
Pseudorandom Generators for Regular Branching Programs

Mark Braverman∗ Anup Rao† Ran Raz‡ Amir Yehudayoff§

Abstract

We give new pseudorandom generators for regular read-once branching programs of small
width. A branching program is regular if the in-degree of every vertex in it is (0 or) 2. For every
width d and length n, our pseudorandom generator uses a seed of length O((log d+ log log n+
log(1/ε)) log n) to produce n bits that cannot be distinguished from a uniformly random string
by any regular width d length n read-once branching program, except with probability ε.

We also give a result for general read-once branching programs, in the case that there are
no vertices that are reached with small probability. We show that if a (possibly non-regular)
branching program of length n and width d has the property that every vertex in the program
is traversed with probability at least γ on a uniformly random input, then the error of the
generator above is at most 2ε/γ2.

1 Introduction

This paper is about quantifying how much additional power access to randomness gives to space
bounded computation. The main question we wish to answer is whether or not randomized logspace
is the same as logspace. This project has a long history [AKS87, BNS89, Nis92, Nis94, NZ96, SZ99]
(to mention a few), showing how randomized logspace machines can be simulated by deterministic
ones. Savitch [Sav70] showed that nondeterministic space S machines can be simulated in deter-
ministic space S2, implying in particular that RL ⊆ L2. Subsequently Saks and Zhou showed that
BPL ⊆ L3/2 [SZ99], which is currently the best known bound on the power of randomization in
this context.

One way to simulate randomized computations with deterministic ones is to build a pseudoran-
dom generator, namely, an efficiently computable function g : {0, 1}s → {0, 1}n that can stretch a
short uniformly random seed of s bits into n bits that cannot be distinguished from uniform ones by
small space machines. Once we have such a generator, we can obtain a deterministic computation
by carrying out the computation for every fixed setting of the seed. If the seed is short enough,
and the generator is efficient enough, this simulation remains efficient.

The computation of a randomized Turing machine with space S that uses R random bits can be
modeled by a branching program of width 2S and length R. Complementing Savitch’s result above,
Nisan [Nis92] showed that there is a pseudorandom generator that can stretch O(log2 n) bits to
get n bits that are pseudorandom for branching programs of width n and length n. Subsequently,
there were other constructions of pseudorandom generators, [NZ96, INW94, RR99], but no better
∗Microsoft Research New England. Email: mbraverm@cs.toronto.edu.
†University of Washington. Email: anuprao@cs.washington.edu.
‡Weizmann Institute of Science. Email: ran.raz@weizmann.ac.il.
§Institute for Advanced Study. Email: amir.yehudayoff@gmail.com.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 35 (2010)

seed length for programs of width n and length n was obtained. In fact, no better results were
known even for programs of width 3 and length n.

In this work, we give new pseudorandom generators for regular branching programs. A branching
program of width d and length n is a directed graph with nd vertices, arranged in the form of n
layers containing d vertices each. Except for vertices in the final layer, every vertex in the program
has two outgoing edges into the next layer, labeled 0 and 1. The program has a designated start
vertex in the first layer and an accept vertex in the final layer. The program accepts an input
x ∈ {0, 1}n if and only if the path that starts at the start vertex and picks the outgoing edge for the
i’th layer according to the input bit xi ends at the accept vertex. The program is regular if every
vertex has in-degree 2 (except for vertices in the first layer that have in-degree 0). The main result
of this work is a pseudorandom generator with seed length O((log d + log log n + log(1/ε)) log n)
and error ε, for regular branching programs of length n and width d.

We observe that regular programs are quite powerful: Every circuit in NC1 can be simulated by
a regular width 5 (multiple read) branching program of polynomial size, by Barrington’s celebrated
result [Bar89]. The restriction that the random bits are read only once is natural if one view the
random bits as coin-flips (i.e., the previous bit is erased once the coin is flipped again) rather than
a random tape that can be traversed back and fourth. We note, however, that our result does
not give any derandomization result for NC1, since Barrington’s reduction does not preserve the
read-once property.

Our result also gives a generalization of an ε-biased distribution for arbitrary groups. An ε-
biased distribution is a distribution on bits Y1, . . . , Yn such that for every g1, . . . , gn ∈ Z2, the
distribution of

∑
i Yi · gi is ε-close to the distribution of

∑
i Ui · gi, where U1, . . . , Un are uniformly

random bits and the sum is taken modulo 2. Saks and Zuckerman showed that ε-biased distributions
are also pseudorandom for width 2 branching programs [SZ]. Today, we know of several explicit
constructions of ε-biased distributions using only O(log n) seed length [NN93, AGHP92], which have
found a large number of applications in computer science. Our distribution gives a generalization
of this object to arbitrary groups: for Y1, . . . , Yn as in our construction, and a group G of size d,
our construction guarantees that tests of the form

∏
i g
Yi
i cannot distinguish the Yi’s from being

uniform.

1.1 Techniques

Our construction builds on the ideas of a line of pseudorandom generators [Nis92, NZ96, INW94].
Indeed, the construction of our generator is the same as in previous works and our improvements
come from a more careful analysis. Previous works gave constructions of pseudorandom generators
based on the use of extractors. Here, an extractor is an efficiently computable function Ext :
{0, 1}r × {0, 1}O(k+log(1/ε)) → {0, 1}r with the property that if X is any random variable with
min-entropy at least r − k, and Y is a uniformly random string, the output Ext(X,Y) is ε-close to
being uniform.

Earlier works [Nis92, NZ96, INW94] gave the following kind of pseudorandom generator for
branching programs of length n (assume for simplicity that n is a power of 2). For a parameter
s, we define a sequence of generators1 G0, . . . , Glogn. Define G0 : {0, 1}s → {0, 1} as the function
outputting the first bit of the input. For every i > 0, define Gi : {0, 1}i·s × {0, 1}s → {0, 1}2i

as

Gi(x, y) = Gi−1(x) ◦Gi−1(Ext(x, y)),
1The logarithms in this paper are always of base 2.

2

where ◦ means concatenation.
The function Glogn maps a seed of length s · (log n + 1) to an output of length n. The upper

bound on the errors of the generators is proved by induction on i. Let us denote the error of the
i’th generator εi. For the base case, the output of the generator is truly uniform, so ε0 = 0. For
the general case, the idea is that although the second half of the bits is not independent of the first
half, conditioned on the vertex reached in the middle, the seed x has roughly i · s − log d bits of
entropy (where d is the width of the program). Thus, if s ≥ Ω(log d + log(1/ε)), the seed for the
second half is ε-close to uniform, even when conditioned on this middle vertex. Thus, the total
error can be bounded by εi ≤ (εi−1) + (εi−1 + ε) = 2εi−1 + ε, giving εlogn = O(nε). In order to get
a meaningful result, ε must be bounded by 1/n, which means that, according to this analysis, the
seed length of the generator must be at least Ω(log2 n).

In our work, we give a more fine-grained analysis of this construction, that gives better parame-
ters for regular branching programs. To illustrate our ideas, let us consider two extreme examples.
First, suppose we have a branching program that reads 2i bits, and the final output of the program
does not depend on the second half of the bits: the vertex at the 2i−1 + 1 layer determines the final
vertex that the program reaches. For such a program, we can bound the error by εi ≤ εi−1. This is
because only the distribution on the 2i−1 + 1 layer is relevant. On the other hand, suppose we had
a program where only the last 2i−1 bits of input are relevant, in the sense that every starting vertex
in the middle layer has the same probability of accepting a uniformly random 2i−1 bit string. In
this case, we can bound the error by εi ≤ εi−1 + ε.

In general, programs are a combination of these two situations. The program has d possible
states at any given time, and intuitively, if the program needs to remember much information about
the first 2i−1 bits, then it cannot store much information about the next 2i−1 bits. This is the fact
that we shall exploit. In order to do so, we shall need to formalize how to measure the information
stored by a program.

For every vertex v in the program, we label the vertex by the number q(v), which is the
probability that the program accepts a uniformly random string, starting at the state v. To every
edge (u, v) in the program, we assign the weight |q(v) − q(u)|. Our measure of the information
in a segment of the program is the total weight of all edges in that segment. Checking with our
examples above, we see that if the total weight of the second half of the program is 0, then the
middle layer of the program must determine the output. On the other hand, if all vertices in the
middle layer have the same value of q(v), then the weight of all edges in the first half must be 0.
A key observation is that if the input bits are replaced with bits that are only ε-close to uniform,
then the outcome of the program can change by at most ε times the weight of the program.

The proof proceeds in two steps. In the first step, we show via a simple combinatorial argument
that the total weight of all edges in a regular branching program of width d is bounded by O(d). To
argue this, we use regularity; for non-regular programs, the weight can grow with n. In the second
step, we prove by induction on i that εi ≤ O(i ·ε ·d ·weightP), where here weightP is the total weight
of all edges in the program P . If weightP = weightQ + weightR, where Q,R are the first and second
parts of the program, the contribution to εi of the first half is at most O((i − 1) · ε · d · weightQ)
by induction. If the seed to the second half was truly uniform, the contribution of the second half
would be at most O((i− 1) · ε · d ·weightR). Instead, it is only ε-close to uniform, which contributes
an additional error term of O(ε · d ·weightR). Summing the three terms proves the bound we need.

The total error of the generator is thus bounded by O(log n · ε · d ·weightP). Now we only need
to set ε to be roughly 1/(d2 log n) to get a meaningful result. This reduces the seed length of the

3

generator to O((log d+ log log n) log n).

2 Preliminaries

Branching Programs

For an integer n, denote [n] = {1, 2, . . . , n}. Fix two integers n, d and consider the set of nodes
V = [n]× [d]. For t ∈ [n], denote Vt = {(t, i)}i∈[d]. We refer to Vt as layer t of V .

A branching program of length n and width d is a directed (multi-) graph with set of nodes
V = [n] × [d], as follows: For every node (t, i) ∈ V1 ∪ . . . ∪ Vn−1, there are exactly 2 edges going
out of (t, i) and both these edges go to nodes in Vt+1 (that is, nodes in the next layer of the
branching program). One of these edges is labeled by 0 and the other is labeled by 1. Without loss
of generality, we assume that there are no edges going out of Vn (the last layer of the branching
program). A branching program is called regular if for every node v ∈ V2 ∪ . . . ∪ Vn, there are
exactly 2 edges going into v (note that we do not require that the labels of these two edges are
different).

Paths in the Branching Program

We will think of the node (1, 1) as the starting node of the branching program, and of (n, 1) as
the accepting node of the program. For a node v ∈ V1 ∪ . . . ∪ Vn−1, denote by next0(v) the node
reached by following the edge labeled by 0 going out of v, and denote by next1(v) the node reached
by following the edge labeled by 1 going out of v.

A string x = (x1, . . . , xr) ∈ {0, 1}r, for r ≤ n − 1, defines a path in the branching program
path(x) ∈ ([n] × [d])r+1 by starting from the node (1, 1) and following at step t the edge labeled
by xt. That is, path(x)1 = (1, 1) and for every t ∈ [r], path(x)t+1 = nextxt(path(x)t).

For a string x ∈ {0, 1}n−1, and a branching program B (of length n), define B(x) to be 1 if
path(x)n is the accepting node, and 0 otherwise.

Remark 1. As the definitions above indicate, for the rest of this paper a branching program is
always read-once.

Distributions over {0, 1}n

For a distribution D over {0, 1}n, we write x ∼ D to denote that x is distributed according to
D. Denote by Uk the uniform distribution over {0, 1}k. For a random variable z and an event A,
denote by z|A the random variable z conditioned on A. For a function ν, denote by |ν|1 its L1

norm. We measure distances between distributions and functions using the L1 distance.

3 Evaluation Programs

An evaluation program P is a branching program, where every vertex v is associated with a value
q(v) ∈ [0, 1], with the property that if the outgoing edges of v are connected to v0, v1, then

q(v) =
q(v0) + q(v1)

2
. (1)

4

Every branching program induces a natural evaluation program by labeling the last layer as

q((n, i)) =

{
1 if i = 1,
0 otherwise.

and then labeling each layer inductively by Equation (1).
Given x ∈ {0, 1}r, and an evaluation program P , we shall write valP (x) (or simply val(x), when

P is clear from context) to denote the quantity q(path(x)r+1), namely, the value q(v) of the vertex
v reached by starting at the start vertex and taking the path defined by x. We shall write val(x, y)
to denote the value obtained by taking the path defined by the concatenation of x, y.

We shall use the following three simple propositions.

Proposition 2. If U is the uniform distribution on r bit strings, Eu∼U [val(x, u)] = val(x).

We assign a weight of |q(u)− q(v)| for every edge (u, v) of the evaluation program. The weight
of the evaluation program P is the sum of all the weights of edges in the program. We denote this
quantity by weightP .

Proposition 3. Let X,Y be two distributions on r bit strings, and P be an evaluation program.
Then ∣∣∣ E

x∼X
[valP (x)]− E

y∼Y
[valP (y)]

∣∣∣ ≤ |X − Y |1 · weightP
2

.

Proof. Let valmax denote the maximum value of val(b1) and valmin denote the minimum value of
val(b2) over all choices of b1, b2 ∈ {0, 1}r. Assume that valmax 6= valmin (otherwise the proof is trivial).
Let vmax be the vertex reached by a string b1 for which the maximum is attained, and let vmin 6= vmax

be the vertex reached by a string b2 for which the minimum is attained. Let γmax, γmin be two edge
disjoint paths in the program starting at some node v and ending at vmax, vmin, respectively. Such
paths must exist, since vmax, vmin are both reachable from the start vertex of the program. By the
triangle inequality, valmax−valmin is bounded by the total weight on the edges of these paths, which
implies

valmax − valmin ≤ weightP .

Let x ∼ X and let y ∼ Y . Let B denote the set {b ∈ {0, 1}r : Pr[x = b] ≥ Pr[y = b]}. Observe that∑
b∈B

Pr[x = b]− Pr[y = b] =
∑
b/∈B

Pr[y = b]− Pr[x = b] = |X − Y |1/2.

Without loss of generality, assume that Ex∼X [valP (x)] ≥ Ey∼Y [valP (y)]. We bound

E
x∼X

[val(x)]− E
y∼Y

[val(y)]

=
∑

b∈{0,1}r
Pr[x = b] · val(b)− Pr[y = b] · val(b)

≤
∑
b∈B

(Pr[x = b]− Pr[y = b]) · valmax +
∑
b/∈B

(Pr[x = b]− Pr[y = b]) · valmin

= |X − Y |1(valmax − valmin)/2 ≤ |X − Y |1 · weightP /2.

5

Lemma 4. For every regular evaluation program P of width d and length n,

weightP ≤ 2
∑

{i,j}⊂[d]

|q((n, i))− q((n, j))|.

Proof. Consider the following game: 2d pebbles are placed on the real numbers 0 ≤ q1, . . . , q2d ≤ 1.
At each step of the game one can choose two pebbles such that their distance is at least 2δ (for
δ ≥ 0) and move each of them a distance of δ toward the other. The gain of that step is 2δ (that
is, the total translation of the two pebbles in that step). The goal is to maximize the total gain
that one can obtain in an unlimited number of steps, that is, the total translation of all pebbles in
all steps.

Consider the game that starts with 2d pebbles placed on the real numbers

0 ≤ q((n, 1)), q((n, 1)), q((n, 2)), q((n, 2)), . . . , q((n, d)), q((n, d)) ≤ 1.

By Equation (1), for every t ∈ [n−1], one can start with 2 pebbles placed on each number q((t+1, i))
and end with 2 pebbles placed on each number q((t, i)), for i ∈ [d], by applying d steps of the game
described above (one step for each node in Vt). The total gain of these d steps is just the total
weight of the edges in between Vt and Vt+1. Note that for this to hold we use regularity.

To complete the proof, we will show that if we start with pebbles placed at q1, . . . , q2d, then the
total possible gain in the pebble game is L =

∑
{i,j} |qi − qj |.

Without loss of generality, we can assume that each step operates on two adjacent pebbles. This
is true because if in a certain step pebbles a, b are moved a distance of δ toward each other, and
there is a pebble c in between a and b, one could reach the same final position (i.e., the same final
position of all pebbles after that step), but with a higher gain, by first moving a and c a distance
of δ′ toward each other (for a small enough δ′), and then b and c a distance of δ′ toward each other
and finally a and b a distance of δ − δ′ toward each other.

If a step operates on two adjacent pebbles a, b, then for any other pebble c the sum of the
distance between a and c and the distance between b and c remains the same (since c is not
between a and b), while the distance between a and b decreases by 2δ (where 2δ is the gain of the
step). Altogether, L decreases by exactly 2δ, the gain of the step. Since L cannot be negative, the
total gain in the pebble game is bounded by the initial L. Since we can decrease L to be arbitrarily
close to 0 (by operating on adjacent pebbles), the bound on the possible gain in the pebble game
is tight.

4 The Generator

Our pseudorandom generator is a variant of the space generator of Impagliazzo, Nisan and Wigder-
son [INW94] (with different parameters). We think of this generator as a binary tree of extractors,
where at each node of the tree an extractor is applied on the random bits used by the sub-tree rooted
at the left-hand child of the node to obtain “recycled” random bits that are used by the sub-tree
rooted at the right-hand child of the node (see for example [RR99]). We present our generator re-
cursively, using extractors. We use the extractors constructed by Goldreich and Wigderson [GW97],
using random walks on expander graphs and the expander mixing lemma.

6

The GW Extractor

Fix two integers n and d. Assume, for simplicity, that n is a power of 2. Let ε > 0 be an error
parameter that we are aiming for. Let

β =
ε

2d2 log n
,

and note that log(1/β) = O(log d+ log log n+ log(1/ε)). Let k = Θ(log(1/β)) be an integer, to be
determined below.

For every 1 ≤ i ≤ log n, let

Ei : {0, 1}ki × {0, 1}k −→ {0, 1}ki

be an (extractor) function such that the following holds: If z0, . . . , zi ∼ Uk (and are independent),
then for any event A depending only on z = (z0, . . . , zi−1) such that Prz(A) ≥ β, the distribution
of Ei(z|A, zi) is β-close to the uniform distribution. Explicit constructions of such functions were
given in [GW97]. Fix k = Θ(log(1/β)) to be the length needed in their construction.

The Pseudorandom Generator

For 0 ≤ i ≤ log n, define a (pseudorandom generator) function

Gi : {0, 1}k(i+1) −→ {0, 1}2i

recursively as follows. Let y0, . . . , ylogn ∈ {0, 1}k. For i = 0, define G0(y0) to be the first bit of y0

(we use only the first bit of y0, for simplicity of notation). For 1 ≤ i ≤ log n, define

Gi(y0, . . . , yi) = Gi−1(y0, . . . , yi−1) ◦Gi−1(Ei((y0, . . . , yi−1), yi)).

That is, Gi is generated in three steps: (1) generate 2i−1 bits by applying Gi−1 on (y0, . . . , yi−1);
(2) apply the extractor Ei with seed yi on (y0, . . . , yi−1) to obtain (y′0, . . . , y

′
i−1) ∈ {0, 1}ki; and (3)

generate 2i−1 additional bits by applying Gi−1 on (y′0, . . . , y
′
i−1).

Our generator is
G = Glogn : {0, 1}k(logn+1) −→ {0, 1}n.

Analysis

The following theorem shows that G works.

Theorem 5. For every evaluation program P (not necessarily regular) of width d and length 2i+1,∣∣∣ E
y∼Uk(i+1)

[valP (Gi(y))]− E
u∼U2i

[valP (u)]
∣∣∣ ≤ i · (d+ 1) · β · weightP .

Proof. We prove the statement by induction on i. For i = 0, the statement is trivially true, since
G0(y) is uniformly distributed. To prove the statement for larger i, fix an evaluation program P
that reads 2i bits. We write weightP = weightQ + weightR, where weightQ is the weight of edges in

7

the first half of the program, and weightR is the weight of edges in the second half. Let z ∼ Uki,
yi ∼ Uk and u1, u2 ∼ U2i−1 . We need to bound,∣∣E [valP (Gi(z, yi))]− E [valP (u1, u2)]

∣∣
≤
∣∣E [valP (Gi−1(z), u2)]− E [valP (u1, u2)]

∣∣+
∣∣E [valP (Gi(z, yi))]− E [valP (Gi−1(z), u2)]

∣∣. (2)

By Proposition 2, the first term is equal to |E [valP (Gi−1(z))]− E [valP (u1)]|, which is at most
(i− 1) · (d+ 1) · β · weightQ by the inductive hypothesis.

The second term equals∣∣∣∣Ez
[
E
yi

[valP (Gi−1(z), Gi−1(Ei(z, yi)))]− E
u2

[valP (Gi−1(z), u2)]
]∣∣∣∣ . (3)

We shall bound (3) separately, depending on which of the vertices in the middle layer is reached
by the program. Define the events A1, . . . , Ad, with Aj = {z : path(Gi−1(z))2i−1+1 = (2i−1 + 1, j)}.
Equation (3) is bounded from above by

d∑
j=1

Pr[Aj]

∣∣∣∣∣ E
z|Aj

[
E
yi

[valP (Gi−1(z|Aj), Gi−1(Ei(z|Aj , yi)))]− E
u2

[valP (Gi−1(z|Aj), u2)]
]∣∣∣∣∣ .

Denote by Rj the evaluation program whose start vertex is (2i−1 + 1, j). Observe that if z ∈ Aj ,
then valP (Gi−1(z), x) = valRj (x). Thus,

(3) ≤
d∑
j=1

Pr[Aj]

∣∣∣∣∣ E
z|Aj

[
E
yi

[
valRj (Gi−1(Ei(z|Aj , yi)))

]
− E
u2

[
valRj (u2)

]]∣∣∣∣∣
Now if Pr[Aj] ≤ β, the j’th term contributes at most

β · weightR,

by Proposition 3. On the other hand, if Pr[Aj] ≥ β, then Ei(z|Aj , yi) is β-close to a uniformly
random string. By Proposition 3 and the induction hypothesis, in this case the j’th term contributes
at most

Pr[Aj] ((i− 1) · (d+ 1) · β · weightR + β · weightR/2) .

Therefore,

(3) ≤ d · β · weightR +
d∑
j=1

Pr[Aj] ((i− 1) · (d+ 1) · β · weightR + β · weightR)

≤ (i− 1) · (d+ 1) · β · weightR + (d+ 1) · β · weightR.

Putting the bounds for the two terms in (2) together, we get

(2) ≤ (i− 1) · (d+ 1) · β · weightQ + (i− 1) · (d+ 1) · β · weightR + (d+ 1) · β · weightR

= (i− 1) · (d+ 1) · β · (weightQ + weightR) + (d+ 1) · β · weightR

≤ i · (d+ 1) · β · weightP ,

as required.

8

Finally, we prove the main theorem of the paper.

Theorem 6. There is an efficiently computable function G : {0, 1}s → {0, 1}n with

s = O((log d+ log log n+ log(1/ε)) log n),

such that if u ∼ Un, y ∼ Us and B is any regular branching program of length n+ 1 and width d,∣∣Pr[B(G(y)) = 1]− Pr[B(u) = 1]
∣∣ ≤ ε.

Proof. Set G = Glogn as in the construction above. The seed length to the generator is bounded
by O(k log n) = O((log d+ log log n+ log(1/ε)) log n) as required.

Given a branching program B, we make it an evaluation program P , by labeling every vertex
v by the probability of reaching the accept vertex with a uniform random walk starting at v. We
thus see that for any n bit string x, B(x) = valP (x). From Theorem 5, it follows that

|Pr[B(G(y)) = 1]− Pr[B(u) = 1]| ≤ (log n) · (d+ 1) · β · weightP .

By Lemma 4, weightP ≤ 2(d − 1). Thus the error is at most 2d2(log n)β ≤ ε, according to the
choice of β.

5 Biased Distributions Fool Small Width

Suppose we have a regular branching program B of length n and width d.
Let D be a distribution over {0, 1}n−1. For α ≥ 0, we say that D is α-biased (with respect to

the branching program B) if for x = (x1, . . . , xn−1) ∼ D the following holds: for every t ∈ [n − 1]
and every v ∈ Vt such that Prx[path(x)t = v] ≥ α, the distribution of xt conditioned on the event
path(x)t = v is α-close to uniform, that is, |Prx[xt = 1 | path(x)t = v]− 1/2| ≤ α/2.

The following theorem shows that the distribution of the node in the branching program reached
by an α-biased random walk is (poly(d)·α)-close to the distribution of the node reached by a uniform
random walk.

Theorem 7. Let P be a regular evaluation program of length n. Let α ≥ 0. Let D be an α-biased
distribution (with respect to P). Then,∣∣∣ E

x∼D
[valP (x)]− E

u∼Un−1

[valP (u)]
∣∣∣ ≤ α · weightP /2.

Before proving the theorem, we note that it can be shown by similar arguments that the
distribution defined by G from the previous section is α-biased, with small α. Using the theorem,
this also implies that G fools regular branching programs.

Proof. We prove the theorem using a hybrid argument. For each t ∈ {0, . . . , n − 1}, define the
distribution Dt to be the same as D on the first t bits, and the same as Un−1 on the remaining
bits. Thus D0 = Un−1 and Dn−1 = D. By the triangle inequality, we have that

∣∣∣ E
x∼D

[valP (x)]− E
u∼Un−1

[valP (u)]
∣∣∣ ≤ n−2∑

t=0

∣∣∣ E
x∼Dt

[valP (x)]− E
y∼Dt+1

[valP (y)]
∣∣∣.

9

For t ∈ {1, . . . , n − 1}, let weightt denote the weight of the edges going out of Vt. We claim
that the t’th term in the sum is bounded by α · weightt+1/2. The sum of all terms is thus at most
α/2 ·

∑n−1
t=1 weightt = α · weightP /2, as required.

To bound the t’th term, let z be distributed according to the first t+1 bits of D. Let z≤t denote
the first t bits of z, and let zt+1 be the t + 1’st bit of z. Let ut+1 denote a uniform bit. Since all
bits in Dt, Dt+1 after the t + 1’st bit are uniform, Proposition 2 implies that the t’th term in the
sum is equal to ∣∣∣∣ E

z≤t

[
E
zt+1

[valP (z≤t, zt+1)]− E
ut+1

[valP (z≤t, ut+1)]
]∣∣∣∣ .

For every vertex v in Vt+1, define the event Av to be the event that path(z≤t)t+1 = v, and let Rv
denote the evaluation program with two layers whose start vertex is v. Rv involves only two edges,
since only the edges leading out of v are traversable. We have that

∑
v∈Vt+1

weightRv
= weightt+1.

Observe that if z≤t ∈ Av, then valP (z≤t, y) = valRv(y). So we can bound the t’th term from above
by

∑
v∈Vt+1

∣∣∣∣∣Pr[Av]

(
E

zt+1|Av

[valRv(zt+1|Av)]− E
ut+1

[valRv(ut+1)]

)∣∣∣∣∣ . (4)

There are two cases we need to consider. The first case is when v admits Pr[Av] ≥ α. In this
case, zt+1|Av is α-close to uniform, and by Proposition 3, the v’th term is bounded by Pr[Av] · α ·
weightRv

/2. The second case is when v admits Pr[Av] < α. In this case, Proposition 3 tells us that
the v’th term is bounded by α · weightRv

/2. To conclude,

(4) ≤ α ·
∑

v∈Vt+1

weightRv
/2 = α · weightt+1/2.

As a corollary, we get that α-biased distributions are pseudorandom for regular branching
programs of bounded width.

Corollary 8. Let B be a regular branching program of length n and width d. Let α ≥ 0. Let D be
an α-biased distribution (with respect to B). Then,∣∣∣∣ Pr

x∼D
[B(x) = 1]− Pr

u∼Un−1

[B(u) = 1]
∣∣∣∣ ≤ α(d− 1).

Proof. Let P be the evaluation program obtained by labeling every vertex of B with the probability
of accepting a uniform input starting at that vertex. Since P is regular and has width d, weightP ≤
2(d− 1) by Lemma 4. Apply Theorem 7 to complete the proof.

Remark 9. Corollary 8 tells us that in order to fool regular constant width branching programs with
constant error, we can use α-biased distributions, with α a small enough constant. This statement
is false for non-regular programs, as we now explain. Consider the function tribesn that is defined as
follows: Let k be the maximal integer so that (1− 2−k)n ≤ 1/2. The function tribesn takes as input
nk bits x = (xi,j)i∈[n],j∈[k] and tribesn(x) =

∨
i∈[n]

∧
j∈[k] xi,j. The tribes function has a natural

width 3 branching program. This program is, however, not regular. Even a very strong notion of

10

α-biased distribution does not fool it, as long as α � 1/ log n. This is true as if all the bits in D
are, say, (10/ log n)-biased towards 1 and all of them are independent, then the expectation of the
tribes function with respect to D is Ω(1)-far from the expectation of the tribes function with respect
to the uniform distribution.

Acknowledgements

We would like to thank Zeev Dvir, Omer Reingold and David Zuckerman for helpful discussions.

References

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple construction
of almost k-wise independent random variables. Random Structures and Algorithms,
3(3):289–304, 1992.

[AKS87] Miklós Ajtai, János Komlós, and Endre Szemerédi. Deterministic simulation in
LOGSPACE. In STOC, pages 132–140. ACM, 1987.

[Bar89] David A. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. Journal of Computer and System Sciences, 38(1):150–
164, February 1989.

[BNS89] László Babai, Noam Nisan, and Mario Szegedy. Multiparty protocols and logspace-hard
pseudorandom sequences (extended abstract). In STOC, pages 1–11. ACM, 1989.

[GW97] Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties:
A quality-size trade-off for hashing. Random Struct. Algorithms, 11(4):315–343, 1997.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In STOC, pages 356–364, 1994.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinator-
ica, 12(4):449–461, 1992.

[Nis94] Noam Nisan. RL ⊆ SC. Computational Complexity, 4:1–11, 1994.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM Journal on Computing, 22(4):838–856, August 1993.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–52, 1996.

[RR99] Ran Raz and Omer Reingold. On recycling the randomness of states in space bounded
computation. In STOC, pages 159–168, 1999.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci, 4(2):177–192, 1970.

[SZ] Michael Saks and David Zuckerman. Personal communication.

11

[SZ99] Michael E. Saks and Shiyu Zhou. BPHspace(S) ⊆ DSPACE(S3/2). J. Comput. Syst.
Sci, 58(2):376–403, 1999.

A The Bounded Probability Case

We now show that the generator fools a more general class of programs, namely, branching programs
in which every vertex is hit with either zero or non-negligible probability by a truly random input.
Such programs are not necessarily regular, but every regular program can be shown to have this
property. We start by showing that the weight of such programs can be bounded.

Suppose P is an evaluation program of length n and width d. For every vertex v in the program,
we denote by p(v) the probability that the program reaches the vertex v starting at (1, 1), according
to the uniform distribution. Recall that q(v) is the value of the vertex v in the program P .

For technical reasons, we need the following definition. For a given evaluation program P
of length n and width d, define P ′, the non-redundant part of P , as the program obtained by
removing from P all vertices v with p(v) = 0. The non-redundant part of P is not necessarily an
evaluation program, according to our definition, as some of its layers may have less than d vertices.
Nevertheless, P ′ has a natural notion of weight induced by P , by assigning every vertex in P ′ the
same value as its value in P . The program P ′ also has a natural structure of layers, induced by P :
for t ∈ [n], the vertices in V ′t are those vertices v in Vt so that p(v) > 0.

Lemma 10. Let P be an evaluation program, and γ > 0 be such that for every vertex v in P ,
either p(v) = 0 or p(v) ≥ γ. Then weightP ′ ≤ 2/γ2, where P ′ is the non-redundant part of P .

Proof. The proof is a fractional version of the pebble argument used in the regular case. We play the
following pebble game. We start with a number of pebbles, located at positions q1, q2, . . . , q` ∈ [0, 1].
The pebbles also have corresponding heights p1, . . . , p` > 0 that add up to 1:

∑`
i=1 pi = 1. The

rules of the game are as follows. In each step, we are allowed to pick a parameter η > 0 and two
pebbles at positions a, b, each of which has height at least η. We then reduce the heights of each
of these pebbles by η, and add a new pebble of height 2η at position (a + b)/2. The gain in this
step is η2|a − b|. If two pebbles are at the same position, then we treat them as a single pebble
whose height is just the sum of the heights of the pebbles. The sum of heights of the pebbles is 1
throughout the game.

First, we observe that the program P ′ defines a way to achieve a gain of at least (γ/2)2 ·weightP ′ ,
as follows. We do so in n−1 steps, indexed by t ∈ {n−1, n−2, . . . , 1}. The way we start the game
is specified by V ′n: for each i such that p((n, i)) > 0, associate the vertex (n, i) in P ′ with a pebble
at position qi = q((n, i)) and height p((n, i)). We maintain the following property throughout the
game: before we start the t’th step, for every pebble at the current configuration of the game, the
sum

∑
w p(w), with w associated with the pebble, is the height of the pebble. Here is how we

perform the t’th step. From the pebble configuration specified by V ′t+1, we obtain the configuration
specified by V ′t , by applying |V ′t | fractional pebble moves, as follows. In each one of these moves, we
pick a vertex v ∈ V ′t , we choose η = p(v)/2 > 0, and we choose a to be the position of the pebble
associated with next0(v) and b to be the position of the pebble associated with next1(v). We then
apply the pebble move defined by η, a, b, and associate the vertex v with the pebble at position
(a+ b)/2. Since p(v) ≥ γ, the gain of this step is at least (γ/2)2|a− b|. The total gain obtained by
reaching the configuration specified by V ′t from that specified by V ′t+1 is thus at least (γ/2)2 times

12

the weight of the layer. Continuing in this way for the whole program, we get a sequence of pebble
moves with total gain at least (γ/2)2 · weightP ′ .

Next, we show that the total gain in any game with any starting configuration is at most 1/2
(again, this bound holds even for an unbounded number of moves). For any configuration of `
pebbles at positions q1, . . . , q` and heights p1, . . . , p`, define the quantity L =

∑
{i,j}⊂[`] pipj |qi− qj |.

We claim that in any valid fractional pebble move that is defined by η, a, b, this quantity must
decrease by at least η2|a− b|. To see this, observe that if c 6∈ {a, b} is a position of a pebble, then
the sum of terms involving c in L can only decrease: if pa, pb, pc are the heights of the pebbles at
positions a, b, c,

pcpa|a− c|+ pcpb|b− c| ≥ pc(pa − η)|a− c|+ pc(pb − η)|b− c|+ pc2η|(a+ b)/2− c|,

as

(|a− c|+ |b− c|)/2 ≥ |(a+ b)/2− c|,

by convexity. Moreover, the pebbles at positions a, b reduce the sum by

papb|a− b| −
(
(pa − η)(pb − η)|a− b|+ (pa − η)2η|a− b|/2 + (pb − η)2η|a− b|/2

)
= |a− b|η2.

Since L is always non-negative, the initial L, which is

Linitial =
∑

{i,j}⊂[k]

pipj |qi − qj | ≤
∑

{i,j}⊂[k]

pipj < 1/2

for some k ∈ N, is thus an upper bound on the total gain possible in the fractional pebble game.
To conclude,

(γ/2)2 · weightP ′ ≤ total gain of game < 1/2.

Lemma 10 and Theorem 5 imply that the pseudorandom generator defined earlier fools branch-
ing programs that do not have low probability vertices.

Theorem 11. Let B be a branching program, and γ > 0 be such that for every vertex v in the
program, either p(v) = 0 or p(v) ≥ γ. Let G = Glogn be the generator as defined above. Then if
y, u are distributed uniformly at random (as in Theorem 6),∣∣Pr[B(G(y)) = 1]− Pr[B(u) = 1]

∣∣ ≤ 2ε/γ2.

Proof. We define the evaluation program P by setting q(v) to be the probability of accepting a
uniform input starting at the vertex v. Let P ′ be the non-redundant part of P . By Lemma 10,
weightP ′ ≤ 2/γ2. In terms of functionality, P and P ′ are equivalent. The proof of Theorem 5 thus
tells us that the error of the generator is at most β(log n)(d+ 1)weightP ′ ≤ 2ε/γ2, by the choice of
β.

It follows from Theorem 11 that one can efficiently construct a generator that ε-fools branching
programs in which every vertex is reached with probability either zero or at least γ, using a seed
of length O((log log n+ log(1/ε) + log(1/γ)) log n), as we can assume d ≤ O(1/γ).

13

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

