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Abstract

We present a new algorithm for Unique Games which is based on purely spectral techniques,
in contrast to previous work in the area, which relies heavily on semidefinite programming
(SDP). Given a highly satisfiable instance of Unique Games, our algorithm is able to recover a
good assignment. The approximation guarantee depends only on the completeness of the game,
and not on the alphabet size, while the running time depends on spectral properties of the
Label-Extended graph associated with the instance of Unique Games.
In particular, we show how our techniques imply a quasi-polynomial time algorithm that decides
satisfiability of a game on the Khot-Vishnoi( [KV05]) integrality gap instance. Notably, when run
on that instance, the standard SDP relaxation of Unique Games fails. As a special case, we also
show how to re-derive a polynomial time algorithm for Unique Games on expander constraint
graphs (similar to [AKK+08]) and a sub-exponential time algorithm for Unique Games on the
Hypercube.
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1 Introduction

A Unique Game is defined in terms of a constraint graph G = (V,E), a set of variables {xu}u∈V ,
one for each vertex u and a set of permutations (constraints) πuv : [k] → [k], one for each edge
(u, v). An assignment to the variables is said to satisfy the constraint on the edge (u, v) ∈ E if
πuv(xu) = xv. The edges are taken to be undirected and hence πuv = (πvu)−1. The goal is to assign
a value from the set [k] (alphabet) to each variable xu so as to maximize the number of satisfied
constraints.

Khot [Kho02] conjectured that it is NP-hard to distinguish between the cases when almost all the
constraints of a unique game are satisfiable and when very few of the constraints are satisfiable.
Formally, the statement of the conjecture is the following:

Conjecture 1 (Unique Games Conjecture-UGC) For any constants ε, δ > 0, there is a k(ε, δ) such
that for any k > k(ε, δ), it is NP-hard to distinguish between instances of unique games with alphabet
size k where at least 1− ε fraction of constraints are satisfiable and those where at most δ fraction
of constraints are satisfiable.

Since its origin, the UGC has been successfully used to prove (often optimal) hardness of ap-
proximation results for several important NP-hard problems such as MIN-2SAT-DELETION
[Kho02], Vertex Cover [KR03], Maximum Cut [KKMO04] and non-uniform Sparsest Cut
[CKK+06,KV05]. In addition, in recent years, UGC has also proved to be intimately connected to
the limitations of semidefinite programming (SDP). Making this connection precise, [Aus07,Rag08]
shows that if UGC is true, then for every constraint satisfaction problem (CSP) the best approxi-
mation ratio is given by a certain simple SDP.

For arbitrary graphs, several approximation algorithms using linear and semidefinite programming
have been developed for approximating Unique Games (see [Kho02], [Tre05], [GT06], [CMM06a],
[CMM06b]). These algorithms start with an instance where the value of the SDP or LP relaxation
is 1 − ε and round it to a solution with value ν. Here, value of the game refers to the maximum
fraction of satisfiable constraints. For ν > δ, this would give an algorithm to distinguish between
the two cases. However, most of these algorithms give good approximations only when ε is very
small (ε = O(1/ log n) or ε = O(1/ log k)) and their approximation guarantee depends on the alpha-
bet size k 1. For constant ε however, only the algorithm of [CMM06a] gives interesting parameters
with ν ≈ k−ε/(2−ε). We refer the reader to [CMM06a] for a comparison of parameters of various
algorithms. In some special cases, however, it has been shown that there are efficient algorithms
that solve Unique Games. One such example is when the constraint graph is a spectral expander.
In that case, [AKK+08] (and later [MM09] with improved parameters) showed that one can find a
highly satisfying assignment (with, say, ν ≥ 90%) in polynomial time. Notably, the approximation
guarantee of their algorithm depends on the expansion parameters of the graph rather than the
alphabet size. One notion of expansion that the authors in [AKK+08] consider is when the second
smallest eigenvalue of the normalized Laplacian of a graph G, denoted by λ = λ2(LG) and their
algorithmic requirement is that λ � ε. As another example, the authors in [AIMS09] presented
efficient algorithms for constraint graphs with large local expansion.

So far, as seen by the previous line of work, the most promising techniques for developing good
approximation algorithms for Unique Games have consistently been based on linear or semidefinite

1It might be good to think of k as O(log n) since this is the range of interest for most reductions
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programming. However, it seems like semidefinite programming algorithms are nearing a bottle-
neck, as characterized by the existance of integrality gap instances [KV05, RS09] for semidefinite
programming relaxations for Unique Games that belong to a certain natural family of SDPs. Those
instances are Unique Games instances that fool the SDP since, even though they have no good sat-
isfying assignment, the respective SDP solution is high. The existence of such instances implies,
in particular, that there is no hope for a “good” approximation algorithm based on those SDPs
that solves Unique Games on the underlying constraint graphs. We note that, in an unpublished
manuscript, [KT07] developed a spectral algorithm that runs in polynomial time and finds highly
satisfying assignments on expander constraint graphs. With the realization of the limitations of
several natural SDPs and the existence of good spectral algorithms a natural question rears its
head: is it possible that there are spectral algorithms for Unique Games that perform better than
SDPs?

Our results and Comparison to Previous Work

In this paper, we make progress toward answering the above question. Namely, we present a purely
spectral algorithm for Unique Games that finds highly satisfying assignments when they exist. The
running time of our algorithm depends on spectral properties of the Label-Extended graph associated
with the instance of Unique Games. Our algorithm runs in polynomial or quasi-polynomial time
for a large class of constraint graphs, including graphs where the standard SDP provably fails and
expander graphs. At a high level, we show that given ε > 0, there is a δ = δ(ε) such that the
algorithm is able to distinguish between the following two cases:

• YES case: There exists an assignment that satisfies (1− ε) fraction of the constraints.

• NO case: Every assignment satisfies less that δ fraction of the constraints.

In particular, our algorithm runs in quasi-polynomial time on input the underlying constraint graph
of the SDP integrality gap instance as it appears in [KV05] (hereafter denoted KV). We note that
the authors in [KV05] roughly showed that, when run on a certain highly unsatisfiable instance of
Unique Games with underlying constraint graph KV, the standard SDP relaxation has very high
objective value and consequently fails to distinguish between the two cases above. As another
special case, our algorithm runs in sub-exponential time on the Hypercube constraint graph and
in polynomial time when the constraint graph is an expander (therefore implying results similar
to [AKK+08, KT07] as a special case). Moreover, similarly to [AKK+08, MM09, KT07, AIMS09],
the performance of the algorithm does not depend on the alphabet size k.

Our main contribution is a technique to analyze the full spectrum and eigenvectors of the relevant
graph rather than just the first few eigenvalues. We believe that this approach is of independent
interest and could contribute to developing better algorithms for a number of other problems.
We also believe that our results give evidence that spectral techniques might be a more powerful
tool than SDPs for designing algorithms for Unique Games, and hope that the present work will
result in further exploration of the use of graph spectra towards understanding the validity of the
Conjecture. We present the algorithm and the precise statements for its performance and running
time in section 3. In section 4, we present the algorithms for the Khot-Vishnoi graph and the
Hypercube graph.
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2 Preliminaries

2.1 Spectra of Graphs

We remind the reader that for a graph G, the adjacency matrix A = AG is defined as

AG(u, v) =
{

1 if (u, v) ∈ E
0 if (u, v) /∈ E

We will also be dealing with weighted graphs, where edge (u, v) has weight wuv ≥ 0 and the
adjacency matrix is defined as AG(u, v) = wuv. We will also assume, w.l.o.g. that wuv ≤ 1 (if not,
we just re-scale the weights of the edges by the maximum weight). If the graph has n vertices,
AG has n real eigenvalues λ1 ≥ λ2 ≥ · · ·λn. The eigenvectors that correspond to these eigenvalues
form an orthonormal basis of Rn. We note that if the graph is d-regular (the total weight of
edges adjacent to every node is d) then the largest eigenvalue is equal to d and the corresponding
eigenvector is the all-one’s vector.

2.2 The Label-Extended Graph

For a given instance of Unique Games on a constraint graph G = (V,E), let A be the adjacency
matrix of G and let M denote the nk×nk symmetric matrix such that the k×k block Muv is equal
to wuvΠuv. Here Π is the matrix of the permutation πuv. Then M is the adjacency matrix of the
Label-Extended graph for that instance of Unique Games. Let k denote the size of the alphabet.
We will denote this instance by U = (G,M, k).

2.3 Γ-Max-Lin Instances

Let Γ be an abelian group. A Γ-Max-Lin instance of Unique Games on graph G(V,E) has, for each
edge (u, v) ∈ E a constraint of the form xu − xv = cuv, where xu, xv are variables taking values in
Γ and cuv ∈ Γ. The alphabet k is the size of the group Γ.

2.4 The Spectrum of Cayley Graphs

For the purposes of this paper, we will use a generalized definition for Cayley graphs. For back-
ground on the standard definition and properties of Cayley Graphs see, for example, [Kas02,Spi].

Definition 2 (Adjacency matrix of a Cayley graph) Let Ω be a group with n elements. The vertex
set of a Cayley graph C(Ω) is the group Ω. The adjacency matrix of C(Ω) is the n × n matrix
AC(Ω) defined as follows: For g1, g2 ∈ Ω, AC(Ω)(g1, g2) = f(g1 − g2), where “−” refers to the group
operation and f is some function. Note that the above definition allows C(Ω) to have weighted
edges, with the only constraint being that the weight of an edge between g1 and g2 depends on their
group-theoretic difference.

We note that the standard definition of a Cayley graph, given a set S of generators, is a special
case of the above, where f(g1 − g2) = 1 if g1 − g2 ∈ S and 0 otherwise.

For what follows, we will only be interested in Ω being abelian. It is well known, that for the
abelian case the eigenvectors of AC(Ω) are the group-theoretic characters (e.g. [Kas02]). However,
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since definition 2 is slightly different than the usual, we repeat the proof for completeness.

Lemma 3 Let C(Ω) be Cayley graph of an abelian group Ω, as defined in 2, and AC(Ω) its adjacency
matrix. Then for every g ∈ Ω, AC(Ω)χg = |Ω|f̂(g)χg. Namely, every character χg is an eigenvector
of AC(Ω) and |Ω|f̂(g) is its corresponding eigenvalue. Here, with f̂ we denote fourier coefficients.

Proof: It is enough to prove the equality for each entry of AC(Ω)χg, that is for every vertex x ∈ Ω
we will show {AC(Ω)χg}x = |Ω|f̂(g)χg(x). We calculate:∑

y∈Ω

AC(Ω)(x, y)χg(y) =
∑
y∈Ω

f(x− y)χg(y) =
∑
z∈Ω

f(z)χg(x)χg(−z) = |Ω|f̂(g)χg(x)

�

2.5 The Khot-Vishnoi Graph

In [KV05], the authors considered the following family of graphs (KV Graphs):

For parameters n and ε, let N = 2n and n = 2k. Denote by F the family of all boolean functions
on {−1, 1}k. For f, g ∈ F define the product fg as (fg)(x) = f(x)g(x). Consider the equivalence
relation ≡ on F defined as f ≡ g iff there is an S ⊆ [k] such that f = gχS . Here H = {χS |S ⊆ [k]}
denote the set of characters of the group F2

k. This relation partitions F into equivalence classes
P1, · · · ,Pm, where m = N

n = 2n

n . For each equivalence class Pi, we could pick an arbitrary
representative pi ∈ Pi, so that

Pi = {piχS |S ⊆ [k]}

For ρ > 0 let f ∈ρ F denote a random boolean function on {−1, 1}k where for every x ∈ {−1, 1}k,
independently, f(x) = 1 with probability 1 − ρ and f(x) = −1 with probability ρ. For the given
parameter ε and boolean function f, g ∈ F let

wtε({f, g}) := Prf ′∈1/2F ,µ∈εF
[
({f = f ′} ∧ {g = f ′µ}) ∨ ({g = f ′} ∧ {f = f ′µ})

]

The KVn,ε graph with parameters n and ε can now be defined to have vertex set V = {P1, · · · ,Pm}
and there is an edge between the vertices x = Pi and y = Pj with weight

A(x, y) =
∑

f∈Pi,g∈Pj

wtε({f, g})

It will be useful, for the purposes of this paper, to consider an equivalent definition of KV, by
translating to the {0, 1} language. Let Hn = {0, 1}n the group F2

n with addition (modulo 2) as
group operation. Then the set H is the Hadamard code on n bits, and it is a subgroup of Hn. The
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graph KVn,ε is just the quotient group of Hn by H, Q = Hn�H. The vertex set V consists of the
N
n cosets of H and the edge between two cosets x, y has weight

A(x, y) =
∑

h1,h2∈H
ε|x+h1+y+h2|(1− ε)|n−(x+h1+y+h2)|

Note that the graph is n-regular, namely the total weight of edges adjacent to any node x is∑
y∈Q

∑
h1,h2∈H

ε|x+h1+y+h2|(1− ε)|n−(x+h1+y+h2)| = n
∑
y∈Q

∑
h2∈H

ε|x+y+h2|(1− ε)|n−(x+y+h2)|

= n
∑
z∈Hn

ε|z|(1− ε)|n−z| = n
n∑
i=0

(
n

i

)
εi(1− ε)n−i = n(1− ε+ ε)n = n

It is immediate from the above description that KV is a Cayley graph of Q, since A(x, y) depends
only on x− y = x+ y.
The following appears in [KV05]. We give the informal statement here, for simplicity. We refer to
the reader to [KV05] for the full statement and details.

Claim 4 (Integrality Gap for Unique Games, Informal Statement) Let n be an integer and ε > 0
be a parameter. Then there is an instance of Unique Games with underlying graph KVn,ε, and
alphabet size n such that the following hold:

• Every labeling L : V → n satisfies at most a 1
nε fraction of the edges.

• The standard SDP relaxation for Unique Games has objective value greater than 1− 9ε.

3 Recovering Solutions by Spectral Methods

In this section, we will show how, given a (1−ε) satisfiable instance of Unique Games U = (G,M, k),
the eigenvectors of M may be used to recover good assignments. We assume, as earlier, that G
is a (possibly weighted) graph with weight 1 ≥ wuv ≥ 0 on edge (u, v). For simplicity of the
presentation, we will also assume that G is a regular graph, namely

∑
v wuv = d for all vertices u.

The results can easily be generalized to non-regular graphs by considering the eigenvectors of the
matrix D −M instead of M . Here D denotes an nk × nk diagonal matrix with Duu = deg(u) · I.
If we think of M as the adjacency matrix of graph with vertex set V × [k] and each edge of G
replaced by a matching, then D−M can be thought of as the Laplacian matrix of that graph. We
will include the full proof for non-regular graph in the final version of the paper.

We show the following:

Theorem 5 (Main) Let U = (G,M, k) be a (1 − ε) satisfiable instance of Unique Games and W
the eigenspace of M with eigenvalues greater than (1− γ)d, for γ ≥ 2ε. There is an algorithm that
runs in time 2O( γ

ε
dim(W )) and finds an assignment that satisfies at least (1−O( 2ε

γ−2ε + ε)) fraction
of the constraints.

In particular, the theorem implies that for every 1 − ε satisfiable instance of Unique Games that
satisfies the assumptions of the theorem, one can find an assignment that satisfies more than 90
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percent of the constraints in time that depends on the spectral profile of M .

For the sake of the results in section 4, we also consider the special case where the constraints are
arbitrary Γ-Max-Lin and the first few eigenvectors of G satisfy some “smoothness” condition.

Theorem 6 Let U = (G,M, k) be a (1 − ε) satisfiable Γ-Max-Lin instance of Unique Games and
S(1−γ) the eigenspace of G with eigenvalues greater than (1 − γ)d. Assume moreover that there
is an eigenbasis of G such that every unit-length eigenvector φ ∈ S1−γ has ‖φ‖∞ ≤

C√
n

for some

constant C. Then, for γ = Ω( 3
√
ε), there is an algorithm that runs in time 2O(k·DS) and finds an

assignment that satisfies at least (1 − ζ) fraction of the constraints for some ζ ≤ 0.1. Here DS

denotes the dimension of S1−γ.

Note that the algorithm in theorem 6 has running time that solely depends on the spectral profile
of G.

We note that the result for expander graphs as it appears in [KT07] can be derived as a corollary
of theorem 6. Again, we present the result for regular graphs for simplicity.

Corollary 7 (Unique Games are Easy on Expanders) Let U = (G,M, k) be a (1 − ε) satisfiable
Γ-Max-Lin instance of Unique Games. Assume, moreover that G is a d-regular spectral expander.
Namely, the second eigenvalue of the adjacency matrix of G is λ ≤ (1− γ)d, for γ = Ω( 3

√
ε). Then,

there is a polynomial time algorithm that finds an assignment that satisfies at least (1− ζ) fraction
of the constraints for some ζ ≤ 0.1.

Proof:(Sketch) The eigenspace S(1−γ) of theorem 6 consists solely of the all 1’s vector. The `∞
norm assumption of theorem 5 is trivially satisfied with C = 1. Then, the conclusion of the theorem
implies that for γ = Ω( 3

√
ε), there is an algorithm that runs in time 2O(k·1) = 2O(k) and finds an

assignment that satisfies at least 90 per cent of the constraints. Since k is at most logarithmic in
n, the algorithm runs in 2O(logn) = poly(n) time. �

As another corollary of theorem 6, we also obtain a result for any Cayley graph of an abelian group
G of size n: the eigenvectors of a Cayley graph are just the characters of the underlying group
(normalized by 1/

√
n). For every character, its coordinates are roots of unity and therefore they

all have magnitude equal to 1. We get the assumption of the theorem by normalizing by 1/
√
n.

Namely:

Corollary 8 (Cayley Graphs) Let G be a Cayley graph of an abelian group of size n. Let U =
(G,M, k) be a (1 − ε) satisfiable Γ-Max-Lin instance of Unique Games and S(1−γ) the eigenspace
of G with eigenvalues greater than (1− γ). Then, if γ = Ω( 3

√
ε), there is an algorithm that runs in

time 2O(k·DS) and finds an assignment that satisfies at least (1 − ζ) fraction of the constraints for
some ζ ≤ 0.1. Here DS denotes the dimension of S1−γ.

We will use the corollary later on to derive quasi-polynomial time algorithms for Unique Games on
the Khot-Vishnoi graph and sub-exponential time algorithms for Unique Games on the Hypercube.

Proof Overview. Our proof generalizes the approach that the authors in the unpublished
manuscript [KT07] used to recover satisfying assignments on expanders. Assume we are given

7



a (1 − ε) satisfiable instance U = (G,M, k) that satisfies the assumptions of theorem 5. First, let
us define a completely satisfiable game Ũ = (G, M̃, k) (with value 1) that “corresponds” to U as
follows:

Definition 9 (Completion of a Game) Let U = (G,M, k) as above and let L = {L(u)} be an
assignment that satisfies (1−ε) fraction of the constraints. Let e = (u, v) be an edge with constraint
xv = πuv(xu) that is not satisfied by this assignment, with labels L(u), L(v) on its endpoints.
Construct a new game by changing the constraint on every such edge e by replacing πuv with a
permutation π̃uv for which π̃uv(L(u)) = L(v). Let Ũ = (G, M̃, k) be this new completely satisfiable
game. We say that Ũ is a “completion” of U .

For the sake of the proof, we will assume that an almost satisfiable instance U = (G,M, k) is
constructed as follows:

• Let Ũ = (G, M̃, k) be a completion of U .

• Let an adversary pick the ε fraction of edges that were unsatisfied in U and change their
constraints back to the original ones. We can now think of M as a “perturbation” of M̃ and
U as the “perturbed” game of Ũ .

Let W the span of the eigenvectors of M with eigenvalue at least (1 − γ)d, for some γ ≥ 2ε. The
algorithm simply looks at a set S ⊆ W of appropriately many candidate vectors and “reads-off”
an assignment. We describe later on how to choose the set S.

Recover-SolutionS(U)

• For each x ∈ S, construct an assignment Lx by assigning to each vertex u, the index corre-
sponding to the largest entry in the block (xu1, . . . , xuk) i.e. Lx(u) = arg maxi xui.

• Out of all assignments Lx for x ∈ S, choose the one satisfying the maximum number of
constraints.

To choose S, we look at the highest eigenvectors for the matrix M̃ . Those are the assignment
eigenvectors, namely the characteristic vectors of the (perfectly) satisfying assignments of Ũ (since
they all have eigenvalue equal to d). We will first observe that every such eigenvector y is close to
some vector in W , and the length of the projection of y onto W depends on ε, γ . We then identify
a set of nice vectors N ⊆ W such that the above algorithm works for any vector v close to some
vector in N . These are going to be the vectors that are close to the assignment eigenvectors. We
then construct a set S ⊆ W of test vectors such that at least one vector v ∈ S is close to a vector
in N . Lastly, we go over all vectors in S until we find v. The running time of the algorithm will
depend on the size of S.

3.1 Proof of Theorem 5

For the matrix M̃ , let L = {L(u)}u∈V (G) be a completely satisfying assignment. Define vector y(L)

as

yui
(L) =

{
1√
n

if i = L(u)
0 otherwise
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It is easy to see that y(L) is an eigenvector of M̃ with eigenvalue d. Since y(L) corresponds to the
satisfying assignment L, it can be seen as the characteristic vector of the assignment. We refer to
such vectors as the “assignment” eigenvectors. Our next goal is to show that, for some appropriate
choice of γ, the eigenspace W contains vectors close to an assignment vector.

Claim 10 (Closeness) For every completely satisfying assignment L there is a unit vector vL ∈W
such that vL = αy(L)+βy(L)

⊥, with |β| ≤
√

2ε
γ . By taking, for example, γ ≥ 200ε, we have |β| ≤ 1

10 .

Proof: We can easily see that (y(L))TMy(L) ≥ d(1− 2ε). We can now write y(L) = avL + b(vL)⊥,
with vL ∈W and (vL)⊥ ∈W⊥. We calculate:

(1− 2ε)d ≤ (y(L))TMy(L) = a2(vL)TMvL + b2((vL)⊥)TM(vL)⊥ ≤ a2d+ b2(1− γ)d

from which we get that |b| ≤
√

2ε
γ .

Now, we can in turn express vL = αy(L) +βy(L)
⊥, where α = 〈vL, y(L)〉 = |a| =

√
1− b2 ≥

√
1− 2ε

γ

or, equivalently, |β| =
√

1− α2 ≤
√

2ε
γ . �

We have now managed to show that there exists a set of “nice” vectors N = {vL} ⊆ W .
The next claim shows that, if we knew the vL then we could set S = N and the algorithm
Recover-SolutionN (U) would return a 99% satisfying assignment for U .

Claim 11 If v is a vector such that v = αy(L) +βy⊥ for some y(L) with α > 0, then the coordinate
xuL(u) is maximum in at least (1 − β2

α2 )n blocks. In particular, for every vL ∈ N the coordinate
xuL(u) is maximum in at least (1 − 2ε

γ−2ε)n blocks. By taking, for example γ ≥ 202ε we get that
there is a unique maximum in 99% of the blocks.

Proof: Within each block u, in order for coordinate L(u) to be no longer the maximum one, it
must happen that for some j

α
1√
n
≤ β · (y⊥)uj

However, this gives

‖(y⊥)u‖ ≥ (y⊥)2
uj ≥

α2

β2n

Since ‖y⊥‖ = 1, this can only happen for at most β2

α2n blocks. The statement for vL follows
immediately. �

3.1.1 Finding the Set S of Test Vectors.

However, since we don’t know the y(L) (if we did, we would be done), and the space W contains
infinitely many unit vectors, we cannot identify N . To get around this, we discretize W with an
appropriate epsilon-net. If we let w(0), . . . , w(dim(W )−1) be an eigenbasis for W . We define the set
S as

S =

v =
(dim(W )−1)∑

s=0

αsw
(s) | αs ∈

√
2ε

γdim(W )
Z, ‖v‖ ≤ 1
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It can be calculated (see, for instance [FO05]) that the number of points in the set S is at most
eO( γ

ε
dim(W )).

To conclude the proof of theorem 5, it remains to show that S has a vector close to a nice vector
vs ∈ N . By construction, S contains at least one vector v such that v = αvs + βvs⊥ for some s
and |β| ≤

√
2ε
γ . Together with claim 10, this implies that we can also write v = ay(s) + by

(s)
⊥ , with

|b| ≤
√

2ε
γ +

√
2ε
γ = 2

√
2ε
γ . Thus, for this vector v, Recover-SolutionS(U) recovers an assignment

which agrees with y(s) in (1 − O( 2ε
γ−2ε)) fraction of the blocks. Hence, the assignment violates

constraints on edges that have total weight at most O( 2ε
γ−2ε)nd + εnd. Since the total weight of

constraints is nd/2, the theorem follows. Note that by choosing γ ≥ 200ε the assignment we recover
satisfies more than 90 percent of the constraints.

Finally, it follows that the algorithm runs in 2O( γ
ε

dim(W )) time.

3.2 Proof of Theorem 6

Let W be the eigenspace of M with eigenvalues ≥ (1 − cε)d for some c to be determined. Let Y
denote the span of eigenvectors of M̃ with eigenvalue at least (1−γ)d, for some γ to be determined.
In particular, Y contains all the assignment eigenvectors, namely the characteristic vectors of the
(perfectly) satisfying assignments of Ũ (since they all have eigenvalue equal to d). We will use
theorem 5 together with a bound on the dimension of W. Towards that end, we will apply some
results from matrix perturbation theory.

3.2.1 Perturbation of Eigenspaces

To find an appropriate γ such that the eigenspaces W and Y are close, we use the following claim
which essentially appears in [DK70] as the sin θ theorem and was used in [KT07]. We give the
proof for self-containment.

Claim 12 Let w be a unit length eigenvector of M with eigenvalue λ ≥ (1− cε)d, for some c ≥ 2
and let λs denote the largest eigenvalue of M̃ which is smaller than (1 − γ)d. Then, w can be
written as αy + βy⊥ with |β| ≤

∥∥∥(M̃ −M)w
∥∥∥ /(λ− λs). Here y ∈ Y and y⊥ ∈ Y ⊥.

Proof: We have

(M̃ −M)w = αM̃y + βM̃y⊥ − λw = α(M̃y − λy) + β(M̃y⊥ − λy⊥)

Since (M̃ − λI)y and (M̃ − λI)y⊥ are in orthogonal eigenspaces, we have∥∥∥(M̃ −M)w
∥∥∥2

= α2
∥∥∥(M̃ − λI)y

∥∥∥2
+ β2

∥∥∥(M̃ − λI)y⊥
∥∥∥2
≥ β2

∥∥∥(M̃ − λI)y⊥
∥∥∥2

However,
∥∥∥(M̃ − λ)y⊥

∥∥∥ ≥ (λ− λs) which proves the claim. �

Hence, to prove that the space Y does not change by much due to the perturbation, we simply need
to bound

∥∥∥(M̃ −M)w
∥∥∥. We will need the fact that w is somewhat “uniform” across blocks. To

formalize this, let w̄ be the n-dimensional vector such that w̄u = ‖wu‖ where wu is the k-dimensional
vector (wu1, . . . , wuk)T . We then show that w̄ is very close to a vector in S(1−γ).

10



Claim 13 If w is an eigenvector of M with eigenvalue more than (1− cε)d and w̄ as above, then
we can write w̄ as w̄ = aφ+ bφ⊥ with |b| ≤

√
cε
γ and φ ∈ S(1−γ), φ⊥ ∈ S⊥(1−γ).

Proof:[Of Claim 13] Since, w corresponds to a large eigenvalue, we have that

(1− cε)d ≤ (w)TMw ≤
∑
u,v

‖wu‖Auv ‖wv‖ = (w̄)TAw̄

Writing w̄ as aφ+ bφ⊥, we get

(w̄)TAw̄ ≤ a2d+ b2(1− γ)d

⇒ (1− cε)d ≤ a2d+ b2(1− γ)d ⇒ |b| ≤
√
cε

γ

� Using the above, and the fact that the matrix M̃ is only perturbed in ε fraction of the edges,

we can now bound
∥∥∥(M̃ −M)w

∥∥∥ as follows.

Claim 14
∥∥∥(M̃ −M)w

∥∥∥ ≤ (2C + 2
√
c)
√

ε
γd

Proof: Define the n×n matrix R as Ruv = wuv ≤ 1 when the block (M̃ −M)uv has any non-zero
entries, and Ruv = 0 otherwise. Note that if (M̃ −M)uv is non-zero, then it must be the (scaled)
difference of two permutation matrices. Thus, for all v we have

∥∥∥(M̃ −M)uvwv
∥∥∥ ≤ 2Ruv ‖wv‖. We

calculate:

∥∥∥(M̃ −M)w
∥∥∥ =

√√√√∑
u

∥∥∥∥∥∑
v

(M̃ −M)uvwv

∥∥∥∥∥
2

≤

√√√√∑
u

(∑
v

∥∥∥(M̃ −M)uvwv
∥∥∥)2

≤

√√√√∑
u

(∑
v

2Ruv ‖wv‖

)2

≤ 2 ‖Rw̄‖

To estimate ‖Rw̄‖, we break it up as

‖Rw̄‖ ≤ a ‖R · φ‖+ b ‖R · φ⊥‖

Since each row of R has total sum of entries at most d, b ‖R · φ⊥‖ ≤
√

cε
γ d. Also,

‖R · φ‖ =
√∑

u

|
∑
v

Ruvφv|2 ≤

√√√√∑
u

(∑
v

Ruv|φv|

)2

≤ C√
n

√√√√∑
u

(∑
v

Ruv

)2

Since R has a total sum of entries at most εnd, this expression is maximized when it has d 1s in εn
rows. This gives ‖R · φ‖ ≤ C

√
εd. And, putting everything together we obtain∥∥∥(M̃ −M)w
∥∥∥ ≤ 2C

√
εd+ 2

√
cε

γ
d ≤ (2C + 2

√
c)
√
ε

γ
d

11
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Combining the above bound with claim 12, we get that any unit-length vector w ∈ W can be
expressed as αy + βy⊥ where y ∈ Y and |β| ≤ (2C + 2

√
c)
√

ε
γd ·

1
(1−cε)d−λs . Recall that λs was

smaller than (1− γ)d, which implies

|β| ≤ (2C + 2
√
c)
√
ε

γ
· 1
γ − cε

(1)

We will again use the set S as it appears in the proof of the Main theorem 5. In order to bound
the number of points in S, we show in the next couple of claims that dim(W ) is not too large.

The next claim easily follows from the fact that M̃ is the adjacency matrix of k disconnected copies
of G.

Claim 15 Let Φ be an eigenbasis for G. For every eigenvector φ = (φu)u∈V ∈ Φ define φ̃ to be the
kn-dimensional vector φ̃ui = φu, for i = 1, · · · , k and let E(φ) = {φ̃ · y(i)| for i = 0, · · · , k − 1}.
Here · denotes entry-wise vector product. Then

⋃
φ∈Φ E(φ) is an eigenbasis of M̃ .

Note that this claim also shows that the dimension of Y is at most k ·DS . Now, from equation 1,
by choosing an appropriate γ, we have that the subspace W is very close to Y .

Claim 16 Any unit-length vector w ∈ W can be expressed as αy + βy⊥ where y ∈ Y and |β| ≤
4(C +

√
c)
√

ε
γ3 . And, by taking γ ≥ 8(C +

√
c)ε1/3 we get |β| ≤ 1

8 .

Proof: From equation 1 we have

|β| ≤ (2C + 2
√
c)
√
ε

γ
· 1
γ − cε

≤ 4(C +
√
c)
√

ε

γ3

The claim follows from substituting the value for γ and from the fact that C, c ≥ 1. �

Combining claims 15 and 16, we can argue that W has dimension at most k · DS : otherwise, we
would find a vector orthogonal to all the vectors in Y which cannot be close to their span.
To conclude the proof of theorem 6, we apply theorem 5 with some appropriate choice of constant
c.

Finally, it remains to argue about the running time of the algorithm. Since dim(W ) = kDS , the
number of points is exponential in kDS . Hence, the algorithm runs in 2O(k·DS) time.

4 Solving Unique Games on the Khot-Vishnoi Graph

In this section, we present a quasi-polynomial time algorithm that, when run on a (1−ε) satisfiable
instance of Unique Games on the graph KVn,ε, with alphabet size n, finds a 90 percent satisfying
assignment. We use the equivalent definition of the graph KVn,ε as a quotient Hn�H of the n-
dimensional hypercube Hn = {0, 1}n by the Hadamard code H. We will need the following claim
for the spectrum of KV.

Claim 17 The following is true for the spectrum of KVn,ε.

12



• The eigenvectors are the characters of the group Hn�H. They can be “thought of” as
characters χω of Hn with ω ∈ H⊥ or, equivalently, seen as n-dimensional boolean vectors,
ω · h = 0 ∀h ∈ H. (here · denotes vector inner product over F2).

• The eigenvalue that corresponds to χω is (1− 2ε)rn, where r = |ω| is the hamming weight of
ω, and appears with multiplicity Cr. Here Cr denotes the number of elements in the Hamming
code of weight r( [Kim]). Moreover, Cr ≤

(
n
r

)
.

Proof: For item (1) above, we observe that χω are precisely the m = 2n

n characters of Hn that
are constant on every coset of H. This is equivalent to

χω(x) = χω(x+ h), ∀h ∈ H ⇔ (−1)ω·x = (−1)ω·(x+h) ⇔ (−1)ω·h = 1⇔ ω · h = 0

For item (2), we just need to calculate the eigenvalues corresponding to χω or, equivalently, the
quadratic form

1√
m

(χω)TAKV(
1√
m
χω) =

1
m

∑
x,y

χω(x)AKV(x, y)χω(y)

=
n

2n
∑
x,y∈Q

∑
h1,h2∈H

χω(x)ε|x+h1+y+h2|(1− ε)|n−(x+h1+y+h2)|χω(y)

=
n

2n
∑

x,y∈Hn

χω(x+ y)ε|x+y|(1− ε)|n−(x+y)| =
n

2n
2n
∑
z∈Hn

χω(z)ε|z|(1− ε)|n−z|

= nEz∈εF
[
χω(z)

]
= n(1− 2ε)|ω|

To conclude the proof, we need to argue about the multiplicity of each eigenvalue or, equivalently,
the number of characters χω of a given hamming weight that are orthogonal to the Hadamard code.
This is exactly the number of elements of the Hamming code of weight r = |ω|, and their cardinality
Cr can be computed by a recursive formula (see, e.g [Kim]). The fact that Cr ≤

(
n
r

)
easily follows

from the fact that there can be at most
(
n
r

)
characters of Hn that correspond to hamming weight

r. �

We will directly apply corollary 8 of theorem 5. For this purpose we need to calculate the dimension
of the eigenspace S(1−γ) of KV for some appropriate γ ≥ 8(1 +

√
c)ε1/3 ≥ 8(1 + 10)ε1/3 = 88ε1/3.

Thus it suffices to take γ = 88ε1/3.

Lemma 18 Let γ = 88ε1/3. The dimension of the eigenspace S(1−γ) of the graph KV with eigen-
values ≥ (1− γ) is at most DS ≤ 1

εn
1
ε = poly(n) = poly(logN).

Proof: We first need to identify an upperbound on r such that (1−2ε)r ≤ (1−γ), for γ = 88ε1/3.

It is enough to take r =
log 1

1−88ε1/3

log 1
1−2ε

which, for ε small enough, is ≤ 1
ε . The dimension of S(1−γ) can

now be bounded, using claim 17, as follows: DS ≤
∑1/ε

r=0

(
n
r

)
≤ 1

εn
1
ε �

We conclude by arguing, according to corrolary 8, that the running time of our algorithm on the
graph KVn,ε is bounded by

2nDS = 2n
1
ε
·n

1
ε = 2N

1
ε
·(logN)

1
ε = N (poly(logN))
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4.0.2 Sub-exponential time Algorithm for the Hypercube

We also note that similarly, we can argue that the algorithm of corollary 8 implies a sub-exponential
time algorithm when the constraint graph is the Hypercube Hn.

Claim 19 There is an algorithm that, on input a (1− ε) satisfiable instance of Unique Games on

the graph Hn, runs in time 2O(Nε1/3 ) and outputs a 90% satisfying assignment. Here N = 2n the
number of nodes of Hn.

Proof: We again apply immediately corollary 8. Again, it suffices to take γ = 88ε1/3. It is well
known that eigenvectors of Hn are the characters χr with corresponding eigenvalues (1 − 2r

n )n.
The eigenvalues appear with multiplicity

(
n
r

)
. It suffices to take S(1−γ) to be the eigenspace of

eigenvalues greater than (1− 2r
n )n for r = 44ε1/3n. The dimension of DS is at most

∑r
i=0

(
n
i

)
. By

Stirling’s formula we get
r∑
i=0

(
n

i

)
≤ 2O(ε1/3n)

The running time of the algorithm can now be calculated to be at most 2kDS ≤ 2O(Nε1/3 ).

�
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