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Abstract

We consider the Hidden Subgroup in the context of quantum Ordered Binary Decision
Diagrams. We show several lower bounds for this function. In this paper we also consider
a slightly more general definition of the hidden subgroup problem (in contrast to that in
[KH10]). It turns out that in this case the problem is intractable for the quantum OBDD.
We prove exponential lower bounds for this function.

1 Introduction

Considering one-way quantum finite automata, Ambainis and Freivalds (see [AF98]) suggested that
first quantum-mechanical computers would consist of a comparatively simple quantum-mechanical
part connected to a classical computer. In this paper we consider another restricted model of
quantum-classical computation referred to as oblivious Ordered Read-Once Quantum Branching
Programs. It is also known as non-uniform automata.

Two models of quantum branching programs were introduced by Ablayev, Gainutdinova, Karpin-
ski [AGK01] (leveled programs), and by Nakanishi, Hamaguchi, Kashiwabara [NHK00] (non-leveled
programs). Later it was shown by Sauerhoff [SS04] that these two models are polynomially equiv-
alent.

The hidden subgroup problem [ME99], [Høy97] is an important computational problem that
has factoring and discrete logarithm as its special cases. Subsequently, an efficient algorithm for
the hidden subgroup problem implies efficient solutions for both the period finding problem, and
original Simon problem.

Some results of this paper were originally presented in [KH05].

2 Preliminaries and Definitions

The definition of a linear branching program is a generalization of the definition of quantum branch-
ing program presented in [AGK01]. Deterministic and quantum oblivious branching programs are
particular cases of linear branching programs. Let Vd be a d-dimensional vector space.

We use |ψ〉 and 〈ψ| to denote column vectors and row vectors respectively from Vd, and 〈ψ1|ψ2〉
denotes the inner product. We write ψ when it is not important whether it is in column or row
form.
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Definition 1 (Linear branching program). A Linear Branching Program P of width d and length
l (a (d, l)− LBP ) over Vd is defined as

P = 〈T, |ψ0〉 ,Accept〉

where T is a sequence of l instructions: Tj =
(
xij , Uj(0), Uj(1)

)
determined by xij tested on the

step j where Uj(0) and Uj(1) are d× d matrices.
Vectors |ψ〉 ∈ Vd are called states (state vectors) of P , |ψ0〉 ∈ Vd is the initial state of P , and

Accept ⊆ {1, . . . , d} is the accepting set.
We define a computation of P on an input σ = (σ1, . . . , σn) ∈ {0, 1}n as follows:

1. A computation of P starts from the initial state |ψ0〉;

2. The jth instruction of P queries a variable xij , and applies the transition matrix Uj = Uj(σij)
to the current state |ψ〉 to obtain the state |ψ′〉 = Uj(xij) |ψ〉;

3. The final state is

|ψ(σ)〉 =

(
1∏
j=l

Uj(σij)

)
|ψ0〉 .

The usual complexity measures for (d, l)− LBP are its width d, length l, and size d · l.

Deterministic branching programs. A deterministic branching program is a linear branching
program over a vector space Rd. A state |ψ〉 of such a program is a Boolean vector with exactly
one 1. The matrices Uj correspond to permutations of order d, and so have exactly one 1 in each
column. For branching programs over groups this is true for the rows as well; in which case, the
Uj are permutation matrices.

Quantum branching programs. We define a quantum branching program as a linear branching
program over a Hilbert space Hd. The |ψ〉 for such a program are complex state vectors with
‖ |ψ〉 ‖2 = 1, and the Uj are complex-valued unitary matrices.

After the lth (last) step of quantum transformation P measures its configuration |ψσ〉 where
|ψσ〉 = Ul(σil)Ul−1(σil−1

) . . . U1(σi1) |ψ0〉 . Measurement is presented by a diagonal zero-one projec-
tion matrix M where Mii = 1 if i ∈ Accept and Mii = 0 if i 6∈ Accept. The probability Praccept(σ)
of P accepting input σ is defined by

Praccept(σ) = ||M |ψσ〉 ||2.

A QBP P computes f with one-sided error if there exists an ε > 0 such that for all σ ∈ f−1(1)
the probability of P accepting σ is 1 and for all σ ∈ f−1(0) the probability of P accepting σ is less
than 1− ε.

Note that this is a “measure-once” model analogous to the model of quantum finite automata
in [MC97], in which the system evolves in a unitary manner except for a single measurement at
the end.
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Read-once branching programs.

Definition 2. We call an LBP P an OBDD or read-once LBP if each variable x ∈ {x1, . . . , xn}
occurs in the sequence T of transformations of P at most once.

The “obliviousness” is inherent for an LBP and therefore this definition is consistent with the
usual notion of an OBDD. We will use QOBDD for quantum read-once branching programs and
OBDD for their deterministic counterparts.

The following general lower bound on the width of QOBDDs is proved in [AGK01].

Theorem 1. Let ε ∈ (0, 1/2). Let f(x1, . . . , xn) be a Boolean function (1/2 + ε)-computed (com-
puted with margin ε) by a quantum read-once branching program Q. Then

width(Q) = Ω(log width(P ))

where P is a deterministic OBDD of minimal width computing f(x1, . . . , xn).

We shall reprove it for a slightly different setting in this paper.

3 The Upper Bounds for HSP and several other functions

In this sections we briefly remind several upper bounds obtained earlier. Detailed presentation of
these results can be found in [AKV10].

3.1 Equality

Definition 3. EQn(x, y) ≡ [x = y], where n is even, and x = {x1, . . . , xn/2}, y = {xn/2+1, . . . , xn}.
This function is easy in deterministic case for a clever choice of the variable ordering. But for

the natural ordering, we consider here, it is exponentially hard.

Theorem 2. For arbitrary ε ∈ (0, 1) the function EQn(x, y) can be computed with one-sided error
ε by a 1QBPof width O (n), where n = |xy| is the length of the input.

Definition 4. Palindromen(x1, . . . , xn) ≡
[
x1x2 . . . xbn/2c = xnxn−1 . . . xdn/2e+1

]
Theorem 3. For arbitrary ε ∈ (0, 1) the function Palindromen can be computed with constant
one-sided error ε by a 1QBPof width O(n).

For a set of input variables x = {x0, . . . , xn−1}, and s – the period parameter, we define
the Periodicity function Periods,n (x) that takes the input of length n + k, where n = |x|, and
k = dlog ne – the number of bits needed for s.

Periods,n (x) ≡
{

1 if xi = xi+s mod n, i = 0, n− 1;
0 otherwise.

Theorem 4. For arbitrary ε ∈ (0, 1) the function Periods,n (x) can be computed with constant
one-sided error ε by a 1QBPof width O(n), where n = |x|.

For a set of input variables x = {x0, . . . , xn−1}, and s ∈ (0, n] we define the Semi-Simon
function as follows

Semi-Simons,n (x) ≡
{

1 xi = xi⊕s, i = 0, n− 1;
0 otherwise.

Note that ⊕ is a bitwise addition modulo 2. Here we treat i both ways: as a natural number, and
as a binary sequence representing the number.
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Remark 1. The way we treated binary sequences in the definition above, we should adopt through-
out the paper without further notice.

Theorem 5. For any ε ∈ (0, 1) and all s ∈ (0, n] the function Semi-Simons,n (x) can be computed
with one-sided error ε by a 1QBPof width O(n).

The Permutation Matrix test function (PERMn) is defined on n2 variables xij (1 ≤ i, j ≤ n).
It tests whether the input matrix contains exactly one 1 in each row and each column. Thus,
PERMn = 1 if, and only if the input matrix contains exactly one 1 in each row and each column.

Note, that this function cannot be effectively computed by a deterministic OBDD – the lower
bound is Ω(2nn−5/2) regardless of the variable ordering [Weg00]. The width of the best known
probabilistic OBDD, computing this function with one-sided error, is O(n4 log n) [Weg00]. Our
algorithm has the width O(n log n). Since the lower bound Ω(n− log n) follows from Theorem 9,
our algorithm is almost optimal.

Theorem 6. For any ε ∈ (0, 1) the function PERMn(x) can be computed with one-sided error ε
by a 1QBPof width O(n log n).

Definition 5. Let K be a normal subgroup of a finite group G. Let X be a finite set. For a
sequence χ ∈ X |G| let σ = bin(χ) be it’s representation in binary. If σ encodes no correct sequence
χ = χ1 . . . χ|X|, then Hidden Subgroup function of σ is set to be zero, otherwise:

HSPG,K,X (σ) =


1, if ∀a ∈ G∀i, j ∈ aK(χi = χj)

and ∀a, b ∈ G∀i ∈ aK∀j ∈ bK
(aK 6= bK ⇒ χi 6= χj);

0, otherwise.

Let f be the function encoded by the input sequence. We want to know if a function f : G→ X
“hides” the subgroupK in the groupG. Our program receivesG andK as parameters, and function
f as an input string containing values of f it takes on G. The values are arranged in lexicographical
order. See Definition 5.

Remark 2. We make two assumptions. First, we assume that the set X contains exactly (G : K)
elements. Indeed, having read the function f , encoded in the input sequence σ, we have X to
be the set of all different values that f takes. Obviously, if |X| is less or greater than (G : K),
then HSPG,K,X (σ) = 0. The second assumption, is that we replace all values of f by numbers
from 1 through (G : K). Thus, HSPG,K,X (x1, . . . , xn) is a Boolean function of n = |G|dlogG : Ke
variables.

In these two assumptions the following theorem holds.

Theorem 7. Function HSPG,K,X (x) can be computed with one-sided error by a quantum OBDD
of width O(n).

4 General Lower Bound

Most part of this section consists of reformulation and adjusting of some well-known results for
the purpose of the proving lower bounds of the HSPG,K,X (x) function.

Theorem 8. Let ε ∈ (0, 1/2) be a constant. Let Qf be a one-way quantum branching program that
computes function fn ∈ Bn with one-sided error ε. Then for any partition Π of the input, following
holds.

width (Qf ) = Ω(CC1 (f,Π)).
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Proof of the theorem 8 We prove this theorem in two steps. First we show how to relate
communication complexity to the width of branching programs. Then we apply the general lower
bound theorem to translate this relation to the quantum branching programs.

Lemma 1. For any deterministic OBDD P representing a Boolean function f ∈ Bn, let Π be a
cut of the input variables, and let k be the cutting point of Π. Then P defines a two party one-way
communication protocol Φ.

width (P ) ≥ 2CC1(f)−1,

where CC1 (f) is the deterministic one-way two-party communication complexity of the function
f .

The proof is done in one step. Let X ∈ Bn be the input of the program P . For the program
P that represents the function f , we define a one-way two-party communication protocol 〈Φ,Π〉
computing the very same function (See [Hro97]). Let Alice read the variables in ΠL,X . Let Bob
read the variables in ΠR,X . The program P is represented by a levelled (See [MT98]) directed
graph. Now let us number all the vertices on the kth level of P .

Alice simulates computation of the program P on the first k input variables. Any computation
apart from sending messages to the parties is ”free of charge” in communication complexity. Let
the message c that Alice is supposed to send Bob be the number of the vertex of the kth level,
where the path in P defined by the first k input variables ends.

Bob can obviously continue the simulation of P having received the message from Alice. Finally,
Bob will output the desired value f(X). The idea is illustrated on the Figure 1.

This correctly defines the protocol 〈Φ,Π〉.
There can not be more than width (P ) vertices on the kth level of P . Thus blog2width (P )c+ 1

bits is enough to send the message s as described in the protocol. The lemma is evident.

x1

x2

x2

x2

x2

x2

x2

1

0

x3

x3

x3

x3

...

...

........
Alice Bob

Figure 1: Communication protocol simulating OBDD
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Next theorem is needed to prove our result. It is basically a reformulation of the similar
theorem from [AGKMP]. The proof of the theorem essentially follows the proof designed by Rabin
(Theorem 3 in [RA63]) for the probabilistic automata.

Theorem 9. Let ε ∈ (0, 1/2). Let Q be a one-way quantum branching program that computes
function fn ∈ Bn with one-sided error ε. Then it holds that

width (Q) = Ω (log2width (P )) , (1)

where P is a deterministic OBDD of minimal width computing fn(x1, . . . , xn).

Proof. We prove the theorem by constructing for the function fn a deterministic OBDD based on
the structure of the program Q. The construction goes as follows.

Program Q is naturally levelled according to the definition. Assume k = width (Q) is the
dimension of the vector space of the states of the program Q. The computation process alters
the state vector during discrete test of the classical input variables. Thus, we define equivalence
classes on the state vectors of the program Q.

Definition 4.1. We call two states |ψ1〉 and |ψ2〉 equivalent on the level j of the program Q

|ψ1〉 ≡j |ψ2〉 ⇐⇒ Uj(0) |ψ1〉 ≡j Uj(0) |ψ2〉 ∧ Uj(1) |ψ1〉 ≡j+1 Uj(1) |ψ2〉 ;
|ψ1〉 ≡l |ψ2〉 ⇐⇒ ‖M |ψ1〉 ‖2 = 1 ∧ ‖M |ψ1〉 ‖2 = 1 ∨ ‖M |ψ1〉 ‖2 > ε ∧ ‖M |ψ1〉 ‖2 > ε,

where

l := Length(Q),

M is the projection matrix ,

‖M |ψ1〉 ‖2 = Praccept(σ), σ being the input of the computation.

Essentially, the two states are equivalent if and only if on any input of the program they lead to
the same output.

We introduced a valid equivalence relation. During the computation the state vector trans-
formations are unitary, hence they preserve the distance between any two vectors. Therefore we
obtain valid equivalence classes on each level of the program.

Now we build a deterministic OBDD P computing fn. Deterministic OBDDs are levelled. Each
level of our program P would consist of vertices corresponding to the equivalence classes of the
program Q on the same level. We might have some redundant nodes in the program P .

Lemma 2. Let |ψ1〉 and |ψ2〉 – two state vectors that are not equivalent, then following holds

‖|ψ1〉 − |ψ2〉‖2 > 2− 2
√
ε

Unitary transformations used during the computation preserve l2 norm, therefore it suffices to
prove this lemma for the states after testing last input variable, that is at the last level of the
program. That is |ψ1〉 ≡l |ψ2〉 , where l = Length(Q).

The two states can be written as:

|ψ1〉 =
∣∣ψA1 〉+

∣∣ψB1 〉
|ψ2〉 =

∣∣ψA2 〉+
∣∣ψB2 〉
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where ∣∣ψA1 〉 = M |ψ1〉 corresponds to the ”accepting“ projection of |ψ1〉∣∣ψR1 〉 = (I −M) |ψ1〉 corresponds to the ”rejecting“ projection of |ψ1〉∣∣ψA2 〉 = M |ψ2〉 corresponds to the ”accepting“ projection of |ψ2〉∣∣ψR2 〉 = (I −M) |ψ1〉 corresponds to the ”rejecting“ projection of |ψ2〉

Since the two states |ψ1〉 and |ψ2〉 are not equivalent, w.l.o.g. for the measurement M , defined
as in the definition 2 we may assume that∥∥∣∣ψA1 〉∥∥2

2
= 1,∥∥∣∣ψR1 〉∥∥2

2
= 0;∥∥∣∣ψA2 〉∥∥2

2
< ε,∥∥∣∣ψR2 〉∥∥2

2
> 1− ε.

Now let’s estimate the distance between the two states |ψ1〉 and |ψ2〉.

‖|ψ1〉 − |ψ2〉‖2
2 =

∥∥∣∣ψA1 〉− ∣∣ψA2 〉∥∥2

2
+
∥∥∣∣ψR1 〉− ∣∣ψR2 〉∥∥2

2
≥(∥∥∣∣ψA1 〉∥∥− ∥∥∣∣ψA2 〉∥∥)2

+
(∥∥∣∣ψR1 〉∥∥− ∥∥∣∣ψR2 〉∥∥)2

=(
1−

∥∥∣∣ψA2 〉∥∥)2
+
∥∥∣∣ψR2 〉∥∥2 ≥(

1−
√
ε
)2

+ 1− ε =

2− 2
√
ε.

We proved the lemma.
Since the state space is compact and inequivalent states are separated from each other by

distance greater than 2 − 2
√
ε, the number of equivalence classes is finite. In fact, we can easily

put a bound on that number, that is the width of the deterministic program P we build based
upon the quantum program Q. Apparently, width (P ) is at most the number of 2 − 2

√
ε-radius

balls in the k − 1-dimensional surface of the k-dimensional unit sphere of the state space of the
program Q. Denote ε′ := 2− 2

√
ε.

width (P ) ≤ 1

ε′k−1
⇒

⇒ k ≥ log2width (P )

log2 ε
′ + 1⇒

⇒ width (Q) ∈ Ω(log2width (P ′)),

where P ′ is a deterministic OBDD of minimal width computing fn.

Now suppose Qf is a quantum OBDD, computing f ∈ Bn, and P is a deterministic OBDD of
minimal width computing fn.

width (Qf ) = Ω (log2width (P )) lemma 1 implies

⇒ width (Qf ) = Ω (CC1 (f)) . (2)

This proves the statement of the theorem 8.
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5 Lower bounds for HSPG,K,X (x) function

We develop a simple language to be used to formulate our technique of proving the lower bound.
First, we notice that an assignment to the string σ from the definition above is also an as-

signment to the input variables for any program computing HSPG,K,X (σ). That is, a string
σ = (σ1, σ2, . . . , σ|G|), σi ∈ X, i = 1, . . . , |G| defines the input variables set (σ1, σ2, . . . , σ|G|) that
we shall denote with the same letter σ.

The indices i = 1, . . . , |G| are in one-to-one correspondence with the group elements of G. We
shall further refer to the indices as to the elements of G. Naturally, if we mention a group structure
on the set of indices, we mean the group structure of G, and not the structures of the semi-ring N.

In the hidden subgroup problem we have sets of the algebraic structure of the group G. On
the other hand, the communication model has its own sets. Namely, for an input σ we consider
a partition Π (See [Hro97]), that defines the two sets: ΠL,σ and ΠR,σ. In order to keep the two
systems of sets separate, yet to be able to make statements containing the input partition and the
algebraic properties of G, we present the following definitions.

Definition 5.1. For a group G, its subgroup K, and a set A ⊂ G, we define

CG,K (A) := {C| ∃a ∈ A(C is a coset of K ∧ a ∈ C)}

A set of cosets that have elements in both of the two disjoint sets is called the set of common
cosets.

Definition 5.2. For a group G, a subgroup K, and two disjoint sets A,B ⊂ G, define the set of
common cosets.

CCG,K (A;B) := {C| ∃a ∈ A, b ∈ B(C is a coset of K ∧ a, b ∈ C)}.

We can obviously define the set of the common cosets of a partition Π of the input σ.

CCG,K (Π) := CCG,K (ΠL,σ; ΠR,σ) .

We call #CCG,K (A;B) = |CCG,K (A;B) | the common cosets number of the sets A and B. Analo-
gously, we say #CCG,K (Π) is the common coset number of the partition Π.

As well as there are common cosets for a pair of given subsets of the group G, there can be
cosets, that are not common for the two subsets.

Definition 5.3. For a group G, a subgroup K and two disjoint sets A,B ⊂ G define the set of
independent cosets of B with respect to A.

ICG,K,A (B) := CG,K (B) \ CCG,K (A;B) .

For a partition Π of the input σ, the set of the independent cosets of the partition Π is defined
as follows.

ICG,K (Π) := ICG,K,ΠL,X (ΠR,X) ∪ ICG,K,ΠR,X (ΠL,X) .

We call #ICG,K,A (B) = |CCG,K (Π) | the independent cosets number of the set B with respect
to the set A. Analogously, the independent cosets number of the partition Π is #ICG,K (Π) =
|ICG,K (Π) |.
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We shall consider a special kind of partitions that we call cuts.

Definition 5.4. A partition Π of the input variables σ is a cut if there is an integer k such that
for all integer i < k σi ∈ ΠL,X and for all j ≥ k σj ∈ ΠR,X . We shall call this integer k the cutting
point.

Finally, we present an exclusively technical definition. Its purpose is to simplify reading of the
proof.

Definition 5.5. We say that a coset C takes a value x for a string σ if all variables with their
indexes in C are assigned the value x.

This is a valid notion for all input strings σ, to which the function HSPG,K,X (σ) assigns the
value one. For any given coset, all its member variables are assigned the same input value in any
of that strings.

Now we state the communication complexity lower bound for the hidden subgroup function.

Theorem 10. Let K be a non-trivial subgroup of a finite group G. Let X be any finite set, such
that |X| ≥ (G : K). For any partition Π, one-way communication complexity according to Π of
the hidden subgroup test function is bounded as follows.

CC1 (HSPG,K,X (σ) ,Π) = Ω

(
log2

(
|X|

#CCG,K (Π)

)
#CCG,K (Π)!

+
[
#ICG,K,ΠL,σ (ΠR,σ) > 0

]
log2

(
|X| −#CCG,K (Π)

#ICG,K,ΠR,σ (ΠL,σ)

))
.

Proof. Our combinatorial proof relies on the concept of a communication matrix (See [Hro97]).
It is more elegant to use short notation CM := CM (HSPG,K,X (σ) ,Π), where it can cause no
confusion, what function, and according to what partition, is considered. We shall use common
notation CMi to denote the ith row of the matrix CM .

Other shorthand notations used throughout the proof are presented in the list below.

l := |X|; (3)

d := #CG,K (ΠL,σ) ; (4)

n := #ICG,K,ΠR,σ (ΠL,σ) , notice that n = (G : K)− d; (5)

m := #CCG,K (Π) , notice that m ≤ d ≤ l. (6)

The function HSPG,K,X (σ) = 1 if, and only if, the values of the input variables with indices
from the same coset equal but never equal if the variables have indices from different cosets.

Obviously, for all strings δ that fail to satisfy the two conditions, corresponding rows of CM
must consist only of zero entries. Let EΠ be the set of all ”bad” row indices for a given partition
Π.

EΠ =
{
δ| ∀γ ∈ X |ΠR,σ |

(
δ ∈ X |ΠL,σ | ∧ HSPG,K,X (δ; γ) = 0

)}
. (7)

Lemma 3. Let CM be a communication matrix of HSPG,K,X (σ) according to a partition Π of
input σ. Let M(δ) be a sub-matrix of CM that consists only of rows CMi, i /∈ EΠ, such that i
assigns values to all cosets from CCG,K (Π) according to the string δ ∈ Xm. For strings δ1, δ2 ∈ Xm

we claim the following.
δ1 6= δ2 ⇒M(δ1) ∩M(δ2) = ø. (8)
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Let δ1, δ2 ∈ Xm be two different strings defining assignments to the variables in CCG,K (Π).
Now let i1, i2 ∈ X |ΠL,σ | be row indices such that CMi1 ∈ M(δ1), and CMi2 ∈ M(δ2), clearly
i1, i2 /∈ EΠ. It is also clear that there is a column index j ∈ X |ΠR,σ | that assigns the elements
of CCG,K (Π) values defined by δ1 and the rest of the values so that HSPG,K,X (Π−1(i1, j)) = 1.
According to the definition of hidden subgroup function, δ1 6= δ2 ⇒ HSPG,K,X (Π−1(i2, j)) = 0.
Thus, CMi1 6= CMi2 . We proved the lemma.

In the next lemma we count the number of different rows in a sub-matrix M(δ) for some
δ ∈ Xm.

Define a set of available assignments to the cosets in CCG,K (Π).

W l−m
n (Π) =

{
{x0, . . . , xn−1}|∀i, j, 0 ≤ i, j ≤ n− 1 (9)

(xi ∈ X \ CCG,K (Π) ∧ i 6= j ⇒ xi 6= xj)
}

; (10)

|W l−m
n (Π)| =

(
l − n
m

)
. (11)

Lemma 4. Let σ be the input in X |G|. Let δ ∈ Xm be a string that defines an assignment
for the variables in ΠL,σ. Let M(δ) be a sub-matrix of CMas defined in the lemma above. If
#ICG,K,ΠL,σ (ΠR,σ) > 0 (note that it is not the same as n > 0) then for any two row indices

i1, i2 ∈ X |ΠL,σ | such that they assign values from different sets from W l−m
n (Π) to the cosets in

CCG,K (Π),
CMi1 6= CMi2 .

Let U, V be two different sets inW l−m
n (Π). Let i1, i2 be two row indices that correspond to the

rows in M(δ). Assume, i1 assigns the cosets in ICG,K (Π) values from U , and i2 assign the cosets
in ICG,K (Π) values from V .

Since U 6= V there is a value x ∈ X \ CCG,K (Π), such that x ∈ U and x /∈ V . By assumption,
ICG,K,ΠL,σ (ΠR,σ) > 0. Consider a column index j that assigns value x to one of its independent
cosets, but HSPG,K,X (Π−1(i2, j)) = 1. Such an index j exists, by the definition of HSPG,K,X (σ).
Also, by the definition of the hidden subgroup test function, it is clear that HSPG,K,X (Π−1(i1, j)) =
0. This proves the lemma.

Let’s bring together the results of the two previous lemmas and estimate the number of unequal
rows.

There are exactly
(
l
m

)
m! different ways to choose assignments for the cosets in CCG,K (Π).

According to the Lemma 3, rows, that have indices with different assignments of the values of
the common cosets, never equal.

If ICG,K,ΠL,σ (ΠR,σ) > 0, then there are exactly
(
l−m
n

)
ways to assign values to the independent

cosets. According to the Lemma 4, rows with indices that assign to independent cosets values
from different sets from W l−m

n (Π) never equal.
That means there are at least (

l

m

)
m!

(
l −m
n

)
(12)

unequal rows in the communication matrix CM . Recall the following theorem (See e.g. [Hro97]).

Theorem 11. For a Boolean function f defined over a set X of input variables, for a partition Π
of the input X

CC1 (f,Π) = dlog2NRow (CM (f,Π))e ,
where NRow (f) is the number of different rows in CM (f,Π).
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By this theorem

CC1 (HSPG,K,X (σ) ,Π) = Ω

(
log2

(
l

m

)
m!+

[
#ICG,K,ΠL,σ (ΠR,σ) > 0

]
log2

(
l −m
n

))
.

(13)

Now substitute the values for l,m and n to obtain the statement of the theorem.

In fact, our lower bound is actually tight. In other words, it almost coincides with the best al-
gorithm that we can construct. That means we could not prove a statement about the lower bound
of the communication complexity, according to the considered kind of partitions, any stronger than
we already did.

Theorem 12. Let K be a non-trivial subgroup of a finite group G. Let X be any finite set, such
that |X| ≥ (G : K). For any partition Π, one-way communication complexity according to Π of
the hidden subgroup test function is bounded as follows.

CC1 (HSPG,K,X (σ) ,Π) = Θ

(
log2

(
|X|

#CCG,K (Π)

)
#CCG,K (Π)!

+
[
#ICG,K,ΠL,σ (ΠR,σ) > 0

]
log2

(
|X| −#CCG,K (Π)

#ICG,K,ΠR,σ (ΠL,σ)

))
.

Proof. The lower bound is already proved in the Theorem 10. In order to prove the upper bound
we give an informal description of the protocol computing HSPG,K,X (σ) according to the partition
Π.

Let us use the same short-hand notation as in the Theorem 10.
The protocol is straightforward. There is just one round of communication. The computer A

sends message c1c2, if ICG,K,ΠL,σ (ΠR,σ) is positive, and sends only c1 otherwise. The message parts
c1 ∈ {0, 1}a, c2 ∈ {0, 1}b, where

a := log2

(
l

m

)
m!, (14)

b := log2

(
l −m
n

)
. (15)

First part c1 of the message specifies the sub-matrix corresponding to the assignment of the common
cosets values. Second part c2 corresponds to the assignment of the independent cosets of ΠL,σ.
The latter part allows the computer B choose values for its independent cosets of ΠR,σ so that
they do not coincide with the values of ΠL,σ. By the definition of the hidden subgroup function,
information sent by A to B is enough to compute the function value for any assignment of ΠR,σ.

Note, that we can encode the message sent using a prefix code without loss of the efficiency.

We have considered communication complexity only according to a fixed partition so far. But
our results hold for an arbitrary partition of the input. That is why, one-way communication
complexity of the hidden subgroup test function is a direct consequence of the proven results.

11



Corollary 1. Let K be a non-trivial subgroup of a finite group G. Let X be any finite set, such
that |X| ≥ (G : K). Let σ be the input. One-way communication complexity of the hidden subgroup
test function is bounded as follows.

CC1 (HSPG,K,X (σ)) = Θ

(
min

Π∈Bal(σ)

{
log2

(
|X|

#CCG,K (Π)

)
#CCG,K (Π)!

+
[
#ICG,K,ΠL,σ (ΠR,σ) > 0

]
log2

(
|X| −#CCG,K (Π)

#ICG,K,ΠR,σ (ΠL,σ)

)})
.

Proof. By the definition of one way communication complexity (See [Hro97]), and as a consequence
of Theorem 12 the statement follows.

The bounds, we have proved so far, hold for arbitrary partitions. However, in order to prove
the ”best” quantum lower bound, we need to find the ”worst” partition for the hidden subgroup
problem. Let’s recall our tactics. Essentially, we prove a lower bound for a classical branching
program, that we then use to obtain the quantum bounds. According to the classical branching
program width definition, it is in our interest to find a cut that corresponds to the maximum width
of the levelled branching program of our lower bound. What kind of cuts could be good candidates
for this job? With this question in mind, we define a new kind of ”balanced” partitions, designed
specifically for a given instance of the hidden subgroup problem. We shall also consider a special
encoding of the HSPG,K,X (x) function, as described in remark 2.

Definition 5.6. Let G be a finite group. Let K be a non-trivial proper subgroup of G. A partition
Π of the input σ is called (G,K)-coset balanced, if

#CG,K (ΠL,σ) = b(G : K)/2c.

If Π is a cut, then we call it (G,K)-coset balanced cut.

It is not difficult to see that for any finite group G, and for any its non-trivial proper subgroup
K, there exists a (G,K)-balanced cut. For this kind of cuts we state the next result.

Theorem 13. Let HSPG,K,X (x) be encoded as described in remark 2. Let K be a non-trivial proper
subgroup of a finite group G. Let X be any finite set such that |X| ≥ (G : K). For any (G,K)-
coset balanced cut Π of σ, one-way communication complexity of the hidden subgroup function is
bounded as follows.

CC1 (HSPG,K,X (σ) ,Π) = Ω
(
#CCG,K (Π) log2 |X|+ log2 #ICG,K,ΠR,σ (ΠL,σ)

)
.

Proof. We shall use the short-hand notation from the proof of Theorem 10.
The partition Π is (G,K)-balanced by assumption. It implies that

#ICG,K,ΠL,σ (ΠR,σ) =

(G : K)−#CCG,K (Π)−#ICG,K,ΠR,σ (ΠL,σ) =

(G : K)−#CG,K (ΠL,σ) ≥ (G : K)/2 > 0. (16)

According to Theorem 10

CC1 (HSPG,K,X (σ) ,Π) = Ω

(
log2

(
l

m

)
m!

(
l −m
n

))
. (17)

12



However, now the function encoding satisfies the conditions of the remark 2. Therefore, the
number of sets in W l−m

n (Π) is different, since the lemma 4 fails.(
l − n
m

)
≥ |W l−m

n (Π)| = n.

Indeed, if two sets V, U ∈ W l−m
n (Π) contain elements that sum up to the same value sV =∑

x∈V x = sU =
∑

x∈U x = s, then two rows with index i assigning the cosets values from V , and
index j assigning the cosets values from U will correspond to equal rows: Mj = Mj.

However, if the sums are different sV 6= sU , then there’ll be column index k =
(∑l

r=1 xr

)
− sV

such that HSPG,K,X (ik) 6= HSPG,K,X (jk).
Therefore, the communication matrix will have at least

(
l
m

)
m!n different rows, and actually

the following is true:

CC1 (HSPG,K,X (σ) ,Π) = Ω

(
log2

(
l

m

)
m!n

)
.

(
l

m

)
m! =

l!

(l −m)!
= l · (l − 1) · . . . · (l −m+ 1) ≥ lm

2m
, (18)

because m ≤ #CG,K (ΠL,σ) = b(G : K)/2c.

log2

(
l

m

)
m!n �m log2 l −m+ log2 n � m log2 l + log2 n (19)

(20)

The statement of the theorem follows after the substitution.

Note that, in the conditions of the remark 2, l = |X| = (G : K), subsequently, d = b(G :
K)/2c = bl/2c and n = (G : K)− d = (G : K)− bl/2c = dl/2e. It is also clear that m ≤ d = l/2.

Finally, we obtain the quantum read-once branching program lower bound as a simple corollary.

Corollary 2. Let HSPG,K,X (x) be encoded as described in remark 2. Let K be a non-trivial
subgroup of a finite group G. Let X be any finite set, such that |X| ≥ (G : K). Let ε ∈ (0, 1/2).
If for all σ ∈ {0, 1}n the function HSPG,K,X (σ) is computed with one-sided error ε by a 1QBP Q
then for any coset-balanced partition Π of the input σ

width (Q) = Ω
(
#ICG,K,ΠL,σ (ΠR,σ) log2 |X|+ log2 #ICG,K,ΠR,σ (ΠL,σ)

)
.

Proof. The statement follows as a corollary of Theorem 8 and Theorem 13.

A less precise, lower bound can also be shown. This time we make the statement in terms of
the group order, or equally, the length of the input string bin (σ) (See Definition 5 ). This bound
shows that our upper bound (See [AKV10]) is quite tight. In fact, since the upper bound does not
depend on the structure of G/K, the lower bound may simply reflect the complexity deviations
for different choices of the parameters.
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Corollary 3. Let HSPG,K,X (x) be encoded as described in remark 2. Let G be a finite group. Let
K be be a non-trivial proper subgroup of G. Let X be a finite set, such that |X| ≥ (G : K). Let
t := (G : 1) log2 |X| be the length of the binary input bin (σ). Let ε ∈ (0, 1/2). If for all σ ∈ {0, 1}n
the function HSPG,K,X (σ) is ε-computed by a 1QBP Q then for any coset-balanced partition Π
of the input σ

width (Q) =

CC1 (HSPG,K,X (σ)) =

{
Ω(|X|) = Ω(log2 t) if CCG,K (Π) = o((G : 1))
Ω((G : K) log2 |X|) = Ω(t) otherwise

(21)

Proof. Consider the input bin (σ) of the length g. See the HSPG,K,X (σ) definition for details. We
want to establish an asymptotic lower bound on the quantum and communication complexity of
HSPG,K,X (σ) for g →∞.

The ”hidden subgroup” K is a parameter in the function HSPG,K,X (σ). As such, it has a
cardinality k := (K : 1), that we assume constant.

We shall again use the short-hand notation from the proof of Theorem 10.
From Theorem 13 it follows that

CC1 (HSPG,K,X (σ) ,Π) = (22)

Ω
(
#ICG,K,ΠL,σ (ΠR,σ) log2 |X|+ log2 #ICG,K,ΠR,σ (ΠL,σ)

)
. (23)

Consider two cases:

1. Suppose CCG,K (Π) = m = o((G : 1)). Then by the definition of the coset-balanced partition
(See Definition 5.6),

n+m = Θ((G : 1))⇒ n = Θ((G : 1))⇒ (24)

CC1 (HSPG,K,X (σ) ,Π) = Ω (o((G : 1)) log2 l + log2(G : 1)) = Ω(log2(G : 1)). (25)

On the other hand

(G : 1) = Θ(|X|), (26)

thus

t = Θ((G : 1) log2 (G : 1))⇒ Ω(log2(G : 1)) = Ω(log2t− log2 log2 t). (27)

Finally,

CC1 (HSPG,K,X (σ) ,Π) = Ω(log2 t). (28)

2. Suppose (G : 1) = O(m). We directly obtain the desired result:

CC1 (HSPG,K,X (σ) ,Π) = Ω((G : 1) log2 l) = Ω(t). (29)

The generalization of the result for the width of the quantum branching program follows from
corollary 2.
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6 Stronger lower bound for the general case

We show the exponential lower bound for this function by von Neumann entropy arguments. The
von Neumann entropy S(σ) of the density matrix σ =

∑
i p1 |ψi〉 〈ψi| is defined as follows.

Definition 6.1. Let σ =
∑

i p1 |ψi〉 〈ψi| is a density matrix defined for the probability distribution
(pi, |ψi〉)i of the vectors in finite-dimensional Hilbert space. Assume that (|ei〉)i is an orthonormal
basis of eigenvectors of the density matrix σ, and that λi is the eigenvalue corresponding to the
eigenvector |ei〉. Then von Neumann entropy is defined as follows.

S(σ) = −
∑

λi log2 λi.

Note that von Neumann entropy is invariant under unitary transformations. That is, S(σ) =
S(UσU †), where U is unitary.

As the inspiration for the result of this section served the following theorem.

Theorem 14. [SS04] The size of each QOBDD with bounded error for DISJn or IPn is 2Ω(n) .

We shall need several auxiliary results. The following lemma is due to Nayak [N99].

Lemma 5. Let σ0 and σ1 be density matrices over the finite-dimensional Hilbert space H and let
σ = 1/2(σ0 + σ1). Suppose there is a projective measurement M = (P0, P1) over H with results in
{0, 1} such that for b ∈ {0, 1}, P r[M(σb) = b] ≥ p ≥ 1/2. Then S(σ) ≥ (S(σ0) + S(σ1))/2 + (1−
H(p))

Theorem 15. The width of each QOBDD with bounded error for HSPG,K,X (x) is 2Ω((G : K)).

Proof. Our proof is based on the proof of the theorem 14 presented in [SS04].
Let a quantum OBDD Q with some variable order π computes HSPG,K,X (x) in its unrestricted

form (with no respect to remark 2). Let p = 1/2 + ε be the correct output probability margin of
the program Q. We shall generate random inputs according to the following rules. W.l.o.g. we
assume that elements of the same coset form a continuous substring in the input sequence.

1. We fix the size of the hidden subgroup to some value.

2. All our generated inputs would have function f of the definition of the HSPG,K,X (x) be
constant on the cosets. That is, only values of the function on different cosets would affect
the value of the HSPG,K,X (x) function on the input sequence.

3. We add elements by cosets.

4. With probability 1/2 we add a new coset to the input, so that the function f value is different
from all the values the function takes on previously added cosets. With equal probability
added coset would have the same image over f as the previously added coset.

5. We assign the values to the cosets sequentially, starting with 1.

We should use σ(k) for the density matrix of the program after having read k coset values. In
other words, (G : K)k input variables encoded in binary.

We shall prove that §(σ(k) ≥ (1−H(p))k by induction. The program Q starts in a pure state.
Therefore, σ(0) = 0. For k ≥ 1 we assume §(σ(k−1) ≥ (1−H(p))(k−1). While reading the input,
the unitary transformations are applied to the density matrix of the program Q. Now consider the
unitary transformations performed after having read the kth coset value.
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• The unitary transformation U1
k is applied to the density matrix, if the kth coset image is k,

• and U0
k is applied, if the value is k − 1.

Since the two cases appear uniformly at random,

σk =
1

2

(
U0
kσ(k − 1)(U0

k )dagger + U1
kσ(k − 1)(U1

k )dagger
)
.

Consider the ith read coset value. Let all values before and past ith are different, and coincide
with the coset index. Then the unitary transformation, performed upon reading these values can
be fixed to some U . The output of the whole computation, however depends on the value of the
ith coset. If ai = i, then HSPG,K,X (a) = 1, and HSPG,K,X (a) = 0, if ai = i − 1, where ai is the
value of the ith coset. Therefore, measurement of the density matrix σ = Uσ(i)Udagger in the end
of the computation yields 1 if If ai = i with probability at least p by definition of the program Q.
By the lemma 5 and the invariance of the von Neumann entropy under unitary transformations
the next is true.

S(σ(k)) = S(σ) ≥
1

2

(
S
(
UU0

kσ(k − 1)(U0
k )daggerUdagger

)
+

S
(
UU1

kσ(k − 1)(U1
k )daggerUdagger

))
+ 1−H(p) ≥

1

2
(S (σ(k − 1)) + S (σ(k − 1))) .

Now, by induction hypothesis it follows

S(σ(k) ≥ (1−H(p))k.

We obtain the lower bound (1 − H(p))(G : K) on the von Neumann entropy of the density
matrix describing the state of the program Q after having read the whole input. If σ is a density
matrix over a finite-dimensional Hilbert space H, then S(σ) ≤ log2(dimH). Hence, we obtain the
lower bound 2(1−H(p))(G:K) on the width of Q.

A simple corollary follows from the theorem we have just proved.

Corollary 4. Suppose |K| ∈ o(n), i.g. |K| is constant, then The width of each QOBDD with
bounded error for HSPG,K,X (x) is 2Ω(n).

7 Conclusions

Results, presented in this paper show that our upper bounds [KH05, AKV10] are pretty tight.
On the other hand, these results justify our simplification of the HSPG,K,X (x) function. Without
proper conditions this function is intractable for Quantun OBDD.
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