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Abstract

In this paper we study the degree of non-constant symmetric functions f : {0, 1}n →
{0, 1, . . . , c}, where c ∈ N, when represented as polynomials over the real numbers. We
show that as long as c < n it holds that deg(f) = Ω(n). As we can have deg(f) = 1
when c = n, our result shows a surprising threshold phenomenon. The question of lower
bounding the degree of symmetric functions on the Boolean cube was previously studied
by von zur Gathen and Roche [GR97] who showed the lower bound deg(f) ≥ n+1

c+1 and
so our result greatly improves this bound.

When c = 1, namely the function maps the Boolean cube to {0, 1}, we show that if
n = p2, when p is a prime, then deg(f) ≥ n−

√
n. This slightly improves the previous

bound of [GR97] for this case.

1 Introduction

A natural representation of functions on the Boolean cube is as polynomials over various
fields, in particular over the real numbers where this representation is also known as the
Fourier representation of the function. Understanding such representations has been a major
research goal in theoretical computer science for decades (see e.g. [BdW02, Ste03, Gop06]).
Specifically, the question of better understanding the degree of the representing real polyno-
mial received a lot of attention [NS94, GR97]. Nisan and Szegedy proved that the degree of
the representing polynomial of any Boolean function that depends on all n inputs is at least1

log(n) − O(log log n) (this bound is tight as the so called address function demonstrates)
[NS94]. This result immediately raises the question of whether we can get stronger lower
bounds on the degree when the underlying function has additional properties.

A class of functions that was widely studied is the class of symmetric Boolean functions.
A symmetric function on the Boolean cube is a function that only depends on the weight
of its input (i.e. its number of non-zero entries). Symmetric Boolean functions play an
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important role in many areas of theoretical computer science. For example, they received a
lot of attention in learning theory (see e.g. [KOS04] and references within), circuit complexity
[HMP+93], cryptography [NR04], quantum computation [Raz03], voting theory and more. It
is a well known fact that every such function f(x1, . . . , xn) can be represented as a univariate
polynomial in x = x1 + . . . + xn. In other words, symmetric Boolean functions are in one
to one correspondence with functions of the form F : {0, 1, . . . , n} → {0, 1}. Thus, for
symmetric functions the question boils down to proving a lower bound on the degree of
non-constant polynomials on {0, 1, . . . , n} that take two different values. In [GR97], von zur
Gathen and Roche proved that the degree of such polynomials is n − o(n). In their work
von zur Gathen and Roche also raised the question of what can be said when the image of
the polynomial has more than two values. Specifically, what can be said about the degree
of non-constant polynomials f : {0, 1, . . . , n} → {0, 1, . . . , c}, where c ∈ N. Going back to
the Boolean cube this question concerns symmetric functions from the cube to the integers
that take more than two values. Note that when c = n the function f(x) = x has degree
1 and so it is an interesting question to better understand the tradeoff between the size of
the range c and the degree of the function f . Von zur Gathen and Roche showed that the
degree of any such function is at least (n + 1)/(c + 1) [GR97]. This lower bound follows
from the pigeonhole principle; such a function must assume one of its c + 1 values on at
least (n + 1)/(c + 1) points, while polynomial of degree d cannot obtain the same value on
more than d points. In particular, when c > n/2 this result does not exclude the possibility
that there is a quadratic polynomial mapping {0, 1, . . . , n} to {0, 1, . . . , c}. Indeed, von zur
Gathen and Roche also asked whether stronger bounds can be proved.

In this work we study this question and show what we find to be an interesting thresh-
old phenomenon. Specifically, we prove that the degree of any non-constant function f :
{0, 1, . . . , n} → {0, 1, . . . , c}, where c < n is any positive integer, is Ω(n). Thus if c = n− 1
the degree has to be linear in n and when c = n the degree can be as low as 1. Stating this
result differently, we see that low degree polynomials cannot ‘squeeze’ the set {0, 1, . . . , n}
into {0, 1, . . . , n− 1}.

1.1 Our Results and techniques

As mentioned above, we give a lower bound for c = n− 1 (and therefore for all c < n) and
by that prove a sharp threshold behavior at c = n.

Theorem 1 (Main Theorem). Let f be a non-constant function of the form
f : {0, 1, . . . , n} → {0, 1, . . . , n− 1}. Then deg f ≥ 9

22
n−O(n0.525).

As we prove a linear lower bound on the degree, it is natural to consider the following
definition.

Definition 1. Let c ∈ N. We call a non-constant function of the form f : {0, 1, . . . , n} →
{0, 1, . . . , c} an (n, c)-function. We denote by Fc (n) the set of all (n, c)-functions. Denote
Dc(n) = 1

n
minf∈Fc(n) deg f . We call Dc(n) the relative degree of (n, c)-functions.

It is easy to see that Dc(n) is non-increasing with respect to c. On the other hand,
for a fixed c, Dc(n) has quite a chaotic behavior in n and is certainly not monotone. For
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example, it can be shown that D1(n) < 1 for all odd n’s greater than 1, while it was proved
in [GR97] that D1(p − 1) = 1 for all primes p. Using this definition we can restate our
question in terms of proving lower bounds on Dc(n) for any 1 ≤ c < n. [GR97] proved
that D1(n) = 1 − O(n−0.475) = 1 − o(1) and that the trivial lower bound for general c is
Dc(n) > 1

c+1
. Using the same language, our main result shows that Dn−1(n) ≥ 9

22
− o(1).

The proof goes in two steps. In the first step we make a reduction from (n, n−1)-functions
to (m, 4)-functions for some m. This is expressed in the following lemma.

Lemma 1 (Reduction to c = 4). For any n there exists a prime p such that n−O(n0.525) <
2p < n and Dn−1(n) ≥ 1

2
D4(p)− o(1).

This step together with the trivial lower bound D4(n) > 1
5

already gives a lower bound
of 1

10
− o(1) for Dn−1(n), which is enough to prove the desired threshold behavior. In order

to prove a better lower bound we show another reduction. This time the reduction is on n
and not on c.

Lemma 2 (Reducing n). For every c,m, n ∈ N \ {0} such that n > 2mc, it holds that
Dc(n) ≥ m

m+1
Dc(m)− o(1).

Although we’ve mentioned that Dc(n) is not monotone in n, Lemma 2 shows that some
relaxed property of monotonicity does hold - given a large m, for large enough n’s we almost
have that Dc(n) > Dc(m). Besides this insight, Lemma 2 gives us a way of proving lower
bounds on Dc(n) using a computer search. Indeed, running a computer search we found that
D4(21) = 6

7
. This result together with Lemma 1 and Lemma 2 yields Theorem 1.

As one cannot prove lower bounds on Dn−1(n) that are better than 1
2

using Lemma 1,
we consider the case c < n − 1 and ask for better lower bounds on Dc(n). When c is very
small one can run a computer search and use Lemma 2 to get:

Corollary 1. For any n it holds that: D2(n) > 8
9
−o(1), D3(n) > 6

7
−o(1), D4(n) > 9

11
−o(1)

and D5(n) > 13
18
− o(1).

A more general result is the next theorem. It gives a lower bound, better than that of
Theorem 1, for c’s that are still quite large.

Theorem 2. If c < 2
3
n− Ω (n0.525) then Dc(n) > 2

3
− o(1).

Next, we give a very simple though interesting corollary that can be deduced from The-
orem 2.

Corollary 2. Let C be a finite fixed subset of Q and let f : {0, 1, . . . , n} → C be a non-
constant function. Then deg f ≥ 2

3
n− o(1).

Besides the result for large values of c we also study the case of c = 1. Namely, symmetric
Boolean functions. For such a function f von zur Gathen and Roche proved that deg(f) ≥
n − O(n0.525). The idea behind their proof was to first show that when n = p − 1, where p
is prime, the degree of any non-constant symmetric Boolean function is exactly n. Applying
a theorem on the gap between consecutive prime numbers it immediately follows that the
degree of non-constant symmetric Boolean function, on n variables, is n−O(n0.525). In view
of this result it is natural to ask what can be said for n of the form n = pm − 1. We prove
the following theorem, which extends the main result of [GR97] (achieved by taking m = 1).
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Theorem 3. Let n = pm − 1 for a prime p. Let f be a non-constant symmetric Boolean
function on n variables. Then deg f ≥ n− n1−1/m.

Note that the above theorem slightly improves the result of [GR97] for n’s of the form
n = p2 − 1 as it gives a lower bound of n −

√
n on the degree rather than n − O(n0.525).

In addition, and for completeness, we give an alternative simple proof of the fact that non-
constant symmetric Boolean functions on n = p− 1 variables have degree n.

1.2 Organization

The paper is organized as follows. In Section 2 we develop some tools that will be used in
the rest of the paper. In Section 3 we prove Lemma 1. In Section 4 we prove Lemma 2
and deduce Theorem 1 and Corollary 1. In Section 5 we prove Theorem 2 and Corollary 2.
Finally, we prove Theorem 3 in Section 6.

1.3 Some notations

Given f ∈ Fc (n) we denote with hf (x) the unique univariate polynomial of degree ≤ n that
agrees with f on the points in the set {0, 1, . . . , n}. We define the degree of f to be deg hf

and denote it by deg f .
We write a ≡p b as a shorthand for a ≡ b mod p. Given an integer a we shall say that its

base b representation is a = 〈 as as−1 . . . a0 〉b, when a = asb
s +as−1b

s−1 + · · ·+a1b+a0.
This representation is unique under the assumption that as 6= 0, that is up to leading zeros.

2 Periodicity and degree

The strategy we take for proving lower bounds on the degree of functions is basically as
follows: we prove that a function having low degree must have a strong periodical structure
(in a sense we will formally define). Then we show that a function having a strong periodical
structure must be of high degree. Hence a function with a ‘too low’ degree cannot exist. In
this section we prove two lemmas, which formally capture this idea.

2.1 Low degree implies strong periodical structure

The following lemma shows that a low degree function must have some periodical structure.

Lemma 3. Let f ∈ Fc (n) be a function with deg f = d. Let d < p ≤ n be a prime number.
Then for all 0 ≤ j ≤ d such that p+ j ≤ n it holds that f(p+ j) ≡p f(j).

In order to prove Lemma 3 we will use the following two known facts.

Fact 1. Let h be a polynomial of degree d assuming integer values at x = 0, 1, . . . , d. Then
one can write h(x) =

∑d
k=0 ck

(
x
k

)
, where the ck’s are integers and

(
x
k

)
is defined to be the

polynomial
(

x
k

)
= x(x−1)·...·(x−k+1)

k!
.

The second fact is Lucas’ theorem from 1878. For completeness we give simple proofs of
these facts in Appendix A.

4



Fact 2 (Lucas’ theorem). Let a, b ∈ N \ {0} and let p be a prime number. Denote with
a = a0 +a1p+a2p

2 + · · ·+akp
k and b = b0 +b1p+b2p

2 + · · ·+bkpk their base p representations.
Then

(
a
b

)
≡p

∏k
i=0

(
ai

bi

)
, where

(
ai

bi

)
= 0 if ai < bi.

We are now ready to prove Lemma 3.

Proof of Lemma 3. By Fact 1 we can write

hf (p+ j) =
d∑

k=0

ck

(
p+ j

k

)
(1)

where all ck’s are integers. Applying Lucas’ theorem while remembering that j, k < p we get(
p+ j

k

)
=

(
〈 1 j 〉p
〈 0 k 〉p

)
≡p

(
1

0

)(
j

k

)
=

(
j

k

)
. (2)

Combining (1), (2) and the assumption that p+ j ≤ n we obtain

f(p+ j) = hf (p+ j) =
d∑

k=0

ck

(
p+ j

k

)
≡p

d∑
k=0

ck

(
j

k

)
= hf (j) = f(j) .

2.2 Strong periodical structure implies high degree

The next definition is a formalization of what we have earlier referred to as a ‘strong periodical
structure’.

Definition 2. Given a function f ∈ Fc (n) and T,∆ ∈ N such that T ≥ 1 we define
P∆

T (f) = {0 ≤ k ≤ n− T : f(k) + ∆ = f(k + T )}.

In words, P∆
T (f) is the number of elements less or equal than n− T on which f behaves

as it has period T (with a shift of ∆). With this definition in mind we are ready to prove
that a function having a strong periodical structure, has a high degree.

Lemma 4. Let f ∈ Fc (n), then for all T,∆ ∈ N such that T ≥ 1 it holds that

1. If ∆ = 0 then deg f ≥
∣∣P∆

T (f)
∣∣.

2. If ∆ 6= 0 then deg f ≥
∣∣P∆

T (f)
∣∣ or deg f = 1.

Proof. Denote d = deg f and assume that d <
∣∣P∆

T (f)
∣∣. Let g(x)

def
= hf (x + T ) − ∆. We

notice that deg g = deg hf = d. Hence, for all k ∈ P∆
T (f) it holds that

g(k) = hf (k + T )−∆ = f(k + T )−∆ = f(k) = hf (k) .
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Therefore g and hf have at least
∣∣P∆

T (f)
∣∣ agreements. Since these two polynomials have

degree d <
∣∣P∆

T (f)
∣∣, it must hold that g = hf . Denote hf (x) =

∑d
k=0 akx

k. Since deg f = d
we have that ad 6= 0. Now,

d∑
k=0

akx
k + ∆ = hf (x) + ∆ = g(x) + ∆ = hf (x+ T ) =

d∑
k=0

ak(x+ T )k

=
d∑

k=0

ak

k∑
j=0

(
k

j

)
xjT k−j =

d∑
m=0

xm

d∑
k=m

(
k

m

)
akT

k−m .

(3)

Thus, the coefficients of the LHS equal the coefficients of the RHS.
Assume now that ∆ = 0. In this case our initial assumption that d <

∣∣P∆
T

∣∣ leads to a

contradiction. Indeed, Equation (3) implies that for 0 ≤ m ≤ d, am =
∑d

k=m

(
k
m

)
akT

k−m

and so for 0 ≤ m ≤ d we have
∑d

k=m+1

(
k
m

)
akT

k−m = 0. Consequently, for m = d− 1 we get(
d

d−1

)
adT = 0. Since T ≥ 1 and d 6= 0 (recall that f ∈ Fc (n) is non-constant) it follows that

ad = 0, which is a contradiction.
As for the second part of the theorem, assume that ∆ 6= 0. In this case we want to prove

that deg f = 1. As in the case of ∆ = 0 we have that for 1 ≤ m ≤ d, am =
∑d

k=m

(
k
m

)
akT

k−m

(for m = 0 this equality doesn’t hold since the shift by ∆ affects the free term, as can be
seen in Equation (3)). As before, we reach a contradiction by considering m = d− 1 (again
we derive that ad = 0). We can do so as long as 1 ≤ d−1, that is as long as d > 1. Therefore
our assumption leads to a contradiction unless d = 1, and so we are done.

3 Reduction to c = 4

In this section we prove Lemma 1. We first cite a corollary of the result of Baker et al
[BHP01] on the gap between two consecutive primes.

Theorem 4. For any n ∈ N there exists a prime number p such that n−O(n0.525) < p < n.

We are now ready to prove Lemma 1.

Proof of Lemma 1. Let f ∈ Fn−1 (n) be a function with minimal degree n·Dn−1(n). Let p be
a prime such that n

2
−O((n

2
)0.525) < p < n

2
guaranteed by Theorem 4. Clearly, n−O(n0.525) <

2p < n. Let f̃ be the restriction of f to the domain {0, 1, . . . , 2p}. Note that deg f ≥ deg f̃ . If
deg f̃ ≥ p then n·Dn−1(n) = deg f ≥ deg f̃ ≥ p > n

2
−o(n) and we are done. We can therefore

assume that deg f̃ < p. Define g : {0, 1, . . . , p} → R as follows: g(k) = 2 + f̃(p+k)−f̃(k)
p

. It

is obvious that deg g ≤ deg f̃ . To better understand g, note that Lemma 3 implies that
for any 0 ≤ k ≤ p it holds that f̃(p + k) ≡p f̃(k). Since for all 0 ≤ j ≤ 2p we have that
0 ≤ f̃(j) < n < 3p, it follows that f̃(p + k) − f̃(k) ∈ {−2p,−p, 0, p, 2p}. Consequently,
g maps {0, 1, . . . , p} to {0, 1, 2, 3, 4}. In other words, g is a (p, 4)-function. If g is not a
constant then

n · Dn−1(n) = deg f ≥ deg f̃ ≥ deg g ≥ p · D4(p) >
(n

2
− o(n)

)
· D4(p) .
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Dividing both sides by n we conclude the proof.
We now deal with the case that g is a constant function, say the constant G. Thus, for

all 0 ≤ k ≤ p we have that f̃(p + k) = f̃(k) + (G − 2)p and therefore |P (G−2)p
p (f̃)| > p.

By Lemma 4, either deg f̃ ≥ |P (G−2)p
p (f̃)| > p ≥ n

2
− o(n) which concludes the proof, or f̃

is a linear function. Assume the latter occurs and repeat the above proof for the function
fR ∈ Fn−1 (n) defined as fR(k) = f(n − k). If by applying the proof on fR we get that
deg fR ≥ 1

2
D4(p) − o(1) then, since deg f = deg fR, we are done. Otherwise we again get

that f̃R is a linear function. Combining the facts that f̃ and f̃R are linear we see that f
behaves like a linear function on the first and the last 2p points. Since n < 2p + o(n), f

must itself be a linear function, as the two linear functions f̃ and f̃R agree on more than
two points. Since f is not constant, this means that f assumes n + 1 different values on
{0, 1, . . . , n}, contradicting the fact that f ∈ Fn−1 (n).

We would like to point out that for the case n = 2p+ 1, for a prime p, we can do slightly
better. In such case g is actually a (p, 2) function rather than a (p, 4) function, as the
difference f̃(k + p)− f̃(k) is contained in {−p, 0, p}. Corollary 1 gives better lower bounds
for D2(n) than for D4(n). This in turn yields the stronger result Dn−1(n) ≥ 4

9
−o(1) for such

n’s.

4 Reducing n

In this section we prove Lemma 2 and deduce Theorem 1. To this end it is more convenient
to talk about the gap of functions.

Definition 3. Given f ∈ Fc (n) define γ(f)
def
= n − deg f . We call γ(f) the gap of f . Let

Γc(n)
def
= maxf∈Fc(n) γ(f). We call Γc(n) the gap of (n, c)-functions.

Note that Γc(n) = n(1−Dc(n)).

Theorem 5 (Theorem 2.2 from [GR97]). Given f ∈ Fc (n) and 0 ≤ r ≤ n, γ(f) > r iff for
all n− r ≤ s ≤ n it holds that

∑s
k=0 (−1)k

(
s
k

)
f(k) = 0.

To prove Lemma 2 we will also need to know, given f ∈ Fc (n), the value of hf (n+ t) for
t ≥ 1.

Lemma 5. For any function f ∈ Fc (n) and for any t ∈ N− {0}

hf (n+ t) = (−1)n

n∑
k=0

(−1)k

(
n+ t

k

)(
n+ t− k − 1

t− 1

)
f(k) .

Proof. Lagrange interpolation formula implies that hf (x) =
∑n

k=0 f(k)
∏n

j=0
j 6=k

x−j
k−j

. Substitut-
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ing n+ t for x we get

hf (n+ t) =
n∑

k=0

( n∏
j=0
j 6=k

n+ t− j
k − j

)
f(k) =

n∑
k=0

(−1)n−k

k!(n− k)!

(n+ t)!

(t− 1)!(n+ t− k)
f(k)

= (−1)n

n∑
k=0

(−1)k (n+ t)!

k!(n+ t− k)!

(n+ t− k − 1)!

(n− k)!(t− 1)!
f(k)

= (−1)n

n∑
k=0

(−1)k

(
n+ t

k

)(
n+ t− k − 1

t− 1

)
f(k)

The following lemma is useful for the proof of Lemma 2.

Lemma 6. For all n,m, c ∈ N we have that Γc(n+m) ≤ Γc(n) +m.

Proof. Let f ∈ Fc(n+m) be a function of minimal degree. That is, deg f = n+m−Γc(n+m).
Assume for a contradiction that deg f < n − Γc(n). Let g ∈ Fc(n) be the restriction of f
to {0, 1, . . . , n}. By our assumption deg f ≤ n and so by the uniqueness of the representing
polynomial, deg f = deg g. As f is non-constant we get g is non-constant (otherwise, if f
is constant on {0, 1, . . . , n} then it must have degree at least n). Hence, deg g ≥ n− Γc(n).
This contradicts the assumption that deg g = deg f < n−Γc(n). Therefore deg f ≥ n−Γc(n)
and we are done.

It easily follows from the relation between Dc(n) and Γc(n) that Lemma 2 is equivalent
to the following lemma.

Lemma 7. For all c,m, n ∈ N−{0} such that n > 2mc it holds that Γc(n) ≤
(

Γc(m)+1
m+1

)
n+

o(n).

We shall therefore focus on proving Lemma 7. The heart of the proof is the following
lemma.

Lemma 8. For all c,m, p ∈ N − {0} such that p is a prime and 2mc < p, it holds that
Γc ((m+ 1)p− 1) < p ( Γc (m) + 1).

Proof. If this inequality does not hold then there is a function f ∈ Fc ((m+ 1)p− 1) such

that deg f < (m−γ)p, where γ
def
= Γc (m). Hence the value of f on the points {0, 1, . . . , (m−

γ)p− 1} completely determines hf . For every 0 ≤ j ≤ p− 1 define the function fj ∈ Fc (m)

as follows: for every 0 ≤ i ≤ m, fj(i)
def
= f(i·p+ j).

The strategy of the proof is to show that under the contradiction assumption, all fj’s
are constants and therefore f is periodical with period p. At that point, applying Lemma 2
(with ∆ = 0) will yield a contradiction.
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For every 0 ≤ r ≤ γ and for every 0 ≤ j ≤ p − 1, the value of hf ((m − r)p + j) is
determined by the value of f on the points {0, 1, . . . , (m− r)p−1}.2 Therefore we can apply
Lemma 5 with n = (m− r)p− 1 and t = j + 1 to get

hf ((m− r)p+ j) =

(−1)(m−r)p−1

(m−r)p−1∑
k=0

(−1)k

(
(m− r)p+ j

k

)(
(m− r)p+ j − k − 1

j

)
f(k)

Since 0 ≤ j ≤ p − 1 we have (m − r)p + j = 〈m − r j 〉p. Observe that k < p2 and so
k = 〈 k1 k0 〉p. Thus, in order for k to contribute to the sum modulo p, it must hold that
k0 ≤ j. Assume that k0 < j, that is j − k0 − 1 ≥ 0. Note that (m − r)p + j − k − 1 =
〈m− r− k1 j− k0− 1 〉p. Consequently, for k to contribute to the sum modulo p, we must
have j − k0 − 1 ≥ j. Hence k0 ≤ −1, which is impossible. Thus, all k’s that contribute to
the sum modulo p satisfy k0 = j. With this in mind we can simplify the sum over Fp

hf ((m− r)p+ j) ≡p (4)

(−1)m−r−1

m−r−1∑
k1=0

(−1)k1p+j

(
(m− r)p+ j

k1p+ j

)(
(m− r − k1)p− 1

j

)
f(k1p+ j) .

By Lucas’ Theorem(
(m− r)p+ j

k1p+ j

)
≡p

(
m− r
k1

)
and

(
(m− r − k1)p− 1

j

)
≡p .

(
p− 1

j

)
Now j!

(
p−1

j

)
= (p − 1)(p − 2) · . . . · (p − j) ≡p (−1)j · j! and since j! 6= 0 it follows that(

p−1
j

)
≡p (−1)j. With this we can simplify equation (4) a little further

hf ((m− r)p+ j) ≡p (−1)m−r−1

m−r−1∑
k1=0

(−1)k1

(
m− r
k1

)
f(k1p+ j) .

Since hf ((m−r)p+ j) = f((m−r)p+ j) we have that for all 0 ≤ j ≤ p−1 and all 0 ≤ r ≤ γ

m−r∑
k1=0

(−1)k1

(
m− r
k1

)
fj(k1) ≡p 0 .

The LHS is strictly smaller than 2mc and since we assume that 2mc < p it must hold that

m−r∑
k1=0

(−1)k1

(
m− r
k1

)
fj(k1) = 0 .

Applying Theorem 5 we get that for every 0 ≤ j ≤ p − 1, γ(fj) > γ = Γc (m). Hence all
fj’s must be constant functions. This implies that f is a periodical function with period p.
That is

∣∣P 0
p (f)

∣∣ = mp. By Lemma 2 we get that deg f ≥ mp. Recalling the assumption
deg f < (m− γ)p, we get that γ < 0 in contradiction.

2Actually, as stated above, hf ((m− r)p+ j) is determined by the first (m− γ)p points from this set, but
for the sake of the analysis, it is more convenient to see the affect of all of those points on hf ((m− r)p+ j).
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We are now ready to prove Lemma 7.

Proof of Lemma 7. Given n and m, we can apply Theorem 4 to assure the existence of a
prime number p such that n/(m+1)−O

(
(n/(m+ 1))0.525) ≤ p < n/(m+1). Since m = o(n),

n− o(n) ≤ (m+ 1)p− 1 < n. By Lemma 6

Γc (n) ≤ Γc ((m+ 1)p− 1) + n− ((m+ 1)p− 1) ≤ Γc ((m+ 1)p− 1) + o(n) (5)

By Lemma 8

Γc ((m+ 1)p− 1) < p ( Γc (m) + 1) = (m+ 1)p
(

Γc(m)+1
m+1

)
≤

n
(

Γc(m)+1
m+1

)
(6)

Inequalities (5) and (6) together imply that Γc (n) ≤
(

Γc(m)+1
m+1

)
n+ o(n) as desired.

Deducing Theorem 1 is straightforward at this point.

Proof of Theorem 1. A computer search found that D4(21) = 6/7. By Lemma 2 D4(n) ≥
21

21+1
· 6

7
− o(1) = 9

11
− o(1). Lemma 1 gives Dn−1(n) ≥ 1

2
· D4(p) − o(1) ≥ 1

2
· 9

11
− o(1) =

9
22
− o(1).

We end this section by deducing Corollary 1

Proof of Corollary 1. A computer search we have conducted found that D2(35) = 32
35

,
D3(27) = 8

9
, D4(21) = 6

7
and D5(17) = 13

17
. Using Lemma 2 we get D2(n) ≥ 35

36
· 32

35
− o(1) =

8
9
− o(1), D3(n) ≥ 27

28
· 8

9
− o(1) = 6

7
− o(1), D4(n) ≥ 21

22
· 6

7
− o(1) = 9

11
− o(1) and

D5(n) ≥ 17
18
· 13

17
− o(1) = 13

18
− o(1).

5 Better upper bound for c < 2
3n

Using the tools above it is quite straightforward to prove Theorem 2.

Proof of Theorem 2. By Theorem 4 there exist primes p and q such that 2
3
n − O(n0.525) <

q < p < 2
3
n. It suffices to prove that deg f ≥ q. Assume for contradiction that deg f < q.

Lemma 1 implies that, for 0 ≤ j ≤ n − q, it holds that f(q + j) ≡q f(j). Since c <
2
3
n−Ω(n0.525) (and so c < q) equality must hold. Namely, f(q+ j) = f(j) for 0 ≤ j ≤ n− q.

Applying the same arguments for p instead of q, we also get that f(p + j) = f(j) for
0 ≤ j ≤ n − p. Set T = p − q. From the discussion above, for all 0 ≤ j ≤ n − p it
holds that f(j) = f(p + j) = f(q + (p − q) + j) = f(q + (T + j)) = f(T + j). Therefore,
{0, 1, . . . , n − p} ⊆ P 0

T (f). As n − p < n − q we get that for 0 ≤ j ≤ n − p < n − q,
f(T + j) = f(j) = f(q + j). Hence, we also have that {q + 0, q + 1, . . . , q + n− p} ⊆ P 0

T (f).
As n−p < q these two intervals do not intersect and so we have that |P 0

T (f)| > 2(n−p) > 2
3
n.

By Lemma 2, deg f > 2
3
n, contradicting our assumption that deg f < q < 2

3
n.

We end this section by proving Corollary 2.
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Proof of Corollary 2. Firstly note that we can assume that C contains only non-negative
elements, possibly by shifting all elements of C by some ∆. Indeed, for any non-constant
polynomial deg(h(x)) = deg (∆ + h(x)).

Let us denote C = {a1

b1
, . . . , ak

bk
}, where k = |C| and all elements in C are non-negative.

Define l = lcm (b1, . . . , bk) and m = max (x : x ∈ C). Finally, set c = l ·m. Let f̃ be defined
as follows: f̃(k) = l · f(k) for all 0 ≤ k ≤ n. Clearly, f̃ ∈ Fc (n) and deg f̃ = deg f .
Furthermore, since f is non-constant so is f̃ . Therefore, deg f = deg f̃ ≥ n− Γc(n). As l,m
are constants so is c and thus, by applying Theorem 2, we get that deg f ≥ deg f̃ ≥ 2

3
n−o(n)

as desired.

In fact one can deduce lower bounds on the degree of functions whose image size is
not necessarily constant. For example, consider any non-constant function of the form
f : {0, 1, . . . , n} → {1

2
, 1

4
, 1

8
, . . . , 1

2m}, where m < log n. In this case we can define the function

f̃ as f̃(k) = 2mf(k). Clearly f̃ ∈ Fc (n) for c = 2m−1 < 1
2
n < 2

3
n−Ω(n0.525) and so applying

Theorem 2 we again obtain that deg f = deg f̃ ≥ 2
3
n− o(1).

6 Back to the Boolean case

In this section we prove Theorem 3 and give a simple alternative proof for the main result
of [GR97].

Proof of Theorem 3. Let f ∈ F1 (pm − 1). Assume for contradiction that deg f < pm−pm−1.
Then hf is determined by the value of f on the points {0, 1, . . . , pm − pm−1 − 1}. Applying
Lemma 5 with n = pm − pm−1 − 1 and t = j + 1, for 0 ≤ j < pm−1, we obtain

hf (pm − pm−1 + j) =

(−1)pm−pm−1−1

pm−pm−1−1∑
k=0

(−1)k

(
pm − pm−1 + j

k

)(
pm − pm−1 + j − k − 1

j

)
f(k)

Set k′ = k mod pm−1, that is k′ = k0 + k1p + · · · + km−2p
m−2. Since k < pm we can write

k = k′ + km−1p
m−1 for 0 ≤ km−1 ≤ p− 1. As 0 ≤ j < pm−1

pm − pm−1 + j = 〈 p− 1 jm−2 . . . j0 〉p

and so in order for k to contribute to the sum modulo p, it must be that k′ ≤ j. Assume that
k is such that k′ < j. Looking at the other binomial coefficient, for such a k to contribute
to the sum modulo p, it must be that j − k′− 1 ≥ j which is impossible. Hence the only k’s
that contribute to the sum, modulo p, are those obeying k′ = j. With this observation, we
can simplify the above sum over Fp

− hf (pm − pm−1 + j) ≡p

p−2∑
km−1=0

(−1)j+km−1pm−1

(
pm − pm−1 + j

km−1pm−1 + j

)(
pm − (km−1 + 1)pm−1 − 1

j

)
·

· f(km−1p
m−1 + j)

(7)

11



From Lucas’ theorem (
pm − pm−1 + j

km−1pm−1 + j

)
≡p

(
p− 1

km−1

)
≡p (−1)km−1 (8)

and (
pm − (km−1 + 1)pm−1 − 1

j

)
≡p

(
pm−1 − 1

j

)
.

This binomial coefficient is actually quite simple modulo p(
pm−1 − 1

j

)
≡p

m−2∏
i=0

(
p− 1

ji

)
≡p

m−2∏
i=0

(−1)ji ≡p

m−2∏
i=0

(−1)jip
i

= (−1)j

and so (
pm − (km−1 + 1)pm−1 − 1

j

)
≡p (−1)j . (9)

Substituting (8) and (9) into (7) simplifies the expression a little further

−hf (pm − pm−1 + j) ≡p

p−2∑
km−1=0

f(km−1p
m−1 + j) .

As hf (pm − pm−1 + j) = f(pm − pm−1 + j) we get that for every 0 ≤ j < pm−1

p−1∑
km−1=0

f(km−1p
m−1 + j) ≡p 0 . (10)

Since f is a Boolean function, in order to satisfy Equation (10), it must be that for every
0 ≤ j < pm−1

f(j) = f(pm−1 + j) = f(2pm−1 + j) = · · · = f((p− 1)pm−1 + j) .

Therefore, f is periodical with period pm−1 which yields that
∣∣P 0

p (f)
∣∣ ≥ pm−pm−1. Lemma 2

now implies that deg f ≥ pm − pm−1 ≥ n− n1− 1
m .

We end this section by giving an alternative proof for the main result appears in [GR97].

Claim 1. For any prime p it holds that D1(p− 1) = 1.

Alternative proof for D1(p− 1) = 1. Let f ∈ F1(n) for n = p − 1. Obviously, the following
polynomial represents f over Fp

h(x) =
∑

k : f(k)=1

(
1− (x− k)p−1

)
.

The coefficient of xp−1 is the weight of f (i.e the number of 1’s f assumes), and since f is
not constant this number is not divisible by p. Therefore deg h = p − 1. Consider now hf ,
the polynomial representing f over R. From Lagrange interpolation formula we have

hf (x) =
∑

k : f(k)=1

p−1∏
j=0

j 6=k

x− j
k − j

.
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Note that none of the denominators of the multiplicands in the above expression is a multiple
of p and so we may view hf as a polynomial over Fp. Formally, we define

h
(p)
f (x) =

∑
k : f(k)=1

p−1∏
j=0

j 6=k

(x− j)(k − j)−1 .

It is clear that
deg h

(p)
f ≤ deg(hf ) ≤ p− 1 (11)

and so h
(p)
f is an interpolating polynomial of degree at most p − 1 of f over Fp. Hence by

the uniqueness of the interpolating polynomial h
(p)
f = h and in particular deg h

(p)
f = p − 1.

Looking at (11) we get deg hf = p− 1.

7 Open questions

Although we proved that the degree of any f ∈ Fc (n) is Ω(n) (for c < n), the exact behavior
of the degree is still not completely understood. For example, is it true that in such a case
deg(f) = n−o(n), or is there an example of a polynomial f : {0, 1, . . . , n} → {0, 1, . . . , n−1}
of degree at most (1−ε)n for some ε > 0? This question is interesting also for small values of
c. For the case of Boolean functions, i.e. when c = 1, von zur Gathen and Roche conjectured
that deg(f) = n−O(1). This problem is still open.
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A Missing proofs

Proof of Fact 1. It is easy to see that the polynomials
(

x
0

)
,
(

x
1

)
, . . . ,

(
x
d

)
form a basis to the

space of polynomials of degree not greater than d and so there exist c0, c1, . . . , cd ∈ R such
that

h(x) =
d∑

k=0

ck

(
x

k

)
.

We now show all ck’s are in fact integers. We use an induction on d. For d = 0 we have
h(x) = c0. Since h(0) is an integer we have that c0 is an integer. Assume the correctness
of the statement for all polynomials with degree up to d − 1. Let h(x) be a polynomial of
degree d that obtains integer values at x = 0, 1, . . . , d. Define g(x) = h(x + 1) − h(x) and
notice that g takes integer values on x = 0, 1, . . . , d− 1. Now,

g(x) =
d∑

k=0

ck

((
x+ 1

k

)
−
(
x

k

))
=

d∑
k=1

ck

(
x

k − 1

)
=

d−1∑
k=0

ck+1

(
x

k

)
.

From the induction hypothesis we now get that c1, c2, . . . , cd are all integers. As c0 = h(0)
the claim follows.

Proof of Fact 2. Expanding (1 + x)a we get

(1 + x)a = (1 + x)
∑k

i=0 aip
i

=
∏k

i=0 (1 + x)aip
i

≡p

∏k
i=0 (1 + xpi

)
ai

=∏k
i=0

∑ai

j=0

(
ai

j

)
xjpi

.

The coefficient of xb on the LHS is
(

a
b

)
. Since there is a unique way to represent b in base p

we have that the coefficient of xb on the RHS is
∏k

i=0

(
ai

bi

)
.
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