
Simulating Independence: New Constructions of Condensers,

Ramsey Graphs, Dispersers, and Extractors∗

Boaz Barak† Guy Kindler‡ Ronen Shaltiel§ Benny Sudakov¶ Avi Wigderson‖

March 8, 2010

Abstract

We present new explicit constructions of deterministic randomness extractors, dispersers and
related objects. We say that a distribution X on binary strings of length n is a δ-source if X
assigns probability at most 2−δn to any string of length n. For every δ > 0 we construct the
following poly(n)-time computable functions:

2-source disperser: D : ({0, 1}n)2 → {0, 1} such that for any two independent δ-sources
X1, X2 we have that the support of D(X1, X2) is {0, 1}.

Bipartite Ramsey graph: Let N = 2n. A corollary is that the function D is a 2-coloring of
the edges of KN,N (the complete bipartite graph over two sets of N vertices) such that
any induced subgraph of size Nδ by Nδ is not monochromatic.

3-source extractor: E : ({0, 1}n)3 → {0, 1} such that for any three independent δ-sources
X1, X2, X3 we have that E(X1, X2, X3) is o(1)-close to being an unbiased random bit.

No previous explicit construction was known for either of these for any δ < 1/2, and these
results constitute significant progress to long-standing open problems.

A component in these results is a new construction of condensers that may be of independent
interest: This is a function C : {0, 1}n → ({0, 1}n/c)d (where c and d are constants that depend
only on δ) such that for every δ-source X one of the output blocks of C(X) is (exponentially
close to) a 0.9-source. (This result was obtained independently by Ran Raz).

The constructions are quite involved and use as building blocks other new and known objects.
A recurring theme in these constructions is that objects which were designed to work with
independent inputs, sometimes perform well enough with correlated, high entropy inputs.

The construction of the disperser is based on a new technique which we call “the challenge-
response mechanism” that (in some sense) allows “identifying high entropy regions” in a given
pair of sources using only one sample from the two sources.

Categories and Subject Descriptors: G.2.1 [Discrete Mathematics]: Combinatorics

General Terms: Theory.

Keywords: Ramsey Graphs, Explicit Constructions, Extractors, Dispersers, Condensers.

∗A preliminary version of this paper appeared in STOC 2005.
†Department of Computer Science, Princeton University, boaz@cs.princeton.edu. Supported by NSF grants

CNS-0627526, CCF-0426582 and CCF-0832797, US-Israel BSF grant 2004288 and Packard and Sloan fellowships.
Most of this work was done when the author was a member in the school of Mathematics at the Institute for
Advanced study.
‡Department of Computer Science, Hebrew University, wgkindler@gmail.com. Most of this work was done while

the author was member in the School of Mathematics, Institute for Advanced Study.
§Department of Computer Science, University of Haifa, Israel, ronen@cs.haifa.ac.il. Supported by US-Israel

BSF grant 2004329 and ISF grant 686/07.
¶Department of Mathematics, University of California at Los Angeles, bsudakov@math.ucla.edu. Supported in

part by NSF CAREER award DMS-0812005 and a USA-Israeli BSF grant. Most of this work was done while author
was at Princeton University.
‖School of Mathematics, Institute for Advanced Study, Princeton, NJ, avi@ias.edu.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 37 (2010)

Contents

1 Introduction 1
1.1 Multiple Independent Sources . 1
1.2 Bipartite Ramsey Graphs and 2-Source Dispersers 2
1.3 (1-Source) Somewhere Condensers . 4
1.4 Some Related Subsequent Work . 4
1.5 Organization of the Paper . 5

2 Techniques and Overview of the Main Constructions 5
2.1 A Somewhere Condenser with a Constant Number of Output Blocks 5
2.2 A 2-source “Somewhere Extractor” . 6
2.3 A 4-source Extractor (and a 3-Source One) . 7
2.4 A 2-Source Disperser . 8

2.4.1 Subsources and a high level outline . 9
2.4.2 Nicely structured sources . 9
2.4.3 The somewhere extractor s ext′: extracting from nicely structured sources . 10
2.4.4 Selecting using the “challenge-response mechanism” 10
2.4.5 The function select . 11
2.4.6 Removing the unjustified assumption . 12

3 Preliminaries and Notations 13
3.1 Probability Notations. 13

3.1.1 Sources, min-entropy, entropy rate and statistical distance 13
3.1.2 Conditioning random variables . 13
3.1.3 Blocks . 14

3.2 Extractors and Dispersers . 14

4 Definitions of less standard concepts 14
4.1 Subsources . 15
4.2 Somewhere−P sources . 16
4.3 Somewhere-uniform sources . 16

5 A Somewhere Condenser 17
5.1 A basic condenser . 17
5.2 Composing condensers: Proof of Theorem 5.2 . 20

6 A 2-Source Somewhere-Extractor 21
6.1 The construction . 22

7 A 3-Source Extractor 23
7.1 An Appetizer: A 4-Source Extractor . 23
7.2 Down from 4 Sources to 3 . 24

8 A 2-Source Disperser 25
8.1 The Construction . 26

8.1.1 Partitions . 26
8.1.2 Ingredients . 26
8.1.3 Definition of the disperser disp . 27

1

8.2 An informal overview of the proof . 28
8.3 The Proof . 32

8.3.1 The main claim . 32
8.3.2 Nicely structured sources . 33
8.3.3 Extractor for nicely structured sources: proof of Claim 8.5 35
8.3.4 Rejecting incorrect partitions: proof of Claim 8.6 36
8.3.5 Existence of nicely structured sources: proof of Claim 8.7 37
8.3.6 Selecting the correct partition: proof of Claim 8.8 38

9 Proof for Stronger Notion of Dispersers 42
9.1 Proof of Claim 9.1 . 42
9.2 Proof of Claim 9.2 . 43

10 Conclusion and open problems 45

A Proof of Lemma 7.1 48

2

1 Introduction

Randomness extraction is the problem of distilling the entropy present in “weak random sources”
into a useful, (nearly) uniform distribution. Its importance and wide applicability to diverse theo-
retical and practical areas of computer science has motivated a large body of research over the last
20 years.

The goal of this research is to design a “randomness extractor function” f such that when ap-
plying f on an input chosen according to certain probability distributions (that is on “weak random
sources of randomness”) one obtains outputs which are (statistically close) to uniformly distributed
coin tosses. Much of this research assumes only that the given “weak source” has sufficient (min)-
entropy1, and that extractors can use an extra, short uniformly distributed independent “seed” to
aid in distilling the randomness. Such a seed (of logarithmic length) is easily seen to be necessary
in this setup. This line of research focuses on explicitly constructing extractors of small seed (and
long output). The survey [Sha02] explains some of the recent developments in this area, and the
papers [LRVW03, GUV09] contain the current state-of-art constructions in terms of the seed length
and output length.

However, certain applications (especially in cryptography) cannot “afford” the use of an extra
random seed (see e.g. [MP90, DS02, BST03]). To do without it, one must impose additional condi-
tions (beyond entropy content) on the class of sources from which one extracts. This body of work,
which includes [vN51, Blu86, SV84, CG88, OL89, Vaz87, CW89, CGH+85, TV00, MU01, KZ06, GRS04]
considers a variety of restrictions, mostly structural, on the given sources, and shows how to extract
from them deterministically (that is without an additional seed).

This paper provides several new explicit constructions of seedless extractors, dispersers and
related objects (all defined below), significantly improving on previous results. We also give several
weaker constructions, which are not quite seedless, but only use seeds of constant size. These are
important as building blocks of the seedless ones, and some are interesting in their own right.

We now turn to describe some of the new constructions, and for each discuss history and related
work. (We also discuss work that is subsequent to the publication of the conference version of this
paper in Section 1.4). For the sake of brevity and clarity, we skip some of our results, and state
others in less than full generality and precision.

1.1 Multiple Independent Sources

Background. Perhaps the most natural condition allowing seedless extraction is that instead of
one source with high entropy, we have several independent ones. This model was suggested by
Santha and Vazirani [SV84], and further studied by Chor and Goldreich [CG88] (who introduced
the now standard notion of min-entropy).

A function f : ({0, 1}n)` → {0, 1}m is called an `-source extractor (with entropy requirement k
and error parameter ε) if for every ` independent distributions X1, · · · , X`, each with min-entropy k,
the distribution f(X1, · · · , X`) (obtained by applying f on a sample from each source) has distance
at most ε from the uniform distribution on {0, 1}m. The distance from the uniform distribution is
measured according to statistical distance (see Section 3 for precise definitions).

For this model, the probabilistic method easily gives the best that can be hoped for: two sources
and Θ(log n) min-entropy suffice (and are necessary) for extraction. Moreover, such a function can
be computed in time 2O(n2). While this is a far cry from the explicitness we want (that is we want

1A distribution X over {0, 1}n has min-entropy (at least) k if for every x ∈ {0, 1}n, Pr[X = x] ≤ 2−k. We say
that X has entropy rate δ if X has min-entropy at least δn. A distribution X with rate δ is called a δ-source.

1

extractors computable in poly(n)-time), it will be used as a building block in our constructions.
We call such a function opt (for Optimal Extractor).

For two sources the best known explicit construction requires in contrast min-entropy > n/2.2

The Hadamard function Had : {0, 1}n × {0, 1}n → {0, 1} defined by Had(x, y) = 〈x, y〉 (mod 2) was
shown by [CG88] to be an extractor for two sources with rate slightly larger than 1/2. Moreover, a
natural variant Had′ which outputs m = Ω(n) was shown to be an extractor in [Vaz87] under the
same conditions (see a simplified and improved analysis in [DEOR04]). The Hadamard function
and its extension to long outputs Had′ will be an important building block in our construction.
Constructing explicit extractors that work with sources with rate smaller than 1/2 was open for
many years even if one allows the extractor to use a large number of sources ` < n.

Recently, [BIW04] (using the Sum-Product theorem of [BKT04]) gave an extractor that, for any
δ > 0 uses only a constant ` = poly(1/δ) δ-sources.3 Moreover, on n-bit sources, their extractor
outputs n bits and is exponentially close to uniform. The analysis seems to require that the total
entropy in all sources is at least the length of one source (and hence that ` > 1/δ). Still, this too
will be a building block in our new constructions in which the number of sources is a constant
independent of δ.

New Results. We construct a 3-source extractor which outputs a (nearly) unbiased bit (or any
constant number of bits) for every entropy rate δ > 0. That is, we prove the following theorem:

Theorem 1.1 (3-source extractor). For every constants δ, ε > 0 and m ∈ N, and for every suf-
ficiently large integer n there exists a poly(n)-time computable 3-source extractor 3ext : {0, 1}n×3 →
{0, 1}m such that for every three independent δ-sources X1, X2, X3, the distribution 3ext(X1, X2, X3)
is within ε statistical distance to the uniform distribution over {0, 1}m.

We remark that there are subsequent works which can use a constant number of sources for
lower rates and achieve better error. We discuss subsequent work in Section 1.4.

1.2 Bipartite Ramsey Graphs and 2-Source Dispersers

Ramsey Graphs. The probabilistic method was first used by Erdos to show the existence of
Ramsey graphs: That is, a 2-coloring of the edges of the complete graph on N vertices such
that no induced subgraph of size K = (2 + o(1)) logN is monochromatic. The best known explicit
construction of such a coloring by [FW81] only achieves a much larger value: K = 2Θ(

√
logN log logN).4

Bipartite Ramsey graphs. An even harder variant of this problem is the bipartite Ramsey
problem: Construct a 2-coloring of the edges of the complete N by N bipartite graph such that
no induced K by K subgraph is monochromatic. Setting N = 2n, a coloring is a function f :
({0, 1}n)2 → {0, 1}. It immediately follows that every 2-source extractor f with entropy-rate δ is a
coloring for the bipartite Ramsey problem with K = N δ. We remark that it is easy to transform
a bipartite Ramsey graph on 2N vertices into a (standard) Ramsey graph on N vertices while
only multiplying K by two (thus explicit constructions of bipartite Ramsey graphs immediately
translate into explicit constructions of Ramsey graphs). Until recently, the best known explicit

2In a subsequent work [Bou05] this was improved to min-entropy (1/2 − α)n for some constant α > 0. We
elaborate on subsequent work in Section 1.4.

3This extractor was proposed already in [Zuc90], but the analysis there relies on an unproven number theoretic assumption.
4In a subsequent work [BRSW06] extend the techniques developed in this paper and give an improved construction

of Ramsey graphs. We discuss subsequent work in Section 1.4.

2

construction of bipartite Ramsey graphs was that implied by the aforementioned Hadamard 2-
source extractor achieving K > N1/2. Recently, a slight improvement to K = N1/2/2

√
logN (which

in our terminology translates to δ = 1/2− 1/
√
n) was given by Pudlák and Rödl [PR04].5 ‘

2-source dispersers. An equivalent formulation of this problem is constructing a 1-bit output 2-
source disperser which is a well-known relaxation of an extractor. A 2-source (zero-error) disperser
of entropy rate δ is a function disp : {0, 1}n×{0, 1}n → {0, 1}m such that for every 2 independent
δ-sources X1, X2 we have that the support of disp(X1, X2) is {0, 1}m. In words, every possible
output occurs when the inputs range over all possible values in X1, X2 (and so only the support
matters, not the individual probabilities in the input sources).6 Note that when m = 1, a disperser
is equivalent to a bipartite Ramsey graph with K = N δ.

New Results. We give an explicit construction of a 2-source disperser for any constant rate δ > 0
and any constant output length m. Our disperser has the additional guarantee that every output is
obtained with at least a constant probability, which depends only on δ and on the number of output
bits. This construction can therefore be seen as being in between a disperser and an extractor. We
prove the following theorem:

Theorem 1.2 (Two-source disperser). For every constants δ > 0 and m ∈ N, and for every suffi-
ciently large integer n there exists a poly(n)-time computable function disp : {0, 1}n×2 → {0, 1}m
such that for every two independent δ-sources X1, X2 over {0, 1}n, the support of disp(X1, X2) is
{0, 1}m. Moreover, there exists a constant ϑ = ϑ(m, δ) > 0, such that for every z ∈ {0, 1}m,

Pr[disp(X1, X2) = z] ≥ ϑ(m, δ) .

We immediately obtain the following corollary.

Corollary 1.3 (Bipartite Ramsey Graph). For every constant δ > 0 there is a constant ϑ > 0 and
polynomial time algorithm such that for sufficiently large N the algorithm computes a 2-coloring c
of the edges of the complete N by N bipartite graph KN,N . (More precisely, when given an edge
(x, y) the algorithm runs in time polynomial in the length of its input and produces a color c(x, y)).
Furthermore, the coloring c has the property that every induced subgraph of size N δ by N δ has a ϑ
proportion of edges of both colors (and in particular is not monochromatic).

The result of Frankl and Wilson [FW81] gives explicit construction of Ramsey graphs with better
parameters. We stress that [FW81] only achieves Ramsey graphs and not bipartite Ramsey graphs.
In addition [FW81] only guarantees that no set of appropriate size is monochromatic. Therefore
the aforementioned additional guarantee in our disperser can be seen as a qualitative improvement
of the Frankl-Wilson construction for the case of Ramsey graphs.

We remark that there are subsequent works which extend the techniques of this paper and
give a 2-source disperser for smaller min-entropy requirement which in turn translate to improved
bipartite Ramsey graphs. More details are given in Section 1.4.

5The construction in that paper is only “weakly explicit” in the sense that the 2-coloring can be found in time polynomial
in N . The Hadamard 2-source extractor (as well as all the constructions in this paper) are “strongly explicit” meaning that f
is computable in time polynomial in n = logN .

6In the extractor literature dispersers usually come with an error parameter ε, and then the requirement is that the output
of f contains at least (1− ε)-fraction of all elements in {0, 1}m.

3

1.3 (1-Source) Somewhere Condensers

Intuitively, a condenser is a function whose output distribution is “denser” (has higher entropy
rate) than its input distribution. Condensing can be viewed as a weaker form of extraction and
indeed some constructions of extractors proceed by iterated condensing. Various condensers appear
in [RR99, RSW00, RVW00, TSUZ07, LRVW03, CRVW02] and other works, mainly as building blocks
to constructing extractors and expanders.

It is not hard to see that, like extractors, there are no deterministic condensers. However, unlike
extractors, which require logarithmic seed, condensing is possible (for interesting parameters) with
only constant length seed. As usual, this was shown via the probabilistic method, and no explicit
construction was known. All constructions in the papers above either use a super-constant seed, or
use a constant seed without guaranteeing the condensing property.7

New Results. We give the first explicit constant seed condenser for linear entropy. Loosely
speaking, we show that for every δ > 0 there are integers c, d and a poly(n)-time computable
function con : {0, 1}n → ({0, 1}n/c)d (i.e. con maps n bit strings into d blocks of length n/c), such
that for every δ-source X there is at least one output block of con(X) that is (exponentially close
to) having entropy rate ≥ 0.9. Here the 0.9 is an arbitrary constant - we can get as close as we
want to 1. (The precise statement appears in Section 5 and is slightly more technical - it allows
the output distribution of con to be a convex combination of distributions with the aforementioned
property). We call these objects somewhere condensers.

As we shall see, this condenser is not only interesting in its own right, but it also serves as a
basic block in our new constructions. Roughly speaking, it gives us the means to break the 1/2 rate
barrier, as it converts an input source of rate below that barrier into one (of a few output blocks -
something to be dealt with) whose rate is above that barrier.

Independently from our paper Raz [Raz05] gave a similar construction of a somewhere condenser
(achieving the same parameters as our construction). Furthermore, using a new variant of the
[LRVW03] merger, Raz constructs a condenser with the advantage that most of the output blocks
are condensed.

1.4 Some Related Subsequent Work

In this section we survey related work that is subsequent to the publication of the conference version
of this paper.

2-source extractors. The Hadamard extractor mentioned earlier was improved in two ways:
Bourgain [Bou05] constructed an extractor for two δ-sources with rate δ < 1/2 (more precisely,
there exists a constant α > 0 such that his extractor can work with sources of rate δ = (1/2− α)).
Raz [Raz05] constructed two source extractors where one of the sources is allowed to have very
small entropy (logarithmic in n) while the other source requires rate > 1/2.

O(1)-source extractors. Rao [Rao06] constructed extractors which can useO(log n/ log k) sources
with min-entropy k. Note that for k = nα this gives extractors for O(1/α) sources. Barak et al.
[BRSW06] gave an improved version of this extractor that achieves exponentially smaller error. Raz
[Raz05] used some of the methodology developed in this paper as well as his aforementioned 2-source

7The latter are the so called “win-win” condensers introduced in [LRVW03] whose analysis shows that when they fail to
condense, some other good thing must happen.

4

extractor to give 3-source extractors which improve over ours in the sense that two of the three
sources are allowed to have logarithmic min-entropy.

2-source dispersers and bipartite Ramsey graphs. Pudlak [Pud06] gave a different (and
simpler) construction of a coloring of the edges of the full bipartite N by N graph with 3 colors
such that no induced subgraph of size N1/2−ε by N1/2−ε is monochromatic for some fixed small ε.

Gabizon and Shaltiel [GS08] improved the output length in our construction of 2-source dis-
persers. Their construction starts with the disperser of this paper and extends it to achieve an
output length of m = Ω(n) where the hidden constant depends on δ.

Finally, building on the techniques introduced in this paper, Barak et al. [BRSW06] improved the
main result of this paper and constructed a 2-source disperser for min-entropy no(1). This translates
into an improved construction of a bipartite Ramsey graph. In fact, this improved construction
also improves the best previous construction of (non-bipartite) Ramsey graphs due to [FW81].

Condensers Zuckerman [Zuc06] gave another construction of a somewhere condenser with im-
proved constants.

1.5 Organization of the Paper

In Section 2 we give a high level overview of our constructions. In Section 3 we give some prelimi-
naries. In Section 4 we give formal definitions of less standard concepts that we use in the paper.
The construction of the somewhere condenser is presented in Section 5. We use this construction
to construct a new object which we call a “2-source somewhere extractor” in Section 6. This new
object is used as a building block in our latter constructions. The construction of our 3-source
extractor is presented in Section 7. The construction of our 2-source disperser is given in Section 8.
In Section 9 we show that our 2-source disperser has the stronger property that any element in the
output is obtained with constant probability. We present some conclusions and open problems in
Section 10.

2 Techniques and Overview of the Main Constructions

In this section we give a high level overview of our constructions. The description is informal and
we allow ourselves to oversimplify and ignore many technicalities in order to present the main ideas
that are used in the constructions and proofs. The reader can skip this section at any time and
move to the later sections for precise statements and proofs.

2.1 A Somewhere Condenser with a Constant Number of Output Blocks

The first object that we construct is a somewhere-condenser con. This is a function that receives
an n-bits δ-source X and outputs d blocks each of length n/c (where c and d are constants that
depend on δ) and has the guarantee that “one of the output blocks” is (close to) a 0.9-source.8

This “final condenser” con is constructed by first constructing a “basic condenser” bcon in which
the rate of the “good” output block is only guaranteed to improve slightly (namely to (1 +λ(δ)) · δ
where λ(δ) > 0 is an increasing function of δ). To obtain the final condenser con we apply bcon a
constant number of times to condense from rate δ to rate 0.9.

8The precise definition is given in Section 5 and requires that there exists a random variable I (which may depend
on X) such that con(X)I (namely, the I’th block of the output) is close to a 0.9-source. In this high level overview
we oversimplify the presentation and say that “one of the output blocks” is (close to) a 0.9-source.

5

? ?

�
��=

�
�/

�����)
?
S
Sw

�
��	

�
��� ?

A
AAU

Q
Q
Q
Qs

?

���������������9

?

J
J
J
JĴ

?

J
J
J
JĴ

PPPPPPPPPPPPPPPq ?

?

���������������9

?

· · ·

x y

Had′ Had′
Had′

con con

Figure 1: A 2-source somewhere extractor s ext.

We now explain how to construct the basic condenser bcon. We make use of an extractor
construction of Barak, Impagliazzo and Wigderson [BIW04] which gives that for every δ > 0 there
is a constant ` and an `-source extractor ext which given ` n-bits δ-sources produces an n-bit source
that is close to uniform. When given an n-bit source X, we partition it into ` blocks X1, . . . , X`

each on strings of length m = n/` and bcon(X) outputs the blocks X1, . . . , X` and the additional
block ext(X1, . . . , X`). Note that it is not necessarily the case that X1, . . . , X` are independent
δ-sources. However, we argue that if none of the blocks X1, . . . , X` has rate larger significantly
than δ then these blocks are “sufficiently independent” so that applying ext gives a source with
rate significantly larger than δ.

To explain the intuition behind the proof note that if we measure Shannon entropy rather than
min-entropy then by the chain rule for Shannon entropy we have that∑

1≤i≤`
H(Xi) ≥

∑
1≤i≤`

H(Xi|X1, . . . , Xi−1) = H(X) ≥ δn = ` · (δm)

Therefore, if it isn’t the case that there exists an i such that H(Xi) > δm then for every i,
H(Xi) = δm and H(Xi) = H(Xi|X1, . . . , Xi−1) which implies that X1, . . . , X` are independent and
we apply ext in a setting where it is guaranteed to extract.

The actual proof imitates the argument above but is more complex as min-entropy does not
have a well behaved notion of conditional entropy. Furthermore, note that we want to condense
to rate larger than (1 + λ)δ (as opposed to rate larger than δ). We show that if none of the Xi’s
has a significantly improved rate then if we compare the distribution of (the correlated variables)
X1, . . . , X` to an experiment where we take samples from X1, . . . , X` in an independent way, then
events that happen with small probability in the second experiment cannot have much larger
probability in the first experiment.

2.2 A 2-source “Somewhere Extractor”

Our two main constructions in this paper are a 3-source extractor and a 2-source disperser. For
both, an essential building block, is a 2-source somewhere extractor s ext (short for “somewhere
extractor”) for linear entropy, which we describe next.

6

�
��=

�
�/

�����)
?
S
Sw

�
��	

�
��� ?

A
AAU

Q
Q
Q
Qs

s ext s ext

x1 x2 x3 x4

@
@
@@R

�

A
A
AAU

�
�
�	

Q
Q
Q
Q
QQs

�
���

����

opt

?

Figure 2: A 4-source extractor 4ext.

What we prove is that for every δ > 0 there are integers c, ` and a poly(n)-time computable
function s ext : ({0, 1}n)2 → ({0, 1}n/c)`, such that for every two independent δ-sources X1, X2

there is at least one output block s ext(X1, X2)i which is (exponentially close to) uniform.
Constructing the somewhere extractor s ext is simple, given the condenser con of the previous

subsection. To compute s ext(X1, X2), compute the output blocks of con(X1) and con(X2). By
definition, some output block of each has rate > .9. We don’t know which, but we can try all pairs!
For each pair we compute the aforementioned Vazirani variant Had′ of the Hadamard 2-source
extractor for rate > 1/2 [Vaz87] to obtain a constant number of linear length blocks, one of which
is exponentially close to uniform. Formally, if d is the number of output block of con, then s ext

will produce ` = d2 blocks, with s ext(X1, X2)(i,j) = Had′(con(X1)i, con(X2)j). This construction
is depicted in Figure 1.

To see the power of this gadget, let us first see (intuitively) how to get from it a deterministic
4-source extractor for linear entropy. Later we will employ it in several ways to get our 2-source
disperser.

2.3 A 4-source Extractor (and a 3-Source One)

In this subsection we explain how to construct a 4-source extractor 4ext, and then how to modify
it to the promised 3-source extractor 3ext. These will combine the 2-source somewhere extractor
s ext with the aforementioned nonexplicit optimal 2-source extractor opt.

Recall that our 2-source somewhere extractor s ext produces a constant number (say) ` of linear
length output blocks, one of which is random. First we note that we can w.l.o.g. assume that s ext
produces ` shorter blocks with the same guarantee (as a prefix of a random string is random).

Let us indeed output only a constant b bits in every block (satisfying b ≥ log(`b)). Concatenating
all output blocks of this s ext(X1, X2) gives us a distribution (say Z1) on `b bits with min-entropy
≥ b. If we have 4 sources, we can get another independent such distribution Z2 from s ext(X3, X4).
But note that these are two independent distributions on a constant number of bits with sufficient
min-entropy for (existential) 2-source extraction. Now apply an optimal (nonexplicit) 2-source
extractor on Z1, Z2 to get a uniform bit; as `b is only a constant, such an extractor can be found

7

�
��=

�
�/

�����)
?
S
Sw

�
��	

�
��� ?

A
AAU

Q
Q
Q
Qs

s ext s ext

x1

@
@
@@R

Q
Q
Q
Q
QQs

�
���

����

opt

?

x2

�
�
�	

x3
��

����

HH
HHHHj

Figure 3: A 3-source extractor 3ext.

in constant time by brute-force search! To sum up, our 4-source extractor is

4ext((X1, X2); (X3, X4)) = opt(s ext(X1, X2), s ext(X3, X4))

See Figure 2 for a schematic description of this construction.
Reducing the number of sources to 3 illustrates a simple idea we’ll need later. We note that

essentially all 2-source constructions mentioned above are “strong”. This term, borrowed from the
seeded extractor literature, means that the output property is guaranteed for almost every way of
fixing the value of one of the two input sources. With this in mind, we can reuse (say) X2 in the
second somewhere extractor s ext instead of X4 to yield a 3-source extractor

3ext((X1, X2, X3) = opt(s ext(X1, X2), s ext(X3, X2))

This construction is depicted in Figure 3. A randomly chosen sample x2 from X2 will w.h.p have
the property that both s ext(X1, x2) and s ext(X3, x2) are somewhere random. Note that once
X2 is fixed to a value x2 the two aforementioned distributions are independent. It follows that for
most fixed values of X2 we apply opt on independent distributions with sufficient entropy and we
indeed obtain an output that is (close to) uniform.

2.4 A 2-Source Disperser

In this subsection we give a high level overview of our construction of a 2-source disperser. The
construction is significantly more complicated than those of the previous objects and relies on the
somewhere extractor s ext and the nonuniform optimal 2-source extractor opt that we explained
previously.

An appealing approach to construct a 2-source disperser (or a 2-source extractor) is to try and
select the “correct output block” of a somewhere random extractor. That is, when given two inputs
x, y that are sampled from independent δ-sources X,Y one can run s ext(x, y) to obtain d output
blocks where one of them is random and then try to select the correct output block. An obvious
obstacle is that the only information available to the disperser at this point is the pair of inputs
x, y and this doesn’t suffice to determine the correct block.

8

An important contribution of this paper is showing that this naive idea can be implemented in
some setups. To explain how the naive idea can make sense we need the notion of subsources that
is explained next.

2.4.1 Subsources and a high level outline

We say that an n-bit source X ′ is a subsource of an n-bit source X if there exists a function
f : {0, 1}n → {0, 1} such that Pr[f(X) = 1] > 0 and X ′ = (X|f(X) = 1) (that is the conditional
distribution of X when conditioned on the event {f(X) = 1}). We call {f(X) = 1} a defining event
for X ′. We construct the disperser by designing two procedures:

• somewhere extractor s ext′(x, y) (with roughly the same parameters as that of s ext).

• A function select(x, y) which when given x, y outputs a name of an output block of s ext′.

We will show that: For any two independent δ-sources X,Y there exists a subsource X̃ of X and
a subsource Ỹ of Y (note that X̃, Ỹ are independent by definition) such that:

• There is a constant i such that select(X̃, Ỹ) outputs i with probability very close to one.

• s ext′(X̃, Ỹ)i is (very close to) uniform and therefore it outputs every output string z ∈
{0, 1}m with positive probability.

Together, these two properties give that disp(x, y) = s ext(x, y)select(x,y) is a 2-source disperser.
This is because disp indeed outputs any possible output string z with positive probability when
applied on X̃, Ỹ . Furthermore, the defining events {f1(X) = 1} and {f2(Y) = 1} of the subsources
X̃, Ỹ both have positive probability and are independent. It follows that when we sample from
(X,Y) we have positive probability to land in {f1(X) = 1 ∩ f2(Y) = 1} and when this happens we
output z with positive probability.

2.4.2 Nicely structured sources

Before explaining how to construct the procedures s ext′ and select we observe that any δ-source
X has a subsource X ′ that is “nicely structured”. (The “good subsource” X̃ guaranteed above
is going to be a subsource of X ′ which in addition to being nicely structured will have additional
properties). We now explain what we mean by a nicely structured source. Given an n bit source
X we partition it into t = 10/δ blocks (each of length δn/10 bits) which we denote by X1, . . . , Xt.
When given an i ∈ [t] we consider three blocks: X<i (the concatenation of X1, . . . , Xi−1), Xi

(the i’th block) and X>i (the concatenation of Xi+1, . . . , Xt). We say that a source X is nicely
structured according to i ∈ [t] if X>i is fixed to some constant value, Xi has constant rate and X<i

has constant rate when conditioned on Xi. It is not hard to show that indeed every δ-source has
a nicely structured subsource X ′. In order to explain this argument at a high level let us replace
min-entropy with Shannon entropy (the actual proof uses a similar strategy but is more complicated
as min-entropy does not have well behaved notion of conditional entropy). By the chain rule for
entropy we have that:

δn ≤ H(X) =
∑
i∈[t]

H(Xi|Xi+1, . . . , Xt)

Let i be the largest index such that H(Xi|Xi+1, . . . , Xt) ≥ (δ/2) · (n/t) (in words that the con-
ditional rate of the i’th block is larger than δ/2). Note that such an index must exist. Furthermore,

9

note that H(X<i|Xi, X>i) ≥ δn− (δn/2 + δn/10) ≥ δn/4. This is because by the way we chose i,
H(X>i) < δn/2 and we also have that H(Xi) ≤ |Xi| = δn/10 and so the remaining entropy must
lie in X<i. Let X ′ be the subsource (X|X>i = z) for some “typical string” z and note that X ′ is
nicely structured.

2.4.3 The somewhere extractor s ext′: extracting from nicely structured sources

It turns out that we have already constructed an extractor for two independent nicely structured
sources! We can show that given two independent sources X̃, Ỹ that are nicely structured according
to (i1, i2) respectively, applying our 4-source extractor 4ext(X̃<i1 , Ỹi2 , Ỹ<i2 , X̃i1) produces a uniform
output. This is somewhat surprising as the four distributions above are not independent. Still, we
show that they are sufficiently independent for the argument showing the correctness of 4ext to go
through. We will not explain why this is the case in this high level outline. Let us just mention that
the reasoning is similar in spirit to the case of the analysis of 3ext and once again the “strongness
property” of s ext plays an important role in the argument.

We now explain how to design the aforementioned somewhere extractor s ext′. This extractor
will have t2 output blocks where we think of each block i ∈ [t2] as a pair (i1, i2) ∈ [t]2. We define
s ext′(x, y) to be the output of 4ext when partitioning x, y according to (i1, i2). Note that we
indeed have that for any two nicely structured sources X̃, Ỹ there exists an i = (i1, i2) such that
s ext(X̃, Ỹ)i produces a uniform output.

It may not be clear at this point why the construction of s ext′ gives progress over that of
s ext. After all, s ext is a somewhere extractor that works on any sources (not necessarily nicely
structured). The main advantage is that we will be able to couple s ext′ with a function select

that will find the right output block i = (i1, i2) when applied on nicely structured sources.

2.4.4 Selecting using the “challenge-response mechanism”

Consider a source X that is nicely structured according to an index i1 ∈ [t]. Our goal is to show
that we can find the index i1. (We remark that in the final argument X will be a nicely structured
subsource of the original source).
The following properties of i1 will allow us to find it:

• For i ≥ i1, X>i is fixed (as X>i1 is fixed).

• For i < i1, X>i has constant rate (as X>i contains Xi1 as a substring, and Xi1 has constant
rate).

Thus to “select” i1 we need a test that will distinguish the case that X>i is fixed from the case
when X>i has constant rate.

An important contribution of this paper is developing a methodology (which we call “the
challenge-response mechanism”) that gives such a test. The construction and analysis of the test
are quite involved and require many details. A precise description of the construction appears in
Section 8.1 and a detailed high level informal overview of the analysis appears in Section 8.2.

In the remainder of this informal overview we attempt to present the high level ideas that come
into the challenge-response mechanism (without presenting the precise construction). In order to
do this we make an unjustified simplifying assumption and assume the existence of a very strong
object (stronger than the disperser that we are constructing, and in fact so strong that it doesn’t
even exist). We explain how to select the “right block” using this object. We later comment how
one can replace the simplifying assumption with the components that are available to us.

10

Unjustified simplifying assumption: A 1-source somewhere extractor: We assume that for
any δ > 0 there exist integers `, c and a poly(n)-time computable function 1ext : {0, 1}n →
({0, 1}n/c)` such that for any δ-source X there exists i ∈ [`] such that 1ext(X)i is uniformly
distributed.

It is easy to show that such an object does not exist. Still we now explain how using this object
one can design a function select(x) that “selects” the correct index i1 (in a sense to be explained
precisely below) when applied on a nicely structured source. In the actual proof we design a more
complicated function select that is applied on samples x, y from the two independent sources.
Jumping ahead we mention that instead of 1ext we will use the somewhere extractor s ext (that
indeed produces a somewhere random distribution when applied on two independent constant rate
sources).

2.4.5 The function select

Let X ′ be a nicely structured source according to index i1. Recall that we are assuming the
existence of the 1-source somewhere extractor 1ext. We design a function select(x) with the
following property: There exists a subsource X̃ of X ′ that is nicely structured according to i1 such
that select(X̃) outputs i1 with probability one.

Let us first observe why this is good enough for our purposes. When given a δ-source X we
already showed that it has a nicely structured subsource X ′ and we now show that this subsource
has a nicely structured subsource X̃ on which select chooses the “correct index” i1 with probability
close to one. Therefore, this subsource X̃ has the two properties listed in Section 2.4.1 needed for
our construction to succeed.
We now explain how to implement the function select(x):

Challenge strings: For every i ∈ [t] we compute ci(x) = 1ext(x>i) (we call these strings “chal-
lenge strings”). In this application of 1ext we output ` blocks of length k for some large
constant k. It follows that the overall length of challenge strings is some constant `k.

Response strings: We compute r(x) = 1ext(x). In this application of 1ext we output ` blocks
of length `k (that is the length of challenge strings). In other words, r(x) is composed of a
constant number of blocks r1(x), . . . , r`(x) (which we call response strings) where each one is
of length of a challenge string.

We say that “the i’th challenge is responded” if there exists a response string rv such that rv = ci.
The function select outputs the minimal i such that the i’th challenge is responded (if there exists
such an i). We first observe the following properties of challenge strings and response strings:

Constant rate block: If X is a source such that X>i has constant rate then for any v:
Pr[rv(X) = ci(X)] ≤ 2−k.

Fixed block: If X is a source such that X>i is fixed then there exists a v such that:
Pr[rv(X) = ci(X)] ≥ ρ where ρ = 2−`k < 2−k.

Before explaining why these two properties hold, let us explain why they are useful. This is not
obvious at all. It would have made more sense if we could guarantee that ρ is very close to one. In
that case, the event we are considering distinguishes between the two cases and intuitively this can
help us find out which of the two cases happened. However, the way the two items are stated, the

11

two properties above do not seem helpful as they do not distinguish between the two cases. (For
example, it can be the case that the probability is 2−k in both cases).

In order to use the properties above we note that X ′>i1 is fixed and by the second property
(the fixed block case) there exists a v1 such that Pr[rv1(X ′) = ci1(X ′)] ≥ ρ. Let us consider the
subsource:

X̃ = (X ′|rv1(X ′) = ci1(X ′))

Note that in this subsource the challenge ci1 is responded with probability one! Furthermore as
ρ is a constant the conditioning above reduces the entropy of X ′ by a constant number of bits.
This means that X̃ has roughly the same entropy as X ′ and is therefore also nicely structured.
We already observed that this gives that for any i < i1, X̃>i has constant rate and so by the first
property above (the constant rate case) for any v, Pr[rv(X̃) = ci(X̃)] ≤ 2−k. We can choose the
constant k large enough to do a union bound over all response strings and it follows that w.h.p.
the i’th challenge string is not responded. We can proceed and do a union bound over all i < i1
and conclude that w.h.p. on all these i’s the i’th challenge is not responded which means that
select(X̃) = i1 as required! Note that we indeed have that X̃ is a subsource of X which meets all
our requirements.

Finally, let us verify that the two properties above hold: For the constant rate block case note
that for any value r of any response string rv we have that conditioning on the event {rv(X) = r}
reduces the entropy by at most the length of the response string which is constant. Thus, X>i still
retains constant rate and so ci(X) = 1ext(X>i) has an output block of length k that is uniformly
distributed. It follows that for any response string rv, Pr[rv(X) = ci(X)] ≤ 2−k.

For the fixed block case note that if X>i is fixed then ci(X) = 1ext(X>i) is fixed. On the other
hand there exists a v such that rv(X) = 1ext(X)v is uniformly distributed. As the length of the
challenge string is a constant `k we have that Pr[rv(X) = ci(X)] ≥ 2−`k and indeed ρ = 2−`k.

2.4.6 Removing the unjustified assumption

Let us briefly review the argument so far. We designed a procedure select and showed that for any
δ-source X there exists a subsource X̃ which is nicely structured according to i1 and furthermore,
w.h.p. select(X̃) selects the index i1. When given two independent δ-sources X,Y we consider
their “good subsources” X̃, Ỹ . On these subsources we can select the “correct indices” (i1, i2) and
once we have these indices we can apply the somewhere extractor s ext′(X̃, Ỹ)(i1,i2) to produce a
uniformly distributed output.

However, we have assumed the existence of 1ext that enabled us to construct the procedure
select. It is easy to show that there does not exist a 1-source somewhere extractor with a small
number of output blocks. Nevertheless, it is important to observe that we already constructed
a 2-source somewhere extractor s ext with the same guarantees on the output as that of 1ext!
When trying to select the index i1 of the first source X we will use the fact that we have another
independent source Y at our disposal. In the actual construction we replace invocations of 1ext(·)
by s ext(·, y).

This introduces many problems where the most serious one is that in several places in the
argument we considered conditioning a source X on the event of fixing one response string (that is
an event of the form {1ext(X)v = r} for some constants v, r). In the actual analysis this will be
replaced by conditioning two independent sources X,Y on an event of the form {s ext(X,Y)v = r}.
However, this conditioning may make the two sources dependent and the argument does not go
through. In order to solve this problem we use a more complicated construction of response strings:
On a very high level we will make sure that response strings are generated by applying s ext on
very short substrings of x, y. Using this choice we can show that even after conditioning X,Y on

12

the event “the response string rv is fixed to a value r” the two sources are sufficiently independent
for the argument to go through.

The precise construction is given in Section 8.1. We also provide an overview of the analysis in
Section 8.2.

3 Preliminaries and Notations

In this section we give some standard preliminaries and formal definitions of extractor and dis-
persers.

3.1 Probability Notations.

3.1.1 Sources, min-entropy, entropy rate and statistical distance

We will usually deal with random variables which take values in {0, 1}n. We call such a random
variable an n-bit source. The min-entropy of a random variable X, denoted by H∞(X), is defined to
be minx{− log2(Pr[X = x])}, or equivalently log2 (1/maxx{Pr[X = x]}). We shall usually identify
a random variable X with the distribution it induces. The entropy rate of an n-bit source X is
defined to be H∞(X)/n. A δ-source is a distribution with entropy rate at least δ. The support of
a random variable X, denoted by Supp(X), is the set of elements x for which Pr[X = x] > 0. If
Pr[X = x] = Pr[X = x′] for every x, x′ ∈ Supp(X) we say that X is a flat source.

Let X and Y be random variables taking values in a set Λ. The statistical distance between X
and Y , denoted by dist(X,Y) is defined to be 1

2

∑
x∈Λ |Pr[X = x]− Pr[Y = x]|. We say that X is

ε-close to Y if dist(X,Y) ≤ ε.

3.1.2 Conditioning random variables

Given a random variable X and an event E such that Pr[E] > 0 we use (X|E) to denote the
probability distribution on values of X that is obtained when conditioning the probability space
on the event E. More precisely the distribution (X|E) assigns probability Pr[X = x|E] to any
x ∈ Supp(X). We need the following standard lemmas (we include the proofs for completeness):

Lemma 3.1. Let X be a random variable such that H∞(X) ≥ k, and let E be an event such that
Pr[E] ≥ p and let X ′ be the distribution (X|E). Then, H∞(X ′) ≥ k − log(1/p).

Proof. For any x in the support of X we have that:

Pr[X = x|E] =
Pr[X = x ∧ E]

Pr[E]
≤ Pr[X = x]

p
≤ 2−(k−log(1/p))

Lemma 3.2. Let X1, X2 be random variables such that H∞((X1, X2)) ≥ k and X2 takes values in
{0, 1}r. Then H∞(X1) ≥ k − r.

Proof. By an averaging argument for every x1 in the support of X1 there exists x2 in the support
of X2 such that Pr[X2 = x2|X1 = x1] ≥ 2−r. Note that:

Pr[X1 = x1] · Pr[X2 = x2|X1 = x1] = Pr[X1 = x1 ∧X2 = x2] ≤ 2−k

It follows that: Pr[X1 = x1] ≤ 2−k/2−r = 2−(k−r).

13

Lemma 3.3. Let X1, X2 be random variables such that H∞(X1) ≥ k and X2 takes values in {0, 1}r.
Then for every ρ > 0 with probability 1 − ρ over choosing x2 ← X2 we have that H∞(X1|X2 =
x2) ≥ k − r − log(1/ρ).

Proof. Let G = {x2 : Pr[X2 = x2] ≥ 2−(r+log(1/ρ))}. Note that Pr[X2 6∈ G] ≤ 2r · 2−(r+log(1/ρ)) ≤ ρ.
For x2 ∈ G we can use Lemma 3.1 on the variable X1 and the event {X2 = x2} to show that
H∞(X1|X2 = x2) ≥ k − r − log(1/ρ).

3.1.3 Blocks

Let X be an n-bit source, and let us write it as a vector of one-bit variables (X1, . . . , Xn). For
a set S ⊆ [n] of coordinates we define the XS , to be |S|-bit source (Xi)i∈S , obtained from X by
only taking its S coordinates. We note that by Lemma 3.2 for every n-bit source X and S ⊆ [n] it
holds that H∞(XS) ≥ H∞(X)− (n− |S|). Also, if dist(X,Y) < ε then dist (XS , YS) < ε for every
S ⊆ [n].

3.2 Extractors and Dispersers

In this section we define some of the objects we will later construct, namely multiple-source extrac-
tors and dispersers.

Definition 3.4 (Multiple-source extractor). A function ext : {0, 1}n×` → {0, 1}m is called an
`-source extractor with entropy requirement k and error ε if for every independent n-bit sources
X(1), . . . , X(`) satisfying H∞(X(i)) ≥ k for i = 1, . . . , ` it holds that

dist
(
ext(X(1), . . . , X(`)), Um

)
≤ ε

Definition 3.5 (Multiple-source disperser). A function disp : {0, 1}n×` → {0, 1}m is called an
`-source disperser with entropy requirement k and error ε if for every independent n-bit sources
X(1), . . . , X(`) satisfying H∞(X(i)) ≥ k for i = 1, . . . , ` it holds that

|Supp(disp(X(1), . . . , X(`)))| ≥ (1− ε)2m

The disperser is errorless if ε = 0 (i.e., if |Supp(disp(X(1), . . . , X(`)))| = 2m).

Note that a multiple-source extractor is always a multiple-source disperser with the same pa-
rameters. Generally speaking, when constructing extractors and dispersers our goal is on one hand
to use the weakest assumptions on the input and hence we want to minimize the number of sam-
ples ` and the min-entropy requirement k. On the other hand we want to obtain the strongest
guarantees on the output, and thus we want to maximize the output length m and minimize the
error ε.

We note that one can also define asymmetric variants of extractors and dispersers, in which the
min-entropy requirements and the input length differ for each of the source.
In this paper we use the following construction by Barak, Impagliazzo and Wigderson [BIW04].

Theorem 3.6 ([BIW04]). There exists γ > 0 such that for every δ > 0 there exists ` = (1
δ)O(1) and

a polynomial time computable `-source extractor ext : {0, 1}n×` → {0, 1}n with entropy requirement
k = δn and error ε = 2−γn.

4 Definitions of less standard concepts

In this section we introduce two key concepts that are used in the paper.

14

4.1 Subsources

As explained in the introduction, a key notion in our construction of 2-source dispersers is that of
subsources.

Definition 4.1 (Subsource). Let X be an n-bit source in some probability space. We say that an
event A is determined by X if there exists a function f : {0, 1}n → {0, 1} such that A = {f(X) = 1}.

Let X and X ′ be n-bit sources. For 0 < α ≤ 1, we say that X ′ is a subsource of X of measure
α if there exists an event A that is determined by X such that Pr[X ∈ A] ≥ α and X ′ = (X|A).
We call A a defining event for X ′. We say that X ′ is a subsource of X if there exists α > 0 such
that X ′ is a subsource of X of measure α.

The following fact is obvious from the definition.

Fact 4.2. Let X be an n-bit source. Let X ′ be a subsource of X of measure α1, and X ′′ be a
subsource of X ′ of measure α2 then X ′′ is a subsource of X of measure α1 · α2.

In a typical setting our probability space consists of two independent n-bit δ-sources X,Y . It is
important to notice that if A is some event in this probability space it does not necessarily follows
that (X|A) is a subsource of X. This is because only events that are determined by X are allowed.
The following trivial fact will be useful.

Fact 4.3. Let X,Y be two independent sources and let X ′ be a subsource of X of measure α1 and
Y ′ be a subsource of Y of measure α2 then the distribution (X ′, Y ′) (in which the two variables are
independent) is a subsource of measure α1 · α2 of the distribution (X,Y)

Subsource collection. Given independent n-bits sources X,Y we also define a notion of a col-
lection of subsources. This notion is only used in the proof that our 2-source disperser has the
additional property that it hits every element in its output range with constant probability. (This
proof is given in Section 9). The reader can safely skip this notion at a first reading and move to
the next subsection.

Definition 4.4 (Subsource collection). Let X,Y be independent n-bit sources. For 0 < α ≤ 1,
we say that subsources X1, . . . , Xk of X and Y1, . . . , Yk of Y are a subsource collection of (X,Y)
of measure α if there are events A1, . . . , Ak defining X1, . . . , Xk and B1, . . . , Bk defining Y1, . . . , Yk
such that:

• For every i 6= i′, (Ai ×Bi) ∩ (Ai′ ×Bi′) = ∅.

•
∑

i∈[k] Pr[X ∈ Ai] Pr[Y ∈ Bi] ≥ α.

Note that by Fact 4.3 the subsources X ′, Y ′ in Fact 4.3 constitute a subsource collection of
(X,Y) of measure α1 ·α2. The advantage of subsource collections is that we are sometimes able to
show the existence of a “useful” subsource collection of (X,Y) with “large” measure in cases where
we do not have “useful” subsources X ′ of X and Y ′ of Y with large measure.
Continuing the analogy between subsources and subsource collections, we also state the following
analog of Fact 4.2.

Fact 4.5. Let X,Y be independent n-bit sources and let w1, w2 be integers. Let X ′1, . . . , X
′
w1

and
Y ′1 , . . . , Y

′
w1

be a subsource collection of (X,Y) of measure α1. Furthermore, for every j ∈ [w1]
let X ′′j,1, . . . , X

′′
j,w2

and Y ′′j,1, . . . , Y
′′
j,w2

be a subsource collection of (X ′j , Y
′
j) of measure α2. Then,

the collection (X ′′j1,j2)j1∈[w1],j2∈[w2] and (Y ′′j1,j2)j1∈[w1],j2∈[w2] is a subsource collection of (X,Y) of
measure α1 · α2.

15

4.2 Somewhere−P sources

We discuss families or properties of random variables. Let P be a property of sources (namely, P
is a set of all distributions that have the property). We say that a random variable X is ε-close to
having the property P, if there exists a random variable Y ∈ P that is ε-close to X. Let Pε denote
the property of being ε-close to P.

We now define the notion of somewhere-P sources, which intuitively means that a source X has
the property P in one of its blocks.

Definition 4.6 (Somewhere−P sources). Let P be a property of n-bit sources. Let X be an (n×`)-
bit source, and let us regard it as a concatenation of ` consecutive blocks, X = (X1, . . . , X`), where
each Xi is of length n. A selector I for X is a random variable (that may depend on X) taking
values in [`].

X is somewhere-P if there exists a selector I such that the n-bit source XI has the property P.
We use this notion only when the partition of X into sub-blocks is clear from the context.

We observe that being ε-close to somewhere-P is equivalent to being somewhere-Pε.

Lemma 4.7. Let P be a property of m-bit sources an let X be a distribution over {0, 1}m×`. Then,
X is ε-close to somewhere-P if and only if X is somewhere-Pε.

Proof. Let X be ε-close to somewhere-P. That is, there are random variables Y and I such that
X is ε-close to Y and YI has the property P. W.l.o.g. we can imagine that the probability space of
Y, I is composed of two independent random variables Y,R and that I = f(Y,R) for some function
f . We now consider the probability space which consists of random variables X ′, R where X ′ is
distributed according to X and R is independent of X ′. Let I ′ = f(X ′, R). It follows that X ′I′ is
ε-close to YI and thus, X is somewhere-Pε.

For the other direction, we use the fact that for any two distributions P,Q that are ε-close
there exist (correlated) random variables P ′, Q′ such that P ′ is distributed according to P , Q′

is distributed according to Q and Pr[P ′ 6= Q′] ≤ ε. Let X be somewhere-Pε. It follows that
there exists a correlated random variable I such that XI is ε-close to a distribution in P. By the
aforementioned fact we can add to the probability space of X, I a correlated random variable Z
that has property P and Pr[XI 6= Z] ≤ ε. We now define a random variable Y over {0, 1}m×` as
follows: we set YJ = XJ for every J 6= I and set YI = Z. It follows that Y is ε-close to X and note
that Y is somewhere-P using the selector I.

4.3 Somewhere-uniform sources

We are especially interested in the case where the property P is “uniform”. More precisely, a
somewhere-uniform distribution X over {0, 1}n×` is a distribution that is somewhere-P where
P contains only the uniform distribution on n-bit strings. We use the following properties of
somewhere-uniform distributions.

Lemma 4.8 (Properties of somewhere-uniform sources). Let X be a somewhere-uniform distribu-
tion over {0, 1}n×` then

• H∞(X) ≥ n− log `.

• For every n′ < n let X ′ be a distribution over {0, 1}n′×` obtained by truncating each block of
X to length n′. Then, X ′ is somewhere-uniform.

16

Proof. For the first item note that H∞(X, I) ≥ H∞(XI) and by Lemma 3.2 H∞(X) ≥ H∞(X, I)−
log `. The second item follows as truncating a uniform distribution gives a uniform distribution.

Note that by Lemma 4.7 we also have that being close to somewhere-uniform and being somewhere-
(close to uniform) is the same.

Remark 4.9 (Ta-Shma’s notion of Somewhere-uniform sources). We remark that a slightly dif-
ferent notion of Somewhere-uniform sources was previously considered by Ta-Shma [TS96]. This
notion requires that for every value i of the selector I, the distribution (XI |I = i) is uniform.
To make the distinction between the two definitions more clear consider the distribution X over
{0, 1}1×2 which assigns probability one to the string (x1, x2) = (0, 1). Consider the selector I over
{1, 2} which gives equal probability to the two values. The distribution XI is uniform and using our
jargon this gives that X is a somewhere uniform distribution. However, using Ta-Shma’s definition
a distribution that assigns probability one to a single element cannot be somewhere uniform.

We use the weaker notion defined in this paper as it suffices for our purposes and is easier to
work with. Nevertheless, we remark that our techniques can also be used to give results which use
the stronger notion.

5 A Somewhere Condenser

In this section we construct the following object which we call a somewhere condenser.

Definition 5.1 (Somewhere Condensers). A function con : {0, 1}n → {0, 1}m×` is a somewhere-
condenser with entropy requirement k, output entropy k′ and error ε if for every n-bit source X such
that H∞(X) ≥ k, con(X) is ε-close to somewhere-P where P is the property of having min-entropy
at least k′.

The main result of this section is a construction of a somewhere condenser which given a δ-source
outputs a constant number of blocks and has output entropy rate 0.9.

Theorem 5.2 (Somewhere condenser). For every constant δ > 0, there exist constants β, η > 0,
` ≥ 1 and a polynomial time computable function con : {0, 1}n → {0, 1}m×` such that for every
sufficiently large n, con is a somewhere-condenser with m = βn, entropy requirement δn, output
entropy 0.9m and error 2−ηm.

We remark that the constant 0.9 can be replaced with any constant smaller than 1. For our
application it is only important that this constant is larger than 1/2. The remainder of this section
is devoted to proving Theorem 5.2.

5.1 A basic condenser

We start by constructing a “basic condenser” which improves the rate of the output by a small
amount. Loosely speaking, sources with rate δ are “condensed” into sources with rate δ(1 + λ(δ))
where λ is an increasing function of δ.9 The final condenser con is then obtained by iteratively
applying the basic condenser.

9A preliminary version of this paper included a different construction of a “basic condenser” see discussion in
Remark 5.4.

17

Theorem 5.3 (Basic condenser). There exist universal constants η, α > 0 and c ≥ 1 such that for
every constant 0 < δ ≤ 0.9, there exist constants β′ > 0, `′ ≥ 1 and a polynomial time computable
function bcon : {0, 1}n → {0, 1}m×`′ such that for every sufficiently large n, bcon is a somewhere-
condenser with m = β′n, entropy requirement δn, output entropy ((1 + λ) · δ) ·m for λ = ηδc, and
error ε = 2−αδm.

Proof. When given δ > 0 we use Theorem 3.6 to get an extractor ext for sources of entropy rate
δ/2. In this proof it is more convenient to denote the length of the source by m. That is, by
Theorem 3.6 there exists ` = (1/δ)O(1), γ > 0 and an `-source extractor ext : {0, 1}m×` → {0, 1}m
with entropy requirement δm/2 and error 2−γm. We can assume w.l.o.g. that γ ≤ 1/100. We
define λ = γ/(3`), m = n/`, `′ = ` + 1 and β′ = 1/`. Given a string x of length n we partition it
into ` blocks of length m which we denote by x1, . . . , x` and define:

bcon(x) = (x1, . . . , x`, ext(x1, . . . , x`))

Note that the output of bcon indeed consists of `′ = ` + 1 blocks of length m = β′n. (We can
assume w.l.o.g. that ` divides m as for large enough n we can pad an n-bit source with zeros to
make it a source of length that is a multiple of ` while only slightly decreasing the entropy rate δ).

Let k′ = (1 + λ/2) · δm and consider the property P of m-bit sources having min-entropy at
least k′. Given an n-bit source X with H∞(X) ≥ δn we need to show that bcon(X) is ε-close to
somewhere-P. We can assume w.l.o.g. that X is a flat source and is uniformly distributed over
a set S ⊆ {0, 1}n. This is because every source X with H∞(X) ≥ δn is a convex combination of
flat sources and furthermore, the class of distributions that are ε-close to somewhere-P are closed
under convex combinations.

For every 1 ≤ i ≤ ` + 1 we define Hi = {y ∈ {0, 1}m : Pr[bcon(X)i = y] ≥ 2−(1+λ)δm}, namely
the “heavy elements” of the distribution bcon(X)i. It follows that for every i, |Hi| ≤ 2(1+λ)δm. Let
ε = 2−αδm where α = γ/3. We distinguish between two cases:

Case 1: Pr[∃i : bcon(X)i 6∈ Hi] ≥ 1 − ε. Let S′ be the set of x ∈ S for which the event above
holds, namely:

S′ = {x ∈ S : ∃i, bcon(x)i 6∈ Hi}

Let X ′ be the uniform distribution over S′. Note that X and X ′ are ε-close. It is therefore sufficient
to show that bcon(X ′) is somewhere-P. For x ∈ S′ we define I(x) to be the smallest i such that
bcon(x)i 6∈ Hi. We now consider the probability space that consists of X ′ and I = I(X ′) and show
that indeed H∞(bcon(X ′)I) ≥ (1 + λ/2)δm for large enough n.

For this purpose we fix some y ∈ {0, 1}m and estimate Pr[bcon(X ′)I = y]. In the calculation
below we use the fact that for every i such that y ∈ Hi and every x ∈ S′ such that I(x) = i we
have that bcon(x)i 6= y. In addition, we also use the fact that for every i, y,

Pr[bcon(X ′)i = y] = Pr[bcon(X)i = y|X ∈ S′] ≤ 2 Pr[bcon(X)i = y]

where the inequality follows using Pr[A|B] ≤ Pr[A]/Pr[B] and for large enough n, Pr[X ∈ S′] ≥
1− ε ≥ 1/2. We now proceed with the calculation.

18

Pr[bcon(X ′)I = y] =
∑

1≤i≤`+1

Pr[bcon(X ′)i = y ∧ I = i]

=
∑
i:y 6∈Hi

Pr[bcon(X ′)i = y ∧ I = i]

≤
∑
i:y 6∈Hi

Pr[bcon(X ′)i = y]

≤
∑
i:y 6∈Hi

2 Pr[bcon(X)i = y]

≤ 2(`+ 1) · 2−(1+λ)δm

≤ 2−(1+λ)δm+2 log `

≤ 2−(1+λ/2)δm

Case 2: Pr[∀i : bcon(X)i ∈ Hi] ≥ ε. We are going to show that this is a contradiction and
together with the analysis we made in Case 1 this completes the proof. Let S′ be the set of all
x ∈ S for which the event above holds, namely:

S′ = {x ∈ S : ∀i, bcon(X)i ∈ Hi}

We have that
|S′| ≥ ε · |S| ≥ ε · 2δn = ε · 2δ`m = 2(`−α)δm

Note that S′ is a subset of Π1≤i≤`Hi. In particular,

|H1| · . . . · |H`| ≥ |S′| ≥ 2(`−α)δm

However, as we have that for every 1 ≤ i ≤ m, |Hi| ≤ 2(1+λ)δm we can conclude that

|H1| ≥
|S′|

|H2| · . . . · · · |H`|
≥ 2(`−α)δm

(2(1+λ)δm)`−1
≥ 2δm(1−α−(`−1)λ) ≥ 2−δm/2

where the last inequality follows because α = γ/3, λ = γ/3` and γ ≤ 1/100. The same reasoning
gives that for every 1 ≤ i ≤ `, |Hi| ≥ 2δm/2. We now consider a probability space with ` independent
random variables Y1, . . . , Y` where each Yi is an m-bit source that is uniformly distributed over Hi.
We are going to get a contradiction by estimating Pr[ext(Y1, . . . , Ym) ∈ H`+1] in two ways. We
have that for every i, H∞(Yi) ≥ δm/2 and therefore we have that ext(Y1, . . . , Ym) is 2−γm-close to
uniform. In particular,

Pr[ext(Y1, . . . , Ym) ∈ H`+1] ≤ |H`+1|
2m

+ 2−γm ≤ 2(1+λ)δm

2m
+ 2−γm = 2−m(1−δ−λδ) + 2−γm ≤ 2−γm+1

where the last inequality follows because δ ≤ 0.9, λ = γ/3` and γ ≤ 1/100. On the other hand, for
every x ∈ S′ we have that ext(x1, . . . , x`) ∈ H`+1. Therefore,

Pr[ext(Y1, . . . , Y`) ∈ H`+1] ≥ Pr[(Y1, . . . , Y`) ∈ S′] =
|S′|

|H1| · . . . · |H`|

19

≥ 2(`−α)δm

2(1+λ)δm`
= 2−δm(α+λ`) ≥ 2−2γm/3

where the last inequality follows because δ ≤ 1, α = γ/3 and λ = γ/3`. Thus, we obtain a
contradiction as 2−2γm/3 > 2−γm+1.

Remark 5.4 (A basic condenser with four output blocks). We remark that the constants in
Theorem 5.3 can be improved and some of them can be made universal constants that do not
depend on δ. More specifically, assume that n = 3p where p is a prime (this is w.l.o.g. by padding
the input if necessary). Define the function bcon : {0, 1}n → {0, 1}p×4 as follows: When given an
input x ∈ {0, 1}n split it into x1, x2, x3 where each of these is a string of length p. We can identify
such strings with elements in the field with 2p elements and define:

bcon(x) = (x1, x2, x3, f(x1, x2, x3))

where
f(x1, x2, x3) = x1 + x2 · x3

It can be shown that there exists a universal constant λ > 0 such that for every constant
0 < δ ≤ 0.9 bcon is a somewhere condenser with entropy requirement δn, output entropy (1+λ)δ ·p
and error 2−λδ

2
. Note that this improves Theorem 5.3 in that both the number of blocks and the

“expansion factor” λ are now universal constants that do not depend on δ.
The high level idea of the proof can be described as follows: The first step is to show that for

three independent δ-sources Y1, Y2, Y3 over {0, 1}p the random variable f(Y1, Y2, Y3) is close to a
(1+λ)δ source. The second step is to use the argument in the proof of Theorem 5.3 using f instead
of the extractor ext. (This argument appeared in the conference version of this paper).

Barak, Impagliazzo and Wigderson [BIW04] showed how to implement the first step above for
the special case of prime fields (and guaranteeing an “expansion factor” λ = Ω(δ)). The proof
of [BIW04] relies on a “sum-product theorem” by Bourgain, Katz and Tao [BKT04]. Using recent
improved “sum-product theorems” [TV06, Thm 2.55],[KS09] one can extend the argument of [BIW04]
and implement the first step above for fields with 2p elements using a universal constant λ > 0.
The reader is referred to [TV06] for a survey on “sum-product theorems”.

Proving the extension of the results of [BIW04] to fields of size 2p is not within the scope of
this paper and therefore in Theorem 5.3 we chose to present a somewhere condenser that is based
on the extractor of [BIW04] and has worse parameters. We remark that the argument presented in
this version resembles the one that was independently obtained by Raz [Raz05].

We note that using the improved basic condenser in our constructions of 3-source extractor
and 2-source disperser does not affect the parameters in the final results (except for improving the
dependance of certain constants on the constant δ).

5.2 Composing condensers: Proof of Theorem 5.2

We now iteratively apply the basic condenser to construct the condenser of Theorem 5.2. We need
the following straightforward lemma on composition of somewhere-condensers.

Lemma 5.5 (Composing condensers). Let C1 : {0, 1}n1 → {0, 1}`1×n2 be a somewhere condenser
with entropy requirement k1, output entropy k2 and error ε1. Let C2 : {0, 1}n2 → {0, 1}`2×m be
a somewhere condenser with entropy requirement k2, output entropy k′ and error ε2. We define
C : {0, 1}n1 → {0, 1}`1·`2×m as follows: Identify an index i ∈ [`1 · `2] as a pair (i1, i2) ∈ [`1] × [`2]
and let

C(x)(i1,i2) = C2(C1(x)i1)i2

20

Then C is a somewhere condenser with entropy requirement k1, entropy output k′ and error ε1 + ε2.

Proof. Let X be an n1-bit source with H∞(X) ≥ k1. Let P1 be the property of having min-
entropy k2 and let P2 be the property of having min-entropy k′. We have that C1(X) is ε1-close
to somewhere-P1. By Lemma 4.7, C1(X) is somewhere-P1

ε1 , that is there exists a selector I1 such
that C1(X)I1 is ε1-close to a distribution Y with H∞(Y) ≥ k2. We have that C2(Y) is ε2-close to
somewhere-P2. Since XI1 and Y are ε1-close it follows that C2(Y) and C2(XI1) are ε1-close and
we can conclude that C2(XI1) is (ε1 + ε2)-close to somewhere-P2. That is, there exist a selector I2

such that C(X)(I1,I2) = C2(XI1)I2 is (ε1 + ε2)-close to somewhere-P2 as required.

Theorem 5.2 follows by iteratively applying the basic condenser of Theorem 5.3 and using the
composition lemma above. Note that starting with entropy rate δ > 0 each step improves the
entropy rate by a factor (1 + λ). We have that λ is an increasing function of δ and therefore after
a constant number of steps (where this constant depends on δ) we obtain rate 0.9.

6 A 2-Source Somewhere-Extractor

In this section, we construct a (2-source) somewhere-extractor, which is a function that given
inputs from two independent n-bit δ-sources (where δ is an arbitrarily small constant) outputs a
somewhere-uniform distribution.

Definition 6.1 (Somewhere-extractor). We say that

s ext : {0, 1}n × {0, 1}n → {0, 1}m×`

is a somewhere-extractor with entropy requirement k and error ε if for every two independent n-bit
sources X,Y with H∞(X) ≥ k and H∞(Y) ≥ k then s ext(X,Y) is ε-close to a somewhere-uniform
distribution.

A fixed y ∈ {0, 1}n is good for first source X if s ext(X, y) is ε-close to a somewhere uniform
distribution. Similarly, a fixed x ∈ {0, 1}n is good for second source Y if s ext(x, Y) is ε-close to
a somewhere uniform distribution. (If we omit mentioning for which source a fixed string is good
then we mean the first source). We say that s ext is a strong somewhere-extractor with the same
parameters as above if for every X,Y as above,

Pr
y←Y

[y is good for first source X] > 1− ε

and
Pr
x←X

[x is good for second source Y] > 1− ε.

The main result of this section is a construction of a somewhere-extractor which takes two
independent δ-sources and produces a somewhere-uniform distribution with a constant number of
blocks.

Theorem 6.2 (Somewhere-extractor). For every constant δ > 0 there are constants ` ≥ 1, β, η > 0
such that for every m ≤ βn there is a polynomial-time computable function s ext : {0, 1}n ×
{0, 1}n → {0, 1}m×` such that for every sufficiently large n, s ext is a strong somewhere-extractor
with entropy requirement δn and error ε ≤ 2−ηn.

21

y
�
�
�/ ?

Z
Z
Z
Z~

�
�
�/

�
�

��	 ?

@
@
@R

�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
��+ ?

�
�
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

��+

C
C
C
C
C
C
C
C
C
C
C
C
CW

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

��+

B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
A
A
AU

�
�
�
�
�
�
�
�
�
�
�
�
��

S
S
S
S
S
S
S
S
S
S
S
S
Sw

�

@
@
@
@
@
@
@
@
@
@
@
@@R

B
B
B
B
B
B
B
B
B
B
B
B
BN

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
ZZ~

C
C
C
C
C
C
C
C
C
C
C
C
CW

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z~

B
B
B
B
B
B
B
B
B
B
B
BBN

x

x2 x3

z1,1 z1,2

x1

z1,3 z2,1 z2,2 z2,3 z3,1

xi = con(x)i

Condenser

yj = con(y)j
y3y2y1

z3,3z3,2

zi,j = Had(xi, yj)

Hadamard

Figure 4: A (2-source) Somewhere-Extractor

6.1 The construction

The outline of our construction is sketched in Figure 4. Roughly speaking, the idea behind the
construction is to use the somewhere condenser derived from Theorem 5.2 to obtain from each
source a list of blocks one of whom has entropy rate larger than 1

2 . We then apply to every possible
pair of blocks the previously known construction of a two-source extractor that works for sources
with rate larger than 1

2 (i.e., for every choice of a block from the first source and a block from the
second source we run the two-source extractor on both blocks and output the results). The number
of blocks in the output is the product of the number of output blocks of two condensers. Another
tool which we need, in addition to Theorem 5.2, is the following result on two-source extractors.

Theorem 6.3 (Two-source extractors [CG88, Vaz87, DEOR04]). There is a polynomial-time 2-
source extractor Had : {0, 1}n×2 → {0, 1}k with k = Ω(n), entropy requirement 0.6n and error
2−Ω(n). Furthermore, this 2-source extractor is strong. More formally, it is a strong somewhere
extractor (with ` = 1 output blocks) for entropy requirement 0.6n and error 2−Ω(n).

We remark that the strongness property of the extractor above was first observed in [DEOR04].

Proof of Theorem 6.2. Given δ let β and ` be the constants from Theorem 5.2 and let con be
the somewhere condenser from the theorem. We have that con has entropy requirement δn and

error ε = 2−Ω(βn) and outputs ` blocks of length n′
def
= βn. Let Hadn′ be the two source extractor

of Theorem 6.3 with input length n′. Our somewhere random extractor will have `2 blocks. We
index such a block by a pair of elements in [`] and define

s ext(x1, x2)(j1,j2) = Hadn′(con(x1)j1 , con(x2)j2)

By definition, the length of every output block is Ω(n′) = Ω(n). Let X1, X2 be independent
n-bit sources with H∞(X1) ≥ δn and H∞(X2) ≥ δn. For i ∈ {1, 2}, by definition of coni, there
exist random variable Ii such that coni(Xi)Ii is εi close to have rate 0.9 > 0.6. This implies

22

Q
Q
Q
QQs

�
�

�
�=

@
@
@R

�
�

�
�=

x1 x2 x3 x4

y = s ext(x1, x2) z = s ext(x3, x4)
HHH

HHH
HHj

��
���

����

opt(y, z)

Figure 5: A 4-source extractor

that s ext(X1, X2)(I1,I2) is ε-close to uniform distribution for ε =
(
ε1 + ε2 + 2−Ω(n′)

)
= 2−Ω(n′).

Using Lemma 4.7 we conclude that the output of the extractor is ε-close to a somewhere uniform
distribution. Moreover, using the fact that Had is a strong extractor it follows that s ext is also
strong. Since n′ = Ω(n), we conclude there exist a constant η > 0 (that depends on δ) such that
ε ≤ 2−ηn. Finally by Lemma 4.8 we can truncate the output blocks to length m if we want to
reduce the block length to m ≤ βn.

7 A 3-Source Extractor

In this section we prove Theorem 1.1. That is we construct a three source extractor for sources
with rate δ for any δ > 0. This is the first construction of an `-source extractor that works for
sources with rate δ such that the constant ` · δ can be made arbitrarily small.

The two tools we use in this construction is the somewhere random extractor of Section 6 and
an optimal two source extractor with very small input size. For very small input sizes it is sufficient
to show the existence of a 2-source extractor using the probabilistic method as one can find such
an extractor by brute force. The next Lemma describes the extractor we use in our construction.

Lemma 7.1 (Optimal Extractor). For every integers d and m = blog dc, there exists a 25d14-
time computable 2-source extractor opt : {0, 1}d×2 → {0, 1}m with 6 log d-entropy requirement and
distance 1/d.

The proof of Lemma 7.1 follows by a standard calculation and is given for completeness in
Appendix A.

7.1 An Appetizer: A 4-Source Extractor

Before proving Theorem 1.1 we prove a slightly relaxed version of it, which demonstrates the main
idea behind the proof. That is, we prove that there exists a 4-source extractor with the same
parameters. The construction of this extractor is quite simple.

The construction Given the constants δ, ε and m we choose d large enough to satisfy:

• 1
d <

ε
2 (recall that ε is the desired statistical distance)

23

• log d ≥ m

• d/` − log ` ≥ 6 log d. (Here ` is the constant from Theorem 6.2 that is defined as a function
of δ).

Next apply Theorem 6.2 to get a somewhere random extractor with entropy requirement δn. Let
`, β and η be the constants whose existence is guaranteed by the theorem and note that since n is
large βn > d/`. We can truncate the length of blocks to d/`. We denote this somewhere-extractor
by s extd/`. This extractor outputs ` blocks of length d/` so overall it outputs d bits. Its output
is 2−ηn-close to somewhere-uniform.

Let opt be the “optimal extractor” from Lemma 7.1 with input length d. As d is a constant it
follows that opt can be computed in constant time. Note that the output length of opt is log d ≥ m,
so we can truncate it to length m. Our 4-sample extractor ext4 : {0, 1}n×4 → {0, 1}m is defined as
follows (see also Figure 5):

4ext(x1, x2, x3, x4) = opt
(
s extd/`(x1, x2) , s extd/`(x3, x4)

)
We now observe that this indeed gives a 4-source extractor with the required parameters.

Theorem 7.2 (4-source extractor). For every constants δ, ε > 0 and m ∈ N, and for every suffi-
ciently large integer n there exists a poly(n)-time computable 4-source extractor 4ext : {0, 1}n×4 →
{0, 1}m with entropy requirement δn and error ε.

Proof. Let X1, . . . , X4 be independent distributions over {0, 1}n all with entropy rate at least
δ. We have that s ext(X1, X2) is 2−ηn-close to a somewhere random distribution with ` blocks.
Recall that a somewhere random distribution with ` blocks of length d/` has min-entropy at least
d/`− log ` > 6 log d. It follows that s ext(X1, X2) is 2−ηn-close to having min-entropy 6 log d and
the same holds for s ext(X3, X4). Thus, we apply opt with two independent distributions which
meet its entropy requirement and can conclude that the output is (2 · 2−ηn + 1/d)-close to uniform.
We have that 1/d < ε/2 and therefore for large enough n, 2 · 2−ηn + 1/d ≤ ε, as required.

7.2 Down from 4 Sources to 3

To construct a 3-source extractors we use the fact that our somewhere random extractor is in fact
strong. Using this property we are able to show that we can “reuse” one of the sources without
harming the input distribution.

The construction: Given the constants δ, ε and m we choose the parameters as in the construc-
tion for 4-sources. Our 3-source extractor is given by:

3ext(x1, x2, x3) = opt
(
s extd/`(x1, x2) , s extd/`(x3, x2)

)
Proof of Theorem 1.1. Let X1, X2, X3 be independent distributions over {0, 1}n with entropy rate
at least δ. Recall that s ext is a strong somewhere extractor, and recall the notion of a “good”
input from Definition 6.1. For i ∈ {1, 3}, let Bi = {x : x is bad for Xi}. We have that Prx←X2 [x ∈
Bi] ≤ 2−ηn. Let B = B1 ∪ B3. It follows that if we fix random value of x2 then with probability
1−2 ·2−ηn we obtain that x2 6∈ B. For every such fixed x2 6∈ B, the distributions s ext(X1, x2) and
s ext(X3, x2) are independent. Furthermore, each one of them is 2−ηn-close to a somewhere random
distribution with ` blocks of length d/`. As in the case of 4 sources, such a distribution meets the
entropy requirements of opt and therefore for all x2 6∈ B, opt

(
s ext(X1, x2), s ext(X3, x2)

)
is

24

Q
Q
Q
QQs

�
�

�
�=

x1

y = s ext(x1, x2)
HHH

HHH
HHj

��
���

����

opt(y, z)

x3x2

z = s ext(x2, x3)

���������)

PPPPPPPPPPq

Figure 6: A 3-source extractor

(2 · 2−ηn + 1/d)-close to uniform distribution. This implies that opt
(
s ext(X1, X2), s ext(X3, X2)

)
is (4 · 2−ηn + 1/d)-close to uniform. Once again, we note that (4 · 2−ηn + 1/d) ≤ ε for large enough
n. 2

8 A 2-Source Disperser

In this section we construct a 2-source disperser for sources of any constant rate δ > 0. This proves
Theorem 1.2. We first restate Theorem 1.2 using the notation of Section 3.

Theorem 8.1 (2-source disperser). For every two constants δ > 0 and m ∈ N there exists a
polynomial time computable function disp : {0, 1}n×2 → {0, 1}m such that for every sufficiently
large n, disp is a 2-source disperser with entropy requirement δn and zero error.

As mentioned in the introduction our techniques give an object that is stronger than a disperser
(although weaker than an extractor). A disperser guarantees that for any two independent δ-sources
X and Y and for any z ∈ {0, 1}m, Pr[Disp(X,Y) = z] > 0. However, dispersers are allowed to
assign very small probabilities to some values z. Our construction has the following stronger
property:

Theorem 8.2 (stronger notion of 2-source disperser). For every two constants δ > 0 and m ∈ N
there exists a polynomial-time computable function disp : {0, 1}n×2 → {0, 1}m and a constant
ϑ = ϑ(m, δ) > 0, such that for every sufficiently large n, and for every two independent n-bit
δ-sources X,Y and for every z ∈ {0, 1}m we have

Pr
[
disp(X,Y) = z

]
≥ ϑ.

Theorems 8.1,8.2 give new explicit constructions of bipartite Ramsey graphs as stated in Corol-
lary 1.3.

Proof. (of Corollary 1.3) To prove this corollary, let V1 = V2 = {0, 1}n be two sets of vertices of size
N = 2n. Define a 2-coloring of the edges of the complete bipartite graph KN,N with parts V1 and
V2 as follows. The color of an edge (x, y) : x ∈ V1, y ∈ V2 is disp(x, y). Then the above theorem
implies that for every two subsets A ⊆ V1 and B ⊆ V2 of size at least N δ = 2δn and for every color,
the constant proportion of edges between A and B has this color. In particular, this coloring has
no monochromatic induced subgraph of size N δ by N δ.

25

8.1 The Construction

Our goal is to construct a disperser for two independent sources. More precisely, we are given
parameters δ > 0 and an integer m. We think of these parameters as constants and for any
sufficiently large n (as a function of δ and m) we construct a function disp : {0, 1}n×2 → {0, 1}m
which is a 2-source disperser with entropy requirement δn.

8.1.1 Partitions

Our construction considers various partitions of the input strings x, y ∈ {0, 1}n. We divide [n] into

t
def
= 10/δ equal blocks of length δn/10. (We assume from now on that t divides n. This is without

loss of generality as we can always add dummy bits to inputs to make the requirement hold, at the
cost of only slightly decreasing δ.) For each i ∈ [t] we consider a partition of [n] into three segments
in the following way. The first segment S1 consists of the blocks 1, . . . , i− 1. The second segment
S2 consists of the block i and the third segment S3 consists of the blocks i+1, . . . , t. More formally,
let q = δn/10 be the length of blocks then S1 = {1, . . . , (i− 1)q}, S2 = {(i− 1)q + 1, . . . , iq} and
S3 = {iq + 1, . . . , n}. (It is possible that some segments are empty.) For a string x ∈ {0, 1}n, i ∈ [t]
and j ∈ [3] we define xij to be the restriction of x to the indices in the j’th segment. More precisely,

xij
def
= xSj where Sj is the j’th segment that is defined using the block i. We often omit i if it is

clear from the context and then x1, x2, x3 refer to the substrings xi1, x
i
2, x

i
3.

A partition I is a pair (i1, i2) that is used to partition two strings x, y of length n. More precisely,

given a partition I and strings (x, y) ∈ {0, 1}n×2 we define xIj
def
= xi1j and yIj = yi2j . That is, i1 is

used to partition x and i2 is used to partition y. We often omit I if it is clear from the context
(that is for a fixed partition I we may write expressions like x2 or y3). Note that the number of
different partitions is t2 = 100/δ2 which is a constant that depends only on δ.

We also define a partial order � on partitions in the following way: Given two partitions
I = (i1, i2) and I ′ = (i′1, i

′
2) we say that I � I ′ if i1 ≤ i′1 and i2 ≤ i′2. Note that two partitions may

be incomparable according to this partial order. We say that I 6� I ′ if it does not hold that I � I ′
(in particular, I and I ′ are incomparable then I 6� I ′).

8.1.2 Ingredients

The construction of the disperser uses the same ingredients used in the proof of Theorem 1.1 but
in a significantly more complicated way. In order to make the presentation modular we review the
properties of the objects that we need. (The properties are also summarized in Figure 7).

A somewhere extractor We make use of a strong somewhere extractor of Theorem 6.2. More
precisely, we assume that there exist positive constants `, β and η (that may depend on δ) such that
we have a polynomial time computable strong somewhere extractor s ext : ({0, 1}n)2 → {0, 1}βn×`
with entropy requirement δ5n/1000 and distance 2−ηn. We use the notation s extb to denote the
application where the ` outputs are truncated to length b. In the formal presentation below we
abuse the notation and allow s ext to receive inputs of length varying between δ3n and n by padding
the input with zeros if necessary. Summing up, for every constant b and every two independent
distributions X,Y on strings of lengths n1, n2 respectively, where n1, n2 are between δ3n and n,
and assuming H∞(X) ≥ δ5n/1000 and H∞(Y) ≥ δ5n/1000 we have that s extb(X,Y) is o(1)-close
to a somewhere-uniform distribution.

26

A non-constructive optimal 2-source extractor for sources of constant size We use
Lemma 7.1 to obtain a 2-source extractor opt : {0, 1}d×2 → {0, 1}m with a constant d large enough
so that log d > 100m and d

` − log ` > 10 log d. By the lemma we have that this extractor is
computable in polynomial time and has error 1/d ≤ 2−100m and entropy requirement 6 log d. The
requirements on the parameters are essentially similar to those made in Section 7.1 and are used
to guarantee that opt can be applied on the output of s extd/`.

8.1.3 Definition of the disperser disp

Given input strings x, y of length n we do the following:

1. For every partition I we will define a polynomial time procedure dispI(x, y). The final output
of the disperser will be dispI(x, y) for some partition I that will be chosen as a function of
x and y. We next explain how to choose the partition I.

2. For every partition I we will define a polynomial time procedure testI(x, y) that outputs a
Boolean value. We say that the partition “passes” the test if testI(x, y) accepts.

3. The operation of the disperser is as follows: When given the inputs x, y we go over all
partitions I and compute testI(x, y). We choose the partition I that is minimal with respect
to the partial order � amongst the partitions that passed the test. If the minimal partition
is not unique we choose an arbitrary minimal partition. If no partition passes the test we
choose an arbitrary partition. Finally, once we decide on a partition I we set disp(x, y) =
dispI(x, y).

The procedure dispI(x, y): Given a partition I, we define:

dispI(x, y) = opt(s extd/`(x1, y2), s extd/`(y1, x2))

The procedure dispI is described pictorially in Figure 9.

The procedure testI(x, y). Given a partition I, we define testI(x, y) as follows:

1. Choose k to be large enough constant so that `4t2/δ32−k ≤ 2−10m (note that this is possible
as all other parameters participating in the inequality above are constants). Let c1(x, y) =
s extk(x3, y) and let c2(x, y) = s extk(y3, x) (if x3 is of length zero we set c1 to be a fixed
string of length k and if y3 is of length zero we set c2 to be a fixed string of length k). Let
c = c(x, y) be the concatenation of c1(x, y) and c2(x, y). Note that |c| = 2`k since the number
of output blocks in all somewhere-extractors which we are using is `. We refer to c as the
“challenge string” of x, y for partition I.

2. We now consider another way of partitioning a string x of length n into blocks. We assume
(again without loss of generality) that δ3n divides n and partition [n] into p = 1/δ3 intervals
of length δ3n. More precisely, for 1 ≤ v ≤ p let x[v] denote the v’th block that is x[v] =
x{(v−1)δ3n+1,...,vδ3n}. For every (v1, v2) ∈ [p]2 let cv1,v2(x, y) = s ext2`k(x[v1], y[v2]). Note
that there is at most a constant number of such possible pairs (v1, v2) ∈ [p]2. We refer to
cv1,v2 = cv1,v2(x, y) as a “response string”.

3. The procedure testI(x, y) computes c(x, y). It also computes cv1,v2(x, y) for all (v1, v2) ∈ [p]2.
Note that for every pair (v1, v2) the length of each of the ` blocks in cv1,v2 is exactly 2`k which

27

is the length of the challenge string c. If there exists a pair (v1, v2) such that c is a sub-block
of cv1,v2 then we say that “the challenge is responded” and set testI(x, y) = 1. Otherwise,
testI(x, y) = 0.

This concludes the description of the construction. To assist the reader we summarize all the
ingredients and parameters in Figure 7 and Figure 8.

Figure 7: Ingredients used in the construction of disp

• A somewhere random extractor s extb. This extractor can be applied on any two
independent sources with lengths varying from δ3n to n and has entropy threshold
δ5n/1000. It extracts ` blocks of length b where b only needs to satisfy that 0 < b ≤
βn for some constant β > 0. It has error 2−ηn for some constant η > 0.

• A 2-source extractor opt that can extract m bits from any two independent sources
of length d and entropy requirement 6 log d where d > m is a constant that is chosen
so that the error of opt is smaller than 2−100m.

Figure 8: Parameters used in the construction
Name Description Notes

n Length of the two inputs of disp

δ > 0 Entropy rate of the two input sources Assumed to be a constant independent of n

m Required output length of disp Assumed to be a constant independent of n

t = 10/δ Number of blocks in partitions

p = 1/δ3 Number of blocks in defining response strings We partition any string x of length n into p
blocks of length δ3n. The v’th block
is denoted by x[v]

` Number of output blocks of s ext A constant that depends only on δ

k Length of blocks in the challenge string A constant chosen by the construction
so that `4t2/δ32k ≤ 2−10m

8.2 An informal overview of the proof

In this section we attempt to give a detailed informal overview of the proof. The reader may skip
to the formal proof at any point.

The outline of the proof We show that for every two independent sources X,Y with entropy
rate δ there exists a partition Ĩ and subsources X̃ of X and Ỹ of Y such that dispĨ(X̃, Ỹ) is (very

close to) uniformly distributed. Furthermore, we show that with high probability Ĩ is the partition
selected when choosing x ← X̃ and y ← Ỹ . Together, these two properties imply that disp is a
2-source disperser as for any two independent δ-sources X,Y and any string z of length m:

Pr[disp(X̃, Ỹ) = z] ≈ Pr[dispĨ(X̃, Ỹ) = z] ≈ 2−m > 0

28

x1 x2 x3 y1 y3y2

HHHH
HHHHj

���
���

���

J
J
J
J
J
J
JĴ

�����������������������)

PPPPPPPPPPPPPPPPPPPPPPPq

Z
Z
Z
Z
Z
Z
Z
Z
Z
ZZ~

u = s ext(x1, y2) v = s ext(y1, x2)

opt(u, v)

Figure 9: The output dispI(x, y) with respect to partition I.

Any event that occurs with positive probability under X̃, Ỹ occurs with positive (though possibly
much smaller) probability under X,Y and so:

Pr[disp(X,Y) = z] > 0

In fact, we will be able to show that the probability above is greater than some constant c > 0
where c depends on δ and m but not on n. We do not explain why this follows in this high level
overview.

Nicely structured sources It is not hard to show that for any source X with constant rate
there exists a subsource X ′ which is “nicely structured” in the sense that there is a partition Ĩ such
that X ′3 is fixed (that is it contains no entropy) while X ′2 has constant rate and X ′1 has constant
rate even when conditioned on X ′2. We apply the same reasoning on the second source Y to get
an independent subsource Y ′ with analogous properties. The procedure dispI is designed so that
dispĨ extracts randomness from every two independent sources that are nicely structured. We

remark that the subsources X̃, Ỹ mentioned above are going to be subsources of X ′ and Y ′ which
in addition to being nicely structured will have other properties that will insure that the “correct
partition” Ĩ is selected by the disperser.

The procedure dispI The procedure dispI (see also Figure 9) is essentially the 4-source ex-
tractor 4ext of Section 7.1 when applied on x1, y2, y1, x2. (A technicality is that these inputs have
different lengths). dispI is designed to work in the special case when applied on independent
sources X̃, Ỹ that are “nicely structured” as explained above. Loosely speaking in such sources the
four parts are “sufficiently independent” so that the argument for 4ext can be applied.

A little bit more precisely, we consider the case when the variables X̃2, Ỹ2 are fixed to some values
x2, y2. When conditioning on this event (which we denote by E) we have that opt is applied on the
distributions s extd/`(X̃1, y2) and s extd/`(Ỹ1, y2) (conditioned on the event E). The important
thing to notice is that these two distributions are independent (as each one depends only on one

29

of the sources). We would like to say that both these distributions are (close to) somewhere
random as in that case the procedure dispĨ applies opt on two independent distributions of length
` · (d/`) = d which have entropy roughly d/` which means that opt produces an output that is
close to uniform. For this purpose we use the strongness of the somewhere extractor s ext: that is
that for any constant rate distribution (e.g. X̃1) most fixings y2 of Ỹ2 are good in the sense that
s extd/`(X̃1, y2) is (close to) somewhere random. We use this to show that for most fixings x2, y2

of X̃2, Ỹ2 the two distributions above are indeed independent and (close to) somewhere random.
The actual argument is more technical as in the analysis above the distributions s extd/`(X̃1, y2)

and s extd/`(Ỹ1, y2) are conditioned on the event E. Thus for example,

(s extd/`(X̃1, y2)|E) = (s extd/`((X̃1|X̃2 = x2), y2)

Avoiding technical details in this high level outline we mention that the fact that X̃1 has constant
rate conditioned on X̃2 plays a crucial role as when conditioning on the event {X̃2 = x2} the
distribution of the random variable X̃1 may change but it still retains constant rate. We also need
to deal with the fact that while for every x2 the distribution (X̃1|X̃2 = x2) has constant rate and
therefore most fixings y2 of Ỹ2 are good, it could be the case that for different choices of x2 the set
of good y2’s varies. The reader is referred to the proof for the precise details.

The procedure testI : Our goal is to show that there exist two independent nicely structured
subsources X̃, Ỹ of X,Y on which testI selects the “correct partition” Ĩ with high probability.
That is we would like the test to pass with probability one on the partition Ĩ while it should fail
w.h.p. on any partition I that is smaller or incomparable to Ĩ.

Let X̃ and Ỹ be independent nicely structured sources. We have that when partitioning accord-
ing to Ĩ the third segment X̃ Ĩ

3 is fixed while the second segment X̃ Ĩ
2 has constant rate. Consider

some partition I that is smaller or incomparable to Ĩ. Note that this means that in one of the
sources (w.l.o.g. the first one) I has a third segment that is longer than that of Ĩ and in particu-
lar contains the second segment of Ĩ. It follows that when partitioning according to I, the third
segment X̃I

3 has constant rate. Loosely speaking, the procedure test is designed to distinguish
between the case where the third segment is fixed (in which case we want it to pass) and the case
that the third segment has constant rate (in which case we want it to fail).

More formally, we will show that for any two independent nicely structured sources test indeed
fails with high probability when applied with a partition on which the third segment has constant
rate. We furthermore show, that for any two independent nicely structured sources X ′, Y ′ there
exist independent subsources X̃ of X and Ỹ of Y such that X̃, Ỹ are also nicely structured and
furthermore testĨ(X̃, Ỹ) passes with probability one. Note that this is indeed sufficient for our
purposes and gives that disp is a disperser. This is because given independent sources X,Y of
rate δ we argued that there exist nicely structured independent subsources X ′ of X and Y ′ of Y
and these in turn have nicely structured independent subsources X̃, Ỹ with the properties above.
On these subsources the correct partition Ĩ is indeed selected with high probability and we apply
dispĨ with the correct partition.

Selecting the correct partition It remains to show that any two independent nicely structured
sources have nicely structured independent subsources on which the correct partition is selected
with high probability. Let X̃, Ỹ be independent nicely structured sources. We now explain how the
procedure test achieves the goal above. We start by identifying properties of the challenge and
response strings.

30

Properties of the challenge string: The first part of the challenge string is defined by c1(x, y) =
s extk(x3, y). When partitioning according to an I that is smaller or incomparable to Ĩ the third
segment X̃I

3 has constant rate and the two inputs of s ext meet its entropy requirements. Thus,
c1(X̃, Ỹ) is (close to) somewhere random. A somewhere random distribution with blocks of length
k has min-entropy at least ≈ k and so the challenge string c (which contains c1 as a substring) has
min-entropy k.

We will need a stronger property, namely that for every choice of v1, v2 and response string cv1,v2
and for every value r the challenge string c(X̃, Ỹ) has min-entropy k even when conditioned on the
event {cv1,v2(X̃, Ỹ) = r}. This follows because response strings depend only on short substrings
of x[v1] of x and y[v2] of y and therefore s extk(x3, y) can extract randomness even when these
two short substrings are fixed to arbitrary values. This means that the randomness extracted is
independent of any response string.

It follows that for any response string cv1,v2 it is unlikely that c(X̃, Ỹ) appears as a sub-block
in the response string cv1,v2(X̃, Ỹ). We can control this probability by controlling the constant k.
It follows by a union bound over all p2 response strings that it is very unlikely that the challenge
string is responded by any response string and therefore testI(X̃, Ỹ) rejects w.h.p.

On the other hand when partitioning according to Ĩ the third segments X̃ Ĩ
3 , Ỹ

Ĩ
3 are fixed to

some strings x′3, y
′
3. We would like to say that in that case c is fixed. While this is not true as

stated, it is true that in this case c1 = s extk(x
′
3, Ỹ) is a function only of Ỹ . Let c′1 be the most

likely value of c1(X̃, Ỹ) and note that c′1 occurs with probability at least 2−k. We consider the
subsource (Ỹ |s extk(x′3, Ỹ) = c′1) of Y and note that this is indeed a subsource of Ỹ as the event
on which we condition is determined by Y . The min-entropy of this subsource has reduced by
at most k which is a constant that is negligible compared to the entropy present in each of the
segments of Ỹ . Doing the same process for c2 we fix c2 to its most likely value c′2 and obtain a large
subsource of X̃. In these new subsources we have that the challenge string is indeed fixed. Note
that these two new subsources are nicely structured (as almost no entropy was lost when fixing each
if the components of challenge string and so the entropy in each one of the segments did not drop
significantly). We can forget about the old sources X̃, Ỹ and replace them by the new subsources
and everything we’ve said so far still holds for the new subsources as they are also independent and
nicely structured. Thus, from now on we refer to the new subsources as X̃, Ỹ . We will now observe
that once the challenge string is fixed we can make the response string respond to it.

Properties of the response strings: At this point we are considering the partition Ĩ and nicely
structured independent sources X̃, Ỹ such that the challenge string c(X̃, Ỹ) is fixed. As both X̃, Ỹ
have constant rate we can expect that there exists a pair (v1, v2) ∈ [p]2 so that both X̃[v1], Ỹ [v2]
have constant rate. (This is true if we were working with Shannon entropy rather than min-entropy
as for the first source X we have that H(X) ≤

∑
1≤v≤pH(X[v]) and we can take the block v1 such

that H(X[v1]) is maximal and this block has rate at least that of the initial source). The case of
min-entropy is more difficult but we choose to ignore this technicality in this high level intuition
and assume that there exists such a pair (v1, v2) with the aforementioned property. For this pair
(v1, v2) the response string cv1,v2(X̃, Ỹ) = s ext2`k(X̃[v1], Ỹ [v2]) is the application of a somewhere
extractor on independent constant rate sources. Thus cv1,v2(X̃, Ỹ) is somewhere random. Let us
imagine that the first output block is random. As the first block is of length 2`k it follows that
the probability that this block is equal to the fixed challenge string is 2−2`k and in this case the
challenge is responded and the test passes. More precisely, let E be the event {testĨ(X̃, Ỹ) = 1}
we have just shown that in the sources X̃, Ỹ , E occurs with positive (but very small) probability.

This is not sufficient for our purposes. We want E to occur with probability that approaches

31

one. Our approach is to restrict our attention to the distributions (X̃|E) and (Ỹ |E) and so in these
new sources E occurs with probability one. An obvious problem is that these distributions are not
necessarily independent as the event E “mixes both sources” (more formally it is not necessarily
the case that (X̃|E) is a subsource of X). At this point we use the fact that cv1,v2 depends only
on short substrings of x and y. Let x̂, ŷ be values of X̃[v1], X̃[v2] such that s ext(x̂, ŷ) contains the
fixed challenge string c as a substring. Rather than conditioning on E we will condition on the
event E′ ⊆ E defined by:

E′ = {X̃[v1] = x̂ and Ỹ [v2] = ŷ}

Note that conditioning on E′ also fixes the response string so that the challenge is responded,
however it has the advantage that the distributions (X̃|E′) and (Ỹ |E′) are independent (and are in
fact subsources of X̃, Ỹ). Furthermore, these two distributions are also nicely structured as fixing
the values of X̃[v1], Ỹ [v2] which are relatively short strings cannot lose too much entropy.

We replace the previous sources X̃, Ỹ with the new subsources and note that these subsources
of the initial sources X,Y are nicely structured and in addition have the property that the correct
partition Ĩ is selected w.h.p. Thus, these subsources have all the properties that we wanted.

To summarize, when disp is applied on independent δ-sources X,Y we have shown that there
exist subsources X̃ of X and Ỹ of Y and a partition Ĩ such that on these subsources Ĩ is selected
w.h.p. and dispĨ(X̃, Ỹ) is very close to uniform. As explained earlier this means that disp is
indeed a disperser.

8.3 The Proof

We start with proving Theorem 8.1. In Section 9 we give the additional details needed to prove
Theorem 8.2. Throughout this section we assume that δ > 0 and m ≥ 1 are constants and that
n is sufficiently large as a function of these two constants. In other words, all formal statements
start with: “For every δ > 0 and integer m ≥ 1 there is an integer N0 such that for every n ≥ N0

the following holds”. We omit these clauses to make the reading easier. The proof closely follows
the intuition explained earlier.

8.3.1 The main claim

We will prove that our disperser works by proving the following claim:

Claim 8.3. For every X,Y independent random variables over {0, 1}n with H∞(X), H∞(Y) > δn
there exist subsources X̃ of X and Ỹ of Y and a partition Ĩ such that

1. dispĨ(X̃, Ỹ) is 2−10m-close to uniform.

2. The partition Ĩ is selected with probability 1− 2−10m on x← X̃ and y ← Ỹ .

We now observe that Theorem 8.1 follows from Claim 8.3. The remainder of the section is
devoted to proving Claim 8.3.

Proof of Theorem 8.1 from Claim 8.3 Let X,Y be independent δ-sources on n bits. Let
X̃, Ỹ be the subsources guaranteed By Claim 8.3. Let z ∈ {0, 1}m be some string. The first item
of the claim gives that Pr[dispĨ(X̃, Ỹ) = z] ≥ 2−m− 2−10m. The second item says that when disp

is applied on X̃ and Ỹ we have that Ĩ is not selected with probability at most 2−10m. In other
words, Pr[dispĨ(X̃, Ỹ) 6= disp(X̃, Ỹ)] ≤ 2−10m. It follows that:

Pr[disp(X̃, Ỹ) = z] ≥ Pr[dispĨ(X̃, Ỹ) = z]− 2−10m ≥ 2−m − 2 · 2−10m > 0

32

We have that X̃ = (X|A) and Ỹ = (Y |B) for events A,B ⊆ {0, 1}n and that Pr[X ∈ A] and
Pr[Y ∈ B] are positive. Thus, when choosing x ← X and y ← Y we have positive probability of
landing in A×B and in this case we have positive probability that disp(x, y) = z. Overall,

Pr[disp(X,Y) = z] > 0

8.3.2 Nicely structured sources

When given arbitrary independent δ-sources X,Y our goal is to show the existence of subsources X̃
of X and Ỹ of Y and a partition Ĩ with the two properties listed in Claim 8.3. The next Definition
identifies properties of sources that will help us prove Claim 8.3.

Definition 8.4 (nicely structured sources). Let X̃, Ỹ be random variables over {0, 1}n and let Ĩ be
a partition. We say that X̃, Ỹ are nicely structured sources according to Ĩ if X̃, Ỹ are independent
and

• H∞(X̃1), H∞(Ỹ1) ≥ δn/6.

• H∞(X̃2), H∞(Ỹ2) ≥ δ2n/100.

• H∞(X̃3), H∞(Ỹ3) = 0 (or in other words that both X̃3, Ỹ3 are fixed constants).

It is not important to remember the precise quantities in Definition 8.4. The important details
are that in both sources the third segment is fixed while the two other segments have constant rate
(where the constant is proportional to δ). Moreover, it is important to note that the entropy in
the first segment (δn/6) is larger than the length of the second segment (δn/10). (Intuitively, this
says that the first segment contains entropy even conditioned on the second segment).

The next Claim says that when dispĨ is applied on nicely structured sources it fulfils the first
item of Claim 8.3 and produces a distribution that is close to uniform.

Claim 8.5. Let X̃ and Ỹ be nicely structured sources according to a partition Ĩ. Then dispĨ(X̃, Ỹ)
is 2−10m-close to uniform.

The proof of Claim 8.5 appears in Section 8.3.3. Loosely speaking, the claim follows as
dispĨ(x, y) applies the extractor 4ext on the x1, x2, y1, y2 (arranged in the different order x1, y2, y1, x2).
Although the four inputs are not independent, nicely structures sources are “sufficiently indepen-
dent” for the argument to go through. (In fact, for Claim 8.5 we only need the first two requirements
in Definition 8.4 and the third requirement will be used later on).

Another useful property of nicely structured sources is specified in the next Claim that says
that any partition I that is smaller or incomparable to Ĩ is likely to be rejected by the test.

Claim 8.6. Let X̃ and Ỹ be nicely structured sources according to a partition Ĩ. Then:

Pr[∃I 6� Ĩ : testI(X̃, Ỹ) = 1] ≤ 2−10m

The proof of Claim 8.6 appears in Section 8.3.4. Claim 8.6 means that in order to prove Claim
8.3 it is sufficient to show that for any independent δ-sources X,Y there exist subsources X̃ of
X and Ỹ of Y which are nicely structured and in addition Pr[testĨ(X̃, Ỹ) = 1] = 1. In such

subsources the “correct partition” Ĩ is selected with high probability. This is because Ĩ is a unique
minimal partition that passes the test.

The plan is to first show that for every two independent δ-sources X,Y there exist subsources
X ′ of X and Y ′ of Y which are nicely structured (according to some partition Ĩ) and then we will

33

show the existence of subsources X̃ of X ′ and Ỹ of Y ′ which in addition to being nicely structured
have the additional property above. As the second step of restricting X ′ and Y ′ to subsources X̃
and Ỹ “loses entropy” we phrase the next Claim using entropy requirements that are slightly larger
than those made in Definition 8.4. This will allow us to lose entropy in the second step and still
obtain sources that are nicely structured. The following Claim implements the first step above.

Claim 8.7. For every X,Y independent random variables over {0, 1}n with H∞(X), H∞(Y) > δn
there exist subsources X ′ of X and Y ′ of Y and a partition Ĩ such that when partitioning according
to Ĩ.

• H∞(X ′1), H∞(Y ′1) ≥ δn/2.

• H∞(X ′2), H∞(Y ′2) ≥ δ2n/50.

• H∞(X ′3), H∞(Y ′3) = 0 (or in other words that both X ′3, Y
′

3 are fixed constants).

The Proof of Claim 8.7 appears in Section 8.3.5. The second step in the plan above is imple-
mented in the following Claim.

Claim 8.8. Let Ĩ be a partition and let X ′, Y ′ be independent distributions which satisfy the guar-
antee of Claim 8.7. Namely, when partitioning according to Ĩ.

• H∞(X ′1), H∞(Y ′1) ≥ δn/2.

• H∞(X ′2), H∞(Y ′2) ≥ δ2n/50.

• H∞(X ′3), H∞(Y ′3) = 0

Then, there exist subsources X̃ of X ′ and Ỹ of Y ′ such that:

• X̃, Ỹ are nicely structured according to Ĩ.

• Pr[testĨ(X̃, Ỹ) = 1] = 1.

The proof of Claim 8.8 appears in Section 8.3.6. Putting everything together allows us to prove
Claim 8.3 (which in turn implies Theorem 8.1):

Proof of Claim 8.3 Let X,Y be independent δ-sources. By the combination of Claim 8.7 and
Claim 8.8 we get that there exists a partition Ĩ and subsources X̃ of X and Ỹ of Y which are nicely
structured according to Ĩ and furthermore, Pr[testĨ(X̃, Ỹ) = 1] = 1. The first item of Claim 8.3
follows directly from Claim 8.5. For the second item we note that by Claim 8.6:

Pr[∃I 6� Ĩ : testI(X̃, Ỹ) = 1] ≤ 2−10m

Whenever the event above does not hold we have that Ĩ is the partition that is selected and thus,
Ĩ is selected with probability at least 1− 2−10m as required.

34

8.3.3 Extractor for nicely structured sources: proof of Claim 8.5

We now prove Claim 8.5. Recall that dispI(x, y) = opt(s extd/`(x1, y2), s extd/`(y1, x2)). We will

show that for most fixings x2 of X̃2 and y2 of Ỹ2 the 2-source extractor opt is applied on independent
distributions with sufficient min-entropy. It follows that for most fixings the output of opt is close
to uniform.

We first apply Lemma 3.3 on the sources X̃1, X̃2 setting ρ = 2−δn/100 we conclude that with
probability 1− ρ over choosing x2 ← X̃2,

H∞(X̃1|X̃2 = x2) ≥ δn/6− δn/10− log(1/ρ) > δn/200

We say that x2 is “useful” if the inequality above holds for x2.
The function s extd/` is a strong somewhere random extractor with error 2−ηn. Recall that

a string w is good for a distribution R if s extd/`(R,w) is 2−ηn-close to a somewhere random
distribution. As s ext can handle sources with min-entropy δn/200 we have that for any two
independent distributions R,W both with min-entropy at least δn/200,

Pr
w←W

[w is good for R] ≥ 1− 2−ηn

We say that a string y2 is “extracting” with respect to x2 if y2 is good for the distribution (X̃1|X̃2 =
x2). It follows that for every useful x2,

Pr[Ỹ2 is extracting with respect to x2] ≥ 1− 2−ηn

As this holds for every useful x2 and as we know that the weight of useful strings x2 in the
distribution X̃2 is 1− ρ we conclude that:

Pr[Ỹ2 is extracting with respect to X̃2] ≥ 1− 2−ηn − ρ

We repeat the argument replacing the roles of x and y and define the notions of “useful” and
“extracting” strings for this setup. (To distinguish these new notions from the previously defined
notions we denote the notions “useful*” and “extracting*”. More precisely, we say that a string
y2 is useful* if H∞(Ỹ1|Ỹ2 = y2) > δn/200 and we say that a string x2 is extracting* for y2 if x2 is
good for the distribution (Ỹ1|Ỹ2 = y2). The same argument as above gives that:

Pr[X̃2 is extracting* with respect to Ỹ2] ≥ 1− 2−ηn − ρ

Thus, by a union bound with probability 1 − 2 · (2−ηn + 2ρ) over choosing (x2, y2) ← (X̃2, Ỹ2)
the pair that is chosen is a pair of elements that are a “good match” that is y2 is extracting with
respect to x2 and x2 is extracting* with respect to y2.

Plan for the rest of the proof Next we show that for any pair (x2, y2) that is a good match
dispĨ(X̃, Ỹ) is close to uniform when conditioning on the event E = {X̃2 = x2 and Ỹ2 = y2}. It

will follow that dispĨ(X̃, Ỹ) is close to uniform.
We now implement the outline above. For a fixed pair (x2, y2) that is a good match we consider

the event E = {X̃2 = x2 and Ỹ2 = y2} and the conditional distribution: (X ′, Y ′) = ((X̃, Ỹ)|E). We
define:

• Z1
def
= s extd/`(X

′
1, Y

′
2) = s extd/`((X̃1|X̃2 = x2), y2).

• Z2
def
= s extd/`(Y

′
1 , X

′
2) = s extd/`((Ỹ1|Ỹ2 = y2), x2).

35

Note that Z1 and Z2 are independent (as each of them depends only on one of the sources).
Furthermore, by the fact that (x2, y2) is a good match we have that both distributions are 2−ηn-
close to somewhere random distributions. A somewhere random distribution with ` blocks of length
d/` is of length d and by Lemma 4.8 such a distribution has min-entropy at least d/`−log `. We have
required that d/`− log ` ≥ 10 log d and therefore such distributions meet the entropy requirements
of opt. As the error of opt is 2−100m, it follows that opt(Z1, Z2) is (2 · 2−ηn + 2−100m)-close to
uniform.

Summing up, when applying dispĨ(X̃, Ỹ) with probability 1− 2 · (2−ηn + ρ) we obtains strings

x2, y2 which are a good match and in this case the output of dispĨ(X̃, Ỹ) is (2 · 2−ηn + 2−100m)-

close to uniform. Thus, for large enough n so that 2−ηn + ρ � 2−100m we have that dispĨ(X̃, Ỹ)
is 2−10m-close to uniform as required.

8.3.4 Rejecting incorrect partitions: proof of Claim 8.6

We now prove Claim 8.6. Let I be a partition such that I ′ 6� Ĩ. We want to show that testI(X̃, Ỹ)
accepts with very small probability so that we can do a union bound over all such partitions I and
get that all of them are rejected simultaneously with high probability.

Let Ĩ = (̃i1, ĩ2) and let I = (i1, i2). As I ′ 6� Ĩ we assume without loss of generality that i1 < ĩ1
(the proof is similar in the case i2 < ĩ2). We know that H∞(X̃ Ĩ

2) ≥ δ2n/100 (or in words that the
second segment according to Ĩ contains randomness). Note that as i1 ≤ ĩ1 the partition according
to I puts the second segment of Ĩ in the third segment of I, and therefore

H∞(X̃I
3) ≥ δ2n/100

From now on we use the partition I to divide the input strings in all expressions below. We
need to show that w.h.p. the challenge string c = c(X̃, Ỹ) is not a sub-block of any response string
cv1,v2(X̃, Ỹ). Fix some (v1, v2) ∈ [p]2. We apply Lemma 3.3 on the variables X̃3 and X̃[v1] using

ρ = 2−δ
3n and conclude that with probability 1− 2−δ

3n over choosing x̂← X̃[v1]

H∞(X̃3|X̃[v1] = x̂) ≥ δ2n/100− 2δ3n ≥ δ2n/200

We say that a string x̂ of length δ3n is “nice” if it satisfies the inequality above.
We can apply the same argument on Ỹ and Ỹ [v2] and obtain that with probability 1 − 2−δ

3n

over choosing ŷ ← Ỹ [v2]
H∞(Ỹ |Ỹ [v2] = ŷ) ≥ δ2n/200

(Note that here we use all of Ỹ and not just Ỹ3. This is because c1 is a function of x3 and y). We
say that a string ŷ of length δ3n is “nice*” if it satisfies the inequality above.

Plan for the rest of the proof We will show that for any nice x̂ and nice* ŷ the probability
that the challenge string c(X̃, Ỹ) appears as a sub-block in the response string cv1,v2(X̃, Ỹ) is small
when conditioned on the event {X̃[v1] = x̂ and Ỹ [v2] = ŷ}. It follows that the probability that
c(X̃, Ỹ) appears as a sub-block in the response string cv1,v2(X̃, Ỹ) is small overall. By a union
bound over all pairs (v1, v2) it will follow that testI(X̃, Ỹ) rejects with high probability. This is
because w.h.p. the challenge string c is not responded by any response string cv1,v2 .

We now implement the plan above. Fix some nice x̂ and nice* ŷ and let E be the event
{X̃[v1] = x̂ and Ỹ [v2] = ŷ}. We consider the distribution (X ′, Y ′) = ((X̃, Ỹ)|E). Recall that
cv1,v2(x, y) = s ext2`k(x[v1], y[v2]). Thus, cv1,v2(X ′, Y ′) = s ext2`k(x̂, ŷ) is a fixed string. On
the other hand, recall that c1(x, y) = s extk(x3, y) and therefore c1(X ′, Y ′) = s extk(X

′
3, Y

′). Note

36

that X ′3, Y
′ are independent distributions where each has min-entropy at least δ2n/200. Thus, they

meet the entropy requirement of s extk and c1(X ′, Y ′) is 2−ηn-close to a somewhere random distri-
bution. By Lemma 4.8 a somewhere random distribution on ` blocks of length k has min-entropy at
least k − log `. Therefore, the challenge string c(X ′, Y ′) (which contains c1(X ′, Y ′) as a substring)
is 2−ηn-close to having min-entropy k − log `. It indeed follows that it is very unlikely that the
challenge string c(X ′, Y ′) is a sub-block of the fixed response string cv1,v2(X ′, Y ′). More precisely,
let a be any fixed string that is composed of ` blocks of length 2k. By a union bound over the `
blocks the probability that a random variable B with min-entropy v appears as a sub-block of a
is bounded by `2−v. Thus, it follows that the probability that c(X ′, Y ′) appears as a sub-block of
cv1,v2(X ′, Y ′) is at most ` · (2−(k−log `) +2−ηn) ≤ `32−k for large enough n. In words, the probability
that the challenge c is responded by cv1,v2 is small.

Summing up, for any (v1, v2) ∈ [p]2 we have that with probability 1−2 ·2−δ3n over the choice of
X̃[v1], Ỹ [v2] we obtain strings x̂, ŷ which are nice and then the probability that the challenge string
c appears as a sub-block in the response string cv1,v2 is at most `22−k. Thus, overall the probability

(over X̃, Ỹ) that this event happens is at most 2 · 2−δ3n + `32−k ≤ `42−k for large enough n.
This holds for one fixed partition and fixed pair (v1, v2) ∈ [p]2. However, by a union bound over

all partitions I 6� Ĩ and all pairs (v1, v2) we have that the challenge string of the partition I is not
responded by any of the response strings with probability at least 1− p2t2`42−k. We have chosen
the constant k so that this quantity is at least 1− 2−10m as required.

8.3.5 Existence of nicely structured sources: proof of Claim 8.7

We now prove Claim 8.7. It is sufficient to consider the sources X,Y one at a time. We will show
that there exists a subsource X ′ of X and an index i1 ∈ [t] such that when partitioning according
to i1 we have that:

• H∞(X ′1) ≥ δn/2.

• H∞(X ′2) ≥ δ2n/50.

• H∞(X ′3) = 0.

We can then complete the proof of the Claim by doing the same argument on Y to obtain a
subsource Y ′ and an index i2 with the same properties and then setting Ĩ = (i1, i2)

We now turn our attention to finding a subsource X ′ with the aforementioned properties. We
show the existence of this subsource using an iterative process: We set i = t and X ′ = X. At
each step of the process we decrease i by one and modify X ′. We will show that at some point
we obtain an index i and a subsource X ′ such that partitioning X ′ according to i1 = i gives the
desired properties. During the process we maintain the invariant that X ′ is a subsource of X, and
when partitioning according to i, X ′3 is fixed and H∞(X ′1, X

′
2) ≥ 3δn/4 + iδ2n/50. Note that this

indeed holds at the beginning of the process as X ′3 is of length zero and 3δn/4 + tδ2n/50 ≤ δn. In
each iteration there are two possibilities:

• If H∞(X ′2) ≥ δ2n/50 then we stop the process and set i1 = i. Note that in this case X ′ is a
subsource of X with the required properties. That is H∞(X ′3) = 0, H∞(X ′2) ≥ δ2n/50 and
by Lemma 3.2 H∞(X ′1) ≥ H∞(X ′1, X

′
2)− |X ′2| ≥ 3δn/4− δn/10 ≥ δn/2.

• If H∞(X ′2) < δ2n/50 then there exists a string x2 of length δn/10 so that Pr[X ′2 = x2] >
2−δ

2n/50. We consider the subsource X ′′ = (X ′|X ′2 = x2). By Lemma 3.1 we have that
H∞(X ′′) ≥ H∞(X ′)− δ2n/50 ≥ H∞(X ′1, X

′
2)− δ2n/50 ≥ 3δn/4 + (i− 1)δ2n/50. As X ′′2 , X

′′
3

37

are fixed all this entropy lies in X ′′1 . Note that if we now partition X ′′ according to i− 1 we
have that X ′′3 is fixed and H∞(X ′′1 , X

′′
2) ≥ 3δn/4 + (i− 1)δ2n/50. Thus, we can set X ′ to X ′′

and i to i− 1 while maintaining the invariant and continue the process.

We note that the process above must stop before we reach i = 1. This is because for i = 1 we have
that iδn/10 < 3δn/4 and it is impossible for the invariant to hold as when partitioning according
to i the length of the first and second segment is δn/10 and it is impossible that these segments
have min-entropy 3δn/4. It follows that we indeed find a subsource with the required properties.

8.3.6 Selecting the correct partition: proof of Claim 8.8

We now prove proof of Claim 8.8. We have independent distributions X ′, Y ′ which are already
nicely structured according to Ĩ and our goal is to restrict them to subsources so that the additional
requirement that testĨ passes holds without reducing the entropy in any of the segments by much
so that the subsources we obtain are still nicely structured.

Fixing the challenge. Recall that c1(x, y) = s extk(x3, y) and c2(x, y) = s extk(y3, x). Our
next goal is to restrict our attention to subsources in which c1 and c2 are fixed. (Recall that c1 is
already fixed if x3 is of length zero and c2 is fixed if y3 is of length zero). We start with fixing c2

in the case that y3 has length greater than zero. We have that Y ′3 is fixed to some value y′3 and
therefore the value of c2(X ′, Y ′) given by s ext(y′3, X

′) depends only on X ′. Let c′2 be the most
likely value of s ext(y′3, X

′) and let E be the event {s ext(Y ′3 , X
′) = c′2} as the string c2 is k bit long

we have that Pr[E] ≥ 2−k. Recall that k is a constant that depends only on δ and m. We define
X ′′ = (X ′|E) and note that X ′′ is a subsource of measure 2−k of X. Note that the distributions
X ′′1 and X ′′2 can be expressed as (X ′2|E) and (X ′1|E). (Note that we are not claiming that these
are subsources of X ′1 and X ′2). By Lemma 3.1 it follows that the conditioning loses at most k bits
of min-entropy. We conclude that H∞(X ′′1) ≥ H∞(X ′1) − k and H∞(X ′′2) ≥ H∞(X ′2) − k. As k
is a constant this means that the amount of min-entropy in each of the two segments (which was
initially large) did not drop significantly.

We repeat the same process and fix c1(X ′, Y ′) to some value c′1 by restricting our attention to
a subsource Y ′′ of Y ′. Thus, in X ′′, Y ′′ the value of c = c1 ◦ c2 is fixed to some value c′. As k
is a constant we have that for large enough n the independent sources X ′′, Y ′′ have the following
properties:

• H∞(X ′′1), H∞(Y ′′1) ≥ δn
4 .

• H∞(X ′′2), H∞(Y ′′2) ≥ δ2n
60 .

• H∞(X ′′3), H∞(Y ′′3) = 0 (as these segments were already fixed in X ′, Y ′).

• On the subsources X ′′, Y ′′ the value of the “challenge string” c is fixed. More formally,
Pr[c(X ′′, Y ′′) = c′] = 1.

Finding a good pair We have that H∞(X ′′) ≥ H∞(X ′′1) ≥ δn/4. We consider the partition
of X ′′ into X ′′[1], . . . , X ′′[p]. Intuitively, we can expect that at least one of these segments has
min-entropy at least H∞(X ′′)/p. While this is not necessarily true, the next Lemma asserts that
there exists a large subsource of X ′′ which has a high min-entropy block.

Claim 8.9. There exist a subsource X ′′′ of X ′′ of measure 1/p and a v1 ∈ [p] such that H∞(X ′′′[v1]) ≥
δ4n/20.

38

Proof. (of Claim 8.9) To simplify the notation in this proof let W = X ′′ and we denote W [v] by
Wv and let W>v denote the concatenation of Wv+1, . . . ,Wp. We have that H∞(W) ≥ δn/4. For
every w ∈ {0, 1}n that is in the support of W and v ∈ [p] we define:

rv(w) = Pr[Wv = wv|W>v = w>v]

Note that for any such w,

2−δn/4 ≥ Pr[W = w] =
∏
v∈[p]

rv(w)

It follows that for every such w there exists v ∈ [p] such that rv(w) ≤ 2−δn/4p = 2−δ
4n/4. For every

w we denote the largest such v by v(w). (It is not important to choose the largest v and we only
need to associate one v with any string w). Let Av = {w : v(w) = v}. Note that the sets Av are a
partition of the support of W and thus there exists v ∈ [p] such that Pr[W ∈ Av] ≥ 1/p ≥ δ3. To
simplify the notation we denote this set by A.

Let W ′ = (W |W ∈ A) be a subsource of W . We now show that H∞(Wv) ≥ δ4n/20. This
indeed suffices to prove the Claim.

Let u = δ3n(p− v) denote the total length of the blocks v+ 1, . . . p. Fix some string ŵ of length
δ3n we have that:

Pr[W ′v = ŵ] = Pr[Wv = ŵ|W ∈ A]

= Pr[Wv=ŵ∧W∈A]
Pr[W∈A]

≤ Pr[Wv=ŵ∧W∈A]
δ3

=
∑
y∈{0,1}u Pr[Wv=ŵ∧W∈A|W>v=y]·Pr[W>v=y]

δ3

For every ŵ let Aŵ = {y : Pr[Wv = ŵ|W>v = y] ≤ 2−δ
4n/4}. For y 6∈ Aŵ we have that

Pr[Wv = ŵ ∧W ∈ A|W>v = y] = 0

This is because for any string w ∈ A, w>v ∈ Awv . Thus, the only positive entries in the sum above
correspond to y ∈ Aŵ.

=

∑
y∈Aŵ

Pr[Wv=ŵ∧W∈A|W>v=y]·Pr[W>v=y]

δ3

≤
∑
y∈Aŵ

Pr[Wv=ŵ|W>v=y]·Pr[W>v=y]

δ3

≤
∑
y∈Aŵ

2−δ
4n/4·Pr[W>v=y]

δ3
(By the definition of Aŵ)

≤ 2−δ
4n/4

δ3

≤ 2−δ
4n/20

Note that 1/p is a constant that depends only on δ and therefore when restricting X ′′ to X ′′′

we only lose a constant amount of min-entropy. As we did previously, we can apply this argument

39

separately for X ′′′1 and X ′′′2 and get that each of them suffers a loss of at most a constant amount
of min-entropy compared to X ′′1 , X

′′
2 .

We repeat the same process for Y ′′ to show the existence of a subsource Y ′′′ and v2 ∈ [p] with
analogous properties. Thus, the subsources X ′′′, Y ′′′ have the following properties:

• H∞(X ′′′1), H∞(Y ′′′1) ≥ δn
5 .

• H∞(X ′′′2), H∞(Y ′′′2) ≥ δ2n
70 .

• H∞(X ′′′3), H∞(Y ′′′3) = 0 (as these segments were already fixed in X ′, Y ′).

• On the subsources X ′′′, Y ′′′ the value of the “challenge string” c is fixed. More formally,
Pr[c(X ′′, Y ′′) = c′] = 1.

• There exist (v1, v2) ∈ [p]2 such that H∞(X ′′′[v1]), H∞(Y ′′′[v2]) ≥ δ4n
20 .

Responding to the challenge. Recall that for every pair (v1, v2) ∈ [p]2 the construction com-
putes a “response string” cv1,v2(x, y) = s ext2`k(x[v1], x[v2]) and checks whether it “meets the
challenge” in the sense that it has the “challenge string” c(x, y) as a sub-block.

We now further restrict the subsources so that the response string meets the challenge. We
have that for the pair (v1, v2) found earlier both the substrings X ′′′[v1] and Y ′′′[v2] have constant
min-entropy rate and are independent. It follows, that when applying s ext2`k(X

′′′[v1], Y ′′′[v2]) we
obtain a distribution R that is 2−ηn-close to a somewhere random distribution. This distribution
has blocks of length 2`k and note that this is a constant that depends only on δ and m. We have
that there exists a random variable J over [`] (that may depend on R) such that RJ is 2−ηn close
to uniform. Thus, RJ equals the fixed challenge string c′ with probability at least 2−|c

′| − 2−ηn

which is larger than some positive constant. Thus, with constant positive probability the challenge
c′ is responded.

We say that a pair of strings x̂, ŷ each of length δ3n is “useful” if

• s ext2`k(x̂, ŷ) contains the challenge c′ as a sub-block.

• Pr[X ′′′[v1] = x̂] > 2−2δ3n and Pr[Y ′′′[v2] = ŷ] > 2−2δ3n.

We have already seen that the probability that X ′′′[v1], X ′′′[v2] fulfill the first item is larger than
some positive constant. Let B1 = {x̂ : Pr[X ′′′[v1] = x̂] ≤ 2−2δ3n}. Note that

Pr[X ′′′[v1] ∈ B1] ≤ 2δ
3n · 2−2δ3n = 2−δ

3n

The same argument applies to the second source and we conclude that for large enough n the
probability that X ′′′[v1], Y ′′′[v2] are useful is larger than some positive constant.

Fix some useful strings x̂, ŷ. We define subsources X̃, Ỹ ofX ′′′, Y ′′′ as follows: X̃ = (X ′′′|X ′′′[v1] =
x̂) and Ỹ = (Y ′′′|Y ′′′[v2] = ŷ). Note that X̃, Ỹ are indeed subsources. (These are going to be the
final subsources). Note that cv1,v2(X̃, Ỹ) is now fixed to the constant s ext2`k(x̂, ŷ) which in turn
contains the fixed challenge string c′ as a sub-block (as x̂, ŷ are useful). Thus, in X̃, Ỹ the challenge
is responded with probability one and Pr[testĨ(X̃, Ỹ) = 1] = 1. Furthermore, by Lemma 3.1,

when moving from X ′′′ to X̃, the min-entropy of the first and second segments decreases by at
most 2δ3n bits. The same argument applies to the second source. We can assume w.l.o.g. that δ
is sufficiently small so that δ3 is much smaller than δ2 and so the losses in min-entropy in each of
the segments are insignificant. It follows that the two sources X̃, Ỹ are nicely structured. More
precisely, we have that:

40

• H∞(X̃1), H∞(Ỹ1) ≥ δn
6 .

• H∞(X̃2), H∞(Ỹ2) ≥ δ2n
100 .

• H∞(X̃3), H∞(Ỹ3) = 0.

• testĨ(X̃, Ỹ) accepts with probability one.

The Claim follows.

Extending the proof of Claim 8.8 to obtain “large” subsources So far we did not pay
attention to the measure of the subsources X̃, Ỹ and now we would like to say that they have large
measure (say some positive constant). Following the argument above more carefully we notice
that X ′′ has measure 2−k as a subsource of X ′ and X ′′′ has measure 1/p as a subsource of X ′′.
Thus, overall the measure of X ′′′ as a subsource of X ′ is a positive constant. Unfortunately, the
measure of X̃ as a subsource of X ′′′ is 2−2δ3n which is smaller than a constant. While the argument
above does not give that X̃ has constant measure as a subsource of X ′ it gives a weaker statement
with the same flavor. Namely, under the assumptions of Claim 8.8 there is a subsource collection
X̃1, . . . , X̃w and Ỹ1, . . . , Ỹw of (X ′, Y ′) (for some integer w) such that the subsource collection has
a measure that is a positive constant and for every j ∈ [w], X̃j , Ỹj have the properties guaranteed
by Claim 8.8. The precise statement appears below:

Claim 8.10. There exists a constant µ > 0 (that depends only on δ and m) such that the following
holds: Let Ĩ be a partition and let X ′, Y ′ be independent distributions which satisfy the guarantee
of Claim 8.7. Namely, when partitioning according to Ĩ.

• H∞(X ′1), H∞(Y ′1) ≥ δn/2.

• H∞(X ′2), H∞(Y ′2) ≥ δ2n/50.

• H∞(X ′3), H∞(Y ′3) = 0

Then there is an integer w and a subsource collection X̃1, . . . , X̃w and Ỹ1, . . . , Ỹw of the distribution
(X ′, Y ′) that has measure µ and for every j ∈ [w], X̃w, Ỹw has the properties guaranteed by Claim
8.8, namely:

• X̃w, Ỹw are nicely structured according to Ĩ.

• Pr[testĨ(X̃w, Ỹw) = 1] = 1.

Proof of Claim 8.10 We explain how this follows from the proof of Claim 8.8. We have that X ′′′

is a subsource of X ′ of measure 2−k/p and Y ′′′ is a subsource of Y ′ of measure 2−k/p. Recall that
2−k/p is a positive constant that depends only on δ and m. Recall that to construct X̃ and Ỹ as
subsources of the sources X ′′′ and Y ′′′ we defined X̃ = (X ′′′|X ′′′[v1] = x̂) and Ỹ = (Y ′′′|Y ′′′[v2] = ŷ)
where x̂, ŷ are any useful strings. We have shown that the probability that X ′′′[v1] and Y ′′′[v2] are
useful is larger than a positive constant. Let w be the number of pairs (x̂, ŷ) of useful strings and
enumerate all these pairs in some order. That is, for j ∈ [w] we use (x̂j , ŷj) to denote the j’th pair
of useful strings. For every j ∈ [w] let X̃j = (X ′′′|X ′′′[v1] = x̂j) and Ỹj = (Y ′′′|Y ′′′[v1] = ŷj). Note
that the collection X̃1, . . . , X̃w and Ỹ1, . . . , Ỹw are a subsource collection of (X ′′′, Y ′′′) of measure
which is some positive constant. As X ′′′ is a subsource of X ′ of constant measure we have by
Fact 4.5 that the collection is also a subsource collection of (X ′, Y ′) of positive constant measure.
For any j ∈ [w] the distributions X̃j , Ỹj were defined using useful strings and we have already seen
that they satisfy the guarantee of Claim 8.8.

41

9 Proof for Stronger Notion of Dispersers

We now explain how to use the machinery we developed in order to prove Theorem 8.2. We imitate
the argument used in the proof of Theorem 8.1 making some changes. We start by stating a
stronger notion of Claim 8.3. Intuitively, we want that for every independent δ-sources X,Y there
exist large subsources X̃, Ỹ with the properties guaranteed in Claim 8.3. The stronger theorem
would have followed had we been able to prove that there exist subsources with measure that is
some positive constant. While we do not know how to prove this it will suffice to show that there
exists a subsource collection X̃1, . . . , X̃w and Ỹ1, . . . , Ỹw (for some integer w) that is of constant
measure and for each j ∈ [w], X̃j , Ỹj have the properties guaranteed by Claim 8.3. The following
Claim is a stronger version of Claim 8.3.

Claim 9.1. There exists a constant µ > 0 (that depends only on δ and m) such that the following
holds: For every X,Y independent random variables over {0, 1}n with H∞(X), H∞(Y) > δn there
exists a partition Ĩ, an integer w and a subsource collection X̃1, . . . , X̃w and Ỹ1, . . . , Ỹw of (X,Y)
that has measure µ such that for every j ∈ [w]

1. dispĨ(X̃j , Ỹj) is 2−10m-close to uniform.

2. The partition Ĩ is selected with probability 1− 2−10m on x← X̃j and y ← Ỹj.

Proof of Theorem 8.2 from Claim 9.1 The proof is identical to that of Theorem 8.1 when using
Claim 8.3 (except that we now have a subsource collection and not a subsource). The argument
follows: Let X,Y be independent δ-sources on n bits. Let Ĩ be a partition and X̃1, . . . , X̃w and
Ỹ1, . . . , Ỹw be a subsource collection guaranteed By Claim 9.1. Let z ∈ {0, 1}m be some string. The
first item of the claim gives that for any j ∈ [w], Pr[dispĨ(X̃j , Ỹj) = z] ≥ 2−m−2−10m. The second

item says that when disp is applied on X̃j and Ỹj we have that Ĩ is not selected with probability
at most 2−10m. In other words, Pr[dispĨ(X̃j , Ỹj) 6= disp(X̃j , Ỹj)] ≤ 2−10m. It follows that:

Pr[disp(X̃j , Ỹj) = z] ≥ Pr[dispĨ(X̃j , Ỹj) = z]− 2−10m ≥ 2−m − 2 · 2−10m > 2−(m+1)

Let A1, . . . , Aw and B1, . . . , Bw be defining events for the subsource collection. Let Ej = Aj×Bj and
let E = ∪jEj . We have that the events E1, . . . , Ew are a partition of E and that Pr[(X,Y) ∈ E] ≥ µ.
Once we land in E we have already shown that we hit z with probability 2−(m+1) and so overall,
Pr[disp(X,Y) = z] ≥ µ2−(m+1) and note that this quantity is a constant that depends only on δ
and m as required.

9.1 Proof of Claim 9.1

We follow the proof of Claim 8.3. That proof worked in two steps. We first used Claims 8.7 and
Claim 8.8 to show the existence of “nice” subsources X̃, Ỹ of the original sources. In the second
step we used Claims 8.5 and Claim 8.6 to show that on “nice” sources X̃, Ỹ the properties of Claim
8.3 follow. To prove the stronger version we replace the Claims in the first step with stronger
versions that show the existence of a large subsource collection of nice sources. The second step
then remains unchanged. We have already observed that the proof of Claim 8.8 gives a stronger
version that shows the existence of a large subsource collection (this is stated precisely in Claim
8.10). Thus, we only need to state and prove a stronger version of Claim 8.7. A stronger version
which shows the existence of a large subsource collection is stated next.

42

Claim 9.2. There exists a constant µ > 0 (that depends only on δ and m) such that the following
holds: For every X,Y independent random variables over {0, 1}n with H∞(X), H∞(Y) > δn there
exists a partition Ĩ, an integer w and a subsource collection X ′1, . . . , X

′
w and Y ′1 , . . . , Y

′
w of (X,Y)

of measure µ such that for any j ∈ [w] when partitioning X ′j , Y
′
j according to Ĩ (which we denote

by (X ′j)1, (X
′
j)2, (X

′
j)3 and (Y ′j)1, (Y

′
j)2, (Y

′
j)3 then:

• H∞((X ′j)1), H∞((Y ′j)1) ≥ δn/2.

• H∞((X ′j)2), H∞((Y ′j)2) ≥ δ2n/50.

• H∞((X ′j)3), H∞((Y ′j)3) = 0 (or in other words that both (X ′j)3, (Y
′
j)3 are fixed constants).

We prove Claim 9.2 in Section 9.2. We are now ready to prove Claim 9.1. As explained above
the proof is essentially identical to that of Claim 8.3.

Proof of Claim 9.1 Let X,Y be independent δ-sources. By the combination of Claim 9.2 and
Claim 8.10 we get using Fact 4.5 that there exists a partition Ĩ an integer w and a subsource
collection X̃1, . . . , X̃w and Ỹ1, . . . , Ỹw of (X,Y) that has a measure which is larger than some
positive constant such that for every j ∈ [w] the subsources X̃j of X and Ỹj of Y are nicely
structured according to Ĩ and furthermore, Pr[testĨ(X̃j , Ỹj) = 1] = 1. The first item of Claim 9.1
follows directly from Claim 8.5. For the second item we note that by Claim 8.6 for every j ∈ [w]:

Pr[∃I 6� Ĩ : testI(X̃j , Ỹj) = 1] ≤ 2−10m

Whenever the event above does not hold we have that Ĩ is the partition that is selected and thus,
Ĩ is selected with probability at least 1− 2−10m as required.

9.2 Proof of Claim 9.2

We consider each of the two sources separately. We prove the following Claim.

Claim 9.3. Let X be a δ-source then there exists i1 ∈ [t] and a subsource X ′ of X with measure
1/4t such that when partitioning according to i1 for every string x3 of length (t− i1)δn/10

• H∞(X ′1|X ′3 = x3) ≥ δn/2.

• H∞(X ′2|X ′3 = x3) ≥ δ2n/50.

Once we prove this claim we can apply it on both sources to get subsources X ′ of X and Y ′

of Y and indices (i1, i2). We define the partition Ĩ = (i1, i2). For any choice (x3, y3) of values of
X3, Y3 that occur with positive probability under (X ′, Y ′) we define X ′x3,y3 = (X ′|X ′3 = x3) and
Y ′x3,y3 = (Y ′|Y ′3 = y3). Note that the collection (X ′x3,y3)(x3,y3) and (Y ′x3,y3)(x3,y3) are a subsource
collection of (X,Y) of measure 1/16t2 with the required properties.

We are left with proving Claim 9.3. For every i ∈ [t] and x in the support of X we consider
partitioning according to i and define ri(x) = Pr[X2 = x2|X3 = x3]. Note that for any x in the
support of X:

2−δn ≥ Pr[X = x] =
∏
i∈[t]

ri(x)

This is because when varying i from t to 1 each new term is the conditional probability that Xi
2 = xi2

conditioned on the event that the blocks in Xi
3 are fixed.

43

For any string x there exists an i such that ri(x) ≤ 2−
δn
4t (as otherwise the product cannot

be smaller than 2−δn). For every x let i(x) be the largest index i with that property. For every
i ∈ [t] let Bi = {x : Pr[X = x] > 0 and i(x) = i}. Note that the sets {Bi}i∈[t] are a partition
of the support of X and therefore there exists an i1 such that Pr[Bi1] ≥ 1/t. From now on
we always partition according to i1 and to simplify the notation we define B = Bi1 . Let B′ =
{x ∈ B : Pr[X ∈ B|X3 = x3] < 1/2t}. Note that

Pr[X ∈ B′] =
∑

x3
Pr[X ∈ B′|X3 = x3] Pr[X3 = x3]

≤
∑

x3
Pr[X ∈ B|X3 = x3] Pr[X3 = x3]

≤ 1
2t ·
∑

x3
Pr[X3 = x3]

≤ 1
2t

Let A = B \ B′ it follows that Pr[X ∈ A] ≥ 1/2t. Let X ′ = (X|X ∈ A). We have that X ′ is a
subsource of X with measure 1/2t. It remains to show that X ′ fulfils the required properties.

Fix some string x ∈ A (that is in the support of X ′) we estimate H∞(X ′2|X ′3 = x3) and
H∞(X ′1|X ′3 = x3).

Pr[X ′2 = x2|X ′3 = x3] = Pr[X2 = x2|X3 = x3 ∧X ∈ A]

= Pr[X2=x2∧X∈A|X3=x3]
Pr[X∈A|X3=x3]

≤ Pr[X2=x2|X3=x3]
1/2t

≤ 2t · 2−
δn
4t

≤ 2−δ
2n/40+log t+1

≤ 2−δ
2n/50

It follows that H∞(X ′2|X ′3 = x3) ≥ δ2n/50 as required. We now estimate H∞((X ′1, X
′
2)|X ′3 = x3).

The argument is very similar to the previous one. We observe that for any x ∈ B (and therefore
for any x ∈ A) we have that

Pr[X3 = x3] > 2−
(t−i)δn

4t > 2−δn/4

This is because for any x ∈ B, i1 is the largest index such that ri(x) ≤ 2−
δn
4t . Note that

2−δn ≥ Pr[X = x] = Pr[(X1, X2) = (x1, x2)|X3 = x3] · Pr[X3 = x3] and therefore for any x ∈ B,

Pr[(X1, X2) = (x1, x2)|X3 = x3] ≤ 2−(δn−δn/4) ≤ 2−
3δn
4 . Using this inequality we can repeat the

argument above.

44

Pr[X ′1 = x1 ∧X ′2 = x2|X ′3 = x3] = Pr[X1 = x1 ∧X2 = x2|X3 = x3 ∧X ∈ A]

= Pr[X1=x2∧X2=x2∧X∈A|X3=x3]
Pr[X∈A|X3=x3]

≤ Pr[X1=x1∧X2=x2|X3=x3]
1/2t

≤ 2t · 2−
3δn
4

≤ 2−3δn/4+log t+1

≤ 2−2δn/3

It follows that H∞((X ′1, X
′
2)|X ′3 = x3) ≥ 2δn/3. Observe that by Lemma 3.2

H∞(X ′1|X ′3 = x3) ≥ H∞((X ′1, X
′
2)|X ′3 = x3)− |X ′2| ≥

2δn

3
− δn

10
≥ δn

2

as required. This concludes the proof of the Claim.

10 Conclusion and open problems

The two main results of this paper are new constructions of 3-source extractors and 2-source
dispersers for every min-entropy rate δ > 0. While these constructions significantly improve the
parameters achieved by the best previous explicit constructions they are still far from the parameters
achieved by “non-explicit” objects which are shown to exist using the probabilistic method.

The construction and analysis of the 2-source disperser are quite complicated and it will be
very interesting to give a simpler construction.

Our constructions use brute force search to find a constant sized optimal extractor. We remark
that in a subsequent work Rao [Rao06] constructs an extractor for two “block-wise sources” and
that this construction does not use brute force search. Such extractors extract randomness from
two independent nicely structured sources and can therefore replace the function dispI which is
a component in the construction of the Disperser (and give a construction that does not rely on
brute force search).

We remark that in a subsequent work, Barak et al [BRSW06] construct an improved 2-source
disperser. This construction heavily builds on this paper and in particular relies on a (recursive
and more complicated) implementation of the “challenge-response mechanism” presented in this
paper.

Acknowledgements

We are grateful to Amnon Ta-Shma for helpful comments that significantly improved the presen-
tation.

References

[BIW04] B. Barak, R. Impagliazzo, and A. Wigderson. Extracting Randomness Using Few
Independent Sources. SIAM J. Comput, 36(4):1095–1118, 2006. Preliminary version in
FOCS ’04.

45

[BRSW06] B. Barak, A. Rao, R. Shaltiel, and A. Wigderson. 2-source dispersers for sub-polynomial
entropy and Ramsey graphs beating the Frankl-Wilson construction. In Proc. of the
38th Annual ACM Symposium on Theory of Computing, pages 671–680, 2006.

[BST03] B. Barak, R. Shaltiel, and E. Tromer. True Random Number Generators Secure in
a Changing Environment. In Workshop on Cryptographic Hardware and Embedded
Systems (CHES), pages 166–180, 2003. LNCS no. 2779.

[Blu86] M. Blum. Independent Unbiased Coin Flips from a Correlated Biased Source–A Finite
State Markov Chain. Combinatorica, 6(2):97–108, 1986.

[Bou05] J. Bourgain. More on the sum-product phenomenon in prime fields and its applications.
International Journal of Number Theory, 1:1–32, 2005.

[BKT04] J. Bourgain, N. Katz, and T. Tao. A sum-product estimate in finite fields, and appli-
cations. Geom. Funct. Anal., 14(1):27–57, 2004.

[CRVW02] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness conductors and
constant-degree lossless expanders. In Proc. 34th STOC, pages 659–668. ACM, 2002.

[CG88] B. Chor and O. Goldreich. Unbiased Bits from Sources of Weak Randomness and
Probabilistic Communication Complexity. SIAM Journal on Computing, 17(2):230–
261, 1988.

[CGH+85] B. Chor, O. Goldreich, J. Hastad, J. Friedman, S. Rudich, and R. Smolensky. The
Bit Extraction Problem of t-Resilient Functions (Preliminary Version). In Proc. 26th
FOCS, pages 396–407. IEEE, 1985.

[CW89] A. Cohen and A. Wigderson. Dispersers, Deterministic Amplification, and Weak Ran-
dom Sources. In Proc. 30th FOCS, pages 14–19. IEEE, 1989.

[DEOR04] Y. Dodis, A. Elbaz, R. Oliveira, and R. Raz. Improved Randomness Extraction from
Two Independent Sources. In Proc. of 8th RANDOM, 2004.

[DS02] Y. Dodis and J. Spencer. On the (non)Universality of the One-Time Pad. In Proc.
43rd FOCS, pages 376–388. IEEE, 2002.

[FW81] P. Frankl and R. M. Wilson. Intersection theorems with geometric consequences. Com-
binatorica, 1(4):357–368, 1981.

[GRS04] A. Gabizon, R. Raz, and R. Shaltiel. Deterministic Extractors for Bit-Fixing Sources by
Obtaining an Independent Seed. SIAM J. Comput., 36(4):1072–1094, 2006. Preliminary
version in FOCS ’04.

[GS08] A. Gabizon and R. Shaltiel. Increasing the Output Length of Zero-Error Dispersers.
In APPROX-RANDOM, volume 5171 of Lecture Notes in Computer Science, pages
430–443. Springer, 2008.

[Gol95] O. Goldreich. Three XOR-Lemmas – An Exposition. ECCC Report TR95-056, 1995.

[GUV09] V. Guruswami, C. Umans, and S. Vadhan. Unbalanced expanders and randomness ex-
tractors from Parvaresh–Vardy codes. Journal of the ACM, 56(4):20, 2009. Preliminary
version in CCC ’07.

46

[KZ06] J. Kamp and D. Zuckerman. Deterministic Extractors for Bit-Fixing Sources and
Exposure-Resilient Cryptography. SIAM J. Comput., 36(5):1231–1247, 2007. Prelimi-
nary version in STOC ’06.

[KS09] N. Katz and C. Shen. Garaev’s inequality in finite fields not of prime order. Preprint,
Arxiv:math/0703676, 2009.

[LRVW03] C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: optimal up to
constant factors. In Proc. 35th STOC, pages 602–611. ACM, 2003.

[MP90] J. L. McInnes and B. Pinkas. On the Impossibility of Private Key Cryptography with
Weakly Random Keys. In Crypto ’90, pages 421–436, 1990. LNCS No. 537.

[MU01] E. Mossel and C. Umans. On the complexity of approximating the VC dimension. J.
Comput. Syst. Sci., 65(4):660–671, 2002. Preliminary version in CCC ’01.

[OL89] B. Or and Linial. Collective Coin Flipping. ADVCR: Advances in Computing Research,
5, 1989.

[Pud06] P. Pudlak. On Explicit Ramsey Graphs and Estimates on the Numbers of Sums And
Products. In Topics in discrete mathematics, Algorithms Combin., volume 26, pages
169–175. Springer, 2006.

[PR04] P. Pudlák and V. Rödl. Pseudorandom sets and explicit constructions of Ramsey
graphs. In Complexity of computations and proofs, pages 327–346. Quad. Mat., 13,
Dept. Math., Seconda Univ. Napoli, Caserta, 2004.

[Rao06] A. Rao. Extractors for a constant number of polynomially small min-entropy indepen-
dent sources. In Proc. of the 38th Annual ACM Symposium on Theory of Computing,
pages 497–506, 2006.

[Raz05] R. Raz. Extractors with weak random seeds. In Proc. of the 37th Annual ACM Sym-
posium on Theory of Computing, pages 11–20, 2005.

[RR99] R. Raz and O. Reingold. On Recycling the Randomness of States in Space Bounded
Computation. In Proc. of the 31st Annual ACM Symposium on Theory of Computing,
pages 159–168, 1999.

[RSW00] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting Randomness via Repeated
Condensing. SIAM J. Comput., 35(5):1185–1209, 2006. Preliminary version in FOCS
’00.

[RVW00] O. Reingold, S. P. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders. Annals of Mathematics, 155(1):157–187,
2002. Preliminary vesion in FOCS ’00.

[SV84] M. Santha and U. V. Vazirani. Generating Quasi-Random Sequences from Slightly-
Random Sources. In Proc. 25th FOCS, pages 434–440. IEEE, 1984.

[Sha02] R. Shaltiel. Recent developments in extractors. Bulletin of the European Association
for Theoretical Computer Science, 2002.

[TS96] A. Ta-Shma. On Extracting Randomness From Weak Random Sources. In STOC,
pages 276–285, 1996.

47

[TSUZ07] A. Ta-Shma, C. Umans, and D. Zuckerman. Lossless Condensers, Unbalanced Ex-
panders, And Extractors. Combinatorica, 27(2):213–240, 2007.

[TV06] T. Tao and V. Vu. Additive combinatorics. Cambridge University Press, 2006.

[TV00] L. Trevisan and S. Vadhan. Extracting randomness from samplable distributions. In
Proc. 41st FOCS, pages 32–42. IEEE, 2000.

[Vaz87] U. Vazirani. Strong Communication Complexity or Generating Quasi-Random Se-
quences from Two Communicating Semi-Random Sources. Combinatorica, 7(4), 1987.

[vN51] J. von Neumann. Various Techniques Used in Connection with Random Digits. Applied
Math Series, 12:36–38, 1951.

[Zuc90] D. Zuckerman. General Weak Random Sources. In Proc. 31st FOCS, pages 534–543.
IEEE, 1990.

[Zuc06] D. Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and
Chromatic Number. Theory of Computing, 3(1):103–128, 2007. Preliminary version in
STOC ’06.

A Proof of Lemma 7.1

For completeness we give the proof of Lemma 7.1. This is a standard calculation that follows from
the following more general lemma.

Lemma A.1. Let m < k < d be integers, and let ε > 0. There exist some constant a > 0 such that
if k > log d + 2m + 2 log(1/ε) + a then there exists a 25d2·22k-time computable 2-source extractor
opt : {0, 1}d×2 → {0, 1}m with k-entropy requirement and distance ε.

Proof. We first give a probabilistic argument that such an extractor exists, and then find it by
brute force. Let M = 2m, D = 2d and K = 2k. Let A be a randomly chosen D ×D matrix with
entries in {0, 1}m, where the D2m bits used as an entries of A are K2m-wise independent. We
show that with positive probability the function opt(x, y) = Ax,y is an extractor with the required

parameters. We say that R is a rectangle if R ∈
([D]
K

)
×
([D]
K

)
. We first show that for every rectangle

R, nonzero v ∈ {0, 1}m and ε > 0

Pr

[∣∣∣ ∑
(i,j)∈R

(−1)<Aij ,v>
∣∣∣ > K2ε/M

]
< e−Ω(ε

2K2

M2). (1)

For every (i, j) ∈ R and nonzero v ∈ {0, 1}m define a random variable Bij = (−1)<Aij ,v> and
let B =

∑
(i,j)∈RBij . Note that E[B] = 0. Moreover, since every K2 entries of A are independent,

we have the independence of variables Bij . Therefore the Chernoff bound implies that Pr
[
|B| >

εK2/M
]
< e−Ω(ε

2K2

M2).
We say that A passes R and v if

∣∣∑
(i,j)∈R(−1)<Aij ,v>

∣∣ ≤ K2ε/M . By a union bound over
all rectangles and nonzero vectors we get that the probability that there exist a rectangle R and
nonzero v such that A does not pass R and v is bounded by(

D

K

)2

·M · e−Ω(ε
2K2

M2) ≤ 23Kd−Ω(ε
2K2

M2)

48

It is easy to verify that there exists some constant c > 0 such that the right side of the above
inequality is smaller than one when K ≥ cdM2

ε2
. This holds for k > log d+ 2m+ 2 log(1/ε) +O(1).

Thus, there exists a matrix A′ which passes all rectangles and all vectors v. Let opt(x, y) = A′x,y.
We now verify that opt is a 2-sample extractor with k-entropy requirement and distance ε. It is
sufficient consider only pairs of independent sources where each component is a flat distribution.
Each such pair of sources is uniformly distributed over some rectangle R. Fix such an R and let
Y denote the output distribution of opt on R. For every nonzero v ∈ {0, 1}m we have that the
expected bias of Y in v is

∣∣E[(−1)<Y,v>]
∣∣ ≤ ε/M . Thus, the distribution Y is ε/M -biased and by

the Vazirani XOR-lemma (see e.g. [Gol95]) we have that Y is ε-close to uniform. (In fact, it also
would have followed if Y were only ε/

√
M -biased). This shows that opt indeed is an extractor.

To find a matrix which passes all rectangles and vectors we go over all possible matrices A in
the appropriate sample space. There are efficient constructions of such a space that are of size

(D2m)K
2m. For each matrix we check all rectangles and vectors, altogether

(
D
K

)2 · M choices.
Finally for each such choice we check whether (1) holds in time K2m. Thus, the total time we need
is bounded by

(D2m)K
2m ·

(
D

K

)2

·M ·K2m ≤ 23d2·22k+d·2k+1+m+3k ≤ 25d2·22k

49

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

