Case
of AES, Topics in Cryptology - CT-RSA 2006, The Cryptographers’ Track at the RSA
Conference 2006, San Jose, CA, USA, February 13-17, 2006,
see also http://people.csail.mit.edu/tromer/papers/cache.pdf

[11] N. Pippenger, M. J.Fischer, Relations among Complexity Measures, Journal of the Associ-
ation for Computing Machinery, Vol 26, No 2, April 1979, pp 361-381.

[12] C. Rackoff and D. Simon, Cryptographic defense against traffic analysis, Proceedings of the
25th STOC, pp., 672 - 681, 1993

53

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

