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Abstract

We say that a polynomial f(x1, . . . , xn) is indecomposable if it cannot be written as a product
of two polynomials that are defined over disjoint sets of variables. The polynomial decomposition
problem is defined to be the task of finding the indecomposable factors of a given polynomial.
Note that for multilinear polynomials, factorization is the same as decomposition, as any two
different factors are variable disjoint.

In this paper we show that the problem of derandomizing polynomial identity testing is
essentially equivalent to the problem of derandomizing algorithms for polynomial decomposition.
More accurately, we show that for any reasonable circuit class there is a deterministic polynomial
time (black-box) algorithm for polynomial identity testing of that class if and only if there is
a deterministic polynomial time (black-box) algorithm for factoring a polynomial, computed in
the class, to its indecomposable components.

An immediate corollary is that polynomial identity testing and polynomial factorization
are equivalent (up to a polynomial overhead) for multilinear polynomials. In addition, we
observe that derandomizing the polynomial decomposition problem is equivalent, in the sense
of Kabanets and Impagliazzo [KI04], to proving arithmetic circuit lower bounds to NEXP.

Our approach uses ideas from [SV08], that showed that the polynomial identity testing
problem for a circuit class C is essentially equivalent to the problem of deciding whether a
circuit from C computes a polynomial that has a read-once arithmetic formula.

1 Introduction

In this paper we study the relation between two fundamental algebraic problems, polynomial iden-
tity testing and polynomial factorization. We show that the tasks of giving deterministic algorithms
for polynomial identity testing and for a variant of the factorization problem (that we refer to as
the polynomial decomposition problem) are essentially equivalent. We first give some background
on both problems and then discuss our results in detail.

1.1 Arithmetic Circuits

An arithmetic circuit in the variables X = {x1, . . . , xn}, over the field F, is a labelled directed acyclic
graph. The inputs (nodes of in-degree zero) are labelled by variables from X or by constants from
the field. The internal nodes are labelled by + or ×, computing the sum and product, resp., of
the polynomials on the tails of incoming edges (subtraction is obtained using the constant −1).
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A formula is a circuit whose nodes have out-degree one (namely, a tree). The output of a circuit
(formula) is the polynomial computed at the output node. The size of a circuit (formula) is the
number of gates in it. The depth of the circuit (formula) is the length of a longest path between
the output node and an input node.

We shall say that a polynomial f(x1, . . . , xn) has individual degrees bounded by d, if no variable
has degree higher than d in f . An arithmetic circuit C has individual degrees bounded by d if the
polynomial that C computes has individual degrees bounded by d. Finally, we shall say that C is
an (n, s, d)-circuit if it is an n-variate arithmetic circuit of size s with individual degrees bounded
by d. Sometimes we shall think of an arithmetic circuit and of the polynomial that it computes as
the same objects.

In this paper we will usually refer to a model of arithmetic circuits C. It should be thought
of as either the general model of arithmetic circuits or as some restricted model such as bounded
depth circuits, etc.

1.2 Polynomial Decomposition

Let X = (x1, . . . , xn) be the set of variables. For a set I ⊆ [n] denote with XI the set of variables
whose indices belong to I. A polynomial f , depending on X, is said to be decomposable if it can
be written as f(X) = g(XS) · h(X[n]\S) for some ∅ ( S ( [n]. The indecomposable factors of a
polynomial f(X) are polynomials f1(XI1), . . . , fk(XIk) such that the Ij-s are disjoint sets of indices,
f(X) = f1(XI1) · f2(XI2) · · · fk(XIk) and the fi’s are indecomposable. It is not difficult to see that
every polynomial has a unique factorization to indecomposable factors (up to multiplication by field
elements). The problem of polynomial decomposition is defined in the following way: Given an
arithmetic circuit from an arithmetic circuit class C computing a polynomial f , we have to output
circuits for each of the indecomposable factors of f . If we only have a black-box access to f then
we have to output a black-box for each of the indecomposable factors of f . Clearly, finding the
indecomposable factors of a polynomial f is an easier task than finding all the irreducible factors
of f . It is not hard to see though, that for the natural class of multilinear polynomials the two
problems are the same. We also consider the decision version of the polynomial decomposition
problem: Given an arithmetic circuit computing a multivariate polynomial decide whether the
polynomial is decomposable or not. Note that in the decision version the algorithm just has to
answer ‘yes’ or ’no’ and is not required to find the decomposition.

Many randomized algorithms are known for factoring multivariate polynomials in the black-
box and non black-box models (see the surveys in [GG99, Kal03, Gat06]). These algorithms also
solve the decomposition problem. However, it is a long standing open question whether there is
an efficient deterministic algorithm for factoring multivariate polynomials (see [GG99, Kay07]).
Moreover, there is no known deterministic algorithm even for the decision version of the problem
(that is defined analogously). Furthermore, even for the simpler case of factoring multilinear
polynomials (which is a subproblem of polynomial decomposition) no deterministic algorithms are
known.

1.3 Polynomial Identity Testing

Let C be a class of arithmetic circuits defined over some field F. The polynomial identity testing
problem (PIT for short) for C is the question of deciding whether a given circuit form C computes
the identically zero polynomial. This question can be considered both in the black-box model,
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in which we can only access the polynomial computed by the circuit using queries, or in the non
black-box model where the circuit is given to us. The importance of this fundamental problem
stems from its many applications. For example, the deterministic primality testing algorithm of
[AKS04] and the fast parallel algorithm for perfect matching of [MVV87] are based on solving PIT
problems.

PIT has a well known randomized algorithm [Sch80, Zip79, DL78]. However, we are interested
in the problem of obtaining efficient deterministic algorithms for it. This question received a lot of
attention recently (see the surveys [Sax09, AS09]) but its deterministic complexity is still far from
being well understood. In [HS80, KI04, Agr05, DSY09] results connecting PIT to lower bounds for
arithmetic circuits where proved, shedding light on the difficulty of the problem. It is interesting
to note that the PIT problem becomes very difficult already for depth-4 circuits. Indeed, [AV08]
proved that a polynomial time black-box PIT algorithm for depth-4 circuits implies an exponential
lower bound for general arithmetic circuits (and hence using the ideas of [KI04] a quasi-polynomial
time deterministic PIT algorithm for general circuits).

In this work we (essentially) show equivalence between the PIT and polynomial decomposi-
tion problems. Namely, we prove that for any (reasonable) circuit class C, it holds that C has a
polynomial time deterministic PIT algorithm if and only if it has a polynomial time deterministic
decomposition algorithm. The result holds both in the black-box and the non black-box models.
That is, if the PIT for C is in the black-box model then deterministic black-box decomposition is
possible and vice versa, and similarly for the non black-box case.

1.4 Our Results

We now formally state our results. We give them in a very general form as we later apply them to
very restricted classes such as depth-3 circuits, read-once formulas etc.

Theorem 1.1 (Main). Let C be a class of arithmetic circuits, defined over a field F. Consider
circuits of the form C = C1 + C2 × C3, where the Ci-s are (n, s, d) circuits from C and, C2 and
C3 are defined over disjoint sets of variables.1 Assume that there is a deterministic algorithm
that when given access (explicit or via a black-box) to such a circuit C runs in time T (s, d) and
decides whether C ≡ 0. Then, there is a deterministic algorithm that when given access (explicit
or via a black-box) to an (n, s, d) circuit C ′ ∈ C,2 runs in time O(n3 · d · T (s, d)) and outputs the
indecomposable factors, H = {h1, . . . , hk}, of the polynomial computed by C ′. Moreover, each hi is
in C and size(hi) ≤ s.

The other direction is, in fact, very easy and is given by the following observation.

Observation 1. Let C be a class of arithmetic circuits. Assume that there is an algorithm that
when given access (explicit or via a black-box) to an (n, s, d) circuit C ∈ C runs in time T (s, d) and
outputs “true” iff the polynomial computed by C is decomposable. Then, there is a deterministic
algorithm that runs in time O(T (s+ 2, d)) and solves the PIT problem for size s circuits from C.

As mentioned above, the irreducible factors of multilinear polynomials are simply their indecompos-
able factors. Hence we obtain the following corollary. We give here a slightly informal statement.
The full statement is given in Section 3.1.

1This requirement seems a bit strange but we need it in order to state our results in the most general terms.
2C′ ∈ C denotes that the circuit C′ is from C.
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Corollary 1.2 (informal). Let C be an arithmetic circuit class computing multilinear polynomials.
Then, up to a polynomial overhead, the deterministic polynomial identity testing problem and the
deterministic factorization problem for circuits from C are equivalent, in both the black-box the and
non black-box models.

We also obtain some extensions to the results above. The first result (Theorem 4.1) shows
how to get a non-adaptive decomposition from a PIT algorithm (Theorem 1.1 gives an adaptive
algorithm). To prove it we need a stronger PIT algorithm than the one used in the proof of
Theorem 1.1. The second extension (Theorem 4.3) gives an algorithm deciding whether for a given
polynomial f there are two variables xi, xj such that f(X) = f1(X[n]\{i}) · f2(X[n]\{j}). This can
be thought of as a generalization of Theorem 1.1. Finally, we obtain a connection (Corollary 4.7)
between the decomposition problem and lower bounds in the sense of Kabanets and Impagliazzo.
The statements and proofs of these results are given in Section 4.

1.5 Motivation

The motivation for this work is two fold. First, the most obvious motivation is that we think that
the problem of connecting the complexity of PIT and polynomial factorization is very natural.
Another motivation is to better understand the PIT problem for multilinear formulas.3 Although
lower bounds are known for multilinear formulas [Raz04a, Raz04b, RSY08, RY08], we do not have
an efficient PIT algorithm even for depth-3 multilinear formulas. Consider the following approach
towards PIT of multilinear formulas. Start by making the formula a read-once formula. I.e. a
formula in which every variable labels at most one leaf. This can be done by replacing, for each i
and j, the j-th occurrence of xi with a new variable xi,j . Now, using PIT algorithm for read-once
formulas [SV08, SV09], check whether this formula is zero or not. If it is zero then the original
formulas was also zero and we are done. Otherwise start replacing back each xi,j with xi. After
each replacement we would like to verify that the resulting formula is still not zero. Notice that
when replacing xi,j with xi we get zero if and only if the linear function xi − xi,j is a factor of the
formula at hand. Thus, we somehow have to find a way of verifying whether a linear function is
a factor of a multilinear formula. Notice that as we start with a read-once formula for which PIT
is known [SV08, SV09], we can assume that we know many inputs on which the formula does not
vanish. One may hope that before replacing xi,j with xi we somehow managed to obtain inputs
that will enable us to verify whether xi − xi,j is a factor of the formula or not. This of course is
not formal and only gives a sketch of an idea, but it shows the importance of understanding how
to factor multilinear formulas given a PIT algorithm. As different factors of multilinear formulas
are variable disjoint this motivates the study of polynomial decomposition.

1.6 Proof Technique

It is not difficult to see that efficient algorithms for polynomial decomposition imply efficient algo-
rithms for PIT. Indeed, notice that f(x1, . . . , xn) ≡ 0 if and only if f(x1, . . . , xn)+y ·z, where y and
z are two new variables, is decomposable (in which case y and z are its indecomposable factors).
Hence, an algorithm for polynomial decomposition (even for the decision version of the problem)
gives rise to a PIT algorithm.

3A multilinear formula is a formula in which every gate computes a multilinear polynomial, see [Raz04a].
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The more interesting direction is obtaining a decomposition algorithm given a PIT algorithm
(this is what the idea sketched in Section 1.5 requires). Note that if f(X) = f1(XI1) · . . . · fk(XIk)
is the decomposition of f and if we know the sets I1, . . . , Ik then using the PIT algorithm we
can easily obtain circuits for the different fi’s. Indeed, if ā ∈ Fn is such that f(ā) 6= 0 then, for
some constant αj , fj(XIj ) = αj · f |ā[n]\Ij

(X), where ā[n]\Ij is the assignment that assigns values
to all the variables except those whose index belongs to Ij .4 Now, given a PIT algorithm we can
use it to obtain such ā in a manner similar to finding a satisfying assignment to a CNF formula
given a SAT oracle. Consequently, finding the partition I1, . . . , Ik of [n] is equivalent to finding the
indecomposable factors (assuming that we have a PIT algorithm).

We present two approaches for finding the partition. The first is by induction: Using the
PIT algorithm we obtain an assignment ā = (a1, . . . , an) ∈ Fn that has the property that for
every j ∈ [n] it holds that f depends on xj if and only if f |ā[n]\{j} depends on xj . Following
[HH91, BHH95, SV08, SV09] we call ā a justifying assignment of f . Given a justifying assignment
ā, we find, by induction, the indecomposable factors of f |xn=an . Then, using simple algebra we
recover the indecomposable factors of f from those of f |xn=an . This is the idea behind the proof
of Theorem 1.1.

The second approach is used in the proofs of Theorems 4.1 and 4.3 (the extensions to Theo-
rem 1.1). Note that the variables xi and xj belong to the same set I in the partition if and only

if ∆ijf
∆= f · f |xi=y,xj=w − f |xi=y · f |xj=w 6≡ 0, when y and w are two new variables. Using this

observation we obtain the partition by constructing a graph G on the set of vertices [n] in which i
and j are neighbors iff ∆ijf 6≡ 0. The sets of the partition are exactly the connected components
of G. In fact, ∆ijf can be used to obtain some additional information on the reducibility of f that
we use in order to prove Theorem 4.3.

The main difference between the two approaches is the model for which we need the PIT
algorithm. For example the second approach does not work for the case of (sums of) read-once
formulas (see [SV08] for a definition).

1.7 Related Works

As mentioned above, justifying assignments were first defined and used in [HH91, BHH95] for the
purpose of giving randomized polynomial time learning algorithms for read-once arithmetic formu-
las. In [SV08, SV09] justifying assignments were used in conjunction with new PIT algorithms in
order to obtain deterministic quasi-polynomial time interpolation algorithms for read-once formu-
las. We rely on the ideas from [SV09] for obtaining justifying assignments from PIT algorithms.

Another line of works that is related to our results is that of Kabanets and Impagliazzo [KI04]
and of [DSY09]. There it was shown that the question of derandomizing the PIT problem is
closely related to the problem of proving lower bounds for arithmetic circuits (Corollary 4.7, given
in Section 4, is an analogous result). These results use the fact that factors of small arithmetic
circuits can also be computed by small arithmetic circuits. This gives another connection between
PIT and polynomial factorization, although a less direct one.

The results of [KI04] relate PIT to arithmetic lower bounds for NEXP. However, these lower
bounds are not strong enough and do not imply that derandomization of PIT gives derandomization
of other algebraic problems. Similarly, the results of [Agr05] show that polynomial time black-box
PIT algorithms give rise to exponential lower bounds for arithmetic circuits which in turn, using

4In fact, we also need a constant α, that is easily computable, to get that f(X) = α · f ′1(XI1) · . . . · f ′k(XIk ).
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ideas a-la [KI04], may give quasi-polynomial time derandomization of polynomial factorization.5

However, this still does not guarantee polynomial time derandomization as is achieved in this work.

1.8 Organization

In Section 2 we give the required definition and discuss partial derivatives and justifying assign-
ments. In Section 3 we prove our main result and some corollaries. The extensions to Theorem 1.1
are given in Section 4.

2 Preliminaries

For an integer n denote [n] = {1, . . . , n}. In this paper all the circuits and polynomials are defined
over some field F. In most of our algorithms we will need to assume that F is larger than some
function depending on n (we will mostly have the requirement |F| > nd, where n is the number of
variables and d is an upper bound on the individual degrees of the given circuit/polynomial). We
note that this is not a real issue as in most works on factoring or on PIT it is assumed that we can
access a polynomially large extension field of F. From now on we assume that F is large enough.

For a polynomial f(x1, . . . , xn), a variable xi and a field element α we denote with f |xi=α
the polynomial resulting from substituting α to xi. Similarly, given a subset I ⊆ [n] and an
assignment ā ∈ Fn we define f |xI=āI to be the polynomial resulting from substituting ai to
xi for every i ∈ I. We say that f depends on xi if there exist ā ∈ Fn and b ∈ F such
that: f(a1, a2, . . . , ai−1, ai, ai+1, . . . , an) 6= f(a1, a2, . . . , ai−1, b, ai+1, . . . , an). We denote var(f) ∆=
{i ∈ [n] | f depends on xi }. It is not difficult to see that f depends on xi iff xi appears when f is
written as a sum of monomials. By substituting a value to a variable of f we obviously eliminate
the dependence of f on this variable. However, this can also eliminate the dependence of f on
other variables, so we may lose more ‘information’ than intended. We now define a ‘lossless’ type
of an assignment. Similar definitions were given in [HH91, BHH95, SV08, SV09]. For completeness
we repeat the definitions here.

Definition 2.1 (Justifying assignment). Given an assignment ā ∈ Fn we say that ā is a justifying
assignment of f if for every subset I ⊆ var(f) we have that var(f |xI=āI ) = var(f) \ I.

Proposition 2.2 (Proposition 2.2 of [SV08]). An assignment ā ∈ Fn is a justifying assignment of
f if and only if var(f |xI=āI ) = var(f) \ I for every subset I of size |I| = |var(f)| − 1.

We now show how to get a justifying assignment from a polynomial identity testing algorithm.
This was first done in [SV08] (and generalized in [SV09]) but we repeat it here for completeness.
Before stating the result we shall need the following definition.

Definition 2.3 (Partial Derivative). Let f ∈ F[x1, . . . , xn] be a polynomial. The partial derivative
of f w.r.t. xi and direction α ∈ F is defined as ∂f

∂αxi

∆= f |xi=α − f |xi=0. For an arithmetic circuit

C we define ∂C
∂αxi

∆= C|xi=α − C|xi=0.

5We use the word ‘may’ as it is not immediate how to derandomize the factorization problem using lower bounds
for arithmetic circuits.
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Our algorithm will consider a circuit class C but will require a PIT algorithm for a slightly
larger class. Namely, for every circuit C ∈ C we will need a PIT algorithm for circuits of the form
∂C
∂αxi

. To ease the reading we shall refer to all circuits of the form ∂C
∂αxi

as ∂C.

Theorem 2.4 ([SV08, SV09]). Let F be a field of size |F| ≥ nd. Let f be a polynomial that is
computed by an (n, s, d)-circuit C ∈ C. Then, there is an algorithm (Algorithm 2 of Appendix A)
that returns a justifying assignment ā for f in time O(n3d · T (s, d)), where T (s, d) is the running
time of the PIT algorithm for circuits of the form ∂C where C ∈ C is an (n, s, d)-circuit.

For completeness we give a proof in Appendix A.

2.1 Indecomposable Polynomials

Definition 2.5. We say that polynomial f ∈ F[x1, . . . , xn] is indecomposable if it is non-constant
and cannot be represented as the product of two (or more) non-constant variable disjoint polynomi-
als. Otherwise, we say that f is decomposable.

Clearly decomposability is a relaxation of irreducibility. For example, (x+ y + 1)(x+ y − 1) is
indecomposable but is not irreducible. Also note that any univariate polynomial is indecomposable.
The following lemma is easy to prove.

Lemma 2.6 (Unique decomposition). Let f ∈ F[x1, . . . , xn] be a non-constant polynomial. Then
f has a unique (up to multiplication by field elements) factorization to indecomposable factors.

Proof. Let f = f1 · . . . · fm be the factorization of f to irreducible polynomials. Define a graph on
{1, . . . ,m} as follows: connect i and j if there is a variable x` such that both fi and fj depend on
x`. For every connected component I of the graph let hI =

∏
i∈I fi. It is not difficult to see that in

this way we get a factorization of f to indecomposable factors (the hI -s) and that this factorization
is unique (up to multiplication by field elements).

Observation 2. Let f be a multilinear polynomial. Then f is indecomposable if and only if f is
irreducible. In particular, if f(x̄) = f1(x̄) · f2(x̄) · . . . · fk(x̄) is the decomposition of f , then the fi-s
are f ’s irreducible factors.

3 Decomposition

In this section we give the proof of Theorem 1.1. Algorithm 1 shows how to find the indecomposable
factors for a polynomial computed by C using the PIT algorithm. In fact, the algorithm returns a
partition I = {I1, . . . , Ik} of [n] such that the decomposition of f is f = h1(XI1) · . . . · hk(XIk), for
some polynomials h1, . . . , hk. We call I the variable-partition of f . The idea behind the algorithm
is to first find a justifying assignment ā to f using Theorem 2.4. Then, to find the partition of
f |xn=an . Finally, by using the PIT algorithm, to decide which sets in the partition of f |xn=an

belong to the partition of f and which sets must be unified.
The following lemma gives the analysis of the algorithm and its correctness.

Lemma 3.1. Let C be an (n, s, d)-circuit from C such that var(C) = [n]. Assume there exists a
PIT algorithm as in the statement of Theorem 1.1. Let ā a justifying assignment of C. Then given
C and ā Algorithm 1 outputs a variable-partition I for the polynomial computed by C. The running
time of the algorithm is O(n2 · T (s, d)), where T (s, d) is as in the statement of Theorem 1.1.
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Algorithm 1 Finding variable partition
Input: An (n, s, d)-circuit C from a circuit class C, a justifying assignment ā for C, and access to
a PIT algorithm as in the statement of Theorem 1.1.
Output: A variable-partition I

1: Set I = ∅, J = [n] (I will be the partition that we seek).
2: Set xn = an and recursively compute the variable-partition of C ′ = C|xn=an . Let I ′ be the

resulting partition (note that when n = 1 then we just return I = {{1}}).
3: For every set I ∈ I ′ check whether C(ā) · C ≡ C|xI=āI · C|x[n]\I=ā[n]\I . If this is the case then

add I to I and set J ← J \ I. Otherwise, move to the next I.
4: Finally, add the remaining elements to I. Namely, I ← I ∪ {J}.

Proof. The proof of correctness is by induction on n. For the base case (n = 1) we recall that
a univariate polynomial is an indecomposable polynomial. Now assume that n > 1. Let C =
h1(XI1) · . . . ·hk−1(XIk−1

) ·hk(XIk) be the decomposition of C where I = {I1, . . . , Ik} is its variable-
partition. Assume w.l.o.g. that n ∈ Ik. Consider C ′ = C|xn=an . It holds that C ′ = C|xn=an =
h1 · . . . ·hk−1 ·hk|xn=an = h1 · . . . ·hk−1 ·g1 ·g2 · . . . ·g` where the gi-s are the indecomposable factors of
hk|xn=an . Denote with Ik = {Ik,1, . . . , Ik,`} the variable-partition of hk|xn=an . As ā is a justifying
assignment of C we obtain that var(C ′) = [n − 1]. From the uniqueness of the decomposition
(Lemma 2.6) and by the induction hypothesis we get that, when running on C ′, the algorithm
returns I ′ = {I1, . . . , Ik−1, Ik,1, . . . , Ik,`}. The next lemma shows that the algorithm indeed returns
the variable-partition I.

Lemma 3.2. Let f(x̄) ∈ F[x1, . . . , xn] be a polynomial and let ā ∈ Fn be a justifying assignment of
f . Then I ⊆ [n] satisfies that f(ā) · f ≡ f |xI=āI · f |x[n]\I=ā[n]\I , if and only if I is a disjoint union
of sets from the variable-partition of f .

Proof. Assume that equality holds. Then, as ā is a justifying assignment of f we have that
f |xI=āI , f |x[n]\I=ā[n]\I 6≡ 0 and hence f(ā) 6= 0. Consequently, if we define h(XI)

∆= f |x[n]\I=ā[n]\I and

g(X[n]\I)
∆= f |xI=āI

f(ā) then we obtain that f(x̄) = h(XI) · g(X[n]\I). The result follows by uniqueness
of decomposition.

To prove the other directions notice that we can write f(x̄) ≡ h(XI)·g(X[n]\I) for two polynomi-
als h and g. We now have that, f |xI=āI ≡ h(ā) ·g(X[n]\I) and similarly f |x[n]\I=ā[n]\I ≡ h(XI) ·g(ā).
Hence, f(ā) · f ≡ h(ā) · g(ā) · h(XI) · g(X[n]\I) ≡ f |xI=āI · f |x[n]\I=ā[n]\I . This concludes the proof of
Lemma 3.2.

By the lemma, each Ij (j < k) will be added to I whereas no Ik,j will be added to it. Eventually
we will have that J = Ik as required. To finish the proof of Lemma 3.1 we now analyze the running
time of the algorithm. The following recursion is satisfied, where t(n, s, d) is the running time of
the algorithm on input an (n, s, d)-circuit C ∈ C: t(n, s, d) = t(n − 1, s, d) + O(|I ′| · T (s, d)) =
t(n− 1, s, d) +O(n · T (s, d)), which implies that t(n, s, d) = O(n2 · T (s, d)).

The proof of Theorem 1.1 easily follows.

Proof of Theorem 1.1. We first note that the assumed PIT algorithm also works for circuits in ∂C,
when C is an (n, s, d) circuit from C. Therefore, by Theorem 2.4 we have an algorithm that finds a
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justifying assignment ā, as well as computes var(C).6 This requires O(n3 · d · T (s, d)) time. Once
var(C) is known we can assume w.l.o.g that var(C) = [n]. Lemma 3.1 guarantees that Algorithm 1
returns a variable-partition I in time O(n2 · T (s, d)). At this point we can define, for every I ∈ I
the polynomial hI

∆= C|x[n]\I=ā[n]\I . It is now clear that for α = C(ā)1−|I| we have that C = α
∏
I∈I

hI

is the decomposition of C. Moreover, note that from the definition, each hi belongs to C and has
size at most s. The total running time can be bounded from above by O(n3 · d · T (s, d)).

To complete the equivalence between polynomial decomposition and PIT we provide a short
proof of Observation 1.

Proof of Observation 1. Let C be an arithmetic circuit. Consider C ′ ∆= C+ y · z where y, z are new
variables. Clearly, C ′ is decomposable iff C 6≡ 0 (we also notice that C ′ is multilinear iff C is).

3.1 Some Corollaries

An immediate consequence of Theorem 1.1 is that there are efficient algorithms for polynomial
decomposition in circuit classes for which efficient PIT algorithms are known. The proof of the
following corollary is immediate given the state of the art PIT algorithms.

Corollary 3.3. Let f(x̄) be a polynomial. We obtain the following algorithms.

1. If f has degree d and m monomials then there is a polynomial time (in m,n, d) black-box
algorithm for computing the indecomposable factors of f (this is the circuit class of sparse
polynomials, see e.g. [KS01]).

2. If f is computed by a depth-3 circuit with top fan-in k (i.e. a ΣΠΣ(k) circuit, see [DS06]) and
degree d then there is an (nd)O(k2) non black-box algorithm for computing the indecomposable
factors of f (see [KS07]). In the black-box model there is an nO(k6 log d) time algorithm over
finite fields and an (nd)O(k4) time algorithm over Q, for the task (see [SS10]).

3. If f is computed by sum of k Preprocessed Read-Once arithmetic formulas of individual degrees
at most d (see [SV09]), then there is an (nd)O(k2) non black-box algorithm for computing the
indecomposable factors of f and an (nd)O(k2+logn) black-box algorithm for the problem.

We now prove Corollary 1.2. We first give a more formal statement, again, in full generality, so
that it can be applied to restricted models of arithmetic circuits as well.

Corollary 1.2 restated: Let C be an arithmetic circuit class computing multilinear polynomials.
Assume that there is a deterministic PIT algorithm that runs in time T (s) when given as input a
circuit of the form C = C1 + C2 × C3, where all the Ci-s ∈ C are n-variate circuits of size s and
C2 and C3 are variable disjoint. Then, there is a deterministic algorithm that when given access
(explicit or via a black-box) to an n-variate circuit C ′ ∈ C, of size s, runs in time poly(n, T (s))
and outputs the irreducible factors, h1, . . . , hk, of the polynomial computed by C ′. Moreover, each
hi can be computed by a size s circuit from C.

Conversely, assume there is a deterministic factoring algorithm that runs in time T (s) when
given as input a size s circuit from C (or even just a deterministic algorithm for the corresponding
decision problem). Then C has a PIT algorithm, for size s circuits, of running time O(T (s+ 2)).

6It is not difficult to compute var(C) given Theorem 2.4 and in fact it is implicit in the proof of the theorem.
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In particular, if one of the problems has a polynomial time algorithms, namely T (s) = poly(s),
then so does the other. The two directions hold both in the black-box and non black-box models.

Proof. The claim is immediate from Theorem 1.1 and Observations 1 and 2.

4 Extensions of Theorem 1.1

In this section we present some extensions to Theorem 1.1. The first is a non-adaptive polynomial
decomposition algorithm. Note that the algorithm given in Theorem 1.1 is adaptive in nature. To
obtain the non-adaptivity we require a stronger PIT algorithm.

Theorem 4.1. Let C be a class of arithmetic circuits, defined over a field F. Assume that there is a
hitting set H (i.e. a black box PIT algorithm) for all circuits C of the form C = C1×C2 +C3×C4,
where the Ci-s are size s circuits from some circuit class C. Then, there is a deterministic algorithm
that when given access to a black-box containing a circuit C ′ ∈ C of size s runs in time O(n2 · |H|)
and outputs the indecomposable factors, h1, . . . , hk of the polynomial computed by C ′. As before,
each hi ∈ C and size(hi) ≤ s. In addition, the algorithm works in a non-adaptive fashion.

The second result concerns the problem of testing semi-decomposability.

Definition 4.2. Let f ∈ F[x1, . . . , xn] be a polynomial. We say that f is (xi, xj)-decomposable
if f can be written as f = g · h for polynomials g and h such that i ∈ var(g) \ var(h) and j ∈
var(h) \ var(g). We say that f is semi-decomposable if there exists a pair xi 6= xj such that f is
(xi, xj)-decomposable.

Theorem 4.3. Let C be a class of arithmetic circuits, defined over a field F. Assume that there is
a deterministic algorithm that when given access (explicit or black-box) to a circuit C = C1×C2 +
C3 × C4, where the Ci ∈ C are (n, s, d) circuits, runs in time T (s, d) and decides whether C ≡ 0.
Then, there is a deterministic algorithm that when given access (explicit or black-box) to an (n, s, d)
circuit C ′ ∈ C, runs in time O(n2 · T (s, d)) and decides whether the polynomial computed by C ′ is
semi-decomposable. In addition, if the answer is ‘yes’ then the algorithm outputs a pair of indices
i 6= j for which f can be written as f(X) = f1(X[n]\{i}) · f2(X[n]\{j}).

We note that in a contrary to polynomial decomposition, (xi, xj)-decomposability does not pose
any requirements on other variables (besides xi and xj). In that sense, semi-decomposability is a
stronger notion and thus it is closer than polynomial decomposition to the general factorization
problem.

Corollary 4.4. f is (xi, xj)-decomposable if and only if it does not have an irreducible factor that
depends on both xi and xj.

The following definition and lemma explain how to check whether f is semi-decomposable.

Definition 4.5. Let f ∈ F[x1, . . . , xn] be a polynomial and let i, j ∈ [n]. We define the commutator
between xi and xj as ∆ijf

∆= f · f |xi=y,xj=w − f |xi=y · f |xj=w.

Lemma 4.6. Let i, j ∈ var(f) then f is (xi, xj)-decomposable if and only if ∆ijf ≡ 0.
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Proof. If f = g · h as above then the lemma follows by a simple substitution. For the other
direction, assume that f · f |xi=y,xj=w = f |xi=y · f |xj=w. From the uniqueness of factorization we
can divide both sides of the equation by f |xi=y,xj=w and obtain a representation of the form f = g ·h
where var(g) ⊆ var(f |xj=w) and var(h) ⊆ var(f |xi=y). As f does not depend on y nor on w then
neither does g · h. On the other hand, f depends on both xi and xj and therefore so does g · h.
Since j 6∈ var(f |xj=w) it follows that j 6∈ var(g). This implies that j ∈ var(h) and consequently
j ∈ var(h) \ var(g). In a similar manner we obtain that i ∈ var(g) \ var(h). This completes the
proof.

The proof of Theorem 4.3 follows immediately from Lemma 4.6. We now give the proof of
Theorems 4.1.

Proof of Theorem 4.1. In a similar fashion to Theorem 1.1 we first find the variable-partition
I1, . . . , Ik corresponding to the indecomposable factors of f and then use a non-zero assignment to
compute the factors themselves. The main difference is in the way in which we find the partition.
We construct a graph G with [n] as the set of vertices, connecting i and j iff ∆ijC

′ 6≡ 0. We can
check this by evaluating ∆ijC

′ on the set H. It follows easily from Corollary 4.4 that the sets of
the partition are exactly the connected components of G. Hence, the partition can be found in
time O(n2 · |H|). By evaluating C ′ on the points in H we can find a nonzero assignment to C ′. We
can now construct the indecomposable factors as explained above. Note that all queries to C ′ are
non-adaptive.

Using Theorem 4.1, instead of Theorem 1.1 we obtain a non-adaptive version of Corollary 3.3,
of roughly the same running time, for the classes of m-sparse polynomials and ΣΠΣ(k) circuits.
Similarly, we can obtain algorithms for testing semi-decomposability for those circuit classes (by
applying Theorem 4.3). However, we can not use this approach for the class of sums of preprocessed
read-once formulas. This is due to the stronger PIT algorithms needed for Theorems 4.1 and 4.3
that are currently not known for sums of read-once formulas.

We conclude this section with another corollary. In [KI04] Kabanets and Impagliazzo proved
that PIT can be derandomized if and only if NEXP does not have small arithmetic circuits. Later,
[DSY09] observed a similar result for bounded depth circuits. By combining their result with our
Observation 1 we obtain the following corollary.

Corollary 4.7. The following three assumptions cannot be simultaneously true.

1. NEXP ⊆ P/Poly,

2. Permanent is computable by polynomial size (bounded-depth) arithmetic circuits over Q,

3. There is a subexponential time algorithm for polynomial decomposition of (bounded-depth)
arithmetic circuits over Z.

Proof. In [KI04], Kabanets and Impagliazzo proved that the following three conditions cannot
be true simultaneously for arithmetic circuits (the bounded depth version was later observed in
[DSY09]).

1. NEXP ⊆ P/Poly,
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2. Permanent is computable by polynomial size (bounded-depth) arithmetic circuits over Q,

3. There is a subexponential time algorithm for PIT of (bounded-depth) arithmetic circuits over
Z.

The claim now follows by combining this with Observation 1. For the bounded depth case we notice
that if C is a depth-D circuit then C + y · z is a circuit of depth max(D, 2), and so we can apply
Observation 1 here too.

5 Concluding remarks

We showed a strong relation between PIT and polynomial decomposition. As noted, for multilinear
polynomials, decomposition is the same as factoring. Thus, for multilinear polynomials PIT and
factorization are equivalent up to a polynomial overhead. It is an interesting question whether
such a relation holds for general polynomials. Namely, whether PIT is equivalent to polynomial
factorization.

We note that in restricted models it may be the case that a polynomial and one of its factors
will have a different complexity. For example, consider the polynomial

f(x1, . . . , xk) =
k∏
i=1

(xki − 1) +
k∏
i=1

(xi − 1) =
k∏
i=1

(xi − 1) ·

(
k∏
i=1

(xk−1
i + . . .+ 1) + 1

)
.

Then f has 2k+1 − 1 monomials, but one of its irreducible factors has kk monomials. Thus, for
k = log n we can compute f as a sparse polynomial, but some of its factors will not be sparse (the
fact that f has only log n variables is not really important as we can multiply f by xlogn+1 · . . . ·xn
and still have the same problem). Thus, it is also interesting to understand whether it is even
possible to have some analog of our result for the factorization problem in restricted models. This
question touches of course the interesting open problem of whether the depth of a factor can increase
significantly with respect to the depth of the original polynomial.
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A From PIT to Justifying Assignments - with proofs

We now give the proof of Theorem 2.4. Before proceeding with the proof we need a few more
definitions. We start with the notion of a witness, which is given in the next definition.

Definition A.1. We say that 0 6= α ∈ F is a witness for xi in f if ∂f
∂αxi

6≡ 0 or i 6∈ var(f). A
vector ā ∈ Fn is a witness of f if each ai is a witness for xi in f .

The next lemma follows easily from the definitions.

Lemma A.2. Let f(x̄) be an n-variate polynomial over F. Let ᾱ be a witness for f . Then ā ∈ Fn is
a justifying assignment for f if for every i ∈ var(f) it holds that ∂f

∂αi xi
(ā) 6= 0. I.e., ā is a common

non-zero of the ∂f
∂αi xi

’s.

Proof. Let i ∈ var(f). Consider fi(xi)
∆= f(a1, . . . , ai−1, xi, ai+1, . . . , an). By definition, fi(αi) −

fi(0) = ∂f
∂αi xi

(ā) 6= 0. Or equivalently, fi(αi) 6= fi(0) which implies that fi(xi) depends on xi.

As this holds for every i ∈ var(f) it must be the case the ā is justifying assignment for f (recall
Proposition 2.2).

The following lemma shows that a sufficiently large field contains many witnesses.

Lemma A.3. Let f(x̄) be a polynomial with individual degrees bounded by d and let W ⊆ F be a
subset of size d+ 1 (we assume that |F| > d). Then Wn contains a witness for f .

Proof. Note that as witnesses for different variables are uncorrelated we can find a witness separately
for each variable. Consider i ∈ [n] and define ϕi(x̄, w) ∆= ∂f

∂wxi
(see Definition 2.3). In this way we

obtain a set of polynomials in the variables x̄ and w with individual degrees bounded by d. Thus,
α is a witness for xi in f if and only if ϕi(x̄, α) 6≡ 0 or i 6∈ var(f). If i 6∈ var(f) then any α ∈W is a
witness. Otherwise, ϕi(x̄, w) is a non-zero degree d polynomial in w and so W contains a witness
for xi. We can repeat the same reasoning for every i ∈ [n].

Finally, the following lemma is easy to verify.
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Lemma A.4. ∀i 6= j and α, β ∈ F, ∂f
∂αxi
|xj=β = ∂

∂αxi
(f |xj=β).

We now continue with our proof.
Algorithm 2 returns a justifying assignment for a polynomial f computed by a circuit from C.

The algorithm will invoke (as a subroutine) the supplied identity testing algorithm for ∂C. Before
giving the algorithm we explain the intuition behind it. Let f ∈ F[x1, . . . , xn] be a polynomial with
individual degrees bounded by d. What we are after is a vector ā = (a1, . . . , an) ∈ Fn such that if
f depends on xi then the polynomial f |x[n]\{i}=ā[n]\{i} also depends on xi. Following Lemma A.2,
given a witness ᾱ for f we would like to find an assignment ā for f such that if ∂f

∂αi xi
6≡ 0 then

also ∂f
∂αi xi

(ā) 6≡ 0. Therefore, we consider the polynomials
{
gi = ∂f

∂αi xi

}
i∈[n]

and look for a vector

ā, such that for every j 6= i, gi|xj=aj 6≡ 0. As the degree of xj in each gi is bounded by d there are
at most d “bad values” for aj . Namely, for most values of aj , we have that gi|xj=aj 6≡ 0. Hence, if
we check enough values we should find a good aj for every gi. To verify that gi|xj=aj 6≡ 0 we use
the PIT algorithm for ∂C. Actually, what we just described is not enough. To find a justifying
assignment we have to verify that after we assign aj to xj , simultaneously to all j 6= i, we get that
gi is not zero. We manage to do that variable by variable. First we find a1, then we assign a1 to
x1 in all the gi-s and get a new set of polynomials and so on.

Algorithm 2 Acquire Justifying Assignment
Input: An (n,s,d)-circuit C ∈ C computing a polynomial f ,

A subset V ⊆ F of size |V | = nd,
Access to a PIT algorithm for ∂C.

Output: A justifying assignment ā for f

1: Find a witness for f , ᾱ ∈ Fn {Using Lemma A.5 }
2: For i ∈ [n] set gi

∆= ∂f
∂αi xi

3: for j = 1 . . . n do
4: Find a value c such that for every i 6= j ∈ [n]: if gi 6≡ 0 then gi|xj=c 6≡ 0.
5: Set aj ← c
6: For every i 6= j ∈ [n] set gi ← gi|xj=aj .

We start by analyzing the step of finding the witness for f .

Lemma A.5. Let F be a field of size |F| > d. Let f be a polynomial that is computed by an
(n, s, d)-circuit C ∈ C over F. Then there is an algorithm that when given access to f (explicit or
black-box, depending on the PIT algorithm for ∂C) computes var(f) and outputs a witness ᾱ for
f in time O(n · d · T (s, d)), where T (s, d) is the running time of the PIT algorithm for ∂C when
C ∈ C is an (n, s, d)-circuit.

Proof. This is an immediate consequence of Lemma A.3. Fix i ∈ [n] and consider the polynomial
ϕi(x̄, w) ∆= ∂f

∂wxi
in the variables x̄, w. Then, for every c ∈ F, using the PIT algorithm, we check

whether ϕi(x̄, c) 6≡ 0. We stop once we find such a c and set αi = c. Lemma A.3 guarantees that
we will succeed. We thus see that for every i ∈ [n] we need to run the PIT algorithm for circuits of
the form ∂C (possibly after substituting values to some of the variables) for at most d + 1 values
from F until we find αi. Therefore the running time is O(n · d · T (s, d)).
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Theorem 2.4 actually gives the analysis of Algorithm 2. For convenience we repeat it here.

Theorem (Theorem 2.4). Let F be a field of size |F| ≥ nd. Let f be a polynomial that is computed
by an (n, s, d) circuit C ∈ C. Then, Algorithm 2 returns a justifying assignment ā for f in time
O(n3d · T (s, d)), where T (s, d) is the running time of the PIT algorithm for ∂C when C ∈ C is an
(n, s, d) circuit.

Proof. By Lemma A.5 we can indeed find a witness ᾱ for f . We now show that each iteration
j ∈ [n] succeeds, and that the algorithm outputs a justifying assignment. In order to succeed in
j-th phase, the algorithm must find c ∈ V such that for every i 6= j it holds that if gi 6≡ 0 then
gi|xj=c 6≡ 0. Since the gi’s have individual degrees bounded by d it follows that each gi has at most
d roots of the form of xj = c. Therefore, there are at most d(n−1) “bad” values of c. I.e., values for
which there exists i 6= j with gi 6≡ 0 and gi|xj=c ≡ 0. Consequently, V contains at least one “good”
value of c. We note that before the first iteration it holds that gi 6≡ 0 iff i ∈ var(f). In addition, for
each j ∈ [n], if gi is non-zero before the j-iteration then it will remain non-zero at the end of the
j-th iteration. We thus conclude that at the end of the n-th iteration, for every i ∈ var(f) it holds
that ∂f

∂αi xi
(ā) = gi 6= 0. Indeed, this follows from the definition of the gi’s and the fact that at each

iteration we substitute aj to xj in every gi. Consequently, ā is a justifying assignment for f .
Next we analyze the running time. Finding ᾱ requires O(nd) PIT checks for circuits of the form

∂C (as shown in Lemma A.5). The computation of gi can be done in O(s) time. In the execution
of the j-th iteration we perform, for each c ∈ V , (n− 1) PIT checks (again for circuits of the form
∂C). Hence, in every iteration we preform at most (n− 1) · |V | = (n− 1)nd PIT checks. Therefore,
we do at most (n− 1)n2d+nd < n3d PIT checks during the execution of the algorithm. Hence the
total running time of the algorithm is O(n3 · d · T (s, d)).
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