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Abstract

In this paper we give the first construction of a pseudorandom generator, with seed length
O(log n), for CC0[p], the class of constant-depth circuits with unbounded fan-in MODp gates,
for some prime p. More accurately, the seed length of our generator is O(log n) for any con-
stant error ε > 0. In fact, we obtain our generator by fooling distributions generated by low
degree polynomials, over Fp, when evaluated on the Boolean cube. This result significantly ex-
tends previous constructions that either required a long seed [LVW93] or that could only fool
the distribution generated by linear functions over Fp, when evaluated on the Boolean cube
[LRTV09, MZ09].

Enroute of constructing our PRG, we prove two structural results for low degree polynomials
over finite fields that can be of independent interest.

1. Let f be an n-variate degree d polynomial over Fp. Then, for every ε > 0 there exists a
subset S ⊂ [n], whose size depends only on d and ε, such that

∑
α∈Fn

p :α6=0,αS=0 |f̂(α)|2 ≤ ε.
Namely, there is a constant size subset S such that the total weight of the nonzero Fourier
coefficients that do not involve any variable from S is small.

2. Let f be an n-variate degree d polynomial over Fp. If the distribution of f when applied
to uniform zero-one bits is ε-far (in statistical distance) from its distribution when applied
to biased bits, then for every δ > 0, f can be approximated, up to error δ, by a function
of a small number (depending only on ε, δ and d) of lower degree polynomials.
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1 Introduction

A pseudorandom generator (PRG for short), over a domain D,1 for a family of tests T is an explicit
function G : Dr → Dn such that no test T ∈ T can distinguish a random output of G from truly
uniform input elements in Dn. Namely,

max
T∈T

∣∣∣∣ Pr
x∈Dr

[T (G(x)) = 0]− Pr
x∈Dn

[T (x) = 0]
∣∣∣∣ ≤ ε .

Ideally, one would like to have the seed r as short as possible and the error ε to be as small as
possible. A pseudorandom generator is considered efficient if the seed length is O(log n) (as in this
case, for some applications, one can enumerate over all seeds to find a ‘good’ one). Pseudorandom
generators have been a major object of study in theoretical computer science for several decades,
and have found applications in the area of computational complexity, cryptography, algorithms
design and more (see [Gol08, AB09]).

A family of tests that was widely considered in the literature is low degree polynomials over
finite fields. Before stating the formal definition of a PRG for low degree polynomials we fix some
notation: let f be a function, and D a distribution over the inputs of f . We denote by f(D) the
output distribution of f given inputs sampled according to D. For a set S we denote by f(S) the
output distribution given that the inputs are uniformly sampled in S (for example, f({0, 1}n) is
the distribution of f over uniform input bits).

Definition 1 (Pseudorandom distributions for degree d polynomials). A distribution D taking
values in Fnp is pseudorandom for degree d polynomials over Fp with error ε if, for any degree
d polynomial f(x1, . . . , xn) over Fp, the distributions f(D) and f(Fnp ) are ε-close in statistical
distance. A function G : {0, 1}r → Fnp is a pseudorandom generator for degree d polynomials over
Fp, if the output distribution of G, given uniformly sampled seeds, is a pseudorandom distribution
for degree d polynomials.

PRGs for linear polynomials over F2 were first constructed in [NN93] who gave PRGs with
O(log n) seed length. The distributions constructed in [NN93] are also known as ε-biased distri-
butions. Alon et al. extended this construction to work over arbitrary finite fields [AGHP92]. In
[LVW93] a pseudorandom generator for the class of bounded degree polynomials over finite fields
was given.2 The seed length of [LVW93] was not optimal and was later improved in a sequence
of works [BV07, Lov08, Vio09]. Note that all these generators take as input vectors from Frp and
output vectors in Fnp . In [LRTV09, MZ09] a different kind of PRGs for linear polynomials were
obtained. Both works constructed a PRG G : {0, 1}r → {0, 1}n that fools distributions generated
by linear polynomials over Fp, when evaluated on {0, 1}n. Namely, if f =

∑n
i=1 αixi is a linear

polynomial over Fp then the two distributions f(G({0, 1}r)) and f({0, 1}n) are close to each other.
Thus, although f is a polynomial over Fp they restrict their attention to the behavior of f on
Boolean inputs. We call such a generator a bit-pseudorandom generator. We shall later give a more
formal definition of bit-PRGs.

Another family of tests that received a lot of attention is bounded depth circuits (i.e. AC0 cir-
cuits). This is the class of constant-depth circuits with unbounded fan-in AND, OR and NOT

1One should think of D as either the Boolean cube {0, 1}n or as Fn
p .

2This is not explicitly stated in [LVW93], but it follows from their result for depth 2 circuits with a symmetric
function at the top.
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gates. AC0 is probably the most intensively studied amongst classes of small-depth circuits.
H̊astad [H̊as86] showed that the PARITY function cannot be approximated by any polynomial size
AC0 circuit. I.e., that no polynomial size AC0 circuit agrees with parity on more than 1

2 + exp(−n)
fraction of inputs. In other words, the correlation of PARITY with AC0 is exponentially small. This
result was later used by Nisan [Nis91] for constructing efficient pseudorandom generators for AC0

(these pseudorandom generators use r = polylog(n) bits). Recently, following a breakthrough by
Bazzi [Baz07], Braverman [Bra09] showed that any polylog-wise independent distribution is pseu-
dorandom for AC0 circuits, thus settling a conjecture of Linial and Nisan [LN90]. AC0[p] is another
well studied class of circuits, consisting of all constant-depth circuits with unbounded fan-in AND,
OR, NOT and MODp gates (a MODp gate outputs 1 if the sum of its inputs is divisible by p, and
0 otherwise). In contrast to the impressive success in constructing pseudorandom generators for
AC0, no PRGs are known for AC0[p]. One reason is that no strong correlation lower bounds are
known for this class. Razborov and Smolensky [Raz87, Smo87] proved exponential lower bounds
for AC0[p] circuits and their results also imply correlation lower bounds, albeit those are much
weaker than the ones known for AC0. Namely, [Raz87, Smo87] showed that the MODq function
has polynomially small correlation with AC0[p] when q and q are co-prime. The class of AC0[m]
where m is not a prime power is only very weakly understood; in particular, currently we cannot
separate it from NP!

1.1 Our results

Motivated by the problem of constructing pseudorandom generators for AC0[p], we study a natural
subclass - CC0[p] circuits. The class CC0[p] is the class of constant depth circuits using only MODp

gates. While exponential lower bounds for this class follow from the work of Smolensky [Smo87],
no pseudorandom generator better than the one constructed in [LVW93] (whose seed length is
r = exp(

√
log n)) is known for it. Our main result is an explicit pseudorandom generator fooling

any CC0[p] circuit while using only r = O(log n) random bits, for any fixed error ε > 0. Actually,
our construction gives pseudorandom generators for low-degree polynomials over finite fields, from
which the result for CC0[p] follows: Let Fp be a prime finite field. The MODp function can be
computed by a degree p− 1 polynomial over Fp

MODp(x1, . . . , xn) = (x1 + . . .+ xn)p−1 (mod p) .

Hence, any depth k circuit in CC0[p] can be computed by a polynomial over Fp of degree d =
(p − 1)k. Thus, in order to fool CC0[p] we have to fool the distribution induced by low degree
polynomials over Fp, when evaluated on inputs from the Boolean cube. In other words, we have to
generalize the aforementioned results of [LRTV09, MZ09] from linear polynomials to any constant
degree polynomials. This motivates the following definition of bit-pseudorandom generators for
polynomials.

Definition 2 (Bit-pseudorandom distributions for degree d polynomials). A distribution D taking
values in {0, 1}n is bit-pseudorandom for degree d polynomials over Fp with error ε if, for any degree
d polynomial f(x1, . . . , xn) over Fp, the distributions f(D) and f({0, 1}n) are ε-close in statistical
distance. A function G : {0, 1}r → {0, 1}n is a bit-pseudorandom generator for degree d polynomials
over Fp if the output distribution of G over a uniform seed is a bit-pseudorandom distribution for
degree d polynomials.
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Notice the difference between this definition and Definition 1 where one has to fool the dis-
tribution of the polynomial when evaluated over the entire space and not just over the Boolean
cube. As mentioned above, PRGs for polynomials over small finite fields were studied in several
works [LVW93, BV07, Lov08, Vio09]. The best result to date is by Viola.

Theorem 3 (Theorem 1 in [Vio09]). There exists an explicit and efficient function G : {0, 1}r → Fnp
for r = O(d · log(pn) + 2d · log(1/ε)) such that G({0, 1}r) is pseudorandom for degree d polynomials
over Fp with error ε.

The problem of construction bit-pseudorandom generators for linear polynomials (i.e. the case
of d = 1) was first studied by [LRTV09, MZ09] in the context of small-space computations. Before
describing their generator we need a few notations. For a = (a1, . . . , an) ∈ Fnp define ap−1 =
(ap−1

1 , . . . , ap−1
n ) ∈ {0, 1}n to be the p − 1 power of a. Similarly for a distribution D ⊂ Fnp , define

Dp−1 ⊂ {0, 1}n by raising each element of D to the p − 1 power. [LRTV09, MZ09] discovered
the following construction for a bit-pseudorandom generator for linear polynomials over Fp: the
bitwise-XOR of the p− 1 power of a pseudorandom distribution for degree (p− 1) polynomial over
Fp, and a k-wise independent distribution.

Theorem 4 (Bit-pseudorandom distribution for linear polynomials [LRTV09, MZ09]). Let Fp be a
prime finite field and ε > 0 be an error parameter. Let D ⊂ Fnp be a pseudorandom distribution for
degree p−1 polynomials over Fp with error ε. Let K ⊂ {0, 1}n be a k-wise independent distribution
for k = O(p3 log 1/ε). Then Dp−1⊕K is bit-pseudorandom distribution for linear polynomials over
Fp with error O(ε).

Our main result extends Theorem 4 to any constant degree polynomial. We prove that the
following is a bit-pseudorandom distribution for degree d polynomials over Fp: the bitwise-XOR of
the p − 1 power of a pseudorandom distribution for degree ((p − 1)d) polynomials over Fp, and a
k-wise independent distribution.

Theorem 5 (Main Theorem: Bit-pseudorandom distribution). Let Fp be an odd prime finite field,
d ≥ 1 an integer and ε > 0 an error parameter. Then there exist δ = δ(p, d, ε) and k = k(p, d, ε)
such that the following holds. Let D ⊂ Fnp be a pseudorandom distribution for degree ((p − 1)d)
polynomials with error δ. Let K ⊂ {0, 1}n be a k-wise independent distribution. Then, the bitwise-
XOR of the two distributions Dp−1⊕K is a bit-pseudorandom distribution for degree d polynomials
over Fp with error ε. The parameters k, δ satisfy

k(p, d, ε), δ(p, d, ε)−1 ≤ exp(2d+1)(ε−cp,d)

where exp(t) is the t-times iterated exponential function, and cp,d > 0 is some constant which
depends on p and d.

An immediate corollary is that there exists an efficient and explicit pseudorandom generator
G : {0, 1}r → {0, 1}n fooling any depth-k circuit in CC0[p] with error ε, where r = cp,k,ε · log n.

Corollary 6 (Pseudorandom generators for CC0[p]). Let p be an odd prime number and ε > 0
an error parameter. For any k > 0 there exists an explicit pseudorandom generator G : {0, 1}r →
{0, 1}n, where r = cp,k,ε · log n, such that for any depth k circuit C ∈ CC0[p], the statistical distance
between the two distributions C({0, 1}n) and C(G({0, 1}r)) is at most ε.
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Our proof of Theorem 5 is based on two new structural results for low degree polynomials,
over finite fields, which may be of independent interest:

The first result is on the Fourier spectrum of such polynomials. Let f : Fnp → Fp be a function.
The α-Fourier coefficient of f , for α ∈ Fnp , is defined as

f̂(α) = Ex∈Fn
p

[
ωf(x)−〈x,α〉

]
,

where ω = e2πi/p is a primitive p-root of unity, and 〈x, α〉 =
∑n

i=1 xiαi is the inner product of x
and α. The structural result we prove is that the Fourier coefficients of any low-degree polynomial
cannot be spread over many disjoint sets. In other words, we show that one can always find a small
set S ⊂ [n] such that almost all Fourier coefficients intersect S (that is, have some nonzero entry
inside S). We note that while Theorem 5 is interesting only for odd p,3 this structural result is
non-trivial also for polynomials over F2.

Theorem 7 (The Fourier spectrum of low-degree polynomials over finite fields). For every prime
finite field Fp, degree d ≥ 1 and error ε > 0 there exists a constant C(d, ε) ≤ (1/ε)O(4d) such that
the following holds. Let f(x1, . . . , xn) be a degree d polynomial over Fp. Then there exists a subset
S ⊂ [n] of size at most |S| ≤ C(d, ε) such that∑

α∈Fn
p :α 6=0,αS=0

|f̂(α)|2 ≤ ε ,

where αS is the restriction of α to coordinates in S. In words, almost all nonzero Fourier coefficients
of f intersect S.

Our second structural result concerns the structure of polynomials with the following property.
Denote with Up the distribution over {0, 1}n where each bit is chosen independently to be 0 with
probability 1/p and 1 with probability 1− 1/p. We call Up the p-biased distribution. We show that
if the distributions f(Up) and f({0, 1}n) are ε-far, then f can be approximated, over {0, 1}n, by a
function of a small number of lower degree polynomials. To formally state our theorem we need
some definitions.

Definition 8 (Bit-Rank). Let g : {0, 1}n → Fp be a function. The d-bit-rank of g, denoted
bit-rankd(g), is the minimal number of degree d polynomials over Fp required to compute g over
{0, 1}n. That is, rankd(g) = k where k is the minimal number such that there exist k degree d
polynomials f1, . . . , fk : Fnp → Fp and a function Γ : Fkp → Fp such that for all x ∈ {0, 1}n

g(x) = Γ(f1(x), . . . , fk(x)).

Example. Consider the function g(x) =
∑

i 6=j xixj over Fp for p > 2. We have that the 1-bit-rank
of g is 1, as for all x ∈ {0, 1}n

g(x) = (x1 + . . .+ xn)2 − (x2
1 + . . .+ x2

n) = (x1 + . . .+ xn)2 − (x1 + . . .+ xn) .

Thus, for x ∈ {0, 1}n, g(x) is determined by the linear function `(x) = x1 + . . .+xn. Notice that as
a quadratic polynomial over Fp, the rank of g (i.e. the minimal number of linear functions required
to compute g on inputs from Fnp ) is either n− 1 or n, depending on p.

3For p = 2 it reduces to the case of pseudorandom distributions.
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Our second structural result is the following.

Theorem 9 (Structure of bit-biased polynomials). Let f(x1, . . . , xn) be a degree d polynomial
over Fp such that the statistical distance between the distributions f(Up) and f({0, 1}n) is at least ε.
Then, for every δ > 0, there exists a function g : {0, 1}n → Fp such that Prx∈{0,1}n [g(x) 6= f(x)] ≤ δ
and bit-rankd(g) ≤ pO(c) where4 c = C((p− 1)(d+ 1), δε2/p3).

In fact, for our proof we require such a polynomial g that approximates f with respect to (an
affine shift of) Up, but we find this statement more appealing.

1.2 Proof overview

Pseudorandom generators that fool low degree polynomials over Fnp were obtained in [BV07, Lov08,
Vio09]. In our case we only consider the distribution of the polynomial over {0, 1}n (and not over
Fnp as the aforementioned results), which creates new obstacles, and requires a different approach.

We sketch below the proof of Theorem 5. Our proof is carried by induction on the degree
d, and uses Theorem 7 and (a variant of) Theorem 9 as important technical ingredients. Let
f(x) = f(x1, . . . , xn) be a polynomial of degree d over Fp. The base case of d = 1 was established
in [LRTV09, MZ09], hence we assume from now on d ≥ 2.

Regular polynomials Consider the p-biased distribution Up. This distribution can be simulated
by low-degree polynomials over Fp: let x ∈ Fnp be chosen uniformly at random; then, xp−1 =
(xp−1

1 , . . . , xp−1
n ) is distributed according to Up. Furthermore, it is easy to construct a pseudorandom

distribution fooling f(Up) as follows. Let f̃(x) = f(xp−1). Then f̃ is a polynomial of degree (p−1)d,
and the distributions f̃(Fnp ) and f(Up) are identical. In particular, any distribution fooling degree
(p− 1)d polynomials over Fp (such as those guaranteed by Theorem 3) also fools f(Up).

Thus, if the polynomial f is regular in the sense that it cannot distinguish between the uniform
distribution over {0, 1}n and the p-biased distribution Up, then one can simply use a pseudorandom
generator for f̃ to get a pseudorandom generator for f . Hence, it is not hard to deduce the following
lemma.

Lemma (Lemma 11, informal statement). Let f(x) be a degree d polynomial over Fp such that
the distributions f(Up) and f({0, 1}n) are ε-close. Let D ⊂ Fnp be a pseudorandom distribution for
degree ((p− 1)d) polynomials over Fp with error ε. Then f(Dp−1) and f({0, 1}n) are O(ε)-close.

Non-regular polynomials We now have to deal with non-regular polynomials, i.e polynomials
that distinguish between uniform bits and the p-biased distribution. This is the main challenge we
tackle in the paper. In fact, we will show that this property is so strong that bit-pseudorandom
generators for degree d − 1 polynomials with small enough error suffice to fool any such degree d
polynomial. The proof consists of two steps. First we prove Theorem 13 (which is close in spirit
to Theorem 9) that shows that f can be well-approximated, with respect to (an affine shift of) Up,
by a few polynomials of degree d− 1. We then prove that any distribution that fools degree d− 1
polynomials (over {0, 1}n) also fools f (Lemma 14).

We now explain the idea behind the proof of Theorem 13. Bogdanov and Viola proved that
if f(x) is a degree d polynomial over Fp such that f(Fnp ) is far from the uniform distribution over

4The function C(·, ·) is defined in the statement of Theorem 7.
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Fp, then f can be well-approximated by a function of a few polynomials of lower degree [BV07].
Following this motivating example, we would like to prove that if f(Up) is far from uniform (a
similar property can be easily obtained from the fact that f is not regular, see Claim 12) then f
can be well-approximated over Up by lower degree polynomials. However, the case of f(Fnp ) being
far from uniform is easy to handle via directional derivatives, as the input space is invariant under
shifts (i.e. the mapping x→ x+ a for a ∈ Fnp maps the uniform distribution over Fnp to itself). In
our case, the input distribution Up is not invariant under shifts, which creates a major obstacle for
using existing techniques.

To overcome this obstacle we first ‘complete’ f to a polynomial over Fnp that carries similar
properties: Define f⊕a = f(xp−1 ⊕ a), for some a ∈ {0, 1}n. Then f⊕a is a polynomial of degree
d′ = (p − 1)d and the distributions f⊕a(Fnp ) and f(Up ⊕ a) are identical. We show that as f is
non-regular, there exists a ∈ {0, 1}n such that f⊕a is biased (Corollary 23). Similarly to [BV07]
we get that f⊕a can be approximated by a few of its directional derivatives, where the directional
derivative of f⊕a in direction y ∈ Fnp is defined as f⊕ay (x) = f⊕a(x+ y)− f⊕a(x). However, in our
case we need a stronger property to hold. Define the support of y to be the set of nonzero entries
in y, Supp(y) = {i ∈ [n] : yi 6= 0}. We would like to show that f⊕a can be approximated by a few
directional derivatives having small supports. To obtain this we need Theorem 7 that shows that
most of the Fourier weight of f⊕a is supported on coefficients that intersect a relatively small set
S. Using this theorem we get

Claim (Claim 25, informal statement). Let f̃ be a polynomial over Fp of degree d′. For every δ > 0
there exist a small number of directions y1, . . . , yk ∈ Fnp such that |Supp(y1) ∪ . . . ∪ Supp(yk)| is
small, and such that f̃ can be well-approximated by some function Γ of f̃y1 , . . . , f̃yk

. Namely,

Pr
x∈Fn

p

[f̃(x) 6= Γ(f̃y1(x), . . . , f̃yk
(x))] ≤ δ.

This is still not enough as the derivatives of f⊕a have degree (p− 1)d− 1. However, we further
show that sparse directional derivatives of f⊕a can be calculated by directional derivatives of f and
a few variables.

Claim (Claim 27, informal statement). Any directional derivative f⊕ay (x) can be computed by some
function of fy(x) and {xi : i ∈ Supp(y)}.

We prove this claim by showing that any derivatives of f⊕a, with respect to a direction supported
on S, satisfies (f⊕a)y(x) = fw(xp−1⊕a) for some w that depends only on y and a, and is supported
on S. Combining Claims 25 and 27 yields the required approximation of f .

To complete the picture we shortly remark on the proof of Theorem 7. The proof is by induction
on the degree using Fourier analysis. The basic idea is that for every linear subspace A ⊆ Fnp we
have that

∑
α∈Fn

p :α 6=0,αS=0

|f̂(α)|2 ≤ Ea∈A

 ∑
α∈Fn

p :α 6=0,αS=0

|f̂a(α)|2
+ Ea∈A

[
|f̂a(0)|2

]
.

Using this useful inequality we break the analysis to two cases depending on whether f has a high
Fourier coefficient or not. If all of f ’s Fourier coefficients are small, then we construct S in the
following way: we pick a constant dimensional subspace A at random. For each derivative fa, where
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a ∈ A, we find a set Sa as guaranteed by the induction hypothesis (for some ε′ depending on ε and
d). Finally, we set S to be the union of all the Sa-s. When f has a high Fourier coefficient, we
approximate f using a small number of lower degree polynomials and set S to be the union of their
corresponding sets.

1.3 Paper organization

In Section 2 we fix some notations. We prove our main theorem, Theorem 5, in Section 3. The
proof is based on Theorem 13 whose proof is given in Section 5, where we also prove Theorem 9.
The proof of Theorem 13 relies on Theorem 7 that we prove in Section 6. We conclude and give
some open problems in Section 7. For completeness, we sketch the proof for the linear case of
Theorem 5 (i.e. d = 1) in Appendix A.

2 Preliminaries

We will be working over a fixed prime finite field Fp. Let f(x) = f(x1, . . . , xn) be a degree d
polynomial over Fp. Let D be a distribution. The support of D is the set of elements which have
positive probability under D. If the support of D is contained in a set S, we denote this by D ⊆ S.
For a distribution D ⊂ Fnp , we denote by f(D) the output distribution of f given inputs samples
according to D. For a subset S ⊂ Fnp we denote by f(S) the distribution of f over inputs chosen
uniformly from S. In particular, f(Fnp ) denotes the distribution of f over uniform field elements,
and f({0, 1}n) denotes the distribution of f over uniform bits.

The statistical distance between two distributionsD′,D′′ is given by sd(D′,D′′) = 1
2

∑
x |Pr[D′ =

x]− Pr[D′′ = x]|. If the statistical distance is at most ε, the distributions are said to be ε-close. If
the statistical distance is at least ε, the distributions are said to be ε-far. It is easy to verify that
statistical distance satisfies the triangle inequality.

Denote [n] = {1, 2, . . . , n}. A distribution K ⊂ {0, 1}n is said to be k-wise independent if for
any k distinct indices i1, . . . , ik ∈ [n], the distribution K restricted to these indices is uniform over
{0, 1}k.

For a function f : Fnp → Fp we denote by f̂ : Fnp → C its Fourier transform, defined as
f̂(α) = Ex∈Fn

p
[ωf(x)−〈x,α〉], where ω = e2πi/p and 〈x, α〉 =

∑n
i=1 αixi is the inner product of x and

α. The Fourier representation of f(x) is given by f(x) =
∑

α∈Fn
p
f̂(α)ω〈x,α〉. Parseval’s identity

gives that
∑

α∈Fn
p
|f̂(α)|2 = 1.

3 Bit pseudorandom generator for low degree polynomials

In this section we prove Theorem 5. As sketched in Section 1.2 we first prove the theorem for the
(easy) case of regular polynomials (a notion that we shall soon define) and then for non-regular
polynomials.

3.1 Regular polynomials

Definition 10. The p-biased distribution Up ⊂ {0, 1}n is the distribution in which we choose each
bit independently to be 0 with probability 1

p and to be 1 with probability 1− 1
p .

9



We call a polynomial f : Fnp → Fp ε-regular if sd(f(Up), f({0, 1}n)) ≤ ε. The following lemma
shows that if f is a regular polynomial then it is fooled by the p − 1 power of a pseudorandom
distribution for degree (p− 1)d polynomials.

Lemma 11. Let f(x1, . . . , xn) be an ε-regular polynomial of degree d over Fp. Let D ⊂ Fnp
be a pseudorandom distribution for degree (p − 1)d polynomials over Fp with error ε. Then
sd(f(Dp−1), f({0, 1}n)) ≤ 2ε.

Proof. Let f̃ : Fnp → Fp be defined as f̃(x1, . . . , xn) = f(xp−1
1 , . . . , xp−1

n ). As f is a degree d polyno-
mial, f̃ is a polynomial of degree (p− 1)d. Since D is pseudorandom against polynomials of degree
(p−1)d, we have that f̃(D) and f̃(Fnp ) are ε-close. By the definition of f̃ it follows that f(Dp−1) and
f(Up) are ε-close. Hence, sd(f({0, 1}n), f(Dp−1)) ≤ sd(f({0, 1}n), f(Up)) + sd(f(Up), f(Dp−1)) ≤
2ε.

3.2 Non-regular polynomials

We now turn to study non regular polynomials. Namely, polynomials that can distinguish between
the uniform distribution over {0, 1}n and the p-biased distribution. The main tool in the proof is
(a variant of) Theorem 9 that shows that non regular polynomials possess a very special structure.
Namely, that a non-regular polynomial can be well approximated by a function of a small number
of lower degree polynomials.

We will start by proving that non-regular polynomials admit a non-uniform distribution when
applied to inputs sampled from some shift of a p-biased distribution. For a distribution D ⊂ {0, 1}n
and an element a ∈ {0, 1}n denote by D ⊕ a the distribution generated by bitwise-XORing the
element a to all elements of D.

Claim 12. Let f(x1, . . . , xn) be a degree d polynomial over Fp such that the distributions f(Up) and
f({0, 1}n) are ε-far. Then there exists a ∈ {0, 1}n such that the distribution f(Up ⊕ a) is ε/2-far
from the uniform distribution over Fp.

Proof. If f(Up) and f({0, 1}n) are ε-far, at least one of them is ε/2-far from the uniform distribution
over Fp. If it is f(Up), then we are done with a = 0. Otherwise assume that f({0, 1}n) is ε/2-far
from the uniform distribution over Fp. We can generate the uniform distribution over {0, 1}n by
first choosing a ∈ {0, 1}n uniformly at random, and then bitwise-XORing it to the distribution Up.
In other words, the uniform distribution over {0, 1}n is a convex combination of the distributions
{Up⊕a : a ∈ {0, 1}n}. Thus, the distribution f({0, 1}n) is a convex combination of the distributions
{f(Up⊕a) : a ∈ {0, 1}n}. In particular, there must exist some a ∈ {0, 1}n such that the distribution
f(Up ⊕ a) is ε/2-far from uniform.

We recall the definition of bit-rank given in Subsection 1.1.

Definition (Bit-Rank). Let g : {0, 1}n → Fp be a function. The d-bit-rank of g, denoted
bit-rankd(g), is the minimal number of degree d polynomials over Fp required to compute g over
{0, 1}n. That is, rankd(g) = k where k is the minimal number such that there exist k degree d
polynomials f1, . . . , fk : Fnp → Fp and a function Γ : Fkp → Fp such that for all x ∈ {0, 1}n

g(x) = Γ(f1(x), . . . , fk(x)).

10



The following theorem, shows that non-regular polynomials have a low bit-rank. We shall later
deduce Theorem 9 from it. We defer the proof of the theorem to Section 5.

Theorem 13. Let f : Fnp → Fp be a polynomial of degree d+ 1 for some d ≥ 1. Assume that, for
some a ∈ {0, 1}n, the distribution of f(Up ⊕ a) is ε-far from uniform. Then for every δ > 0 there
exists a function g : {0, 1}n → Fp such that Prx∈Up⊕a[g(x) 6= f(x)] ≤ δ and bit-rankd(g) ≤ c + pc

where5 c = C((p− 1)(d+ 1), δε2/p3).

The next lemma shows that if a degree d + 1 polynomial f(x) can be approximated, under
some shift of the p-biased distribution, by a function with a low d-bit-rank, then bit-pseudorandom
distributions for degree d polynomials also fool f .

Lemma 14. Let f : Fnp → Fp be a degree d + 1 polynomial. Assume that there is a function
g : {0, 1}n → Fp such that bit-rankd(g) = k and for some a ∈ {0, 1}n it holds that

Pr
x∈Up⊕a

[f(x) = g(x)] ≥ 1− δ.

Let D ⊂ {0, 1}n be a bit-pseudorandom distribution for degree d polynomials with error ε. Then
f(D) and f({0, 1}n) are (ck1ε+ c2δ)-close, for c1 = p2(p−1)(d+1)

and c2 = 4p · 2(p−1)(d+1).

To ease the reading we first show how to obtain Theorem 5 using Theorem 13 and Lemma 14.
The proof of Lemma 14 is given in Section 4 and the proof of Theorem 13 is given in Section 5.

3.3 Proof of Theorem 5

For convenience we repeat the statement of the theorem.

Theorem. Let Fp be an odd prime finite field, d ≥ 1 be a degree and ε > 0 be an error parameter.
Then there exist δ = δ(p, d, ε) and k = k(p, d, ε) such that the following holds. Let D ⊂ Fnp be
a pseudorandom distribution for degree ((p − 1)d) polynomials with error δ. Let K ⊂ {0, 1}n be
a k-wise independent distribution. Then the bitwise-XOR of the two distributions Dp−1 ⊕ K is
bit-pseudorandom for degree d polynomials over Fp with error ε. The parameters k, δ satisfy

k(p, d, ε), δ(p, d, ε)−1 ≤ exp(2d+1)(ε−cp,d)

where exp(t) is the t-times iterated exponential function, and cp,d > 0 is some constant which
depends on Fp and d.

Proof. The proof is by induction on the degree d. The case d = 1 was established in [LRTV09,
MZ09] (Theorem 4). We restate their result here. For completeness we give a sketch of the proof
in Appendix A.

Theorem (Bit-pseudorandom distribution for linear polynomials). Let Fp be a prime finite field and
ε > 0 be an error parameter. Let D ⊂ Fnp be a pseudorandom distribution for degree p−1 polynomials
over Fp with error ε. Let K ⊂ {0, 1}n be a k-wise independent distribution for k = O(p3 log 1/ε).
Then Dp−1⊕K is bit-pseudorandom distribution against linear polynomials over Fp with error O(ε).

5The function C(·, ·) is defined in the statement of Theorem 7.
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We now proceed with the induction. Let d > 1, and let f(x) be a polynomial of degree d + 1.
We divide the analysis into two cases. Assume first that f(Up) is ε/2-close to f({0, 1}n). Lemma 11
implies that if D1 ⊂ Fnp is a pseudorandom distribution for degree (p− 1)(d+ 1) polynomials, with
error ε/2, then f(Dp−1

1 ) and f({0, 1}n) are ε-close.
We now handle the case that f(Up) is ε/2-far from f({0, 1}n). By Claim 12 there exists some

a ∈ {0, 1}n such that f(Up⊕ a) is (ε/4)-far from uniform. Let δ > 0 be determined later. Applying
Theorem 13 there exists a function g : {0, 1}n → Fp such that Prx∈Up⊕a[f(x) 6= g(x)] ≤ δ and
bit-rankd(g) ≤ pc + c for c = C((p − 1)(d + 1), δ(ε/4)2/p3) = O(pδ−1ε−1)O(4(p−1)(d+1)). Lemma 14
implies that if D′ ⊂ {0, 1}n is a bit-pseudorandom distribution for degree d polynomials with error
ξ (that will be determined soon) then f(D′) and f({0, 1}n) are τ -close for

τ = cp
c+c

1 ξ + c2δ

where c1 = p2(p−1)(d+1)
and c2 = 4p · 2(p−1)(d+1). In order to get τ ≤ ε we set δ = ε/2c2 and

ξ = ε/2cp
c+c

1 . Substituting the parameters yields the bound

1/ξ ≤ exp(exp((1/ε)O(4(p−1)(d+1))) .

We now put things together. Let D2 ⊂ Fnp to be a pseudorandom distribution for degree (p − 1)d
polynomials with error δ = δ(p, d, ξ). Let K ⊂ {0, 1}n be a k-wise independent distribution for
k = k(p, d, ξ). By the induction hypothesis, D′ = Dp−1

2 ⊕ K is a bit-pseudorandom distribution
for degree d polynomials with error ξ. Thus, if f is not ε/2-regular then D′ fools f with error ε.
To combine the two case in our analysis we note that if D ⊂ Fnp is a pseudorandom distribution
against degree (p − 1)(d + 1) polynomials with error ξ then D satisfies the requirements of both
D1 and D2 (recall that ξ � ε). Hence Dp−1 ⊕K is a bit-pseudorandom distribution against any
polynomial of degree d+ 1 with error ε. To conclude the proof we note that as

δ(p, d+ 1, ε) = δ
(
p, d, 1/ exp(exp((1/ε)O(4(p−1)(d+1))))

)
and

k(p, d+ 1, ε) = k
(
p, d, 1/ exp(exp((1/ε)O(4(p−1)(d+1))))

)
then there is a constants cp,d > 0 such that

k(p, d, ε), δ(p, d, ε)−1 ≤ exp(2d+1)(ε−cp,d)

as claimed.

4 Approximately low bit-rank polynomials

In this section we give the proof of Lemma 14. We first give an overview of the proof.

Step 1. The first step in the proof is showing that if f is a degree d + 1 polynomial which can
be approximated by a function g of low d-bit-rank, then there is a distribution on functions G,
such that every function in the support of G has a low d-bit-rank and such that for every x ∈ Fnp

12



it holds that Prh∈G[f(x) = h(x)] ≥ 1 − δ (Lemma 18). That is, we move from one function that
compute f on most of the space to a distribution that is ‘good’ for every point x. The main idea
behind the proof of this step is to use the self-correction properties of low degree polynomials
(Claim 15). This step is the main technical part of the proof

Step 2. In the second step we show that if a function has a low d-bit-rank then any bit-
pseudorandom distribution for degree d polynomials fools it. The argument here is quite
straightforward (Claim 19).

Step 3. Finally, we show that if a function can be computed using a distribution on functions
that have low d-bit-rank (as we achieved in Step 1 above) then it is fooled by bit-pseudorandom
distributions for degree d polynomials (Claim 21).

4.1 Step 1: from average case to worst case approximation

As in the overview above we start by showing that there exists a distribution on low d-bit-rank
functions that correctly computes f everywhere (w.h.p.). To construct such a distribution we shall
refer to the self correction properties of polynomials over Fp. Using these properties we will show
that we can construct G by (roughly) considering many shifts of g (the polynomial that computes
f on a 1− δ fraction of Fnp ). We start with the following well known fact.

Claim 15. Let f : Fnp → Fp be a degree d + 1 polynomial. For every x, y1, . . . , yd+2 ∈ Fnp the
following holds

f(x) =
∑

I⊆[d+2],|I|≥1

(−1)|I|+1f(x+
∑
i∈I

yI) .

Proof. Taking d+2 partial derivatives of f(x), in directions6 y1, . . . , yd+2, iteratively, we obtain the
constant zero function. That is fy1,...,yd+2

(x) ≡ 0. The claim follows as, by definition, fy1,...,yd+2
(x) =

(−1)d+2
∑

I⊆[d+2](−1)|I|f(x+
∑

i∈I yI).

The following is an easy corollary.

Corollary 16. Let f : Fnp → Fp be a degree d+ 1 polynomial. Let t = (p− 1)(d+ 1) + 1. For every
x, y1, . . . , yt ∈ Fnp and a ∈ {0, 1}n the following holds

f(xp−1 ⊕ a) =
∑

I⊆[t],|I|≥1

(−1)|I|+1f((x+
∑
i∈I

yI)p−1 ⊕ a) .

Proof. Define g⊕a(x) = f(xp−1 ⊕ a). Note that g⊕a is a polynomial of degree (p− 1)(d+ 1) since

g⊕a(x1, . . . , xn) = f(α1x
p−1
1 + β1, . . . , αnx

p−1
n + βn)

where αi, βi are defined as follows. If ai = 0 then αi = 1, βi = 0 and if ai = 1 then αi = −1, βi = 1.
The claim is proved by applying Claim 15 to the polynomial g⊕a.

6Recall that the derivative of f in direction y is defined as fy(x) = f(x + y)− f(x). It is easy to verify that if f
has degree d + 1 then fy has degree at most d.
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We now show that a shift of a low bit-rank polynomial also has low bit-rank.

Claim 17. Let g : {0, 1}n → Fp be a function. For a, c ∈ {0, 1}n, b ∈ Fnp define g⊕a,+b,⊕c : {0, 1}n →
Fp by g⊕a,+b,⊕c(x) = g(((x⊕ c) + b)p−1 ⊕ a). Then bit-rankd(g⊕a,+b,⊕c) ≤ bit-rankd(g).

Proof. Assume bit-rankd(g) = k. Consequently, there are k degree d polynomials f1, . . . , fk and a
mapping Γ : Fkp → Fp such that g(x) = Γ(f1(x), . . . , fk(x)). Thus

g⊕a,+b,⊕c(x) = g(((x⊕ c) + b)p−1 ⊕ a) = Γ(f1(((x⊕ c) + b)p−1 ⊕ a), . . . , fk(((x⊕ c) + b)p−1 ⊕ a)) .

We will conclude the proof by showing that each fj(((x⊕ c) + b)p−1 ⊕ a) is a polynomial of degree
at most d (in x). Define f ′j(x1, . . . , xn) = fj(α1x1 + β1, . . . , αnxn + βn) where αi, βi are defined
such that αixi + βi = ((xi ⊕ ci) + bi)p−1 ⊕ ai for xi ∈ {0, 1} (that is, βi = (ci + bi)p−1 ⊕ ai and
αi = −βi + (((1 ⊕ ci) + bi)p−1 ⊕ ai)). As we applied an affine linear transformation to the inputs
x1, . . . , xn, we have deg(f ′j) ≤ deg(fj) ≤ d. We conclude that for any x ∈ {0, 1}n

g⊕a,+b,⊕c(x) = Γ(f ′1(x), . . . , f ′k(x)),

hence bit-rankd(g⊕a,+b,⊕c) ≤ k.

Let G be a distribution over functions g : {0, 1}n → Fp. The d-bit-rank of G is defined to
be the maximal d-bit-rank of a function in the support of G. The following lemma concludes the
idea sketched above and shows that if f is close to a function with a low bit-rank then there is a
distribution on low bit-rank functions that pointwise computes f .

Lemma 18. Let f : Fnp → Fp be a degree d + 1 polynomial. Assume that there is a function
g : {0, 1}n → Fp such that bit-rankd(g) = k and such that for some a ∈ {0, 1}n it holds that

Pr
x∈Up⊕a

[f(x) = g(x)] ≥ 1− δ .

Then, there is a distribution G on functions such that bit-rankd(G) ≤ (2(p−1)(d+1)+1 − 1)k and
Prh∈G[f(x) = h(x)] ≥ 1− (2(p−1)(d+1)+1 − 1)δ.

Proof. We start by noting that the distribution Up⊕ a is equivalent to the distribution of xp−1⊕ a
for uniform x ∈ Fnp . By our assumption we have that

Pr
x∈Fn

p

[f(xp−1 ⊕ a) 6= g(xp−1 ⊕ a)] ≤ δ.

Applying Corollary16 to f , which is a degree d+ 1 polynomial, we obtain

f(xp−1 ⊕ a) =
∑

I⊆[t],|I|≥1

(−1)|I|+1f((x+
∑
i∈I

yI)p−1 ⊕ a) (1)

for t = (p−1)(d+1)+1 and any y1, . . . , yt ∈ Fnp . Fix some x ∈ {0, 1}n. Let y1, . . . , yt ∈ Fnp be chosen
uniformly at random, and note that for any non-empty I ⊆ [t], the distribution of x +

∑
i∈I yi is

uniform over Fnp . Therefore, for every I 6= ∅ it holds that

Pr
y1,...,yt∈Fn

p

[
f((x+

∑
i∈I

yi)p−1 ⊕ a) 6= g((x+
∑
i∈I

yi)p−1 ⊕ a)

]
≤ δ .

14



As xp−1 = x for x ∈ {0, 1}n we have that for such x-s f(xp−1 ⊕ a) = f(x ⊕ a). Therefore, by
Equation (1) and the union bound we get

Pr
y1,...,yt∈Fn

p

f(x⊕ a) 6=
∑

I⊆[t],|I|≥1

(−1)|I|+1g((x+
∑
i∈I

yi)p−1 ⊕ a)

 ≤ (2t − 1)δ .

Hence, for every x ∈ {0, 1}n we have

Pr
y1,...,yt∈Fn

p

f(x) 6=
∑

I⊆[t],|I|≥1

(−1)|I|+1g(((x⊕ a) +
∑
i∈I

yi)p−1 ⊕ a)

 ≤ (2t − 1)δ .

For any setting of y1, . . . , yt ∈ Fnp , define

h(y1,...,yt)(x) =
∑

I⊆[t],|I|≥1

(−1)|I|+1g(((x⊕ a) +
∑
i∈I

yi)p−1 ⊕ a) .

Let G denote the distribution over the functions h(y1,...,yt) obtained by sampling y1, . . . , yt ∈ Fnp
uniformly at random. We conclude that for every x ∈ {0, 1}n it holds that

Pr
h∈G

[f(x) = h(x)] ≥ 1− (2t − 1)δ .

To complete the proof we bound the d-bit-rank of G. Each function h ∈ G is a linear com-
bination of g(((x ⊕ a) +

∑
i∈I yi)

p−1 ⊕ a) = g⊕a,+
∑

i∈I yi,⊕a(x), and by Claim 17 we know that
bit-rankd(g⊕a,+

∑
i∈I yi,⊕a) ≤ bit-rankd(g) = k. Therefore, bit-rankd(h) ≤ (2t − 1)k. Consequently,

bit-rankd(G) ≤ (2t − 1)k.

4.2 Steps 2 and 3: fooling approximately low bit-rank polynomials

We start by arguing that bit-pseudorandom distributions for degree d polynomials also fool func-
tions with low d-bit-rank.

Claim 19. Let g : {0, 1}n → Fp be a function with bit-rankd(g) = k. Let D ⊂ {0, 1}n be a bit-
pseudorandom distribution for degree d polynomials with error ε. Then g(D) and g({0, 1}n) are
(pk/2ε)-close.

Proof. Let g = Γ(f1(x), . . . , fk(x)) be a representation of g as a function of k polynomials of degree
≤ d. Denote with D1 ⊂ Fkp the joint distribution of (f1(x), . . . , fk(x)) when x ∈ {0, 1}n is chosen
uniformly at random. Similarly, denote with D2 ⊂ Fkp the joint distribution of (f1(x), . . . , fk(x))
when x ∈ D. We will prove that D1 and D2 are (pk/2ε)-close and hence g(D) and g({0, 1}n) are
(pk/2ε)-close.

For α ∈ Fkp define 〈Di, α〉 ⊂ Fp to be the distribution of the inner product 〈y, α〉 where y ∈ Fkp
is sampled according to Di. In other words, for α = (α1, . . . , αk) ∈ Fkp we have that 〈D1, α〉 is the
distribution of fα(x) =

∑
αifi(x) over uniform x ∈ {0, 1}n, and that 〈D2, α〉 is the distribution of

fα(x) for x ∈ D. Since D is a bit-pseudorandom distribution for degree d polynomials with error
ε and as each fα is a degree d polynomial (it is a linear combination of polynomials of degree d),
we get that the distributions 〈D1, α〉 and 〈D2, α〉 are ε-close. The following well-known fact shows
that two distributions with similar Fourier coefficients must be close. For completeness we give the
proof in Appendix B.
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Fact 20. Let D1,D2 ⊂ Fkp be two distributions. Assume that for every α ∈ Fkp the distributions
〈D1, α〉 and 〈D2, α〉 are ε-close. Then D1 and D2 are (pk/2ε)-close.

It follows that D1 and D2 are (pk/2ε)-close which concludes the proof.

We next prove that if a degree (d + 1) polynomial f can be pointwise approximated by a
distribution with a low d-bit-rank, then f is in fact fooled by bit-pseudorandom distributions for
degree d polynomials.

Claim 21. Let f : Fnp → Fp be a degree d + 1 polynomial. Let G be a distribution over functions
h : {0, 1}n → Fp such that bit-rankd(G) = k, and such that for every x ∈ {0, 1}n

Pr
h∈G

[f(x) = h(x)] ≥ 1− δ.

Let D ⊂ {0, 1}n be a bit-pseudorandom distribution for degree d polynomials with error ε. Then
f(D) and f({0, 1}n) are (pk/2ε+ pδ)-close.

Proof. We need to bound

sd(f(D), f({0, 1}n)) = 1
2

∑
t∈Fp

| Pr
x∈D

[f(x) = t]− Pr
x∈{0,1}n

[f(x) = t]| .

Let E ⊂ {0, 1}n be some distribution. We now prove that for every t ∈ Fp it holds that

| Pr
x∈E

[f(x) = t]− Pr
x∈E,h∈G

[h(x) = t]| ≤ δ.

First, note that

Pr
x∈E

[f(x) = t] = Pr
x∈E,h∈G

[f(x) = t ∧ f(x) = h(x)] + Pr
x∈E,h∈G

[f(x) = t ∧ f(x) 6= h(x)]

= Pr
x∈E,h∈G

[h(x) = t ∧ f(x) = h(x)] + Pr
x∈E,h∈G

[f(x) = t ∧ f(x) 6= h(x)]

and

Pr
x∈E,h∈G

[h(x) = t] = Pr
x∈E,h∈G

[h(x) = t ∧ f(x) = h(x)] + Pr
x∈E,h∈G

[h(x) = t ∧ f(x) 6= h(x)] .

Therefore, we get that

| Pr
x∈E

[f(x) = t]− Pr
x∈E,h∈G

[h(x) = t]| =

| Pr
x∈E,h∈G

[f(x) = t ∧ f(x) 6= h(x)]− Pr
x∈E,h∈G

[h(x) = t ∧ f(x) 6= h(x)]| ≤

Pr
x∈E,h∈G

[f(x) 6= h(x)] = Ex∈E Pr
h∈G

[f(x) 6= h(x)] ≤ δ.
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The claim now follows as

2 · sd(f(D), f({0, 1}n)) =
∑
t∈Fp

| Pr
x∈D

[f(x) = t]− Pr
x∈{0,1}n

[f(x) = t]|

≤
∑
t∈Fp

| Pr
x∈D,h∈G

[h(x) = t]− Pr
x∈{0,1}n,h∈G

[h(x) = t]|

+
∑
t∈Fp

| Pr
x∈D

[f(x) = t]− Pr
x∈D,h∈G

[h(x) = t]|

+
∑
t∈Fp

| Pr
x∈{0,1}n

[f(x) = t]− Pr
x∈{0,1}n,h∈G

[h(x) = t]|

≤ Eh∈G[
∑
t∈Fp

| Pr
x∈D

[h(x) = t]− Pr
x∈{0,1}n

[h(x) = t]|] + 2pδ

≤ Eh∈G[2 · sd(h(D), h({0, 1}n))] + 2pδ

≤ 2pk/2ε+ 2pδ.

The proof of Lemma 14 now follows easily.

Proof of Lemma 14. By Lemma 18 there is a distribution G on functions such that bit-rankd(G) ≤
(2(p−1)(d+1)+1 − 1)k and Prh∈G[f(x) = h(x)] ≥ 1− (2(p−1)(d+1)+1 − 1)δ. Applying Claim 21 we get
that the distance between f(D) and f({0, 1}n) is bounded by

sd(f(D), f({0, 1}n)) ≤ p2(p−1)(d+1)kε+ p2(p−1)(d+1)+2δ .

5 The structure of non-regular polynomials

In this section prove of Theorem 13. To ease the reading we repeat it here.

Theorem (Theorem 13). Let f : Fnp → Fp be a polynomial of degree d + 1 for some d ≥ 1.
Assume that, for some a ∈ {0, 1}n, the distribution of f(Up ⊕ a) is ε-far from uniform. Then for
every δ > 0 there exists a function g : {0, 1}n → Fp such that Prx∈Up⊕a[g(x) 6= f(x)] ≤ δ and
bit-rankd(g) ≤ c+ pc where7 c = C((p− 1)(d+ 1), δε2/p3) = (p3/δε2)O(4(p−1)(d+1)).

Before giving the actual proof we first give an overview of the main steps.

Step 1: We start by showing that if f is non-regular then it must have a somewhat large ‘Fourier
coefficient’ with respect to a shifted p-biased distribution (Corollary 23).

Step 2: Defining f⊕a(x) = f(xp−1 ⊕ a) it follows that f⊕a is a degree (p − 1)(d + 1) polynomial
that has a (relatively) high bias. In addition, Theorem 7 implies that there is a relatively small set

7The function C(·, ·) is defined in the statement of Theorem 7.
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of variables S such that the weight of the Fourier mass of f⊕a, that is supported on S̄, is small.

Step 3: Next we show that if a polynomial has the two properties found in Step 2 then it can be
well approximated by (a function of) a small number of its derivatives and the variables in S. This
is the main technical part of the proof (Claim 25 and Corollary 26). Intuitively, the idea is the
following: Note that when f̂(0) 6= 0 we have that ω−f(x) = f̂(0)−1Ey∈Fn

p
ωfy(x). In our case we show

that we can actually get ω−f(x) ≈ f̂(0)−1Ey∈FS
p
ωfy(x) for most x’s, where FSp is the set of n-tuples

in Fp that are supported on S. The reason being that wf takes discrete values that are ‘far’ from
each other and the average contribution of the derivatives in directions that are not supported
on S is small (this follows, after some manipulations, from the structure guaranteed by Theorem 7).

Step 4: Using the fact that f⊕a(x) = f(xp−1 ⊕ a) we show that each derivative of f⊕a is ac-
tually a function of a small number of the partial derivatives of f and the variables in S (Claim 27).

Step 5: From the above steps we get that f(xp−1 ⊕ a) can be well approximated by the variables
in S and a small number of derivatives fz(xp−1 ⊕ a). In the last step of the proof we show that
we can actually replace the variables in {xi : i ∈ S} with {xp−1

i ⊕ a : i ∈ S}. From this we shall
conclude that f can be well approximated, with respect to the shifted p-biased distribution, by (a
function of) a small number of its derivatives and the variables in S.

We now go to the formal proof according to the steps sketched above.

5.1 Steps 1 and 2: finding structure in the Fourier spectrum

We start with an easy claim regarding Fourier coefficients of distributions. Abusing notations,
given a distribution D ⊆ Fp we identify it with the function D : Fp → [0, 1] in the following way
D(y) = Prx∈D[x = y]. Notice that under this definition D̂(0) = 1/p and in general,8 D̂(t) =
Ex∈Fp [D(x) · ω−t·x] = 1

pEx∈D[ω−t·x].

Claim 22. Let D ⊂ Fp be a distribution which is ε-far from uniform. Then there exists some
t ∈ Fp \ 0 such that

p · D̂(t) = Ex∈D[ω−t·x] ≥ ε · p−1/2 .

Proof. Let U denote the uniform distribution on Fp. We have

4ε2 ≤ 4 · sd(D,U)2 =

∑
t∈Fp

|Pr[D = t]− Pr[U = t]|

2

≤ p2Et∈Fp [|Pr[D = t]− Pr[U = t]|2] = p2
∑
t∈Fp

|D̂(t)− Û(t)|2,

where the last equality follows from the Parseval identity. As Û(t) = 0 for t 6= 0, and D̂(0) =
Û(0) = 1/p we get ∑

t∈Fp\0

|D̂(t)|2 ≥ 4ε2/p2,

8When speaking of distributions we do not consider the function ωD as we do with polynomials.
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hence there is some t ∈ Fp \ 0 such that |D̂(t)| ≥
√

4
p−1ε/p ≥ ε · p

−3/2.

We obtain the following corollary.

Corollary 23. If the distribution f(Up ⊕ a) is ε-far from uniform then there is some 0 6= t ∈ Fp
such that

Ex∈Up⊕a[ω
t·f(x)] ≥ ε · p−1/2 .

Note that we can assume w.l.o.g that t = 1. Indeed, let f ′ = t · f(x). We shall prove that there
is a function g′ : {0, 1}n → Fp such that Prx∈Up⊕a[g′(x) 6= f ′(x)] ≤ δ and bit-rankd(g′) ≤ c + pc.
Setting g(x) = t−1 · g′(x) we get the required polynomial for f . Thus from now on we assume that
t = 1, i.e. that

Ex∈Up⊕a[ω
f(x)] ≥ ε · p−1/2 .

Let f⊕a : Fnp → Fp be defined as f⊕a(x) = f(xp−1 ⊕ a). Since the distribution of xp−1 ⊕ a for
uniform x ∈ Fnp is exactly Up ⊕ a we get

Ex∈Fn
p
[ωf

⊕a(x)] ≥ ε · p−1/2 .

Let γ = δε2/p2, for some δ > 0. As f⊕a(x) is a polynomial of degree at most (p − 1)(d + 1),
Theorem 7 implies that there exists a subset S ⊂ [n] of size |S| ≤ C((p− 1)(d+ 1), γ) such that∑

α∈FS
p \0

|f̂⊕a(α)|2 ≤ γ . (2)

5.2 Step 3: approximating f⊕a by a few derivatives

Next, we show that the function f⊕a(x) can be well approximated by a small set of its derivatives.
We start with some definitions and a simple yet useful equality. For a subset S ⊂ [n] let FSp denote
the set of vectors v ∈ Fnp which are supported on S, that is,

FSp = {v ∈ Fnp : vi = 0 ∀i /∈ S} .

Similarly let FSp denote the set of vectors supported on S = [n] \ S. For x ∈ Fnp let xS ∈ FSp denote
the part of x which is supported on S, and xS the part of x supported on [n] \ S.

Claim 24. For any function h : Fnp → Fp and S ⊆ [n] we have

Ex∈Fn
p ,y∈FS

p
[ωhy(x)] =

∑
α∈FS̄

p

|ĥ(α)|2 .

Proof. Using the Fourier decomposition ωh(x) =
∑

α∈Fn
p
ĥ(α)ω〈α,x〉 we get

Ex∈Fn
p ,y∈FS

p
[ωhy(x)] = Ex∈Fn

p ,y∈FS
p
[ωh(x+y)−h(x)]

= Ex∈Fn
p ,y∈FS

p

∑
α,β∈Fn

p

ĥ(α)ĥ(β)ω〈α,x+y〉−〈β,x〉

=
∑

α,β∈Fn
p

ĥ(α)ĥ(β)
(
Ex∈Fn

p
ω〈α−β,x〉

)(
Ey∈FS

p
ω〈α,y〉

)
=

∑
α∈Fn

p :αS=0

|ĥ(α)|2 =
∑
α∈FS

p

|ĥ(α)|2 .
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We next show that a function h that has a high bias and that satisfy that
∑

α∈FS
p \0
|ĥ(α)|2 is

small can be well approximated by its derivatives in directions from FSp . The proof is based on the
idea described in Step 3 above.

Claim 25. Let h : Fnp → Fp be a function such that |Ex∈Fn
p
[ωh(x)]| ≥ ε. Let δ > 0 be an error

parameter, and assume there is a subset S ⊂ [n] such that
∑

α∈FS
p \0
|ĥ(α)|2 ≤ γ for γ = δε2/p2.

Then h can be approximated, on a 1− δ fraction of Fnp , by a function of its derivatives in directions

supported on S. That is, there exists a function Γ : Fp
|S|
p → Fp such that

Pr
x∈Fn

p

[h(x) 6= Γ({hy(x) : y ∈ FSp })] ≤ δ.

Proof. Let ĥ(0) = Ex∈Fn
p
[ωh(x)]. By the assumption in the claim, |ĥ(0)| ≥ ε. Define φ(x) =

ĥ(0)−1Ey∈FS
p
ωhy(x). We will show that φ(x) can be used to compute h(x) on most of Fnp . Define

∆(x) = |ω−h(x) − φ(x)|. Note that the minimal distance between different p-th roots of unity, i.e.
distinct elements in {ωt : t ∈ Fp}, is given by |1− ω| = 2 sin(πp ) ≥ 2/p. We will show that for most
x ∈ Fnp we have ∆(x) < 1/p, and hence we can deduce ω−h(x) uniquely (and therefore h(x)) given
φ(x). To achieve this we shall bound Ex∈Fn

p
[∆(x)2] and then use Markov’s inequality.

Ex∈Fn
p
[∆(x)2] = Ex∈Fn

p
[(ω−h(x) − φ(x))(ω−h(x) − φ(x))] =

Ex∈Fn
p ,y,z∈FS

p
[(ω−h(x) − ĥ(0)−1ωhy(x))(ωh(x) − ĥ(0)−1ω−hz(x))] =

Ex∈Fn
p ,y,z∈FS

p
[ω−h(x)+h(x) − ĥ(0)−1ωhy(x)+h(x) − ĥ(0)−1ω−hz(x)−h(x) + |ĥ(0)|−2ωhy(x)−hz(x)] =

Ex∈Fn
p ,y,z∈FS

p
[1− ĥ(0)−1ωh(x+y) − ĥ(0)−1ω−h(x+z) + |ĥ(0)|−2ωh(x+y)−h(x+z)] =

Ex∈Fn
p ,y∈FS

p
[1− 1− 1 + |ĥ(0)|−2ωh(x+y)−h(x)] =

Ex∈Fn
p ,y∈FS

p
[−1 + |ĥ(0)|−2

∑
α∈FS

p

|ĥ(α)|2]

where the last equality hollows from Claim 24. We thus have

Ex∈Fn
p
[∆(x)2] = |ĥ(0)|−2

∑
α∈FS

p \0

|ĥ(α)|2 ≤ γ

ε2
.

By Markov’s inequality we obtain that

Pr
x∈Fn

p

[∆(x) ≥ 1/p] = Pr
x∈Fn

p

[∆(x)2 ≥ 1/p2] ≤
Ex∈Fn

p
[∆(x)2]

1/p2
≤ p2γ

ε2
= δ.

We now define Γ : Fp
|S|
p → Fp as the value of h(x) for which |φ(x)− ω−h(x)| is minimized (breaking

ties arbitrarily). Since φ(x) depends only on {hy(x) : y ∈ FSp } so does Γ and, by the argument
above, as long as ∆(x) < 1/p we know that Γ(x) = h(x). Since Pr[∆(x) ≥ 1/p] ≤ δ, we conclude
that

Pr
x∈Fn

p

[h(x) 6= Γ({hy(x) : y ∈ FSp })] ≤ δ .
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From Equation (2) and Claim 25 we obtain the following corollary.

Corollary 26. Let f, a, ε be as in the statement of Theorem 13. Then, for every δ > 0 there is a
function Γ1 : Fp

|S|
p → Fp and a set S ⊂ [n], of size |S| ≤ C((p− 1)(d+ 1), δε2/p2), such that

Pr
x∈Fn

p

[f⊕a(x) 6= Γ1({f⊕ay (x) : y ∈ FSp })] ≤ δ .

5.3 Step 4: ‘fixing’ the derivatives

We now show that we can replace the derivatives of f⊕a(x) in Corollary 26 by derivatives of f
itself.

Claim 27. For any fixed y ∈ FSp we have that (f⊕a)y(x) = f⊕a(x + y)− f⊕a(x) is determined by
the variables {xi : i ∈ S} and the derivatives of f supported on S when evaluated on xp−1 ⊕ a.

Namely, for every y ∈ FSp there is a function Ψ(y) : F|S|+p
|S|

p → Fp such that for every x ∈ Fnp

(f⊕a)y(x) = Ψ(y)({xi : i ∈ S}, {fz(xp−1 ⊕ a) : z ∈ FSp }) .

Proof. Fix x ∈ Fnp . Let w ∈ Fnp be defined by the equation w = ((x + y)p−1 ⊕ a) − (xp−1 ⊕ a)
(interpreted as a pointwise equality). Note that as y ∈ FSp we also have that w ∈ FSp , i.e. wi = 0 for
all i /∈ S. Moreover, note that we can compute wS (hence also w) as a fixed function (depending
on y, a) of {xi : i ∈ S}. Hence we get

(f⊕a)y(x) = f((x+ y)p−1 ⊕ a)− f(xp−1 ⊕ a) = f((xp−1 ⊕ a) + w)− f(xp−1 ⊕ a) = fw(xp−1 ⊕ a) .

Consequently, (f⊕a)y(x) is a function of {xi : i ∈ S} and {fz(xp−1 ⊕ a) : z ∈ FSp }.

Combining Corollary 26 and Claim 27 we obtain the following corollary.

Corollary 28. Let f, a, ε be as in the statement of Theorem 13. Then, for every δ > 0 there is a
set S ⊂ [n], of size |S| ≤ C((p− 1)(d+ 1), δε2/p2), and a function Γ2 : Fp

|S|+|S|
p → Fp such that

Pr
x∈Fn

p

[f(xp−1 ⊕ a) 6= Γ2({xi : i ∈ S}, {fz(xp−1 ⊕ a) : z ∈ FSp })] ≤ δ .

5.4 Step 5: putting it all together

We now prove Theorem 13. Given Corollary 28 we basically have to complete Step 5 in order to
conclude the proof. That is, we have to show that f can be well approximated by a function of a
small number of its derivatives and the variables in S.

Proof of Theorem 13. By Corollary 28 there is a function Γ2 : Fp
|S|+|S|
p → Fp such that

Pr
x∈Fn

p

[
f(xp−1 ⊕ a) 6= Γ2({xi : i ∈ S}, {fz(xp−1 ⊕ a) : z ∈ FSp })

]
≤ δ .

Thus, we have a function approximating f on Boolean inputs (under the distribution xp−1 ⊕ a)
which depends on {xi : i ∈ S}. We will next show how these variables can be replaced by variables
of the form xp−1

i ⊕ ai, for i ∈ S. Let u ∈ (Fp \ 0)n be chosen uniformly at random. Observe
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that the joint distribution of (xp−1, x) over uniform x ∈ Fnp is identical to the joint distribution of
(xp−1, xp−1 · u), where the product xp−1 · u is taken element-wise. It follows that

Pr
x∈Fn

p ,u∈(Fp\0)n

[
f(xp−1 ⊕ a) 6= Γ2({(xi)p−1 · ui : i ∈ S}, {fz(xp−1 ⊕ a) : z ∈ FSp })

]
≤ δ .

By averaging, there exist a value u∗ ∈ (Fp \ 0)n such that

Pr
x∈Fn

p

[
f(xp−1 ⊕ a) 6= Γ2({(xi)p−1 · u∗i : i ∈ S}, {fz(xp−1 ⊕ a) : z ∈ FSp })

]
≤ δ .

Notice that given a, u∗ we can compute xp−1
i · u∗i as a function of xp−1

i ⊕ ai. Hence, we can define

a function Γ : Fp
|S|+|S|
p → Fp such that

Γ({(xi)p−1 ⊕ ai : i ∈ S}, {fz(xp−1 ⊕ a) : z ∈ FSp }) =

Γ2({(xi)p−1 · u∗i : i ∈ S}, {fz(xp−1 ⊕ a) : z ∈ FSp }) .

Therefore,

Pr
x∈Fn

p

[f(xp−1 ⊕ a) 6= Γ({xp−1
i ⊕ ai : i ∈ S}, {fz(xp−1 ⊕ a) : z ∈ FSp })] ≤ δ .

As the distribution of xp−1 ⊕ a, for uniform x ∈ Fnp , is the same as Up ⊕ a, we conclude that

Pr
x∈Up⊕a

[f(x) 6= Γ({xi : i ∈ S}, {fz(x) : z ∈ FSp })] ≤ δ .

Set g(x) = Γ({xi : i ∈ S}, {fz(x) : z ∈ FSp }). Clearly, bit-rankd(g) ≤ |S|+ p|S|. This completes the
proof of the theorem.

We now give the proof of Theorem 9.

Proof of Theorem 9. Combining Claim 12, Theorem 13 and Lemma 18 we get that there is a
distribution G on functions such that for c = C((p−1)(d+1), δε2/4p3) it holds that bit-rankd(G) ≤
O(2(p−1)(d+1)pc) and Prh∈G[f(x) = h(x)] ≥ 1− (2(p−1)(d+1)+1 − 1)δ. A simple averaging argument
implies that there is some h ∈ G such that Prx∈{0,1}n [f(x) = h(x)] ≥ 1− (2(p−1)(d+1)+1 − 1)δ.

6 The Fourier spectrum of low degree polynomials

In this section we give the proof of Theorem 7. We start by defining the notion of an S-correlated
distribution over Fnp , for a subset S ⊂ [n]. We recall that for x ∈ Fnp we denote by xS ∈ FSp the
restriction of x to coordinates in S, and we denote the complement of S by S̄ = [n] \ S.

Definition 29. Let S ⊂ [n]. The S-correlated distribution is a joint distribution over pairs (X,Y ) ∈
Fnp × Fnp defined as follows. Choose XS̄ = YS̄ uniformly in FS̄p , and choose independently and
uniformly XS , YS ∈ FSp . We denote the S-correlated distribution (X,Y ) by DS . For f, g : Fnp → Fp
and S ⊂ [n], we define the S-correlation of f and g to be

∆S(f, g) =
∑

α∈Fn
p :αS=0,α 6=0

f̂(α)ĝ(α) .
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Note that an equivalent definition of DS is to first sample X ∈ Fnp uniformly, then to set Y = X
and finally to resample YS . We now restate Theorem 7 in terms of ∆S .

Theorem 30 (Theorem 7, restated). Let f : Fnp → Fp be a degree d polynomial. For every ε > 0
there exists S ⊂ [n], of size |S| ≤ C(d, ε) = O(1/ε)O(4d), such that ∆S(f, f) ≤ ε.

Before giving the formal proof we explain the idea behind it. We will prove the theorem by
induction on the degree. The case of linear polynomials will be easy to handle by a direct calculation.
For a general degree d we will use the following useful claims.

Claim 31. Let A be any linear subspace of Fnp . For every f : Fnp → Fp and S ⊂ [n] it holds that
∆S(f, f)2 ≤ Ea∈A[∆S(fa, fa)] + Ea∈A[|f̂a(0)|2].

Claim 32. Let f : Fnp → Fp. Let A be a random linear subspace of Fnp of dimension r (i.e. A is
picked at random amongst all r-dimensional subspaces of Fnp ). Then

EA
[
Ea∈A[|f̂a(0)|2]

]
≤ 1
pr

+ max
α
|f̂(α)|2 ,

where EA means that we are averaging over a random choice of A.

These claims indicate that we have to consider two cases.

Case 1. All the Fourier coefficients of f are small: In this case, the claims above imply that if we set
r to a large enough value and pick a random r-dimensional subspace A then setting S be the union of
the corresponding sets for fa, for a ∈ A, we get the required result (using the induction hypothesis).

Case 2. Some Fourier coefficient of f is large: In this case we first approximate f by a function of
a small number of (linear shifts of) its partial derivatives. A simple calculation then gives that for
some k, δ∗ and σ we have

∆S(f, f) ≤ 1
kδ∗

k∑
i=1

|∆S(h̃yi , f)|+ 2σ ,

where {h̃yi}ki=1 is a set of (shifted) derivatives used to approximate f . Observing that for any g
and S ⊆ S′ it holds that

|∆S′(f, g)| ≤ (∆S(f, f))1/2(∆S(g, g))1/2 ,

we complete the proof for this case as well by picking S′ to be the union of the corresponding sets
for the polynomials h̃yi .

6.1 Proofs of two useful claims

Following the proof outline above we start by proving Claims 31 and 32. As a first step we prove
the following lemma.
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Lemma 33. Let f, g : Fnp → Fp. Then for any S ⊂ [n] it holds that

∆S(f, g) = E(x,y)∈DS
[ωf(x)−g(y)]− Ex∈Fn

p
[ωf(x)]Ey∈Fn

p
[ωg(y)]

and for every S′ ⊇ S it holds that

|∆S′(f, g)| ≤ (∆S(f, f))1/2(∆S(g, g))1/2 .

Proof. Recall that f̂(0) = E[ωf(x)] and similarly for g. Calculating we get,∑
α:αS=0

f̂(α)ĝ(α) =
∑

α:αS=0

(Exωf(x)ω−〈x,α〉)(Eyω−g(y)ω〈y,α〉)

=
1
p2n

∑
x,y

ωf(x)−g(y)
∑

α:αS=0

ω〈y−x,α〉

=
1
p2n

∑
xS̄=yS̄

pn−|S|ωf(x)−g(y)

= E(x,y)∈DS
[ωf(x)−g(y)] .

Hence, ∆S(f, g) = E(x,y)∈DS
[ωf(x)−g(y)]− f̂(0)ĝ(0). To show the second claim we apply the Cauchy-

Schwarz inequality,

|∆S′(f, g)| =

∣∣∣∣∣∣
∑

α 6=0,αS′=0

f̂(α)ĝ(α)

∣∣∣∣∣∣ ≤
 ∑
α 6=0,αS′=0

|f̂(α)|2
1/2 ∑

α 6=0,αS′=0

|ĝ(α)|2
1/2

≤

 ∑
α 6=0,αS=0

|f̂(α)|2
1/2 ∑

α 6=0,αS=0

|ĝ(α)|2
1/2

= (∆S(f, f))1/2(∆S(g, g))1/2 .

We now give the proofs of Claims 31 and 32.

Proof of Claim 31. By Lemma 33 we have

∆S(f, f) = E(x,y)∈DS
[ωf(x)−f(y)]− |f̂(0)|2 ≤ E(x,y)∈DS

[ωf(x)−f(y)] .

For any fixed a ∈ A, the distribution {(x + a, y + a) : (x, y) ∈ DS} is identical to DS . So we can
express ∆S(f, f) as follows,

∆S(f, f) ≤ Ea∈AE(x,y)∈DS
[ωf(x+a)−f(y+a)] .

Applying the Cauchy-Schwarz inequality (and using the fact that A is a linear subspace) we get

∆S(f, f)2 ≤ E(x,y)∈DS

[
|Ea∈A[ωf(x+a)−f(y+a)]|2

]
= E(x,y)∈DS

[
(Ea∈A[ωf(x+a)−f(y+a)])(Ea′∈A[ω−f(x+a′)+f(y+a′)])

]
= Ea,a′∈AE(x,y)∈DS

[
ωf(x+a)−f(x+a′)ωf(y+a′)−f(y+a)

]
= Ea,a′∈AE(x′,y′)∈DS

[
ωf(x′+a−a′)−f(x′)ωf(y′)−f(y′+a−a′)

]
= Ea∈AE(x,y)∈DS

[ωfa(x)−fa(y)]

= Ea∈A[∆S(fa, fa) + |f̂a(0)|2] .
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Proof of Claim 32. We begin by showing an identity on Ea∈A[|f̂a(0)|2] for any subspace A.

Claim 34. For any function f : Fnp → Fp and any subspace A ⊂ Fnp

Ea∈A[|f̂a(0)|2] =
∑

β∈Fn
p ,γ∈A⊥

|f̂(β)|2|f̂(β + γ)|2,

where A⊥ is the dual space of A.

Proof. Using the Fourier decomposition formula, the R.H.S of the above expression is∑
β∈Fn

p ,γ∈A⊥
(Ex,x′∈Fn

p
[ωf(x)−f(x′)ω〈β,x

′−x〉])(Ey,y′∈Fn
p
[ωf(y)−f(y′)ω〈β+γ,y′−y〉])

which is equivalent to

∑
γ∈A⊥

Ex,x′,y,y′∈Fn
p

ωf(x)−f(x′)+f(y)−f(y′)ω〈γ,y
′−y〉

∑
β∈Fn

p

ω〈β,x
′−x+y′−y〉

 .

Considering the inner sum over β, the above expression can be simplified as

1
p3n

∑
x−x′=y′−y

ωf(x)−f(x′)+f(y)−f(y′)
∑
γ∈A⊥

ω〈γ,y
′−y〉 .

Now the inner sum over γ is nonzero only when y′ − y ∈ A. Denote a = y′ − y ∈ A. Recalling that
we sum over x− x′ = y′ − y = a, we can further simplify the above expression as

|A⊥|
p3n

∑
a∈A

∑
x′,y∈Fn

p

ωf(x′+a)−f(x′)+f(y)−f(y+a) = Ea∈A[|f̂a(0)|2] .

We now have that

Ea∈A[|f̂a(0)|2] =
∑

β∈Fn
p ,γ∈A⊥

|f̂(β)|2|f̂(β + γ)|2 =
∑

β∈Fn
p ,α∈Fn

p

|f̂(β)|2|f̂(α)|2χA⊥(α− β) ,

where χA⊥ is the characteristic function of A⊥. Let A be a random subspace of dimension r. The
probability for α 6= β that (α − β) ∈ A⊥ is 1/pr. Since

∑
α |f̂(α)|2 = 1 by Parseval’s identity, we

obtain that

EA
[
Ea∈A[|f̂a(0)|2]

]
=

∑
β 6=α∈Fn

p

|f̂(β)|2|f̂(α)|2EA[χA⊥(α− β)] +
∑
α∈Fn

p

|f̂(α)|4

≤ 1
pr

+
∑
α∈Fn

p

|f̂(α)|4 ≤ 1
pr

+ max
α
|f̂(α)|2 .
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6.2 Concluding the proof

We now have all the required ingredients to prove Theorem 30.

Proof of Theorem 30. The proof is by induction on d. The base case is d = 1. Let f(x) =
∑n

i=1 aixi
be any linear polynomial. Consider S = {i} such that ai 6= 0. Then for any α ∈ Fnp such that
αS = 0 we get f̂(α) = Exi∈Fp [ωaixi ]

∏
j 6=i Exj∈Fp [ω(aj−αj)xj ] = 0. Hence,

∑
α:αS=0 |f̂(α)|2 = 0 and

the claim is proved.
By induction hypothesis, let the result be true for any degree ≤ d− 1 polynomial. As outlined

above, the proof proceeds by considering two cases, whether f has some large Fourier coefficient
or not.

Case 1: Assume that |f̂(α)| ≤ δ∗, for all α ∈ Fnp , for an appropriate choice of δ∗ (that we will
suitably fix later). Let εd = ε. By Claim 34 we get that for any S ⊂ [n] and a subspace A ⊆ Fnp

∆S(f, f)2 ≤ Ea∈A[∆S(fa, fa)] + Ea∈A[|f̂a(0)|2] .

Notice that for each a ∈ A, deg fa ≤ d − 1. Hence, by induction hypothesis, for each a ∈ A,
there exist Sa of size C(d− 1, εd−1) such that ∆Sa(fa, fa) ≤ εd−1 (for some εd−1 that will be soon
determined). Let A be a linear subspace of dimension r that minimizes Ea∈A[|f̂a(0)|2]. Consider
S = ∪a∈ASa. Claim 32 implies that

∆S(f, f)2 ≤ εd−1 +
1
pr

+ max
α
|f̂(α)|2 .

Now it is enough to choose r, εd−1 and δ∗ such that εd−1 + 1
pr + (δ∗)2 ≤ ε2d. Also, notice that

|S| = C(d, εd) ≤ prC(d− 1, εd−1).

Case 2: Let β be a Fourier coefficient such that |f̂(β)| ≥ δ∗. Set δ = f̂(β). Let h(x) = f(x) −
〈x, β〉. Then the bias of −h(x) is Ex∈Fn

p
[ω−h(x)] = δ. Notice that for every x ∈ Fnp we have

ωh(x)Ey[ω−h(x+y)] = Ey[ω−hy(x)]. As for every fixed x we have Ey[ω−h(x+y)] = δ it is clear that we
can get the following decomposition of f(x)

ωf(x) = ω〈x,β〉 · ωh(x) = ω〈x,β〉 · 1
δ

Ey[ω−hy(x)] =
1
δ

Ey[ω〈x,β〉−hy(x)] .

Define h̃y(x) = 〈x, β〉 − hy(x). Notice that since h(x) has degree d ≥ 2 we have deg(h̃y) ≤ d − 1.
Now we can expect that if we sample enough y’s uniformly and independently at random, and take
the average of the corresponding ωh̃y(x), then we can get a good estimate of ωf(x). In particular for
a parameter σ ∈ (0, 1) to be determined later, we find k such that the following holds

Ex,y1,...,yk∈Fn
p
[|ωf(x) − 1

δk

k∑
i=1

ωh̃yi (x)|] ≤ σ.

By simple application of Chebyshev’s inequality, we estimate the parameter k.

Claim 35. To get an approximation Ex,y1,...,yk∈Fn
p
[|ωf(x) − 1

δk

∑k
i=1 ω

h̃yi (x)|] ≤ σ, it is enough to
take k = O(|δ|−3σ−3).
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Proof. It is enough to choose k such that E[|Re(ωf(x)− 1
δk

∑k
i=1 ω

ĥyi (x))|] ≤ σ/2, and E[|Img(ωf(x)−
1
δk

∑k
i=1 ω

ĥyi (x))|] ≤ σ/2. Let Yi = Re(1
δω

h̃yi (x)). Then Eyi [Yi] = Re(ωf(x)). It is clear that
Var(Yi) ≤ 1

|δ|2 . Hence, by Chebyshev’s inequality we get that

Pr(|Re(ωf(x))− 1
k

k∑
i=1

Yi| ≥
σ

4
) ≤ 16
|δ|2kσ2

.

Therefore, as always |Re(ωf(x)) − 1
k

∑k
i=1 Yi| ≤ 1 + δ−1 ≤ 2δ−1 we get that E[|Re(ωf(x)) −

1
k

∑k
i=1 Yi|] ≤ σ/2 for k ≥ 128

|δ|3σ3 . The imaginary part can be approximated similarly.

Fix {yi}i∈[k] in such a way that Ex∈Fn
p
[|ωf(x) − 1

δk

∑k
i=1 ω

h̃yi (x))|] ≤ σ. Let F (x) =
1
kδ

∑k
i=1 ω

h̃yi (x). As Ex∈Fn
p
[|ωf(x) − F (x)|] ≤ σ we can upper bound ∆S(f, f) as follows

∆S(f, f) = E(x,y)∈DS
[ωf(x)−f(y)]− Ex∈Fn

p
[ωf(x)] · Ey∈Fn

p
[ωf(y)]

≤ |E(x,y)∈DS
[(ωf(x) − F (x))ω−f(y)]− Ex∈Fn

p
[ωf(x) − F (x)] · Ey∈Fn

p
[ωf(y)]|

+|E(x,y)∈DS
[F (x)ω−f(y)]− Ex∈Fn

p
[F (x)] · Ey∈Fn

p
[ωf(y)]|

≤ 2σ + |E(x,y)∈DS
[F (x)ω−f(y)]− (Ex[F (x)])(Ey[ω−f(y)])|

≤ 2σ +
1
kδ

k∑
i=1

|E(x,y)∈DS
[ωh̃yi (x)−f(y)]− (Ex[ωh̃yi (x)])(Ey[ω−f(y)])|

≤ 2σ +
1
kδ∗

k∑
i=1

|∆S(h̃yi , f)|.

As deg(h̃yi) ≤ d − 1 we get, by the induction hypothesis, that for each h̃yi there exists a set
Si, of size C(d − 1, εd−1), such that ∆Si(h̃yi , h̃yi) ≤ εd−1. Consider S = ∪ki=1Si. Obviously,
|S| ≤ kC(d− 1, εd−1). Lemma 33 implies that

|∆S(h̃yi , f)| ≤ (∆Si(h̃yi , h̃yi))
1/2(∆Si(f, f))1/2 ≤ (∆Si(h̃yi , h̃yi))

1/2 ≤ ε1/2d−1 .

In order to achieve ∆S(f, f) ≤ εd we need to fix the parameters δ∗, εd−1, k, σ so that 1
δ∗ ε

1/2
d−1+2σ ≤ εd.

We now show how to pick the parameters adequately. We need to satisfy both εd−1+ 1
pr +(δ∗)2 ≤

ε2d and 1
δ∗ ε

1/2
d−1 + 2σ ≤ εd. Fix σ = εd

4 and δ∗ = εd
2 . Then it is enough to choose εd−1 = O(ε4d)

and r = logp(ε2d/4). We now estimate |S|. Recall that |S| ≤ max(pr, k)C(d − 1, εd−1) where
k = O(|δ∗|−3σ−3). This yields the following bound

|S| ≤ O(ε−6
d )C(d− 1,Ω(ε4d))

Solving the recurrence for C(d, ε) we get that C(d, ε) ≤ O(ε)O(4d). This completes the proof of the
theorem.
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7 Conclusions and open problems

We construct efficient and explicit bit-pseudorandom generators for constant degree polynomials
over finite fields. These yield pseudorandom generators for CC0[p] which achieve any small constant
error while using only O(log n) random bits. The proof is based on a new characterization of the
Fourier spectrum of low degree polynomials over finite fields.

We state several open problems.

• Construct pseudorandom generators for AC0[p]. The next step, following this work, is to
construct pseudorandom generators for sparse polynomials over Fp (i.e. polynomials of degree
O(log n) with only a polynomial number of monomials). Any such polynomial can be realized
by a depth-2 AC0[p] circuit.

• Generalize our results for CC0[m] for composite m. As a first step, generalize our results for
bit-pseudorandom generators for low degree polynomials over Zm.

• Improve the parameters of Theorem 7. For d = 1 it is an easy observation that a set S of
size |S| = 1 suffices. For d = 2, it is not difficult to see that all nonzero Fourier coefficients
of a quadratic polynomial form an affine space and have the same absolute value. Using this
observation one can get a set of size |S| = O(log 1/ε). We do not have any example of a
constant degree polynomial requiring sets of size ω(log 1/ε).

• Improve the dependence of the seed length on ε in Theorem 5. Currently, the seed length is
logarithmic in n but a tower of height O(d) in 1/ε.
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A Proof for linear polynomials

In this section we give the proof Theorem 4. For convenience we repeat it here.

Theorem (Bit-pseudorandom distribution for linear polynomials). Let Fp be a prime finite field and
ε > 0 be an error parameter. Let D ⊂ Fnp be a pseudorandom distribution for degree p−1 polynomials
over Fp with error ε. Let K ⊂ {0, 1}n be a k-wise independent distribution for k = O(p2 log 1/ε).
Then Dp−1⊕K is bit-pseudorandom distribution against linear polynomials over Fp with error O(ε).

Proof. Let f(x) =
∑n

i=1 aixi be some linear polynomial. Define the weight of f , wt(f), to be the
number of nonzero coefficients in f . We consider two cases. Consider first the case that wt(f) ≤ k.
In such a case any k-wise independent distribution fools f completely. The distribution Dp−1 ⊕K
is k-wise independent, hence it fools f with error 0.
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We now move to the second case, where wt(f) > k. We will prove that in this case the
distribution of f(x) is O(ε)-close to the uniform distribution over Fp, both when x ∈ {0, 1}n is
chosen uniformly at random and when we choose x ∈ Dp−1⊕K. Hence these two distributions are
O(ε)-close to each other. In fact, we shall prove a stronger claim: for any fixed v ∈ {0, 1}n, the
distribution of f(x) where x ∈ Dp−1 ⊕ v is O(ε)-close to uniform.

We first note that if X ∈ Fp is a distribution, then Fact 20 shows that in order to prove that X
is ε-close to uniform it suffices to prove that for any c ∈ Fp \ 0 it holds that E[ωcX ] ≤ ε/√p. Since
multiplying by c 6= 0 does not change the weight of f , it is enough to prove that if wt(f) > k then
|Ex∈{0,1}n [ωf(x)]| ≤ O(ε) and |Ex∈Dp−1⊕a[ωf(x)]| ≤ O(ε).

We first prove the claim for uniform inputs. Note that if z ∈ {0, 1} is uniform and a 6= 0, then∣∣Ez∈{0,1}[ωaz]∣∣ ≤ 1− Ω(1/p) .

Therefore, as wt(f) > k we get∣∣∣Ex∈{0,1}n [ωf(x)]
∣∣∣ =

n∏
i=1

∣∣Exi∈{0,1}[ω
aixi ]

∣∣ ≤ (1− Ω(1/p))k = O(ε) .

We now move to proving the claim for x ∈ Dp−1 ⊕ v. That is, we wish to prove that

|Ex∈D[ω
∑
ai(x

p−1
i ⊕vi)]| = O(ε) .

Define g : Fnp → Fp as g(x) =
∑
ai(x

p−1
i ⊕ vi). Note that g is a polynomial of degree p − 1,

as xp−1
i ⊕ vi is equal to xp−1

i when vi = 0 and is equal to 1 − xp−1
i when vi = 1. Since D is a

pseudorandom distribution for degree p− 1 polynomials with error ε, we get that∣∣∣Ex∈D[ωg(x)]− Ex∈Fn
p
[ωg(x)]

∣∣∣ ≤ ε.
Hence it is enough to prove that

∣∣∣Ex∈Fn
p
[ωg(x)]

∣∣∣ = O(ε). For that end, let y ∈ {0, 1}n be distributed
as follows: y1, . . . , yn are chosen independently such that Pr[yi = vi] = 1/p. Then, for x ∈ Fnp
chosen uniformly at random, the distributions of xp−1 ⊕ v and of y are identical. Moreover it is
straightforward to verify that for any ai 6= 0 we have

|Eyi [ω
aiyi ]| ≤ 1− Ω(1/p2) .

The claim now follows as∣∣∣Ex∈Fn
p
[ωg(x)]

∣∣∣ =
∣∣∣Ex∈Fn

p
[ω

∑
ai(x

p−1
i ⊕vi)]

∣∣∣ =
∣∣∣Ey[ω∑

aiyi ]
∣∣∣

=
n∏
i=1

|Eyi [ω
aiyi ]| ≤ (1− Ω(1/p2))k = O(ε) .
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B Proof of Fact 20

For completeness we give the proof of the following well known fact.

Fact (Fact 20). Let D1,D2 ⊂ Fkp be two distributions. Assume that for every α ∈ Fkp the distribu-
tions 〈D1, α〉 and 〈D2, α〉 are ε-close. Then D1 and D2 are (pk/2ε)-close.

Proof of Fact 20. We need to bound

sd(D1,D2) = 1
2

∑
x∈Fk

p

|Pr[D1 = x]− Pr[D2 = x]| .

By the Cauchy-Schwarz inequality we get

4 · sd(D1,D2)2 ≤ pk
∑
x∈Fk

p

|Pr[D1 = x]− Pr[D2 = x]|2 .

Let D̂i : Fkp → C be the Fourier transform of Di, when we think of Di as the function Di(y) =
Prx∈Di [x = y]. In other words, D̂i(α) = Ex∈Fk

p
[Pr[Di = x]ω−〈x,α〉]. By the Parseval identity we get

that
4 · sd(D1,D2)2 ≤ p2k ·

∑
α∈Fk

p

|D̂1(α)− D̂2(α)|2 .

From the assumption that for every α ∈ Fkp the distributions 〈D1, α〉 and 〈D2, α〉 are ε-close we
obtain

|D̂1(α)− D̂2(α)| =
∣∣∣Et∈Fk

p
[(Pr[〈D1, α〉 = t]− Pr[〈D2, α〉 = t]) · ω−t]

∣∣∣
≤ Et∈Fk

p
|[Pr[〈D1, α〉 = t]− Pr[〈D2, α〉 = t]]|

≤ 2ε/pk .

Thus we conclude that
4 · sd(D1,D2)2 ≤ p2k

∑
α∈Fk

p

(2ε/pk)2 = 4pkε2 .

The bound sd(D1,D2) ≤ pk/2ε now follows.
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