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Abstract

Three fundamental results of Levin involve algorithms or reductions whose running time is
exponential in the length of certain programs. We study the question of whether such depen-
dency can be made polynomial.

1. Levin’s “optimal search algorithm” performs at most a constant factor more slowly than
any other fixed algorithm. The constant, however, is exponential in the length of the
competing algorithm.
We note that the running time of a universal search cannot be made “fully polynomial”
(that is, the relation between slowdown and program length cannot be made polynomial),
unless P=NP.

2. Levin’s “universal one-way function” result has the following structure: there is a polyno-
mial time computable function fLevin such that if there is a polynomial time computable
adversary A that inverts fLevin on an inverse polynomial fraction of inputs, then for every
polynomial time computable function g there also is a polynomial time adversary Ag that
inverts g on an inverse polynomial fraction of inputs. Unfortunately, again the running
time of Ag depends exponentially on the bit length of the program that computes g in
polynomial time.
We show that a fully polynomial uniform reduction from an arbitrary one-way function to
a specific one-way function is not possible relative to an oracle that we construct, and so no
“universal one-way function” can have a fully polynomial security analysis via relativizing
techniques.

3. Levin’s completeness result for distributional NP problems implies that if a specific problem
in NP is easy on average under the uniform distribution, then every language L in NP is
also easy on average under any polynomial time computable distribution. The running
time of the implied algorithm for L, however, depends exponentially on the bit length of
the non-deterministic polynomial time Turing machine that decides L.
We show that if a completeness result for distributional NP can be proved via a “fully
uniform” and “fully polynomial” time reduction, then there is a worst-case to average-case
reduction for NP-complete problems. In particular, this means that a fully polynomial
completeness result for distributional NP is impossible, even via randomized truth-table
reductions, unless the polynomial hierarchy collapses.
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1 Introduction

We study three fundamental results in complexity theory, all due to Levin, which involve reductions
whose running time is exponential in the length of certain programs.

1. Levin [Lev73] describes a universal search algorithm for any NP search problem. Instantiated,
for example, to SAT, the algorithm has the property that for every other algorithm A there
is a constant cA such that for every satisfiable formula ϕ Levin’s algorithm finds a satisfying
assignment for ϕ in time at most cA · tA(ϕ) + |ϕ|O(1), where tA(ϕ) is the running time of A
on input ϕ.

That is, compared to any other fixed algorithm, Levin’s algorithm is at most a constant
factor slower, plus a polynomial additive term, on each input. Unfortunately, the constant
cA is exponential in the length of the program A. So, far example, Levin’s algorithm may
be extremely slow on instances that are quickly solved by an algorithm that takes about 10
bytes to write down.

2. Levin describes a universal one-way function [Lev87, Lev03] fLevin, with the property that
if one way functions exist at all, then fLevin is one-way. Specifically, if A is a polynomial
time algorithm that inverts fLevin on at least an inverse polynomial fraction of inputs and if
g is any polynomial time computable function, then A can be used to invert g on an inverse
polynomial (actually, even constant) fraction of inputs. The running time of the procedure
that inverts g, however, is exponential in the bit length of the program that computes g in
polynomial time.

Again, this could mean that it is possible to have a strong attack on fLevin which would not
have effective applications to invert functions like AES or RSA, or indeed any function that
requires more than, say, 10 bytes to specify.

3. A key result in Levin’s theory of average-case complexity is a completeness result [Lev73]
that also involves an “exponential dependency on program length,” although of a nature that
is slightly more complicated to explain, affecting the way the distribution produced by the
reduction is “dominated” by the distribution of the complete problem.

The end result, however is the following: if there is a polynomial-time-on-average algorithm
for the complete problem then for every language L in NP and every “polynomial time
computable” distribution D, there is a polynomial-time-on-average algorithm for L under
distribution D. The complexity of the latter algorithm, however, is exponential on the bit
length of the non-deterministic algorithm that decides L (and which puts L into NP ).

It is natural to wonder if the exponential dependency is necessary in these application. (I first
learned of this question from Charles Rackoff.)

We show that in (1), the universal search algorithm, achieving a polynomial dependency on the
length of the program A would imply that P = NP . This is proved via a very simple observation
that might have been noted before, although we are not aware of any such reference.

Regarding (2), the universal one-way function, we show that a polynomial dependency on the code
length of g in the reduction would yield a reduction transforming “infinitely-often distributional one-
way functions” into “infinitely-often one-way functions,” a reduction which would be a surprising,
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and perhaps unlikely, result. We describe an oracle relative to which such a reduction is impossible.
This means that a superpolynomial dependency on the code length of g in Levin’s result is necessary
in any relativizing approach.

We give a definitional treatment of the issues arising in (3), the average-case completeness result for
NP. We show that an average-case completeness proof in which one reduces an NP distributional
problem (L,D) to a complete problem via a reduction of complexity polynomial in the description
of L1, would yield a worst-case to average-case reduction for NP. In fact, it is not hard to see that
the converse is also true, and so the issue of efficiency in Levin’s average-case complexity theory for
NP is essentially identical to the problem of existence of worst-case to average-case reductions for
NP A result of Bogdanov and Trevisan [BT06b] shows that the existence of such reductions implies
the collapse of the polynomial hierarchy, even if we consider randomized truth-table reductions.

A Remark on Models of Computation. In this paper we refer, informally, to algorithms,
running time, and length of an algorithm. The arguments are model-indpendent, so any reasonable
instantiation of the above notions could be used and any reasonable encoding (to measure the bit
length of an algorithm) could be adopted. For concreteness, the reader may fix a universal (say,
two-tape) Turing machine U , and take “algorithm A” to refer to a first input A for U , “running
time of A on input x” to refer to the number of steps of the computation U(A, x), and “length of
A” as the bit length of A.

2 Levin’s Universal Search Algorithm

2.1 The Question

The first result that we discuss, dating back to [Lev73], is a search algorithm due to Levin to
find certificates of YES instances of problems in NP. Instantiated to SAT, the algorithm, given a
formula ϕ, enumerates all possible algorithms and runs them in parallel, until one of the algorithm
finds a satisfying assignment. If ϕ is not satisfiable, then the algorithm never terminates, but the
“scheduling” in which various algorithms are tried and timed out can be optimized so that, for
every algorithm A, and for every satisfiable ϕ for which A finds a satisfying assignment, Levin’s
algorithm finds an assignment in time that is at most a constant factor slower than the running
time of A (plus an additive term related to the time that it takes to verify the validity of a solution).
More precisely, we have the following statement.

Theorem 1 There is an algorithm ALevin such that for every algorithm A there is a constant cA
such that if ϕ is a satisfiable instance of 3SAT and A finds a satisfying assignment for ϕ in time
tA(ϕ) then ALevin finds a satisfying assignment for ϕ in time at most

cA · tA(ϕ) + |ϕ|O(1)

1More precisely, polynomial in the bit length of the non-deterministic polynomial time machine that puts L in
NP.
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That is, Levin’s algorithm has a running time that is at most linear (plus an additive term polyno-
mial in the length of the input) in the running time of every other algorithm, on every input. The
slowdown constant cA, however, is exponential in the bit length of the algorithm A.

Open Question 1 Is there a universal search algorithm whose slowdown compared to a fixed al-
gorithm A is at most polynomial on the description length of A?

Hutter [Hut02] describes and analyses a universal search algorithm that is at most 5 times slower,
plus additive terms, than any fixed provably correct algorithm A on any specific instance. An
algorithm A being provably correct means that there exists a proof of the statement “for every
formula ϕ, if A outputs an assignment then the assignment satisfies ϕ.” The additive term in the
running time is exponential in the length of such a proof, and also exponential in the length of the
algorithm A.

2.2 Our Result

We note a simple argument showing that if Question 1 has a positive answer, then P=NP.

Question 1 refers to the existence of an algorithm as follows:

Definition 2 (Optimal Search) A fully polynomially optimal search algorithm for SAT is an
algorithm S that given an satisfiable formula ϕ finds a satisfying assignment and such that for
every Turing machine A and every formula ϕ of length n for which A finds a satisfying assignment
in time t, S also finds a satisfying assignment in time that is at most a t · nO(1) · |A|O(1).

And we prove the following result:

Theorem 3 Suppose that a fully polynomially optimal search algorithm for SAT exists. Then
P=NP.

Proof: For a satisfiable formula ϕ, consider the algorithm Aϕ that on input a formula ψ runs an
exponential-time search to find a satisfying assignment for ψ if ψ 6= ϕ, and outputs a satisfying
assignment for ϕ which is hard-wired in the code for A if ψ = ϕ. Clearly, the code of Aϕ is linear in
the size of ϕ and its running time on input ϕ is also linear, so S must find a satisfying assignment
for ϕ in polynomial time. �

We add a couple of remarks:

• A fully polynomial optimal search algorithm for SAT clearly exists if P = NP , so the existence
of such an algorithm is in fact equivalent to P = NP .

• Regarding Hutter’s result, note that each algorithm Aϕ that we use in our proof of Theorem
3 is a provably correct algorithm, with a proof of correctness of length poly(|ϕ|). This means
that if the additive term in Hutter’s analysis could be made polynomial in the length of the
algorithm and of its proof of correctness, then we would also have P = NP .
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3 Levin’s Universal One-Way Function

3.1 The Question

Levin proves in [Lev87] (the result is stated more explicitly in [Lev03]) the existence of a universal
one-way function, a result related to his optimal search algorithm [Lev73] discussed in the previous
section.

The basic idea is to consider the function u(M,x) that takes in input an algorithm M and a string
x, simulates M on input x for |x|2 steps, and then outputs 〈M,M(x)〉 if the computation of M
terminates within the prescribed time and if |M(x)| = |x|. (The choice of a quadratic time bound
is rather arbitrary.)

Suppose now that there exists a one-way function f , that is, a polynomial time computable, length-
preserving function such that for every polynomial time computable inverting algorithm A, every
polynomial p(), and every sufficiently large n we have

P
x∼{0,1}n

[A(f(x)) = x′ : f(x′) = f(x)] ≤ 1
p(n)

(See [Gol01] for more context.) By a padding argument, if f is a one-way function, then there is a
one-way function f ′ that is computable at most in time n2 on inputs of length n for all sufficiently
large n.2

Let M ′ be the algorithm that computes f ′ and let ` be the length of M ′. Then we have that for
every polynomial-time algorithm A, every polynomial p and every sufficiently large n we have

P
x∼{0,1}n

[A(u(x)) = x′ : u(x′) = u(x)] ≤ 1− 1
2`

+
1

p(n)
(1)

This doesn’t imply that u is a one-way function, but we can define the function fLevin(x) that,
given an input x of length n2, parses it as n inputs x1, . . . , xn each of length n and then computes

fLevin(x) := u(x1), . . . , u(xn)

The “hardness amplification” result of Yao [Yao82] (see [Gol01] for proofs and more context) implies
that if u is a one-way function in the weak sense of (3), then fLevin is a one-way function in the
standard strong sense.

Intuitively, once n >> 2`, then with high probability at least one of the xi will be of the form
(M ′, z), and in such a case inverting fLevin becomes at least as hard as inverting f ′ in a random
input.3

Note that, if we do not believe, say, in the existence of one-way functions that can be defined with
less than 200 bits of code in a particular model of computation, then this construction does not
guarantee the security of Levin’s function on input of length less than 2200 (indeed, because of the

2If the computation of f(x) requires time at most t(|x|), then we can define f ′ to do the following: given an input
of length n, find the largest m such that t(m) ≤ n2/2, and then apply f to the first m bits of the input.

3The rigorous proof is rather subtle, but it follows this intuition.
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squaring, the need of a prefix-free encoding to encode tuples, and the need to provide an input, one
has to get up to lengths that are actually around 2450).

In light of the impossibility of using Levin’s universal function with any practical set of parameters,
Rackoff has raised the question of whether the exponential dependency on the length of the code
is necessary.

We formalize Rackoff’s question as the existence of a universal one-way function with the following
kind of efficient security reduction.

Definition 4 (Efficient Universal One-Way Function) A function funiversal is a universal one-
way function under fully polynomial and fully uniform reductions if there is an algorithm R (for
reduction) such that for every polynomial q, every inverting oracle A such that

P
x∈{0,1}n

[A(funiversal(x)) = x′ : funiversal(x′) = funiversal(x)] ≥ 1
q(n)

,

every length-preserving function g computable in polynomial time p(n) by an algorithm Mg, we have

P
x∈{0,1}n

[RA(g(x),Mg, q, p) = x′ : g(x) = g(x′)] ≥ 1
2

and R runs in time polynomial in n = |g(x)|, in q(n), in p(n), and in |Mg|.

Note the function fLevin comes with a reduction R that has all the above properties except that
the running time is exponential, rather than polynomial in |Mg|.
We are, thus, interested in the question

Open Question 2 Is there a universal one-way function whose security is established by a fully
polynomial and fully uniform reduction?

We should clarify a point about the terminology that we use: a universal one-way function is not
necessarily a one-way function. If one-way functions exist, then every universal one-way function is
indeed one-way, but if one-way functions do not exist then no function can be one-way, including the
universal “one way” functions. (This is a bit as if we were calling NP-complete problems “universal
intractable problems.”)

3.2 Some Additional Background on One-Way Functions

We begin by providing definitions of weak and strong one-way functions and of infinitely-often
one-way functions.

Definition 5 (One-Way Function) A polynomial time computable function f is:

• a (strong) one way function if for every probabilistic polynomial time algorithm A and every
polynomial q we have

P
x∼{0,1}n

[A(f(x) = x′ : f(x) = f(x′)] ≤ 1
q(n)

(2)
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for all sufficiently large n

• an infinitely-often (strong) one-way function, abbreviated i.o.-one-way, if (2) holds only for
infinitely many n

• a weak one way function if there exists a polynomial q such that for every probabilistic poly-
nomial time algorithm A

P
x∼{0,1}n

[A(f(x) = x′ : f(x) = f(x′)] ≤ 1− 1
q(n)

(3)

for all sufficiently large n

• an infinitely-often weak one-way function, abbreviated weak i.o.-one-way if (3) holds only for
infinitely many n,

If follows by hardness amplification results of Yao [Yao82] (see [Gol01]) that a strong one-way
function exists if and only one a weak one-way function exists, and that a strong i.o.-one-way
function exists if and only a weak i.o.-one-way function exists.

3.3 Our Results

We prove the following result.

Theorem 6 There is an oracle relative to which Question 2 has a negative answer.

Theorem 6 is proved in two steps: first we present a relativizing proof that a positive answer
to Question 2 would show that the non-existence of i.o.-one way functions implies the seemingly
stronger statement that a “fully polynomial universal inverter” exists, and then we construct an
oracle relative to which i.o.-one way functions do not exist, but fully polynomial universal inverters
do not exist either.

Definition 7 (Fully Polynomial Universal Inverter) A fully polynomial universal inverter is
a randomized polynomial time algorithm A such that for every circuit C computing a length pre-
serving function f : {0, 1}n → {0, 1}n we have

P
x∼{0,1}n

[A(C, f(x)) = x′ : f(x′) = f(x)] ≥ 1
2

We note that the existence of a fully polynomial universal inverter is implied by NP ⊆ BPP ,
and it implies the non-existence of i.o.-one-way functions, and even of non-uniformly computable
i.o.one-way functions, but that such conditions do not appear to be equivalent.

Lemma 8 Suppose that there is a universal one-way function under fully polynomial and fully
uniform reductions, and suppose that i.o.-one-way functions do not exist. Then there is a fully
polynomial universal inverter.

Furthermore, the above statement is true relative to any oracle.
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Perhaps it is worth clarifying again that a “universal one-way function” is not necessarily a one-way
function, but it is a function that has the property of being one-way if one-way functions exist at
all.

Proof: [Of Lemma 8] Let funiversal be the universal one-way function, and R the fully uniform and
fully polynomial reduction. If i.o.-one-way functions do not exist, then there is an algorithm I that
inverts funiversal on a ≥ 1− 1/poly(n) inputs of length n. Given a circuit C of size s that computes
a length-preserving function f : {0, 1}n → {0, 1}n, it is possible to construct in time sO(1) a Turing
machine MC such that M computes f in time t = sO(1) and such that |M | = sO(1). Now define

A(C, f(x)) = RI(f(x),MC , 2, t)

For the “furthermore” part, note that the above proof relativizes. �

Our second main result, Theorem 6 is now a consequence of the following result and the above
discussion.

Lemma 9 There is an oracle relative to which there is no i.o.-one-way functions and no fully
polynomial universal inverter.

Proof: We pick a random ensemble of functions fn : {0, 1}n → {0, 1}n, and a random sequence
of “keys” k1, . . . , kn, . . ., where kn ∈ {0, 1}n. The oracle is the disjoint union of the oracle for a
PSPACE-complete problem (say, QBF), and on oracle F that given the query (x, y), with |x| =
|y| = n, returns fn(x) if y = kn and 0n if y 6= kn.

Relative to this oracle there is no fully polynomial universal inverter. Indeed, suppose that there
was such an inverter A, and consider, for every n, the linear size oracle circuit Cn that computes
fn (the circuit Cn has the key kn hard-wired into it); then A would able to invert fn in polynomial
time on half the inputs given only oracle access to fn in the forward direction and given a PSPACE
oracle. It follows from calculations of Impagliazzo and Rudich [IR89] on the hardness of inverting
random functions that this happens with probability zero over the choice of the randomness in the
oracle.

On the other hand, relative to this oracle, there is no i.o.-one-way function. Let nc be any polynomial
and g be any function computable in time nc relative to the oracle. Define g′ to be the function
that is computed by simulating the algorithm for g in every step, except that queries to the F
oracle of length 2m > 4c log n receive the simulated answer 0m. We claim that

P
x∼{0,1}n

[g(x) = g′(x)] ≥ .99

This follows from the fact that g(x) and g(x′) disagree only when the algorithm that computes g
receives a non-trivial answer from F for a query of length 2m > 4c log n, that is, if g is able to
find km for some m > 2c log n, while making only nc oracle queries. With probability 1 over the
randomness in F , this happens for a o(1) fraction of the inputs x.

Consider the probabilistic algorithm A that, given y, generates the uniform distribution over the
set of pre-images {x : g′(x) = y}. Such an algorithm can be implemented in polynomial time given
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access to a PSPACE oracle, the algorithm for g, and the list of the n4c oracle answers provided
by F for queries (x, y) where |x| ≤ 2c log n. Finally, we use a result of [LTW05] showing that if
Px∼{0,1}n [g(x) = g′(x)] = p, and A is an algorithm that given y generates a random preimage of y
under g′, then Px∼{0,1}n [A(g(x)) = x′ : g(x) = g(x′)] ≥ p2. �

4 Levin’s Average-Case Completeness Result

It is not completely straightforward to even state the question that we want to study in Levin’s
theory of average-case complexity. There are at least two reasons: (i) the definitions in the theory
are rather subtle, and come in several variants, so that it takes some time even to just outline the
standard definitional treatment and (ii) our question relates to the complexity of reductions in a
completeness result as a function of the bit-length of the machine that defines the problem we reduce
from, a question that is rather important but rarely explicitly studied, so that there isn’t even a
standard terminology to refer to questions of this form.

4.1 “Full Uniform” and “Fully Polynomial” Completeness Results

The Cook-Levin theorem, the prototype of all completeness results in complexity theory, states
that for every language L in NP there is a polynomial time computable function fL such that for
every x we have x ∈ L⇔ fL(x) ∈ SAT .

The proof of the theorem is via a reduction that is fully uniform and fully polynomial, in the sense
that we explain below.

• The theorem only requires the existence of a reduction function fL(·) for every L in NP,
and does not put any requirement on how to construct fL given a specification for L. The
proof, however, proceeds by defining a single uniform algorithm f(·, ·, ·) such that if M is a
non-deterministic polynomial time machine that decides L, t(n) is a polynomial upper bound
to the running time of M on inputs of length n, and x is any input, then the mapping
x → f(M,x, t(|x|)) is a reduction from L to SAT . We refer to such a reduction as fully
uniform.

• For a function f(·, ·, ·) as above to prove the Cook-Levin theorem, it is sufficient that f(M,x, t(x))
be computable in time polynomial in |x| and t(|x|). In the known proof, however, f(·, ·, ·)
is computable in time polynomial in |M | as well. We refer to such a reduction as fully
polynomial.

Essentially all completeness results in complexity theory are proved via fully uniform and fully poly-
nomial reductions. Furthermore, the existence of fully uniform and fully polynomial completeness
results for all the complexity classes known to have complete problems relativizes.

As noted by Charles Rackoff, an important exception are completeness results in the theory of
average-case complexity, specifically Levin’s “universal one-way function” [Lev87, Lev03], but also
Levin’s completeness result for distributional NP [Lev86] and Levin’s “optimal search algorithm”
[Lev73]. Such results are proved via reductions that are fully uniform but that do not “fully
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polynomially” preserve average-case solvability. In order to discuss this efficiency issue in average-
case completeness results, we need to briefly summarize the set-up. The reader is referred to the
survey papers of Impagliazzo [Imp95], Goldreich [Gol97], and Bogdanov and Trevisan [BT06a] for
a broader context.

4.2 Distributional Problems, Average-Case Tractability, and Reductions

We follow the definitional set-up of Impagliazzo [Imp95]. We want to prove the following com-
pleteness result: that there is a specific problem BH in NP such that if we have a good-on-average
algorithm for BH with respect to the uniform distribution of instances, then we also have good-
on-average algorithms for all problems in NP and with respect to all distributions coming from a
rather general class of “computable” distributions of instances.

Definition 10 (Distributional Problem) A distributional problem is a pair 〈L,D〉, where L is
language and D is a distribution over input instances, or, more precisely, an ensemble of distribu-
tions (D1, . . . , Dn, . . .) where Dn is a distribution over {0, 1}n.

Definition 11 (AvgP) A distributional problem 〈L,D〉 is in average polynomial time if there is
an algorithm A such that, on input x and ε > 0, A runs in time poly(|x|, ε−1) and returns either

the correct answer to x
?
∈ L or the error message ⊥; furthermore, for every n,

P
x∼Dn

[A(x, ε) = ⊥] ≤ ε (4)

The class of distributional problems admitting an average polynomial time algorithm is denoted by
AvgP.

We can define the class AvgZPP analogously, but allowing A to be randomized taking the proba-
bility over the randomness of A as well as over x ∼ Dn in the left-hand side of (4).

Other definitions and variants are interesting, for example we may allow A to output an incorrect
answer, and then bound the probability that an incorrect answer is given, leading to the definition
of the class of Heuristic Polynomial time, HeurP [Imp95]. The randomized class HeurBPP is defined
analogously to HeurP, but allowing A to be randomized.

Definition 12 (Reduction) A many-to-one reduction from a distributional problem 〈L1, D1〉 to
a distributional problem 〈L2, D2〉, written 〈L1, D1〉 ≤avgP

m 〈L2, D2〉, is a polynomial time computable
function f such that

1. x ∈ L2 ⇔ f(x) ∈ L2

2. There is a polynomial d(·) such that for every n, every m, and every y0 ∈ {0, 1}m

P
x∼D1,n

[f(x) = y0] ≤ d(n) · P
y∼D2,m

[y = y0]

That is, the distribution (or, rather, ensemble of distributions) generated by applying f() to
random element of D1,n is d(n)-dominated by the ensemble D2.
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In a randomized reduction, f is the output of a randomized algorithm, property (1) is required to
hold with probability 1 over the randomness of f , and property (2) is required to hold by taking the
probability over the randomness of f on the let-hand side.

If we have a reduction 〈L1, D1〉 ≤AvgP
m 〈L2, D2〉, and 〈L2, D2〉 admits an AvgP-type algorithm

of running time t(n, ε), then it is easy to see that 〈L1, D1〉 also has a AvgP-type algorithm, of
running time about r(n) + t(`(n), ε/(`(n) · d(n))), where r(|x|) is an upper bound to the running
time of f(x), `(|x|) is an upper bound to the length of f(x), and d(n) is the domination parameter.
A randomized reduction preserves AvgZPP and HeurBPP algorithms. It is important to note
that the domination parameter affects the running time of the algorithm for 〈L1, D1〉, and that a
reduction with a super-polynomial domination parameter does not preserve AvgP solvability. (Nor
would it preserve AvgZPP or HeurP solvability, or most other reasonable definitions of average-case
tractability.)

4.3 The Question

Consider the following problem BH: on input a triple (M,x, z), where M is a non-deterministic
Turing machine, the question is whether M(x) has an accepting branch that halts within |z| steps.
The triple (M,x, z) is encoded as a binary string by having M and x be encoded with a prefix-free
encoding; we assume that we use an encoding that maps a string of length ` into an encoding of
length `+ O(log `). Consider the uniform ensemble U = (U1, . . . , Un, . . .) where Un is the uniform
distribution over {0, 1}n.

First we note that 〈BH,U〉 is complete under randomized reductions, for the class 〈NP,U〉 of all
distributional problems of the form 〈L,U〉, where L is in NP. Indeed, let L be in NP, and let M be
a non-deterministic Turing machine that decides L in time p(n), where p is a polynomial and n is
the input length. Then consider the randomized reduction

x→ (M,x, r)

where r is a randomly chosen string of length p(n). This clearly satisfies property (1) of the
definition of reduction. About property (2), if we apply the reduction to a random element of Un

we obtain strings of length `(n) = |M | + n + p(n) + O(log |M |) + O(log n), and each such string
is generated with probability 2−n · 2−p(n) by the reduction. This implies that the reduction has
domination parameter

d(n) = 2|M | · |M |O(1) · nO(1)

Note that while the domination parameter is polynomial in n, it is exponential in |M |, and that
a price polynomial in the domination parameter (and hence exponential in |M |) is paid when we
convert a good-on-average algorithm for 〈BH,U〉 into a good-on-average algorithm for 〈L,U〉. This
is a comparable slow-down to having to find M via a complete enumeration.

Levin [Lev86] proves the existence of a problem complete for the class 〈NP,Pcomp〉, which includes
all distributional problems 〈L,D〉 where L is in NP and D is P-computable, and 〈BH,U〉 is such a
complete problem under randomized reductions.4 Impagliazzo and Levin [IL90] prove that 〈BH,U〉

4See [Lev86, Gol97, BT06a] for definitions and details of the reduction.
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is complete for the more general class 〈NP,Psamp〉 of all problems of the form 〈L,D〉 where L
is in NP and D is polynomial-time samplable. In such results, too, the domination parameter in
the reduction is exponential in the description length of the Turing machine that decides L. In the
Impagliazzo-Levin result, the domination parameter is also exponential in the description length
of the sampler for D, and the reduction is a more sophisticated type of truth-table reduction.

Since the domination parameter is a bona fide complexity parameter, it is natural to consider a
completeness result in the theory of average-case complexity to be fully polynomial if both the
reduction running time and the domination parameter are polynomial in x and in |M |, where M
is the machine that decides the language that we want to reduce to the complete problem.

Even leaving aside the more sophisticated completeness results for 〈NP,Pcomp〉 and 〈NP,Psamp〉,
the following question is natural:

Open Question 3 Is it possible to prove that there is a 〈NP,U〉-complete problem via a fully
uniform and fully polynomial many-to-one reduction?

4.4 Our Result

We prove that Question 3 has a positive answer if and only if there is a many-to-one worst-case to
average-case reduction for NP-complete problems. Bogdanov and Trevisan show that every non-
adaptive worst-case to average-case reduction for NP-complete problems implies the collapse of the
polynomial hierarchy, hence

Theorem 13 If Question 3 has a positive answer, then the polynomial hierarchy collapses.

Definition 14 A non-adaptive worst-case to average-case reduction from a problem W to a dis-
tributional problem 〈L,D〉 is a polynomial time randomized non-adaptive oracle algorithm R with
the property that there exists a polynomial q such that for every oracle A such that

P
x∼Dn

[A(x) = 1L(x)] ≥ 1− 1
q(n)

we have that for every w

P[RA(w) = 1W (w)] ≥ 3
4

where the probability is taken only over the internal coin tosses of R.

Informally, the definition says that R converts a good-on-average HeurBPP-type algorithm for
〈L,D〉 into a worst-case BPP-type algorithm for W . The main result of [BT06b] is that such
reductions are unlikely to exist from NP-complete problems.

Theorem 15 ([BT06b]) Suppose that there is a non-adaptive worst-case to average-case reduc-
tion from an NP-complete problem W to a problem 〈L,D〉 in 〈NP,Psamp〉. Then the polynomial
hierarchy collapses.
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Our first main result, Theorem 13 follows from the following result and the above discussion.

Lemma 16 Suppose that 〈L,D〉 is a 〈NP,U〉-hard problem in 〈NP,Psamp〉 under a fully uniform
and fully polynomial reduction f .

Then there is a non-adaptive worst-case to average-case reduction from SAT to 〈L,D〉.

Proof: Let f(·, ·, ·) be the fully uniform and fully polynomial reduction establishing the complete-
ness of 〈L,D〉. Recall that this means that for every distributional problem 〈L′, U〉 in 〈NP,U〉, if
M ′ is a non-deterministic turing machine and p() is a polynomial such that M ′ recognizes L′ in
time p(n), then the mapping

x→ f(M ′, x, p(|x|)

is a reduction from 〈L′, U〉 to 〈L,D〉.
We want to prove that there is a a non-adaptive worst-case to average-case reduction from SAT to
〈L,D〉. That is, we want to define an algorithm R and find a polynomial q such that if A is an
oracle such that Px∼Dn [A(x) = 1L(x)] ≥ 1− 1/q(n) for all n, then RA(·) solves SAT on all inputs,
with error probability at most 1/4.

Given an instance ϕ of SAT of size n, we define RA(ϕ) as follows.

• Construct a non-deterministic Turing machine Mϕ that ignores its input and solves ϕ in
p(n) = nO(1) time. (Note that |Mϕ| = nO(1).) That is, if ϕ is satisfiable then Mϕ(x) accepts
for every input x, and the language recognized by Mϕ is {0, 1}∗; and if ϕ is not satisfiable
then Mϕ(x) rejects for every input x, and so the language recognized by Mϕ is the empty
language.

• Pick a random x also of length n, and compute y = f(Mϕ, x, p(n)).

• Make the query y to the oracle A, and output the answer of the oracle

It follows from the property of the reduction f(·, ·, ·) that y is distributed with domination d(n) =
nO(1) relative to ensemble D, so there is a polynomial q such that if A makes at most 1/q(m)
mistakes on inputs of length m then there is probability at least 3/4 over the choice of x and
the randomness of f (if f is a randomized reduction) that the oracle answer of A to the query
f(Mϕ, x, p(n)) is the same as the answer to the question “is ϕ satisfiable?” �

We note that the existence of worst-case to average-case reductions and the collapse of the polyno-
mial hierarchy follows not just from a completeness result via fully uniform and fully polynomial
many-to-one reductions, but also from any (appropriately defined) fully uniform and fully polyno-
mial randomized non-adaptive reductions.

Interestingly, the converse is also true: if we have a worst-case to average-case reduction from
SAT to a problem 〈L,D〉, then we can fully uniformly and fully polynomially reduce any problem
〈L′, D′〉 with L′ ∈ NP to 〈L,D〉 by first reducing L′ to SAT via Cook’s theorem, and then using
the worst-case to average-case reduction from SAT to 〈L,D〉.
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What about a completeness result proved via a fully uniform and fully polynomial adaptive random-
ized reduction? By the same argument, such a result is equivalent to the existence of an adaptive
worst-case to average-case reduction within NP. The latter result is not known to imply unexpected
collapses in complexity theory. Regarding relativizing results, Impagliazzo and Rudich (referenced
in [Imp95]) construct an oracle relative to which BPP 6⊆ NP , but every distributional problem
in 〈NP,U〉 (and hence 〈NP,PSamp〉) admits a HeurP algorithm. In particular, relative to this
oracle there is no adaptive worst-case to average-case reduction within NP, and so there cannot be
a completeness result for 〈NP,U〉 proved via even an adaptive randomized fully uniform and fully
polynomial reduction.
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