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Abstract

We prove that relative to an oracle, there is no worst-case to average-case reduction for NP.
We also handle classes that are somewhat larger than NP, as well as worst-case to errorless-
average-case reductions. In fact, we prove that relative to an oracle, there is no worst-case
to errorless-average-case reduction from NP to BPPpath. The latter class contains PNP

‖ and
captures the power of randomized computations conditioned on efficiently testable events. We
also handle reductions from NP to the polynomial-time hierarchy and beyond, under restrictions
on the number of queries the reductions can make.

1 Introduction

The study of average-case complexity concerns the power of algorithms that are allowed to make
mistakes on a small fraction of inputs. Of particular importance is the relationship between worst-
case complexity and average-case complexity. For example, cryptographic applications require
average-case hard problems, and it would be desirable to base the existence of such problems on
minimal, worst-case complexity assumptions.

For the class PSPACE, it is known that worst-case hardness and average-case hardness are
equivalent [3]. That is, if PSPACE is worst-case hard then it is also average-case hard. For the
class NP, the situation is not well-understood. A central open problem in average-case complexity
is to prove that if NP is worst-case hard then it is also average-case hard. Considering the lack
of progress toward proving this proposition, a natural goal is to exhibit barriers to proving it, by
ruling out certain general proof techniques. Bogdanov and Trevisan [5] considered the possibility
of a proof by reduction. Building on [7], they showed that the proposition cannot be proven by a
nonadaptive reduction unless the polynomial-time hierarchy collapses; it remains open to provide
evidence against the existence of adaptive reductions. Another possibility that has been considered
is a relativizing proof. In 1995, Impagliazzo and Rudich claimed [14] that they had constructed a
relativized heuristica, which is a world in which NP is worst-case hard but average-case easy, thus
ruling out this possibility. However, they have since retracted their claim. We make progress toward
obtaining relativized heuristica, by ruling out the possibility of a relativizing proof by reduction.
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Our barrier holds even for adaptive reductions. More formally, we prove that there exists an oracle
relative to which there is no reduction of type

(

NP,PSamp
)

⊆ HeurBPP ⇒ NP ⊆ BPP

where
(

NP,PSamp
)

is the class of distributional NP problems under polynomial-time samplable
distributions, and HeurBPP is the class of distributional problems with polynomial-time average-
case randomized algorithms.

We also generalize this result in various ways. The proposition that if NP is worst-case hard then
it is also average-case hard concerns average-case algorithms that may output the wrong answer
on a small fraction of inputs. In light of the aforementioned barriers, it is natural to consider the
following proposition, which is potentially easier to prove: If NP is worst-case hard then it is also
hard for errorless average-case algorithms, which may output “don’t know” on a small fraction of
inputs but must never output the wrong answer.1 Our result generalizes to rule out relativizing
proofs by reduction of this proposition. Further, we show how to rule out relativizing proofs by
reduction that if NP is worst-case hard then certain classes larger than NP are errorless-average-case
hard.

Independently of our work, Impagliazzo [15] has succeeded in constructing a relativized heuris-
tica, even for errorless average-case algorithms, which subsumes our result for NP. However, this
does not subsume our results for classes higher than NP, although Impagliazzo conjectures that
this may be possible using his techniques.

1.1 Notions of Reductions and Relationship to Previous Work

Various models of worst-case to average-case reductions for NP have been considered in the litera-
ture, and they can be informally taxonomized as follows.

For the moment let us gloss over the issue of which distribution on inputs an average-case
algorithm is judged with respect to. A worst-case to average-case reduction for NP must show that
for every L1 ∈ NP there exists an L2 ∈ NP such that if L2 has a polynomial-time average-case
algorithm then L1 has a polynomial-time worst-case algorithm. The worst-case algorithm for L1

depends on the hypothesized average-case algorithm for L2 in some way, which we call the decoding.
There are the following four natural types of dependence, in decreasing order of strength.

(1) Black-box dependence means that the worst-case algorithm for L1 has oracle access to the
average-case algorithm for L2, and it must solve L1 on all inputs for every oracle that solves
L2 on most inputs, regardless of whether the oracle represents an efficient algorithm.

(2) The worst-case algorithm for L1 might have oracle access to the average-case algorithm for
L2 but only be guaranteed to solve L1 when the oracle is, in fact, an efficient average-case
algorithm for L2.

(3) The worst-case algorithm for L1 might require the code of an efficient average-case algorithm
for L2.

(4) The dependence can be arbitrary, meaning that if L2 has an efficient average-case algorithm
then L1 has an efficient worst-case algorithm. This type of dependence allows for arbitrary
proofs that if NP is worst-case hard then it is also average-case hard.

1An equivalent notion of an errorless average-case algorithm is one that always outputs the correct answer but
whose running time is only “polynomial-on-average” [19].
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For the first three types, the algorithm that solves L1 with the aid of a hypothesized average-case
algorithm for L2 is called the reduction itself. In this paper we consider type (1) decoding. Note
that since our results are about relativization, the reductions we consider have access to two oracles:
the reduction oracle (representing the hypothesized average-case algorithm) and the relativization
oracle.

Bogdanov and Trevisan [5] also considered type (1) decoding. They showed that such a reduction
cannot exist unless the polynomial-time hierarchy collapses, provided the reduction is nonadaptive
in its oracle access to the hypothesized average-case algorithm. Compared to the Bogdanov-Trevisan
barrier, our barrier has the advantages that it is unconditional and it applies to adaptive reductions,
but has the disadvantage that it only applies to reductions that relativize.

Gutfreund et al. [11] showed a positive result, namely that there is a worst-case to average-case
reduction for NP with type (2) decoding, under a distribution on inputs that is samplable in slightly-
superpolynomial time. Building on this result, Gutfreund and Ta-Shma [12] showed that under
a certain weak derandomization hypothesis, there is a worst-case to average-case reduction from
NP to nondeterministic slightly-superpolynomial time with type (2) decoding, under the uniform
distribution on inputs. Moreover, the results of [11, 12] relativize.

A natural goal is to extend our results to handle type (2) decoding. However, this turns out
to be as hard as extending our results to handle type (4) decoding (which was independently
accomplished by Impagliazzo [15], at least for NP). For example, we claim that relative to every
oracle, the following are equivalent.

(A) There is no reduction of type

(

NP,PSamp
)

⊆ HeurBPP ⇒ NP ⊆ BPP

with type (2) decoding.

(B)
(

NP,PSamp
)

⊆ HeurBPP and NP 6⊆ BPP.

Clearly (B) implies (A). To see that (A) implies (B), consider two cases. If NP ⊆ BPP, then
there is a trivial reduction that ignores the hypothesized HeurBPP algorithm for

(

NP,PSamp
)

. If
(

NP,PSamp
)

6⊆ HeurBPP, then there is some problem in
(

NP,PSamp
)

for which every algorithm
is vacuously an appropriate type (2) decoder, because the universal quantification over HeurBPP
algorithms for that problem is over an empty set.

Another aspect of worst-case to average-case reductions is the encoding, which refers to the way
in which L2 depends on L1. Black-box encoding means that the algorithm that defines L2 has
oracle access to L1, and for every language L1 (not just those in NP), if the corresponding L2 has
an efficient average-case algorithm then L1 has an efficient worst-case algorithm (via one of the
above four types of decoding).

Viola [21, 22] proved two results about worst-case to average-case reductions with black-box
encoders implementable in the polynomial-time hierarchy. In [21] he proved unconditionally that
such a reduction with type (1) decoding does not exist. In [22] he proved that if such a reduction
with type (4) decoding exists then PH is average-case hard, and thus basing the average-case
hardness of PH on the worst-case hardness of PH in this way is no easier than unconditionally
proving the average-case hardness of PH.
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1.2 Results

Our first result concerns the class BPPpath, which was introduced by Han et al. [13], who also showed
that relative to every oracle, PNP

‖ ⊆ BPPpath ⊆ BPPNP. The class of distributional problems with
polynomial-time errorless average-case randomized algorithms is denoted by AvgZPP.

Theorem 1. There exists an oracle relative to which there is no reduction of type

(

BPPpath,PSamp
)

⊆ AvgZPP ⇒ UP ⊆ BPP.

Note that the type of reduction considered in Theorem 1 is weaker than a worst-case to average-
case reduction for NP, because BPPpath is larger than NP, AvgZPP is smaller than HeurBPP, and
UP is smaller than NP. Ruling out weaker reductions yields a stronger result.

We also prove a similar result for BPPNP
‖, o(n/ log n), which denotes the class BPPNP restricted

to have o(n/ log n) rounds of adaptivity in the NP oracle access but any number of queries within
each round. In the current state of knowledge, BPPNP

‖, o(n/ log n) is incomparable to BPPpath.

Theorem 2. There exists an oracle relative to which there is no reduction of type

(

BPPNP
‖, o(n/ log n),PSamp

)

⊆ AvgZPP ⇒ UP ⊆ BPP.

If we restrict our attention to reductions that use a limited number of queries, then we can
handle classes even larger than BPPpath and BPPNP

‖, o(n/ log n).

Theorem 3. For every polynomial q there exists an oracle relative to which there is no q-query
reduction of type

(

PH,PSamp
)

⊆ AvgZPP ⇒ UP ⊆ BPP.

Since BPPpath ⊆ PH and BPPNP
‖, o(n/ log n) ⊆ PH relative to every oracle, it may appear at first

glance that Theorem 3 subsumes Theorem 1 and Theorem 2. The reason it does not is because of
the order of the quantifiers. In Theorem 3, the reduction may not make as many queries as it likes;
it may only make a fixed polynomial q number of queries even though its running time may be an
arbitrarily high degree polynomial.

If we are willing to sacrifice all but two queries, then we can go quite a bit further than PH.

Theorem 4. For every uniform complexity class of languages C there exists an oracle relative to
which there is no 2-query reduction of type

(

C,PSamp
)

⊆ AvgZPP ⇒ UP ⊆ BPP.

The term “uniform complexity class of languages” has a somewhat technical meaning, which is
explained in Section 2, but it encompasses all “ordinary” complexity classes such as PSPACE and
EXPEXP.

Our theorems can be generalized in various ways. For example, Theorem 1, Theorem 2, and
Theorem 3 all hold with AvgZPP replaced by the deterministic version AvgP, by essentially the
same proofs.2 We have chosen to state the results using AvgZPP because we feel it is more natural
to allow randomized algorithms in average-case complexity. As another example, Theorem 1 and

2For Theorem 1 and Theorem 2, exactly the same proofs work. For Theorem 3, a minor tweak is needed.
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Theorem 2 both hold with BPP replaced by BQP, by inserting a quantum query lower bound for the
OR function [4] at the appropriate point in the arguments, instead of a randomized lower bound.
We have chosen the particular statements of our four theorems so as to highlight the interesting
aspects, avoid getting carried away with generalizations, and make the relationships among them
clear.

In Section 2 we provide preliminaries, which clarify the precise meanings of our theorems. In
Section 3 we give the intuition for our four theorems. In Section 4 we describe the basic setup
that is common to the formal proofs of all four theorems. Section 5 contains the formal proof of
Theorem 1. Section 6 contains the formal proof of Theorem 2. Section 7 contains the formal proof
of Theorem 3. Section 8 contains the formal proof of Theorem 4. In Section 9 we conclude the
paper with a list of open problems regarding oracles in average-case complexity.

2 Preliminaries

We refer the reader to the textbooks [2, 10] for background on complexity theory and definitions
of standard complexity classes. We refer the reader to the survey paper [6] for background on
average-case complexity. In this section we provide preliminaries that are not completely standard.

2.1 Complexity Classes

For any randomized algorithm M , we let Mr denote M using internal randomness r.

Definition 1. BPPpath denotes the class of languages L such that for some polynomial-time ran-
domized algorithm M that outputs two bits, and for all x,

• Prr

[

Mr(x)2 = 1
]

> 0 and

• Prr

[

Mr(x)1 = L(x)
∣

∣ Mr(x)2 = 1
]

≥ 2/3.

The above definition of BPPpath is not the same as the original one given by Han et al. [13], but it
is equivalent relative to every oracle, and it is more convenient for our purposes. Intuitively, BPPpath

captures the power of polynomial-time randomized computations after conditioning on efficiently
testable events. The class could also be called PostBPP by analogy with the corresponding quantum
class PostBQP [1].

Definition 2. BPPNP
‖, o(n/ log n) denotes the class BPPNP restricted to have o(n/ log n) rounds of

adaptivity in the NP oracle access but any number of queries within each round.

We now define the average-case complexity classes we need. Recall that in average-case com-
plexity, we study distributional problems (L,D) where L is a language and D = (D1,D2, . . .) is
an ensemble of probability distributions, where Dn is distributed over {0, 1}n. Recall that PSamp

denotes the class of polynomial-time samplable ensembles, and U denotes the class consisting of
only the uniform ensemble U . If C is a class of languages and D is a class of ensembles then
(C,D) =

{

(L,D) : L ∈ C and D ∈ D
}

.

Definition 3. HeurBPP denotes the class of distributional problems (L,D) that have a polynomial-
time heuristic scheme, that is, a randomized algorithm M that takes as input x and δ > 0, runs in
time polynomial in |x| and 1/δ, and for all n and all δ > 0 satisfies

Pr
x∼Dn,r

[

Mr(x, δ) 6= L(x)
]

≤ δ.
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Definition 4. AvgZPP denotes the class of distributional problems (L,D) that have a polynomial-
time errorless heuristic scheme, that is, a randomized algorithm M that takes as input x and δ > 0,
runs in time polynomial in |x| and 1/δ, always outputs L(x) or ⊥, and for all n and all δ > 0
satisfies

Pr
x∼Dn,r

[

Mr(x, δ) = ⊥
]

≤ δ.

2.2 Reductions

In this section we informally explain what we mean when we say there exists a reduction of type

C′
2 ⊆ C2 ⇒ C′

1 ⊆ C1

where C′
2, C2, C

′
1, C1 are four complexity classes. In Section 2.3 below we give formal definitions for

the specific classes to which our theorems apply.
A complexity class is a set of computational problems, such as languages or distributional

problems. We assume for concreteness that each of C1 and C2 is defined in the following way.
By an input-output relationship we mean a randomized function. There is a set of algorithms,
each of which induces an input-output relationship. That is, each algorithm takes an input and
produces an output sampled from some distribution depending on the input. There is a predicate
that indicates for each input-output relationship and each computational problem whether the
input-output relationship solves the problem. There is a notion of computational resources used
by the algorithms, and an algorithm is said to be efficient if it satisfies certain resource constraints.
The class is defined as the set of problems solved by efficient algorithms. This type of definition
encompasses classes defined in terms of (uniform or nonuniform) deterministic, randomized, or
quantum algorithms, but it could be generalized to handle other models as well.

We also assume that for C1 there is an analogous set of algorithms that can make queries to
a reduction oracle, which represents an input-output relationship.3 We assume that plugging any
algorithm from C2’s set into the reduction oracle yields an algorithm from C1’s set.

Now suppose P1 is a computational problem of the appropriate kind for C1 and P2 is a compu-
tational problem of the appropriate kind for C2.

Definition 5. A reduction of type

P2 ∈ C2 ⇒ P1 ∈ C1

is an algorithm from C1’s set of reduction oracle algorithms, such that for every reduction oracle
that solves P2 according to C2, the reduction solves P1 according to C1 and it satisfies C1’s resource
constraints if we pretend each query to the reduction oracle uses any amount of resources allowed
by C2’s resource constraints.

Note that if we plug an actual, efficient algorithm for P2 (according to C2) into the reduction
oracle of such a reduction, then the reduction becomes an efficient algorithm for P1 (according to
C1). Thus if there exists a reduction satisfying Definition 5 then P2 ∈ C2 implies P1 ∈ C1. But the
reduction must work even when the reduction oracle is an input-output relationship that is not
efficiently implementable.

3In particular, the reduction oracle is not like a relativization oracle, which just answers queries to a language.
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As an example, suppose C2 = BPTIME(2nǫ
). Then the reduction must solve P1 according to

C1 when the reduction oracle is any randomized function from {0, 1}∗ to {0, 1} that, on input w,
returns P2(w) with probability ≥ 2/3.4 Further, the reduction must satisfy the resource constraints
of C1 when we pretend each query of length n to the reduction oracle takes time O(2nǫ

).

Definition 6. We say there exists a reduction of type

C′
2 ⊆ C2 ⇒ C′

1 ⊆ C1

if for every P1 ∈ C′
1 there exists a P2 ∈ C′

2 and a reduction of type

P2 ∈ C2 ⇒ P1 ∈ C1.

We make a few remarks about Definition 6.

• When C′
1 has an appropriately complete problem P1, this is equivalent to saying there exists

a P2 ∈ C′
2 and a reduction of the above type, for the fixed problem P1.

• Note that we do not require that the reduction is uniform in the sense of there being a fixed
algorithm R that computes the reduction for every P1 ∈ C′

1 given the code for a C′
1-type

algorithm for P1.

• Note that when we say there is a reduction of the above type, this assertion gets weaker as
C′

2 and C1 get larger and C2 and C′
1 get smaller.

2.3 Relativization

When we relativize to an oracle language A, every computation gets unrestricted oracle access to A.
This includes samplers and reductions. Thus reductions have access to two oracles: the reduction
oracle and the relativization oracle. When we write RB,A we mean B is the reduction oracle and
A is the relativization oracle for reduction R.

To illustrate the formal framework set up so far, we give the precise statement of Theo-
rem 2. There exists a language A and a language L1 ∈ UPA such that for all languages L2 ∈
(

BPPNP
‖, o(n/ log n)

)A
, all ensembles D ∈ PSamp

A, and all polynomial-time randomized reductions

R◦,◦, R◦,A is not of type
(L2,D) ∈ AvgZPPA ⇒ L1 ∈ BPPA.

The latter means that there exists an x ∈ {0, 1}∗ and a randomized function B : {0, 1}∗ × R>0 →
{0, 1,⊥} which is a valid AvgZPP oracle for (L2,D), such that

Pr
r,B

[

RB,A
r (x) = L1(x)

]

< 2/3

where the probability is over both the internal randomness of R and the randomness of B (each
query is answered with fresh independent randomness). When we say B is a valid AvgZPP oracle
for (L2,D) we mean that B(w, δ) always returns L2(w) or ⊥, and for all n and all δ > 0,

Pr
w∼Dn,B

[

B(w, δ) = ⊥
]

≤ δ.

4One might wonder about reductions that can also choose the randomness used by the reduction oracle. While
this would be more general in one sense, it would be more restrictive in the sense that it would limit the randomness
complexity of the reduction oracle. In this paper, queries are always just inputs to an input-output relationship as
defined above.
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When we say R◦,◦ runs in polynomial time, this includes the fact that each query B(w, δ) to the
reduction oracle is charged time polynomial in |w| and 1/δ. In other words, δ must always be at least
inverse polynomial. Throughout the paper we tacitly assume that “polynomial-time reductions”
have this restriction, since C2 is always AvgZPP. We clarify that D ∈ PSamp

A means that for some
randomized algorithm S◦, SA(n) runs in time polynomial in n and outputs a sample distributed

according to Dn. Finally, we clarify that
(

BPPNP
‖, o(n/ log n)

)A
is the class of languages L2 for which

there exists a language L3 ∈ NPA and a polynomial-time randomized algorithm M◦,◦ that only
uses o(n/ log n) rounds of adaptivity in its access to the first oracle, such that for all x ∈ {0, 1}∗,

Pr
r

[

ML3,A
r (x) = L2(x)

]

≥ 2/3.

Regarding Theorem 3 and Theorem 4, there is one further issue to consider. For reductions that
are allowed an unlimited number of queries (like in Theorem 1 and Theorem 2), the error probability
of 1/3 in the definition of BPP is unimportant since it can be amplified from 1/2 − 1/poly(n) to
1/2poly(n). However, amplification increases the number of queries, so the error probability is not
arbitrary for Theorem 3 and Theorem 4. For example, the existence of a q-query

(

1/2−1/poly(n)
)

-
error reduction of type

(

PH,PSamp
)

⊆ AvgZPP ⇒ UP ⊆ BPP

does not seem to imply the existence of a q-query 1/3-error reduction of the same type, but it still
does imply that if

(

PH,PSamp
)

⊆ AvgZPP then UP ⊆ BPP. For this reason, we allow an error
probability of 1/2−1/poly(n) (for arbitrarily high degree polynomials) in Theorem 3 and Theorem
4.

2.4 Clean Reductions

We now precisely define the restriction on C in Theorem 4.

Definition 7. We say that C is a uniform complexity class of languages if there is a countable
collection of functions {M1,M2, . . .} mapping oracle languages A to languages MA

i , such that the
following conditions all hold.

• For every i and every x, MA
i (x) only depends on a finite number of bits of A.

• For every i and every x there exists a property Pi,x(A) that only depends on the bits of A that
MA

i (x) depends on, such that CA =
{

MA
i : ∀x Pi,x(A)

}

.

• For every i and every linear-time computable function f : {0, 1}∗ → {0, 1}∗ there exists a j
such that for all A the following two conditions hold: MA

j = MA
i ◦ f , and if MA

i ∈ CA then

MA
j ∈ CA.

The second condition says the class is defined by a property of the computation (for example,
bounded error) holding for all inputs. The third condition says the class is closed under linear-
time deterministic mapping reductions. Observe that BPPpath, BPPNP

‖, o(n/ log n), PH, PSPACE, and

EXPEXP are all examples of uniform complexity classes under this definition.
The following complicated-looking lemma just says that in all four of our theorems, we can

assume without loss of generality that on inputs of length n, any candidate reduction only queries
the reduction oracle on inputs of length nd and only with δ = 1/nd for some positive integer d.
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Lemma 1. For every polynomial-time randomized reduction R◦,◦ (where the reduction oracle is of
the form {0, 1}∗×R>0 → {0, 1,⊥}) there exists a polynomial-time randomized reduction R◦,◦

clean
and

a positive integer d such that the following holds. For every polynomial-time sampler S◦ there exists
a polynomial-time sampler S◦

clean
, and for every uniform complexity class of languages C and every

i there exists an iclean, such that for every relativization oracle A, the following properties all hold.

• If R◦,A is of type
(

MA
i ,DA

)

∈ AvgZPPA ⇒ L ∈ BPPA

for some language L, where DA is the ensemble sampled by SA, then R◦,A
clean

is of type

(

MA
iclean

,DA
clean

)

∈ AvgZPPA ⇒ L ∈ BPPA

where DA
clean

is the ensemble sampled by SA
clean

.

• On inputs of length n, Rclean only queries the reduction oracle on inputs of length nd and only
with δ = 1/nd.

• Rclean always makes the same number of queries to the reduction oracle as R does.

• If MA
i ∈ CA then MA

iclean
∈ CA.

Proof sketch. The basic idea is to take the answers to all the inputs to MA
i up to the longest length

R on inputs of length n could possibly query the reduction oracle, and put them in some larger
input length nd. Here d needs to be large enough that 1/nd times the longest length R could query
is less than the smallest value of δ that R could possibly query (which is at least inverse polynomial).
The reason for multiplying by the longest length is that an error of 1/nd in the AvgZPP oracle
could get amplified by this amount when restricted to any particular input length that is stored
“within” nd. The index iclean is just the j guaranteed by Definition 7 for index i and the mapping
reduction we just informally described.

3 Intuition

In Section 3.1 we describe the intuition behind the proofs of Theorem 1 and Theorem 2. Then in
Section 3.2 we describe the intuition behind the proofs of Theorem 3 and Theorem 4.

3.1 Intuition for Theorem 1 and Theorem 2

We start by informally describing how to construct an oracle relative to which there is no reduction
of type

(

NP,U
)

⊆ HeurBPP ⇒ UP ⊆ BPP.

To obtain Theorem 1 and Theorem 2, we must strengthen HeurBPP to AvgZPP,5 strengthen U to
PSamp, and strengthen NP to BPPpath and BPPNP

‖, o(n/ log n). We describe how to do this below.
Handling larger classes than NP is the most technically interesting strengthening.

5Usually AvgZPP is thought of as being a weaker class than HeurBPP (since AvgZPP ⊆ HeurBPP), but it is
stronger in our situation.
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Fix an arbitrary NP-type algorithm M and an arbitrary polynomial-time randomized reduction
R, and fix a sufficiently large n. We explain how to diagonalize against the pair M,R. For simplicity
we assume that on inputs of length n, R only queries the reduction oracle on inputs of length nd and
only with δ = 1/nd for some positive integer d; thus we can omit the δ. We consider relativization
oracles of the form A : {0, 1}n × {0, 1}n → {0, 1}, which we think of as 2n × 2n tables. Let
LA

1 : {0, 1}n → {0, 1} be defined by LA
1 (x) =

∨

y A(xy). That is, LA
1 is the language of strings x

such that there exists a 1 in the xth row of A. Let LA
2 : {0, 1}nd

→ {0, 1} denote the language
computed by MA. We only consider A,LA

1 , LA
2 at these input lengths since all other input lengths

are irrelevant.
We wish to construct an A such that for some x ∈ {0, 1}n and some deterministic6 reduction

oracle B : {0, 1}nd
→ {0, 1}, B agrees with LA

2 on at least a 1−1/nd fraction of inputs and RB,A(x)
outputs LA

1 (x) with probability < 2/3. This will show that R fails to be a reduction of type

(

LA
2 , U

)

∈ HeurBPPA ⇒ LA
1 ∈ BPPA.

We also need to ensure that there is at most one 1 in each row of A so that LA
1 ∈ UPA, but this

will fall right out of the construction. We construct A through an iterative process, and we use
a potential function argument to show that this process makes steady progress toward our goal.
The process iteratively modifies the relativization oracle, and we use A to denote the relativization
oracle throughout the whole process.7 Thus the table denoted by A changes many times throughout
our argument, and the languages LA

1 and LA
2 change accordingly. Initially A is all 0’s.

Let us consider the computation of R on some input x. It is trying to figure out whether there
is a 1 in the xth row of A, in other words, compute LA

1 (x). It has two sources of information about
LA

1 (x): the relativization oracle A itself, and the reduction oracle B. If R did not have access to
B, then we could diagonalize in a standard way: Observe how R behaves given that the xth row
of A is all 0’s. If R outputs 1 with high probability, then we are done. If R outputs 1 with low
probability, then we find a bit in the xth row that R queries with only tiny probability and flip that
bit (such a bit must exist because R does not have enough time to keep an eye on the entire row);
then R still outputs 1 with low probability, but now x ∈ LA

1 . Thus R must rely on the reduction
oracle B for help.

Our construction has two stages. The goal of stage 1 is to gain the upper hand by rendering
B useless to R. Then in stage 2 we deliver the coup de grâce with the standard diagonalization
argument. We cannot guarantee that B is useless for every x, but we only need it to be useless for
some x. Specifically, suppose we could set up A in such a way that there exists an x such that

(1) the xth row of A is all 0’s, and

(2) for all y, flipping A(xy) would cause LA
2 (w) to change for at most a 1/nd fraction of w’s.

Then declaring B to be LA
2 for the particular A we have set up, we know that we can leave A alone

or we can flip any bit in the xth row, and for all these possibilities B is a valid HeurBPP oracle
for the new LA

2 . Then we can observe the behavior of R on input x, using this fixed B for the

6B will be deterministic here even though randomness is allowed; this makes the result stronger.
7More formally, we could say we define a sequence of relativization oracles A0, A1, A2, . . . that leads to some final

version Ak = A. We omit the subscripts throughout the argument and simply refer to A with the understanding that
this means the “current” version.
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reduction oracle, and diagonalize against R in the standard way with the assurance that whatever
happens to A during this second stage, B will remain valid.

How do we set up A so that such an x exists? We do this iteratively. In each iteration, we find
a certain x whose row is currently all 0’s, which is our “best guess” for the good x. If condition (2)
is satisfied for this x, then we are done. Otherwise, there is some column y that violates condition
(2). Then we flip the bit A(xy) to 1 and continue with the next iteration. We just need to show
that there are < 2n iterations before we succeed. For this, we define a potential function ΦA that
assigns an energy value to A. The key is to show that if y violates condition (2) for our best
guess x, then flipping A(xy) must cause a significant decrease in potential. Since ΦA must remain
bounded, there cannot be too many iterations before M is beaten into submission and our best
guess x works.

Let us hold off on the definition of ΦA and focus on finding a best guess x. Our ultimate goal is
to ensure that if we flip any bit in the xth row, most of the inputs to LA

2 “don’t notice”. There is

an asymmetry between inputs that are accepted by MA and those that are rejected. If w ∈ {0, 1}nd

is such that MA(w) rejects, then if any of the exponentially many computation paths “notices” a
change in A, the whole computation could become accepting. However, if MA(w) accepts, then
we can pick an arbitrary accepting computation path of MA(w) to be the “designated” one. Only
polynomially many bits of A are queried by M on this path, and as long as none of these bits is
flipped, w “won’t notice” any change to A because MA(w) will still accept. In particular, there are
only polynomially many x’s such that MA(w) queries some bit in the xth row on the designated
path. Thus for every w with LA

2 (w) = 1, the vast majority of x have the property that flipping any
bit in the xth row does not cause LA

2 (w) to change to 0. By an averaging argument, most x have

the property that for most w ∈ {0, 1}nd
, flipping any bit in the xth row does not cause LA

2 (w) to
change from 1 to 0. For the current A, there must exist an x with the latter property and such
that the xth row is all 0’s, since (by induction) we know there are not very many x’s with a 1 in
their row currently. This is our best guess x.

We know that flipping any bit in the xth row causes only a small fraction of all w ∈ {0, 1}nd
to

change from 1 to 0 under LA
2 . This is good, but it is only half the story. We would also like that

flipping any bit in the xth row causes only a small fraction of w’s to change from 0 to 1. Suppose
we budget a 1/2nd fraction of w’s to change from 1 to 0, and a 1/2nd fraction to change from 0
to 1. Now if some y violates condition (2), then it must be the case that flipping A(xy) causes at
least a 1/2nd fraction of w’s to change from 0 to 1. We want to define the potential function so
that having w’s change from 0 to 1 under LA

2 causes a decrease in potential. A natural choice is

ΦA = Pr
w∼U

nd

[

LA
2 (w) = 0

]

.

Flipping A(xy) causes at least a 1/2nd probability mass to leave the event LA
2 (w) = 0. However,

as much as a 1/2nd probability mass could enter the event due to w’s that change from 1 to 0,
which could essentially cancel out the drop in potential from the w’s that changed from 0 to 1!
The solution is to change our budgeting. If we budget a 1/3nd fraction of w’s to change from 1 to
0 and a 2/3nd fraction to change from 0 to 1, then flipping A(xy), where y violates condition (2),
causes at least a 2/3nd probability mass to leave the event, while at most a 1/3nd probability mass
enters the event. Thus ΦA goes down by at least 1/3nd, and there are at most 3nd < 2n iterations
before our best guess x works. This concludes the argument.

Very roughly, the big picture is as follows. For an input that is accepted by MA, it is easy to
ensure that the answer under LA

2 does not change when we make modifications to A. For an input
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that is rejected by MA, we cannot ensure that the answer does not change, but the point is that if
it does change, then we can ensure that it does not change again, since the input is now accepted.

3.1.1 Intuition for Strengthening HeurBPP to AvgZPP

Let x denote our best guess at the end of stage 1. Suppose we knew that there exists a set
W ⊆ {0, 1}nd

of density at most 1/nd such that for all w 6∈ W and all y, flipping A(xy) does not
change LA

2 (w). Then setting

B(w) =

{

LA
2 (w) if w 6∈ W

⊥ if w ∈ W
(1)

where A is the relativization oracle at the end of stage 1, we would have that B is a valid AvgZPP
oracle for LA

2 no matter whether we leave A alone or flip any bit in the xth row. Then we could
diagonalize in the standard way, by observing how R behaves on input x using this fixed B and
the current A, and either leaving A alone or flipping some bit in the xth row to make R output the
wrong answer with high probability.

The existence of such a W is too much to ask for. However, this is only because we were trying
to find a B that would remain a valid AvgZPP oracle for all of the 2n + 1 diagonalization options.
We do not really need all these options. Let Y be an arbitrary fixed set of columns of size |Y | = 4t,
where t is the running time of R on inputs of length n. Then running R on input x with any fixed
B and the current A, there must be a y ∈ Y such that A(xy) gets queried with probability ≤ 1/4.
If R outputs 1 with probability ≤ 1/3 then after flipping this A(xy), R outputs 1 with probability
< 2/3 and hence errs. Thus it suffices to have 4t + 1 diagonalization options, namely leaving A

alone or flipping some A(xy) with y ∈ Y . Suppose we knew that there exists a set W ⊆ {0, 1}nd

of density at most 1/nd such that for all w 6∈ W and all y ∈ Y , flipping A(xy) does not change
LA

2 (w). Then defining B as in Equation (1), we could diagonalize by either leaving A alone or
flipping A(xy) for some y ∈ Y with the assurance that whatever happens, B will remain valid.

Now the existence of such a W is not too much to ask for. Using the argument for the HeurBPP
case with a small adjustment of parameters, we can ensure that flipping any bit in the xth row
causes LA

2 (w) to change for at most a 1/4tnd fraction of w’s. Then we can take W to be the set of
all w such that there exists a y ∈ Y such that flipping A(xy) changes LA

2 (w).

3.1.2 Intuition for Strengthening U to PSamp

There are two approaches: one that is direct, and one that uses a result of Impagliazzo and Levin
[16]. Neither is difficult. We first describe the direct approach.

First, observe that if Und were replaced by some other distribution on {0, 1}nd
that is inde-

pendent of A, then the whole argument above would carry through, just by replacing “fraction of
w’s” with “probability mass of w’s” under this distribution. Now in addition to M and R, we need
to worry about an arbitrary polynomial-time sampler S, and we need to ensure that B is a valid
AvgZPP oracle for

(

LA
2 ,DA

)

, where DA denotes the distribution sampled by SA(nd). If S did not
query A at all, then DA would be independent of A and thus we could use the same argument, by
the above observation. Two issues arise because S is allowed to query A. First, when we flip a bit
during stage 1, this affects

ΦA = Pr
w∼DA

[

LA
2 (w) = 0

]

12



in terms of not only the event but also the distribution. Second, when we flip a bit during stage 2,
this affects the distributional problem

(

LA
2 ,DA

)

for which B needs to be a valid AvgZPP oracle,
in terms of not only the language but also the distribution.

Handling these issues is just a matter of tweaking the argument to ensure that our modifications
to A cause only small statistical deviations in DA. Specifically, consider the beginning of an iteration
of stage 1, and let D denote DA for the current A (thus D is fixed and will not react to changes in
A). Now suppose we choose our best guess x as before, but based on this distribution D. Then by
the above argument we know that for every y, flipping A(xy) would either cause

Pr
w∼D

[

LA
2 (w) = 0

]

to go down by a significant amount, or cause LA
2 (w) to change with only small probability over

w ∼ D. It can be shown that this is good enough for our purpose provided that for all y, flipping
A(xy) results in a DA that is statistically very close to D. To ensure the latter, we choose our best
guess x not only so that the xth row is all 0’s and flipping any bit in the xth row only causes a
small probability mass of w ∼ D to change from 1 to 0 under LA

2 , but also so that the probability
SA(nd) queries any bit in the xth row is small. This is possible because the vast majority of x’s
satisfy the latter condition since S runs in polynomial time.

An alternative approach to handling PSamp uses a result due to Impagliazzo and Levin [16].
They proved that if C is a class of languages containing NP and satisfying certain simple closure
properties, then relative to every oracle, there exists a reduction of type

(

C,U
)

⊆ AvgZPP ⇒
(

C,PSamp
)

⊆ AvgZPP.

The proof of this result appears in Section 5.2 of [6] and is based on a result of Impagliazzo and
Luby on distributionally inverting one-way functions [17]. By composing this reduction with the
hypothesized reduction, we can assume without loss of generality that the distributional problem
we are reducing to uses the uniform ensemble. In the formal proofs of Theorem 1 and Theorem
2, rather than use the Impagliazzo-Levin result we opt to directly handle the samplable ensembles
because doing so makes the arguments self-contained at only a slight cost in complicatedness.

3.1.3 Intuition for Strengthening NP to BPPpath

Let us revert from PSamp to U . For both Theorem 1 and Theorem 2, the differences from the
above proof are in the definition of the potential function ΦA, the choice of our best guess x, and
the argument that if some y violates condition (2) for our best guess x, then flipping A(xy) causes
a significant decrease in potential.

For Theorem 1, instead of an NP-type algorithm we have a BPPpath-type algorithm M . Let us
hold off on how to define ΦA and how to choose our best guess x. Consider an arbitrary iteration
of stage 1, let A denote the current relativization oracle, and suppose we have somehow picked a
certain x such that the xth row of A is all 0’s. Suppose there is a y such that flipping A(xy) causes
LA

2 (w) to change for a significant fraction of w’s. We want it to be the case that flipping A(xy)
also causes a significant decrease in potential. Let A′ denote A with A(xy) flipped to 1.

Consider a w such that LA′

2 (w) 6= LA
2 (w). Let us make the bold assumption that for all choices

of M ’s internal randomness r such that MA
r (w)2 = 1, we have MA′

r (w) = MA
r (w) (that is, both

output bits match). Then by the definition of BPPpath we have

Pr
r

[

MA′

r (w)2 = 1
]

≥ 3 · Pr
r

[

MA′

r (w)1 = LA
2 (w) and MA′

r (w)2 = 1
]
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≥ 3 · Pr
r

[

MA
r (w)1 = LA

2 (w) and MA
r (w)2 = 1

]

≥ 3 ·

(

Pr
r

[

MA
r (w)2 = 1

]

· 2/3

)

= 2 · Pr
r

[

MA
r (w)2 = 1

]

where the second line follows because the event in the second line is a subset of the event on the
right side of the first line. In other words, switching from A to A′ forces the conditioning event
to at least double in size, in order to reduce the probability of outputting LA

2 (w) in the first bit
(conditioned on that event) from ≥ 2/3 to ≤ 1/3. Thus

− log2 Pr
r

[

MA′

r (w)2 = 1
]

≤ − log2 Pr
r

[

MA
r (w)2 = 1

]

− 1.

This suggests using

ΦA = E
w∈{0,1}nd

[

− log2 Pr
r

[

MA
r (w)2 = 1

]

]

where w is chosen uniformly at random, because then when we flip A(xy), a significant fraction of
w’s each contribute a significant negative amount to the potential difference ΦA′

− ΦA. There are
three issues.

(1) We need to make sure the potential is not too large to begin with.

(2) We made an unjustified assumption about the behavior of M .

(3) We also need to make sure that the contribution of bad w’s to the potential difference does
not cancel out the negative contribution of good w’s.

Issue (1) is not problematic: Since we may assume r is chosen uniformly from {0, 1}poly(n), for
every w and every A we must have

Pr
r

[

MA
r (w)2 = 1

]

≥ 2− poly(n)

since otherwise the conditioning event would be empty and MA would fail to define a language in
BPPA

path (for the violating A), which would suffice to diagonalize against the pair M,R.
For issue (2), first note that if we relax our assumption to be that for almost all r such that

MA
r (w)2 = 1, we have MA′

r (w) = MA
r (w), then flipping A(xy) still causes the probability of the

conditioning event to go up by at least a constant factor (say 3/2) assuming LA′

2 (w) 6= LA
2 (w). Now

we use our ability to choose x. Since M runs in polynomial time, it can be shown that most x are
useful, in the sense that for the vast majority of w’s it is the case that for almost all r such that
MA

r (w)2 = 1, MA
r (w) does not query any bit in the xth row. Thus we can pick our best guess

x so that x is useful and the xth row of A is all 0’s. Then for our fixed x and y, we know that
the vast majority of w’s have the property that for almost all r such that MA

r (w)2 = 1, we have
MA′

r (w) = MA
r (w). Call the remaining w’s horrible. Call w good if LA′

2 (w) 6= LA
2 (w) and w is not

horrible. Call w bad if it is not good. By a union bound we know that a significant fraction of w’s
are good, and each good w contributes a significant negative amount to the potential difference
ΦA′

− ΦA.
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Finally we consider issue (3). We consider the horrible w’s and the bad-but-not-horrible w’s
separately. The contribution of each horrible w to ΦA′

− ΦA could be as large as poly(n) (inside
the expectation), but only a tiny fraction of w’s are horrible so this only puts a small dent in
the negative contribution from the good w’s. Almost all of the w’s could be bad-but-not-horrible,
but the contribution of each such w to ΦA′

− ΦA can be at most a tiny positive amount, since of
the r’s with MA

r (w)2 = 1, almost all of them are such that MA′

r (w)2 = MA
r (w)2 = 1. Thus the

bad-but-not-horrible w’s only put a small dent in the negative contribution from the good w’s.

3.1.4 Intuition for Strengthening NP to BPPNP
‖, o(n/ log n)

Again, we consider U instead of PSamp. Now instead of a single algorithm we have a pair M,N
where N is an NP-type algorithm and M is a polynomial-time randomized algorithm that uses
o(n/ log n) rounds of adaptivity in its access to the first oracle. We let LA

3 denote the language

computed by NA, and we let LA
2 denote the language computed by MLA

3 ,A (assuming bounded
error is satisfied for every input).8 Again, suppose we have somehow picked our best guess x, such
that the xth row of the current A is all 0’s, and suppose there is a y such that flipping A(xy) causes
LA

2 (w) to change for a significant fraction of w’s. We want it to be the case that flipping A(xy)
also causes a significant decrease in potential. Let A′ denote A with A(xy) flipped to 1.

We make the simplifying assumption that M has oracle access only to LA
3 and not to A. Ex-

tending the argument to the general case is not difficult; it just involves taking an extra precaution
when picking our best guess x to ensure that hardly any w’s “notice” the change from A to A′ via
the second oracle.

For each w such that LA′

2 (w) 6= LA
2 (w), it must be the case that

M
LA′

3
r (w) 6= M

LA
3

r (w) (2)

for at least 1/3 of the r’s. Thus we know that Inequality (2) holds for a significant fraction of pairs

w, r. Let M
LA

3
r (w)i,j ∈ {0, 1}∗ denote the jth query within the ith round of adaptivity of M

LA
3

r (w).
We wish to define ΦA in terms of the bits

LA
3

(

M
LA

3
r (w)i,j

)

over the choice of w, r, i, j. We compare these bits with the corresponding bits when A is replaced
by A′. Very roughly, the intuition is similar to the NP case described at the beginning of Section
3.1: We would like that hardly any of the bits go from 1 to 0 (since the bits that are 1 under A
should be “stable” if we choose x appropriately) while a significant fraction go from 0 to 1 (due
to Inequality (2) holding for a significant fraction of pairs w, r). Thus it is tempting to define ΦA

to be the fraction of w, r, i, j whose bit is 0. The problem with this intuition is the adaptivity:
If the w, r, i∗, j∗ bit is different under A and A′, then for all i > i∗ and all j we could have

M
LA′

3
r (w)i,j 6= M

LA
3

r (w)i,j in which case the values of the w, r, i, j bit under A and A′ have nothing
to do with each other. In particular, if the w, r, i∗, j∗ bit changes then for all i > i∗ and all j, the
w, r, i, j bit could go from 1 to 0, thus undoing all the “stability” we thought we had accrued. The
solution is that in the potential function, we weight the bits inverse exponentially in i, so that even

8We again only deal with LA
2 on inputs of length nd, but we consider LA

3 on all input lengths. We could assume all
queries M makes to its first oracle have the same length, but it turns out this would not make the proof any simpler.
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if this bad scenario happens, the absolute value of the contribution of w, r, i∗, j∗ to the potential
difference ΦA′

− ΦA swamps the absolute value of the total contribution of w, r, i, j over all i > i∗

and all j.
Let us be a bit more precise with this intuition. For an arbitrary pair w, r, let i∗ be the smallest

value (if it exists) such that for some j, the w, r, i∗, j bit changes when we switch from A to A′ (note
that i∗ depends on w, r). Then the bits w, r, i, j for all i < i∗ and all j have 0 contribution to the
potential difference, and the bits w, r, i, j for all i > i∗ and all j have negligible total contribution
compared to the contribution of w, r, i∗, j for any j. Thus we just need to consider the bits of the
form w, r, i∗, j. Analogously to the intuition for Theorem 1, we consider three types of pairs w, r.

Call w, r horrible if for some j, the w, r, i∗, j bit changes from 1 to 0. The contribution of each
horrible pair to the potential difference may be a large positive amount (the worst case is when
i∗ = 1), but the overall contribution of horrible pairs will be tiny provided only a tiny fraction
of pairs are horrible. We ensure the latter by picking our best guess x appropriately, using the
“stability” of accepting nondeterministic computations, and using the fact that the computations

M
LA′

3
r (w) and M

LA
3

r (w) proceed identically up through the i∗th round (which allows us to just look

at the strings M
LA

3
r (w)i,j and ensure that most of them are not in LA

3 \L
A′

3 ).
Call w, r good if w, r is not horrible but i∗ does exist (and thus for some j, the w, r, i∗, j bit

changes from 0 to 1). Call w, r bad if it is not good. Whenever w, r is not horrible and Inequality
(2) holds, w, r must be good since there must be some bit w, r, i, j that changes when we switch
from A to A′. By a union bound we know that a significant fraction of pairs are good. Thus
the contribution of a good pair w, r to the potential difference is negative, and the weight of the
contribution is inverse exponential in i∗, which is significant since i∗ ≤ o(n/ log n).9 Thus the
overall contribution of good pairs is a significant negative amount.

Finally, consider the bad-but-not-horrible pairs w, r. For these, i∗ must not exist, and thus there
is 0 contribution to the potential difference.

Overall we get a significant drop in potential, as desired.

3.2 Intuition for Theorem 3 and Theorem 4

It is well-known that error-correcting codes can be used to construct worst-case to average-case
reductions, at least for large complexity classes such as PSPACE [3, 20]. To be applicable, the
codes must have very efficient encoders (since this dictates the complexity of the language being
reduced to) and very efficient decoders (since this dictates the complexity of the reduction itself).
Our strategy for proving Theorem 3 and Theorem 4 is to set up the relativization oracle in such a
way that error-correcting codes are in some sense the only way to construct worst-case to average-
case reductions of the appropriate types, and then argue that the efficiency of the resulting encoders
and decoders is too good to be true. That is, we would like to be able to extract a good error-
correcting code from any purported reduction and then apply known lower bounds on the efficiency
of encoders and decoders for such codes. For Theorem 3, we use a result due to Viola [21] which
states that good error-correcting codes10 cannot be encoded by small constant-depth circuits. For
Theorem 4, we use a lower bound due to Kerenidis and de Wolf [18] on the length of 2-query locally
decodable codes.

9The log n comes from the polynomially many queries in each round. Theorem 2 also holds if we allow o(n) queries

rather than o(n/ log n) rounds of adaptivity.
10His result even applies to list-decodable codes, but we do not need this stronger result.
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Our approach for Theorem 3 and Theorem 4 is in some sense a dual approach to the one we
used for Theorem 1 and Theorem 2. As before, we have a reduction R that is trying to solve a
problem with the aid of a relativization oracle A and a reduction oracle B. Before, our goal was to
render B useless to R so we could focus on how R interacted with A. Now, our goal is to render A
useless to R so we can focus on how R interacts with B. Before, we found a good row of A and filled
in that row adversarially. Now, we find a good column of A and fill in that column adversarially.

Unlike in the proofs of Theorem 1 and Theorem 2, we cannot use the Impagliazzo-Levin result
to reduce PSamp to U since it uses too many queries. But again, directly handling the samplable
ensembles presents no major difficulties. Thus, for the rest of this section we assume PSamp is
replaced by U .

The basic setup is the same as before. We have an algorithm M (PH-type for Theorem 3 or
arbitrary complexity for Theorem 4). We have a polynomial-time randomized reduction R that
uses a limited number of queries to the reduction oracle. For simplicity we assume that on inputs of
length n, R only queries the reduction oracle on inputs of length nd and only with δ = 1/nd for some
positive integer d. We construct a sequence of relativization oracles A : {0, 1}n × {0, 1}n → {0, 1},

and we define LA
1 : {0, 1}n → {0, 1} by LA

1 (x) =
∨

y A(xy), and we let LA
2 : {0, 1}nd

→ {0, 1} denote

the language computed by MA. For the final version of A, we want RB,A(x) to output LA
1 (x) with

probability < 1/2 + 1/nlog n for some x ∈ {0, 1}n and some B : {0, 1}nd
→ {0, 1,⊥} that agrees

with LA
2 on at least a 1− 1/nd fraction of inputs and returns ⊥ on the rest. We have 1/2+ 1/nlog n

instead of 2/3 for the reason discussed at the end of Section 2.3.
Let us start by pretending that R never queries A. Then it is completely straightforward to

extract a good binary error-correcting code from M,R: Pick an arbitrary column y and define

C : {0, 1}2n

→ {0, 1}2nd

by viewing the input as a function Z : {0, 1}n → {0, 1} and the output as a function C(Z) :

{0, 1}nd
→ {0, 1} given by C(Z) = LAZ

2 where AZ denotes the relativization oracle with Z as the
yth column and 0’s everywhere else. If R really is of the hypothesized type no matter which Z we
use, then it immediately follows that R is a decoder that recovers any bit Z(x) = LAZ

1 (x) of the
information word from any corrupted code word B that has at most a 1/nd fraction of erasures
(and no flipped bits).

For Theorem 3, note that C has relative minimum distance > 1/nd and each bit of C is encodable
by a small constant-depth circuit since M is a PH-type algorithm with oracle access to Z [9]. This
contradicts a result of Viola [21] which says that such a code cannot exist. Thus there must be
some Z for which R is not of the hypothesized type.

For Theorem 4, note that C is a 2-query locally decodable code in the sense that each bit of
the information word can be recovered with probability at least 1/2 + 1/nlog n assuming there are
at most a 1/nd fraction of erasures.11 Since the code word length is only quasipolynomial in the
information word length, this contradicts a result of Kerenidis and de Wolf [18] which says that the
length of such a code must be nearly exponential.12 Thus there must be some Z for which R is not
of the hypothesized type. Since the lower bound holds regardless of the complexity of encoding, we
can handle any uniform complexity class of languages.

11Usually, locally decodable codes are defined in terms of flipped bits rather than erasures, but they are equivalent
up to small differences in parameters.

12The lower bound is only nearly exponential since the relative minimum distance and the advantage over 1/2 in
correct decoding probability are subconstant in our case.
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Now we return to the “real world” where R may query A. Then the above argument, with
an arbitrary fixed y, does not work because R might know y in which case R can easily go look
up the answers to LA

1 in the yth column. We must choose y so as to “hide” the answers from R.
Restricting the number of queries R can make to B is essential for this: If R can make n queries
then M can easily let R know what y is by explicitly writing y over and over again in the truth
table LA

2 , and R would have no trouble retrieving this information from any B that has sufficient
agreement with LA

2 . (Of course in Theorem 3, R can use n, or any fixed polynomial, number of
queries. But this is easily remedied by just adding 2poly(n) columns to the table A, with a high
enough degree polynomial, so that we can hide the answers from R. Henceforth we assume R only
uses no(1) queries, so that we can stick with 2n columns.)

Suppose we could choose y so that for every x and every B : {0, 1, }nd
→ {0, 1,⊥}, the probabil-

ity that RB,0(x) (where 0 denotes the all 0’s relativization oracle) queries a bit in the yth column
is at most 1/2nlog n. Then we would know that for every Z, every x, and every B that is valid
for LAZ

2 , the probability RB,0(x) outputs LAZ
1 (x) is within 1/2nlog n of the probability RB,AZ (x)

outputs LAZ

1 (x) and is hence at least 1/2+1/2nlog n. This would suffice for a contradiction, because
we could use RB,0 for the decoder. Actually this property of y is more than we really need. If
we replace “every x” with “most x” then we could just remove the bad x’s from consideration, at
a small loss in the information word length, and we would still get a contradiction. Now to find
such a y, we use the fact that quantifying over all B is the same as quantifying over all paths of
adaptivity in R’s access to B, and there are a limited number of such paths. Specifically, for every
x and every r there are only a small number of columns of the relativization oracle that get queried
by R◦,0

r (x) over all possible reduction oracles (namely, at most the running time of R times 3 to
the number of reduction oracle queries). By an averaging argument, there is some y such that for
most x’s, all but a 1/2nlog n fraction of r’s are such that RB,0

r (x) does not query any bit in the yth
column, for any B. This is good enough for our purpose.

The bottom line is that there are basically only two ways M could help R solve LA
1 : by telling

R the answers, or by telling R where to find the answers in A. The former is impossible because
then we would have an error-correcting code that is too good to be true, and the latter is impossible
because R cannot make enough queries to B to retrieve the identity of y.

4 Generic Setup for the Formal Proofs

We now describe the basic setup that is common to the proofs of all four theorems. However, this
setup will need to be customized a bit for each of the four proofs.

We have a uniform complexity class of languages C with enumeration {M1,M2, . . .}. Consider
an arbitrary triple i, S,R where i ∈ N, S is a polynomial-time sampler, and R is a polynomial-time
randomized reduction. Using Lemma 1 we can assume without loss of generality that on inputs of
length n, R only queries the reduction oracle on inputs of length nd and only with δ = 1/nd for
some positive integer d. For an arbitrary relativization oracle A ⊆ {0, 1}∗ we make the following
definitions. Let LA

1 denote the NPA language defined by

LA
1 =

{

x : ∃y such that |y| = |x| and xy ∈ A
}

.

If MA
i defines a language in CA then let LA

2 denote this language.13 Let DA denote the PSamp
A

13Technically MA
i equals the language LA

2 according to Definition 7, but the notation LA
2 is more convenient for

the proofs.
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ensemble defined by SA.
We wish to construct a relativization oracle A∗ so that LA∗

1 ∈ UPA∗
(by ensuring that in the

definition of LA∗

1 , y is always unique if it exists) and so that for all i, S,R, either MA∗

i fails to define
a language in CA∗

, or otherwise

Pr
rR,B

[

RB,A∗

rR
(x) = LA∗

1 (x)
]

< 2/3

for some x ∈ {0, 1}∗ and some randomized function B : {0, 1}∗ × R>0 → {0, 1,⊥} which is a valid
AvgZPP oracle for

(

LA∗

2 ,DA∗)

, thereby ensuring that the reduction R◦,A∗
fails to be of type

(

LA∗

2 ,DA∗)

⊆ AvgZPPA∗
⇒ LA∗

1 ⊆ BPPA∗
.

We construct a sequence of relativization oracles by starting with ∅ and adding strings and
never taking them back out. We take A∗ to be the limit of this sequence. Throughout the proofs,
we simply refer to the “current” A with the understanding that this is the set of strings that have
been included so far. We diagonalize against each triple i, S,R in sequence. After each round of
diagonalization, we have the requirement that A∗ matches the current A up through a certain input
length, and we know that the current A contains no strings longer than that length. Now consider
an arbitrary round, and suppose i, S,R is the triple to diagonalize against.

If there exists an A′ consistent with the requirements of previous rounds and such that MA′

i

fails to define a language in CA′
, say with x as the violating input, then we update A to match A′

up through the largest input length MA′

i (x) can query, and we require that A∗ matches the new A
up through this input length. This ensures that MA∗

i fails to define a language in CA∗
, and we can

move on to the next round.
Otherwise, we know that whatever we do to A, LA

2 will always be defined. Choose n large
enough so that the following three things hold.

• The relativization oracle is fresh for all input lengths ≥ n.

• The asymptotic constraints throughout the arguments are satisfied.

• The “relevant computations” all run in time nlog n without a big O.

The “relevant computations” include S on input nd, R on inputs of length n, and (depending on
the theorem) possibly the underlying computations of Mi on inputs of length nd. We construct A
at input length 2n to ensure that at the end of this round,

Pr
rR,B

[

RB,A
rR

(x) = LA
1 (x)

]

< 2/3

for some x ∈ {0, 1}n and some randomized function B : {0, 1}nd
→ {0, 1,⊥} which is a valid

AvgZPP oracle for
(

LA
2 ,DA

)

at input length nd with respect to δ = 1/nd. Note that it makes
sense to run RB,A(x) since this computation only queries B on inputs of length nd and only with
δ = 1/nd (so we are justified in omitting the δ). This suffices to diagonalize against i, S,R because
we can require that A∗ matches the new A up through input length nlog n and up through the
longest input length Mi can query on inputs of length nd, thus ensuring the following three things.

• LA∗

1 (x) = LA
1 (x).
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• RB,A∗
(x) behaves the same as RB,A(x).

• LA∗

2 |nd = LA
2 |nd and DA∗

nd = DA
nd , which implies that B is a valid AvgZPP oracle for

(

LA∗

2 ,DA∗)

at input length nd with respect to δ = 1/nd and can thus be extended to a
full valid AvgZPP oracle for

(

LA∗

2 ,DA∗)

without changing the behavior of RB,A∗
(x).

5 Proof of Theorem 1

We use the setup from Section 4, customized as follows. We have C = BPPpath, and Mi corresponds
to a BPPpath-type algorithm M . Also, M on inputs of length nd counts as “relevant computations”
and thus runs in time nlog n without a big O.

5.1 Main Construction

Recall that M,S,R, n are fixed. For all relativization oracles A (not just the one we have constructed
so far) we define the potential

ΦA = E
rS

[

− log2 Pr
rM

[

MA
rM

(

SA
rS

(nd)
)

2
= 1

]

]

.

The construction has two stages.

Stage 1. This stage proceeds in iterations. For a given iteration, let A denote the current rela-
tivization oracle after the previous iteration. If there exist x ∈ {0, 1}n and y ∈ {0, 1}n such that
x 6∈ LA

1 and ΦA∪{xy} ≤ ΦA − 1/n3 log n then update A := A ∪ {xy} and continue with the next
iteration. Otherwise, halt stage 1 and proceed to stage 2.

The following lemma is the technical heart of the proof of Theorem 1. We first finish the proof
of Theorem 1 assuming the lemma, and then we prove the lemma in Section 5.2.

Lemma 2. At the end of stage 1, there exists an x ∈ {0, 1}n such that x 6∈ LA
1 and for all

y ∈ {0, 1}n,

Pr
rS

[

L
A∪{xy}
2

(

SA
rS

(nd)
)

6= LA
2

(

SA
rS

(nd)
)

]

≤ 1/8nd+log n (3)

and
Pr
rS

[

SA∪{xy}
rS

(nd) 6= SA
rS

(nd)
]

≤ 1/2nd. (4)

Stage 2. Let A denote the current relativization oracle at the end of stage 1, and let x be as
guaranteed by Lemma 2. Let Y ⊆ {0, 1}n be an arbitrary set of size 4nlog n. Define a deterministic

reduction oracle B : {0, 1}nd
→ {0, 1,⊥} by

B(w) =

{

LA
2 (w) if L

A∪{xy}
2 (w) = LA

2 (w) for all y ∈ Y

⊥ otherwise
.

There are two cases.

Case 1. If
Pr
rR

[

RB,A
rR

(x) = 1
]

> 1/3
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then we will use A for the relativization oracle at the beginning of the next round of diagonalization,
without changing it. Since x 6∈ LA

1 , we have

Pr
rR

[

RB,A
rR

(x) = LA
1 (x)

]

< 2/3.

We just need to verify that B is a valid AvgZPP oracle for
(

LA
2 ,DA

)

at input length nd with respect
to δ = 1/nd. Obviously, B(w) always returns LA

2 (w) or ⊥, by our definition of B. We have

Pr
w∼DA

nd

[

B(w) = ⊥
]

= Pr
rS

[

B
(

SA
rS

(nd)
)

= ⊥
]

= Pr
rS

[

∃y ∈ Y such that L
A∪{xy}
2

(

SA
rS

(nd)
)

6= LA
2

(

SA
rS

(nd)
)

]

≤
∑

y∈Y

Pr
rS

[

L
A∪{xy}
2

(

SA
rS

(nd)
)

6= LA
2

(

SA
rS

(nd)
)

]

≤
∑

y∈Y

1/8nd+log n

= |Y | · 1/8nd+log n

= 1/2nd

≤ 1/nd = δ

where the fourth line follows by Lemma 2. Thus we have succeeded in diagonalizing against M,S,R
as described at the end of Section 4.

Case 2. If
Pr
rR

[

RB,A
rR

(x) = 1
]

≤ 1/3

then for each y ∈ Y we define

πy = Pr
rR

[

RB,A
rR

(x) queries A(xy)
]

.

Since RB,A(x) runs in time nlog n, we have
∑

y∈Y πy ≤ nlog n. Thus there exists a y ∈ Y such that

πy ≤ nlog n/|Y | = 1/4. Fix this y. We will update the relativization oracle to be A ∪ {xy} for the

end of this round of diagonalization. Since x ∈ L
A∪{xy}
1 , we have

Pr
rR

[

RB,A∪{xy}
rR

(x) = L
A∪{xy}
1 (x)

]

≤ Pr
rR

[

RB,A
rR

(x) = 1 or RB,A∪{xy}
rR

(x) 6= RB,A
rR

(x)
]

≤ Pr
rR

[

RB,A
rR

(x) = 1 or RB,A
rR

(x) queries A(xy)
]

≤ Pr
rR

[

RB,A
rR

(x) = 1
]

+ πy

≤ 1/3 + 1/4

< 2/3.

We just need to verify that B is a valid AvgZPP oracle for
(

L
A∪{xy}
2 ,DA∪{xy}

)

at input length nd

with respect to δ = 1/nd. Since y ∈ Y , we have that for all w, if B(w) 6= ⊥ then B(w) = LA
2 (w) =
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L
A∪{xy}
2 (w), by our definition of B. We also have

Pr
w∼D

A∪{xy}

nd

[

B(w) = ⊥
]

= Pr
rS

[

B
(

SA∪{xy}
rS

(nd)
)

= ⊥
]

≤ Pr
rS

[

B
(

SA
rS

(nd)
)

= ⊥ or SA∪{xy}
rS

(nd) 6= SA
rS

(nd)
]

≤ Pr
rS

[

B
(

SA
rS

(nd)
)

= ⊥
]

+ Pr
rS

[

SA∪{xy}
rS

(nd) 6= SA
rS

(nd)
]

≤ 1/2nd + 1/2nd

= 1/nd = δ

where the fourth line follows by the calculation from case 1 and by Lemma 2. Thus we have
succeeded in diagonalizing against M,S,R as described at the end of Section 4.

5.2 Proof of Lemma 2

For all A (not just the one we have constructed so far) and all rS , let us define

ΦA
rS

= − log2 Pr
rM

[

MA
rM

(

SA
rS

(nd)
)

2
= 1

]

so that ΦA = ErS

[

ΦA
rS

]

. For all A consistent with the requirements of previous rounds, the following

holds. For all w ∈ {0, 1}nd
, since we are assured that

Pr
rM

[

MA
rM

(w)2 = 1
]

> 0

and since MA(w) runs in time nlog n, we have

Pr
rM

[

MA
rM

(w)2 = 1
]

≥ 2−nlog n

.

Therefore 0 ≤ ΦA
rS

≤ nlog n for all rS , and hence 0 ≤ ΦA ≤ nlog n.
From here on out, A denotes the current relativization oracle at the end of stage 1. Since there

are at most n4 log n iterations before stage 1 terminates, we have

Pr
x∈{0,1}n

[

x ∈ LA
1

]

≤ n4 log n/2n

where x is chosen uniformly at random. For x ∈ {0, 1}n define

px = E
rS

[

Pr
rM

[

∃y ∈ {0, 1}n such that MA
rM

(

SA
rS

(nd)
)

queries A(xy)
∣

∣

∣
MA

rM

(

SA
rS

(nd)
)

2
= 1

]

]

.

Recall that the conditioning is valid since we are assured that

Pr
rM

[

MA
rM

(w)2 = 1
]

> 0

for all w ∈ {0, 1}nd
. Since MA(w) runs in time nlog n, we have

∑

x px ≤ nlog n and thus

Pr
x∈{0,1}n

[

px > 1/n7 log n
]

< n8 log n/2n.
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For x ∈ {0, 1}n define

sx = Pr
rS

[

∃y ∈ {0, 1}n such that SA
rS

(nd) queries A(xy)
]

.

Since SA(nd) runs in time nlog n, we have
∑

x sx ≤ nlog n and thus

Pr
x∈{0,1}n

[

sx > 1/n4 log n
]

< n5 log n/2n.

By a union bound we find that

Pr
x∈{0,1}n

[

x 6∈ LA
1 and px ≤ 1/n7 log n and sx ≤ 1/n4 log n

]

> 1 −
(

n4 log n/2n
)

−
(

n8 log n/2n
)

−
(

n5 log n/2n
)

> 0.

Thus there exists an x ∈ {0, 1}n such that x 6∈ LA
1 and px ≤ 1/n7 log n and sx ≤ 1/n4 log n. Fix this

x. We claim that this x satisfies the condition of Lemma 2. Suppose for contradiction that there
exists a y ∈ {0, 1}n such that either Inequality (3) does not hold or Inequality (4) does not hold.
Fix this y. We claim that ΦA∪{xy} ≤ ΦA−1/n3 log n, thus contradicting the fact that stage 1 halted.
Henceforth we let A′ denote A ∪ {xy}. We partition the sample space of S’s internal randomness
into four events.

E1 =
{

rS : SA′

rS
(nd) 6= SA

rS
(nd)

}

E2 =

{

rS : rS 6∈ E1 and

Pr
rM

[

MA′

rM

(

SA
rS

(nd)
)

6= MA
rM

(

SA
rS

(nd)
)

∣

∣

∣
MA

rM

(

SA
rS

(nd)
)

2
= 1

]

> 1/n3 log n

}

E3 =
{

rS : rS 6∈ E1 ∪ E2 and LA′

2

(

SA
rS

(nd)
)

6= LA
2

(

SA
rS

(nd)
)

}

E4 =
{

rS : rS 6∈ E1 ∪ E2 ∪ E3

}

For E2, note that MA′

rM

(

SA
rS

(nd)
)

6= MA
rM

(

SA
rS

(nd)
)

means that at least one of the two output bits
is different.

Proposition 1. PrrS

[

rS ∈ E1

]

≤ 1/n4 log n and for all rS ∈ E1, ΦA′

rS
− ΦA

rS
≤ nlog n.

Proposition 2. PrrS

[

rS ∈ E2

]

≤ 1/n4 log n and for all rS ∈ E2, ΦA′

rS
− ΦA

rS
≤ nlog n.

Proposition 3. PrrS

[

rS ∈ E3

]

≥ 1/n2 log n and for all rS ∈ E3, ΦA′

rS
− ΦA

rS
≤ −1/2.

Proposition 4. PrrS

[

rS ∈ E4

]

≤ 1 and for all rS ∈ E4, ΦA′

rS
− ΦA

rS
≤ 2/n3 log n.

From these four propositions it follows that

ΦA′
− ΦA = E

rS

[

ΦA′

rS
− ΦA

rS

]
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= E
rS

[

ΦA′

rS
− ΦA

rS

∣

∣

∣
rS ∈ E1

]

· Pr
rS

[

rS ∈ E1

]

+

E
rS

[

ΦA′

rS
− ΦA

rS

∣

∣

∣
rS ∈ E2

]

· Pr
rS

[

rS ∈ E2

]

+

E
rS

[

ΦA′

rS
− ΦA

rS

∣

∣

∣
rS ∈ E3

]

· Pr
rS

[

rS ∈ E3

]

+

E
rS

[

ΦA′

rS
− ΦA

rS

∣

∣

∣
rS ∈ E4

]

· Pr
rS

[

rS ∈ E4

]

≤ 1/n3 log n + 1/n3 log n − 1/2n2 log n + 2/n3 log n

≤ − 1/n3 log n

which is what we wanted to show.

Proof of Proposition 1. The first assertion follows because

Pr
rS

[

rS ∈ E1

]

≤ Pr
rS

[

SA
rS

(nd) queries A(xy)
]

≤ sx

≤ 1/n4 log n.

The second assertion follows trivially from the fact that ΦA′

rS
≤ nlog n and ΦA

rS
≥ 0.

Proof of Proposition 2. The first assertion follows because

Pr
rS

[

rS ∈ E2

]

≤ Pr
rS

[

Pr
rM

[

MA′

rM

(

SA
rS

(nd)
)

6= MA
rM

(

SA
rS

(nd)
)

∣

∣

∣
MA

rM

(

SA
rS

(nd)
)

2
= 1

]

> 1/n3 log n

]

≤ Pr
rS

[

Pr
rM

[

MA
rM

(

SA
rS

(nd)
)

queries A(xy)
∣

∣

∣
MA

rM

(

SA
rS

(nd)
)

2
= 1

]

> 1/n3 log n

]

≤ E
rS

[

Pr
rM

[

MA
rM

(

SA
rS

(nd)
)

queries A(xy)
∣

∣

∣
MA

rM

(

SA
rS

(nd)
)

2
= 1

]

]

· n3 log n

≤ px · n3 log n

≤ 1/n4 log n.

The second assertion follows trivially from the fact that ΦA′

rS
≤ nlog n and ΦA

rS
≥ 0.

Proof of Proposition 3. This proposition is in some sense the crux of the whole proof. Since
1/n4 log n ≤ 1/2nd, Proposition 1 implies that Inequality (4) holds and therefore Inequality (3)
does not hold. The first assertion follows because

Pr
rS

[

rS ∈ E3

]

≥ Pr
rS

[

LA′

2

(

SA
rS

(nd)
)

6= LA
2

(

SA
rS

(nd)
)]

− Pr
rS

[

rS ∈ E1

]

− Pr
rS

[

rS ∈ E2

]

> 1/8nd+log n − 1/n4 log n − 1/n4 log n

≥ 1/n2 log n

where the first line follows by a union bound and the second line follows by the negation of Inequality
(3) and by Proposition 1 and Proposition 2.
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We now argue the second assertion. Since rS 6∈ E1, we have SA′

rS
(nd) = SA

rS
(nd). Let w denote

this string. Then we have

Pr
rM

[

MA′

rM

(

SA′

rS
(nd)

)

2
= 1

]

/3

= Pr
rM

[

MA′

rM
(w)2 = 1

]

/3

≥ Pr
rM

[

MA′

rM
(w)1 6= LA′

2 (w) and MA′

rM
(w)2 = 1

]

= Pr
rM

[

MA′

rM
(w)1 = LA

2 (w) and MA′

rM
(w)2 = 1

]

≥ Pr
rM

[

MA
rM

(w)1 = LA
2 (w) and MA

rM
(w)2 = 1 and MA′

rM
(w) = MA

rM
(w)

]

≥ Pr
rM

[

MA
rM

(w)1 = LA
2 (w) and MA

rM
(w)2 = 1

]

− Pr
rM

[

MA′

rM
(w) 6= MA

rM
(w) and MA

rM
(w)2 = 1

]

=

(

Pr
rM

[

MA
rM

(w)1 = LA
2 (w)

∣

∣

∣
MA

rM
(w)2 = 1

]

− Pr
rM

[

MA′

rM
(w) 6= MA

rM
(w)

∣

∣

∣
MA

rM
(w)2 = 1

]

)

·

Pr
rM

[

MA
rM

(w)2 = 1
]

≥
(

2/3 − 1/n3 log n
)

· Pr
rM

[

MA
rM

(w)2 = 1
]

≥ Pr
rM

[

MA
rM

(w)2 = 1
]

/2

= Pr
rM

[

MA
rM

(

SA
rS

(nd)
)

2
= 1

]

/2

where the third line follows by the fact that

Pr
rM

[

MA′

rM
(w)1 6= LA′

2 (w)
∣

∣

∣
MA′

rM
(w)2 = 1

]

≤ 1/3

by Definition 1, the fourth line follows by the fact that LA′

2 (w) 6= LA
2 (w), and the third-from-last

line follows by Definition 1 and because rS 6∈ E1 ∪ E2. The second assertion now follows because
log2(3/2) ≥ 1/2.

Proof of Proposition 4. The first assertion is trivial. We now argue the second assertion. Since
rS 6∈ E1, we have SA′

rS
(nd) = SA

rS
(nd). Let w denote this string. Then we have

Pr
rM

[

MA′

rM

(

SA′

rS
(nd)

)

2
= 1

]

= Pr
rM

[

MA′

rM
(w)2 = 1

]

≥ Pr
rM

[

MA
rM

(w)2 = 1 and MA′

rM
(w) = MA

rM
(w)

]

=

(

1 − Pr
rM

[

MA′

rM
(w) 6= MA

rM
(w)

∣

∣

∣
MA

rM
(w)2 = 1

]

)

· Pr
rM

[

MA
rM

(w)2 = 1
]

≥
(

1 − 1/n3 log n
)

· Pr
rM

[

MA
rM

(w)2 = 1
]

≥ 2−2/n3 log n

· Pr
rM

[

MA
rM

(w)2 = 1
]

= 2−2/n3 log n

· Pr
rM

[

MA
rM

(

SA
rS

(nd)
)

2
= 1

]

where the fourth line follows because rS 6∈ E1 ∪ E2. The second assertion follows.
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6 Proof of Theorem 2

We use the setup from Section 4, customized as follows. We have C = BPPNP
‖, o(n/ log n), and Mi

corresponds to a pair M,N where M is a BPP◦
‖, o(n/ log n)-type algorithm and N is an NP-type

algorithm. Thus LA
2 is the

(

BPPNP
‖, o(n/ log n)

)A
language computed by MLA

3 ,A where LA
3 denotes the

NPA language computed by NA. Also, M on inputs of length nd, as well as N on all inputs that
could be queried by M on inputs of length nd, count as “relevant computations” and thus all run
in time nlog n without a big O.

Assume without loss of generality that for some nonnegative integer e, M on inputs of length nd

always makes exactly ne queries to its first oracle within each round of adaptivity and always has

the same number of rounds of adaptivity. Let M
LA

3 ,A
rM (w)i,j ∈ {0, 1}∗ denote the jth query made

within the ith round of adaptivity.

6.1 Main Construction

Recall that M,N,S,R, n are fixed. For all relativization oracles A (not just the one we have
constructed so far) we define the potential

ΦA = E
rS ,rM

[

∑

i,j

(3ne)−i

(

1 − LA
3

(

M
LA

3 ,A
rM

(

SA
rS

(nd)
)

i,j

)

)

]

.

The construction is identical to the construction from the proof of Theorem 1 except that we require
the potential to go down by at least 1/2n/2 in each iteration of stage 1.

The following lemma is the technical heart of the proof of Theorem 2. The statement is identical
to the statement of Lemma 2 but it refers to the new construction.

Lemma 3. At the end of stage 1, there exists an x ∈ {0, 1}n such that x 6∈ LA
1 and for all

y ∈ {0, 1}n,

Pr
rS

[

L
A∪{xy}
2

(

SA
rS

(nd)
)

6= LA
2

(

SA
rS

(nd)
)

]

≤ 1/8nd+log n (5)

and
Pr
rS

[

SA∪{xy}
rS

(nd) 6= SA
rS

(nd)
]

≤ 1/2nd. (6)

6.2 Proof of Lemma 3

For all A (not just the one we have constructed so far) and all rS , rM , i, j, let us define

ΦA
rS ,rM ,i,j = (3ne)−i

(

1 − LA
3

(

M
LA

3 ,A
rM

(

SA
rS

(nd)
)

i,j

)

)

and
ΦA

rS,rM
=

∑

i,j

ΦA
rS ,rM ,i,j

so that ΦA = ErS ,rM

[

ΦA
rS ,rM

]

. Since ne
∑∞

i=1(3n
e)−i ≤ 1, we have 0 ≤ ΦA

rS ,rM
≤ 1 for all rS, rM ,

and hence 0 ≤ ΦA ≤ 1.
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From here on out, A denotes the current relativization oracle at the end of stage 1. Since there
are at most 2n/2 iterations before stage 1 terminates, we have

Pr
x∈{0,1}n

[

x ∈ LA
1

]

≤ 1/2n/2

where x is chosen uniformly at random. For x ∈ {0, 1}n define

px = Pr
rS ,rM

[

∃y ∈ {0, 1}n such that M
LA

3 ,A
rM

(

SA
rS

(nd)
)

queries A(xy)
]

.

Since MLA
3 ,A(w) runs in time nlog n for all w ∈ {0, 1}nd

, we have
∑

x px ≤ nlog n and thus

Pr
x∈{0,1}n

[

px > 1/2n/2
]

< nlog n/2n/2.

For every v ∈ LA
3 pick an arbitrary accepting computation path of NA(v) to be the “designated”

path. For x ∈ {0, 1}n define

qx = Pr
rS ,rM ,i,j

[

M
LA

3 ,A
rM

(

SA
rS

(nd)
)

i,j
∈ LA

3 and ∃y ∈ {0, 1}n such that

NA
(

M
LA

3 ,A
rM

(

SA
rS

(nd)
)

i,j

)

queries A(xy) on the designated path

]

where i, j are chosen uniformly at random. Since NA(v) runs in time nlog n for every v of interest,
we have

∑

x qx ≤ nlog n and thus

Pr
x∈{0,1}n

[

qx > 1/2n/2
]

< nlog n/2n/2.

For x ∈ {0, 1}n define

sx = Pr
rS

[

∃y ∈ {0, 1}n such that SA
rS

(nd) queries A(xy)
]

.

Since SA(nd) runs in time nlog n, we have
∑

x sx ≤ nlog n and thus

Pr
x∈{0,1}n

[

sx > 1/2n/2
]

< nlog n/2n/2.

By a union bound we find that

Pr
x∈{0,1}n

[

x 6∈ LA
1 and px ≤ 1/2n/2 and qx ≤ 1/2n/2 and sx ≤ 1/2n/2

]

> 1 −
(

1/2n/2
)

−
(

nlog n/2n/2
)

−
(

nlog n/2n/2
)

−
(

nlog n/2n/2
)

> 0.

Thus there exists an x ∈ {0, 1}n such that x 6∈ LA
1 and px ≤ 1/2n/2 and qx ≤ 1/2n/2 and sx ≤ 1/2n/2.

Fix this x. We claim that this x satisfies the condition of Lemma 3. Suppose for contradiction that
there exists a y ∈ {0, 1}n such that either Inequality (5) does not hold or Inequality (6) does not
hold. Fix this y. We claim that ΦA∪{xy} ≤ ΦA − 1/2n/2, thus contradicting the fact that stage 1
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halted. Henceforth we let A′ denote A ∪ {xy}. We partition the joint sample space of S’s internal
randomness and M ’s internal randomness into five events.

E1 =
{

(rS , rM ) : SA′

rS
(nd) 6= SA

rS
(nd)

}

E2 =
{

(rS , rM ) : (rS , rM ) 6∈ E1 and M
LA

3 ,A
rM

(

SA
rS

(nd)
)

queries A(xy)
}

E3 =
{

(rS , rM ) : (rS , rM ) 6∈ E1 ∪ E2 and ∃i, j such that M
LA

3 ,A
rM

(

SA
rS

(nd)
)

i,j
∈ LA

3 \L
A′

3

}

E4 =
{

(rS , rM ) : (rS , rM ) 6∈ E1 ∪ E2 ∪ E3 and ∃i, j such that M
LA

3 ,A
rM

(

SA
rS

(nd)
)

i,j
∈ LA′

3 \LA
3

}

E5 =
{

(rS , rM ) : (rS , rM ) 6∈ E1 ∪ E2 ∪ E3 ∪ E4

}

Proposition 5. PrrS ,rM

[

(rS , rM ) ∈ E1

]

≤ 1/2n/2 and for all (rS , rM ) ∈ E1, ΦA′

rS ,rM
−ΦA

rS ,rM
≤ 1.

Proposition 6. PrrS ,rM

[

(rS , rM ) ∈ E2

]

≤ 1/2n/2 and for all (rS , rM ) ∈ E2, ΦA′

rS ,rM
−ΦA

rS ,rM
≤ 1.

Proposition 7. PrrS ,rM

[

(rS , rM ) ∈ E3

]

≤ 1/2n/3 and for all (rS , rM ) ∈ E3, ΦA′

rS ,rM
−ΦA

rS ,rM
≤ 1.

Proposition 8. PrrS ,rM

[

(rS , rM ) ∈ E4

]

≥ 1/n2 log n and for all (rS , rM ) ∈ E4, ΦA′

rS ,rM
−ΦA

rS ,rM
≤

−1/2n/4.

Proposition 9. PrrS ,rM

[

(rS , rM ) ∈ E5

]

≤ 1 and for all (rS , rM ) ∈ E5, ΦA′

rS ,rM
− ΦA

rS ,rM
≤ 0.

From these five propositions it follows that

ΦA′
− ΦA = E

rS ,rM

[

ΦA′

rS ,rM
− ΦA

rS ,rM

]

= E
rS ,rM

[

ΦA′

rS ,rM
− ΦA

rS ,rM

∣

∣

∣
(rS , rM ) ∈ E1

]

· Pr
rS ,rM

[

(rS , rM ) ∈ E1

]

+

E
rS ,rM

[

ΦA′

rS ,rM
− ΦA

rS ,rM

∣

∣

∣
(rS , rM ) ∈ E2

]

· Pr
rS ,rM

[

(rS , rM ) ∈ E2

]

+

E
rS ,rM

[

ΦA′

rS ,rM
− ΦA

rS ,rM

∣

∣

∣
(rS , rM ) ∈ E3

]

· Pr
rS ,rM

[

(rS , rM ) ∈ E3

]

+

E
rS ,rM

[

ΦA′

rS ,rM
− ΦA

rS ,rM

∣

∣

∣
(rS , rM ) ∈ E4

]

· Pr
rS ,rM

[

(rS , rM ) ∈ E4

]

+

E
rS ,rM

[

ΦA′

rS ,rM
− ΦA

rS ,rM

∣

∣

∣
(rS , rM ) ∈ E5

]

· Pr
rS ,rM

[

(rS , rM ) ∈ E5

]

≤ 1/2n/2 + 1/2n/2 + 1/2n/3 − 1/n2 log n2n/4

≤ − 1/2n/2

which is what we wanted to show.

Proof of Proposition 5. The first assertion follows because

Pr
rS ,rM

[

(rS , rM ) ∈ E1

]

≤ Pr
rS

[

SA
rS

(nd) queries A(xy)
]

≤ sx

≤ 1/2n/2.

The second assertion follows trivially from the fact that ΦA′

rS ,rM
≤ 1 and ΦA

rS ,rM
≥ 0.
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Proof of Proposition 6. The first assertion follows because

Pr
rS ,rM

[

(rS , rM ) ∈ E2

]

≤ Pr
rS ,rM

[

M
LA

3 ,A
rM

(

SA
rS

(nd)
)

queries A(xy)
]

≤ px

≤ 1/2n/2.

The second assertion follows trivially from the fact that ΦA′

rS ,rM
≤ 1 and ΦA

rS ,rM
≥ 0.

Proof of Proposition 7. The first assertion follows because

Pr
rS ,rM

[

(rS , rM ) ∈ E3

]

≤ Pr
rS ,rM

[

∃i, j such that M
LA

3 ,A
rM

(

SA
rS

(nd)
)

i,j
∈ LA

3 \L
A′

3

]

≤ Pr
rS ,rM

[

∃i, j such that M
LA

3 ,A
rM

(

SA
rS

(nd)
)

i,j
∈ LA

3 and

NA
(

M
LA

3 ,A
rM

(

SA
rS

(nd)
)

i,j

)

queries A(xy) on the designated path

]

≤ qx · ne+1

≤ 1/2n/3

where the second-to-last line follows because there are only ne ·o(n/ log n) pairs i, j and the last line
follows because qx ≤ 1/2n/2. The second assertion follows trivially from the fact that ΦA′

rS ,rM
≤ 1

and ΦA
rS ,rM

≥ 0.

Proof of Proposition 8. This proposition is in some sense the crux of the whole proof. Since
1/2n/2 ≤ 1/2nd, Proposition 5 implies that Inequality (6) holds and therefore Inequality (5) does
not hold. We claim that if (rS , rM ) 6∈ E1 ∪ E2 ∪ E3 ∪ E4 then

M
LA′

3 ,A′

rM

(

SA
rS

(nd)
)

= M
LA

3 ,A
rM

(

SA
rS

(nd)
)

.

This is because every query M
LA

3 ,A
rM

(

SA
rS

(nd)
)

makes to its second oracle has the same answer under

A′ and A, and every query it makes to its first oracle has the same answer under LA′

3 and LA
3 .

Thus the computations M
LA′

3 ,A′

rM

(

SA
rS

(nd)
)

and M
LA

3 ,A
rM

(

SA
rS

(nd)
)

proceed identically, making the
same queries and receiving the same answers, and hence they produce the same output. The first
assertion now follows because

Pr
rS ,rM

[

(rS , rM ) ∈ E4

]

≥ Pr
rS ,rM

[

(rS , rM ) 6∈ E1 ∪ E2 ∪ E3 and M
LA′

3 ,A′

rM

(

SA
rS

(nd)
)

6= M
LA

3 ,A
rM

(

SA
rS

(nd)
)

]

≥ Pr
rS ,rM

[

M
LA′

3 ,A′

rM

(

SA
rS

(nd)
)

6= M
LA

3 ,A
rM

(

SA
rS

(nd)
)

]

− Pr
rS ,rM

[

(rS , rM ) ∈ E1

]

− Pr
rS ,rM

[

(rS , rM ) ∈ E2

]

− Pr
rS ,rM

[

(rS , rM ) ∈ E3

]

≥ Pr
rS

[

LA′

2

(

SA
rS

(nd)
)

6= LA
2

(

SA
rS

(nd)
)

]

/3

− Pr
rS ,rM

[

(rS , rM ) ∈ E1

]

− Pr
rS ,rM

[

(rS , rM ) ∈ E2

]

− Pr
rS ,rM

[

(rS , rM ) ∈ E3

]
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> 1/24nd+log n − 1/2n/2 − 1/2n/2 − 1/2n/3

≥ 1/n2 log n

where the third line follows by a union bound and the second-to-last line follows by the negation
of Inequality (5) and by Proposition 5, Proposition 6, and Proposition 7.

We now argue the second assertion. Since (rS , rM ) 6∈ E1, we have SA′

rS
(nd) = SA

rS
(nd). Let w

denote this string. Let i∗ be the smallest value such that for some j∗,

M
LA

3 ,A
rM

(w)i∗,j∗ ∈ LA′

3 \LA
3 .

We claim the following three things.

(1) For all i > i∗ and all j, ΦA′

rS ,rM ,i,j − ΦA
rS ,rM ,i,j ≤ (3ne)−i.

(2) For all i ≤ i∗ and all j, ΦA′

rS ,rM ,i,j − ΦA
rS ,rM ,i,j ≤ 0.

(3) ΦA′

rS ,rM ,i∗,j∗ − ΦA
rS ,rM ,i∗,j∗ = −(3ne)−i∗ .

Combining the three claims, we have

ΦA′

rS ,rM
− ΦA

rS ,rM
=

∑

i,j

ΦA′

rS,rM ,i,j − ΦA
rS ,rM ,i,j

≤ − (3ne)−i∗ + ne
∑

i>i∗

(3ne)−i

≤ − (3ne)−i∗/2

≤ − 1/2O(i∗e log n)

≤ − 1/2n/4

where the last line follows because i∗ ≤ o(n/ log n). Note that (1) is trivial. To verify (2) and (3),

note that every query M
LA

3 ,A
rM (w) makes to its second oracle has the same answer under A′ and A

(since (rS , rM ) 6∈ E1 ∪ E2), and every query it makes to its first oracle up through round i∗ − 1 is
neither in LA

3 \L
A′

3 (since (rS , rM ) 6∈ E1∪E2∪E3) nor in LA′

3 \LA
3 (by minimality of i∗) and thus has

the same answer under LA′

3 and LA
3 . Thus the computations M

LA′

3 ,A′

rM
(w) and M

LA
3 ,A

rM
(w) proceed

identically up to round i∗, making the same queries and receiving the same answers before round
i∗ and making the same queries in round i∗. Hence for all i ≤ i∗ and all j, we have

M
LA′

3 ,A′

rM
(w)i,j = M

LA
3 ,A

rM
(w)i,j .

For all i ≤ i∗ and all j, since M
LA

3 ,A
rM

(w)i,j 6∈ LA
3 \L

A′

3 we have

LA′

3

(

M
LA′

3 ,A′

rM

(

SA′

rS
(nd)

)

i,j

)

≥ LA
3

(

M
LA

3 ,A
rM

(

SA
rS

(nd)
)

i,j

)

which proves (2). By the definition of i∗, j∗ we have

LA′

3

(

M
LA′

3 ,A′

rM

(

SA′

rS
(nd)

)

i∗,j∗

)

= 1

and
LA

3

(

M
LA

3 ,A
rM

(

SA
rS

(nd)
)

i∗,j∗

)

= 0

which proves (3).
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Proof of Proposition 9. The first assertion is trivial. We now argue the second assertion. In the
proof of Proposition 8 we argued that if (rS , rM ) 6∈ E1 ∪ E2 ∪ E3 ∪ E4 then the computations

M
LA′

3 ,A′

rM

(

SA′

rS
(nd)

)

and M
LA

3 ,A
rM

(

SA
rS

(nd)
)

proceed identically, making the same queries and receiving
the same answers. In particular,

LA′

3

(

M
LA′

3 ,A′

rM

(

SA′

rS
(nd)

)

i,j

)

= LA
3

(

M
LA

3 ,A
rM

(

SA
rS

(nd)
)

i,j

)

for all i, j, which implies that ΦA′

rS ,rM
= ΦA

rS ,rM
.

7 Proof of Theorem 3

Fix a polynomial q. We use the setup from Section 4, customized as follows. We have C = PH, and
Mi corresponds to a PH-type algorithm M . We redefine

LA
1 =

{

x : ∃y such that |y| = |x| + 2q(|x|) and xy ∈ A
}

using |y| = |x| + 2q(|x|) instead of |y| = |x|, and thus we need to construct A at input length
2n + 2q(n) rather than 2n. We only diagonalize against reductions R that use at most q queries to
the reduction oracle. Also, M on inputs of length nd counts as “relevant computations” and thus
runs in time nlog n without a big O. For the reason discussed at the end of Section 2.3, we have the
stronger requirement that at the end of this round,

Pr
rR,B

[

RB,A
rR

(x) = LA
1 (x)

]

< 1/2 + 1/nlog n

with 1/2 + 1/nlog n instead of 2/3. Finally, note that it can never be the case that MA fails to
define a language in PHA, since PH is a syntactically defined class.

We generalize the notion of a reduction oracle: If B : {0, 1}nd
→ {0, 1,⊥}N is a deterministic

function then running RB,A
rR (x) means that for each w, the ith time the computation queries B(w)

it gets B(w)(i) as a response. Thus a randomized function B : {0, 1}nd
→ {0, 1,⊥} is a distribution

over such deterministic functions, where each B(w)(i) is independent and the distribution of B(w)(i)
depends only on w and not on i.

7.1 Main Construction

Recall that M,S,R, n are fixed. Let A denote the current relativization oracle at the beginning of
this round. For x ∈ {0, 1}n and y ∈ {0, 1}n+2q(n) define

px,y = Pr
rR

[

∃B : {0, 1}nd

→ {0, 1,⊥}N and ∃x′ ∈ {0, 1}n such that RB,A
rR

(x) queries A(x′y)
]

and
py = E

x∈{0,1}n

[

px,y

]

where x is chosen uniformly at random. For each x ∈ {0, 1}n and rR, the computation RB,A
rR

(x)
has at most 3q(n) computation paths over the possible responses it could get from B (recall that
A is fixed). On each of these computation paths, RB,A

rR
(x) can query at most nlog n bits of A since
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it runs in time nlog n. Thus there are at most nlog n3q(n) pairs (x′, y) ∈ {0, 1}n × {0, 1}n+2q(n) for

which there exists a B : {0, 1}nd
→ {0, 1,⊥}N such that RB,A

rR
(x) queries A(x′y). It follows that

∑

y py ≤ nlog n3q(n) and thus

Pr
y∈{0,1}n+2q(n)

[

py > 1/2nlog n
]

< 2n2 log n3q(n)/2n+2q(n)

where y is chosen uniformly at random. For y ∈ {0, 1}n+2q(n) define

sy = Pr
rS

[

∃x′ ∈ {0, 1}n such that SA
rS

(nd) queries A(x′y)
]

.

Since SA(nd) runs in time nlog n, we have
∑

y sy ≤ nlog n and thus

Pr
y∈{0,1}n+2q(n)

[

sy > 1/2nd
]

< 2nd+log n/2n+2q(n).

By a union bound we find that

Pr
y∈{0,1}n+2q(n)

[

py ≤ 1/2nlog n and sy ≤ 1/2nd
]

> 1 −
(

2n2 log n3q(n)/2n+2q(n)
)

−
(

2nd+log n/2n+2q(n)
)

> 0.

Thus there exists a y ∈ {0, 1}n+2q(n) such that py ≤ 1/2nlog n and sy ≤ 1/2nd. Fix this y. Now

Pr
x∈{0,1}n

[

px,y ≥ 1/nlog n
]

≤ 1/2

and thus there exists a set X ⊆ {0, 1}n of size |X| = 2n−1 such that for all x ∈ X, px,y < 1/nlog n.
To prove the theorem, it suffices to show that there exists a Z ⊆

{

xy : x ∈ X
}

, an x ∈ X, and a

randomized function B : {0, 1}nd
→ {0, 1,⊥} which is a valid AvgZPP oracle for

(

LA∪Z
2 ,DA∪Z

)

at
input length nd with respect to δ = 1/nd, such that

Pr
rR,B

[

RB,A∪Z
rR

(x) = LA∪Z
1 (x)

]

< 1/2 + 1/nlog n

because we can then update the relativization oracle to be A ∪ Z for the end of this round.
Suppose for contradiction that this does not hold. We can assume that rS is sampled uniformly

at random from {0, 1}nlog n
when S is run on input nd. Define an error-correcting code

C : {0, 1}2n−1
→ {0, 1}2nlog n

as follows, where the information word is viewed as a subset Z ⊆
{

xy : x ∈ X
}

and the code

word is viewed as a function C(Z) : {0, 1}nlog n
→ {0, 1}.

C(Z)(rS) = LA∪Z
2

(

SA
rS

(nd)
)

Claim 1. The relative minimum distance of C is > 1/2nd.
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We prove claim 1 shortly. Let k denote the number of quantifiers M uses, and recall that M
runs in time nlog n on inputs of length nd. Since each bit of C(Z) corresponds to running MA∪Z

on a fixed input of length nd, each bit of C(Z) is computable by a circuit of depth k and size

2nlog n
where each input to the circuit is the output of a deterministic computation running in time

nlog n with oracle access to A∪Z. Since A is fixed, each of the inputs to this circuit is computable
by a DNF with top fan-in 2nlog n

and bottom fan-in nlog n whose inputs correspond to strings in
{

xy : x ∈ X
}

, that is, coordinates of the information word.
The bottom line is that there exists a binary error-correcting code with information word length

2n−1 and relative minimum distance > 1/2nd such that each bit of the code word is computable by

a circuit of depth k + 2 and size 22nlog n
nlog n. This contradicts the following result.

Theorem 5 (Viola [21]). If there exists a binary error-correcting code with information word
length ν and relative minimum distance γ such that each bit of the code word is computable by a
circuit of depth κ and size σ, then νγ ≤ O(logκ−1 σ).

Theorem 5 holds regardless of the rate of the code.

Proof of Claim 1. We exhibit a decoder that can handle up to a 1/2nd fraction of erasures.

• Input: C ′ : {0, 1}nlog n
→ {0, 1,⊥}

• Output: Z ′ ⊆
{

xy : x ∈ X
}

given by

Z ′ =
{

xy : Pr
rR,B

[

RB,A
rR

(x) = 1
]

> 1/2
}

where the randomized function B : {0, 1}nd
→ {0, 1,⊥} is defined by

Pr
B

[

B(w) = b
]

= Pr
rS

[

C ′(rS) = b
∣

∣

∣
SA

rS
(nd) = w

]

if
Pr
rS

[

SA
rS

(nd) = w
]

> 0

and otherwise
Pr
B

[

B(w) = ⊥
]

= 1

For an arbitrary Z ⊆
{

xy : x ∈ X
}

, assume that C ′ agrees with C(Z) on at least a 1 − 1/2nd

fraction of rS ’s and outputs ⊥ on the rest. Then we just need to show that Z ′ = Z. We do this by
showing that for an arbitrary x ∈ X,

Pr
rR,B

[

RB,A
rR

(x) = LA∪Z
1 (x)

]

> 1/2

which implies that xy ∈ Z ′ if and only if x ∈ LA∪Z
1 if and only if xy ∈ Z.
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We start by showing that B is a valid AvgZPP oracle for
(

LA∪Z
2 ,DA∪Z

)

at input length nd

with respect to δ = 1/nd. We have that B(w) always equals LA∪Z
2 (w) or ⊥, since if rS is such that

SA
rS

(nd) = w and C ′(rS) 6= ⊥ then

C ′(rS) = C(Z)(rS) = LA∪Z
2

(

SA
rS

(nd)
)

= LA∪Z
2 (w).

We have

Pr
rS ,B

[

B
(

SA
rS

(nd)
)

= ⊥
]

=
∑

w∈{0,1}nd

Pr
rS ,B

[

B
(

SA
rS

(nd)
)

= ⊥
∣

∣

∣
SA

rS
(nd) = w

]

· Pr
rS ,B

[

SA
rS

(nd) = w
]

=
∑

w∈{0,1}nd

Pr
B

[

B(w) = ⊥
]

· Pr
rS

[

SA
rS

(nd) = w
]

=
∑

w∈{0,1}nd

Pr
rS

[

C ′(rS) = ⊥
∣

∣

∣
SA

rS
(nd) = w

]

· Pr
rS

[

SA
rS

(nd) = w
]

= Pr
rS

[

C ′(rS) = ⊥
]

≤ 1/2nd

and

Pr
rS

[

SA∪Z
rS

(nd) 6= SA
rS

(nd)
]

≤ Pr
rS

[

∃z ∈ Z such that SA
rS

(nd) queries A(z)
]

≤ sy

≤ 1/2nd

and thus

Pr
w∼DA∪Z ,B

[

B(w) = ⊥
]

= Pr
rS ,B

[

B
(

SA∪Z
rS

(nd)
)

= ⊥
]

≤ Pr
rS ,B

[

B
(

SA
rS

(nd)
)

= ⊥ or SA∪Z
rS

(nd) 6= SA
rS

(nd)
]

≤ Pr
rS ,B

[

B
(

SA
rS

(nd)
)

= ⊥
]

+ Pr
rS

[

SA∪Z
rS

(nd) 6= SA
rS

(nd)
]

≤ 1/2nd + 1/2nd

= 1/nd = δ.

Now we have

Pr
rR,B

[

RB,A∪Z
rR

(x) 6= RB,A
rR

(x)
]

≤ E
B

[

Pr
rR

[

∃z ∈ Z such that RB,A
rR

(x) queries A(z)
]

]

≤ E
B

[

px,y

]

= px,y

< 1/nlog n

and thus

Pr
rR,B

[

RB,A
rR

(x) = LA∪Z
1 (x)

]

≥ Pr
rR,B

[

RB,A∪Z
rR

(x) = LA∪Z
1 (x) and RB,A∪Z

rR
(x) = RB,A

rR
(x)

]
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≥ Pr
rR,B

[

RB,A∪Z
rR

(x) = LA∪Z
1 (x)

]

− Pr
rR,B

[

RB,A∪Z
rR

(x) 6= RB,A
rR

(x)
]

>
(

1/2 + 1/nlog n
)

− 1/nlog n

= 1/2

where the third line follows by our contradiction assumption.

8 Proof of Theorem 4

We use the setup from Section 4, customized as follows. We only diagonalize against reductions R
that use at most 2 queries to the reduction oracle. For the reason discussed at the end of Section
2.3, we have the stronger requirement that at the end of this round,

Pr
rR,B

[

RB,A
rR

(x) = LA
1 (x)

]

< 1/2 + 1/nlog n

with 1/2 + 1/nlog n instead of 2/3. The proof is so similar to the proof of Theorem 3 that we just
sketch how it plays out. We can work with |y| = n (rather than |y| = n + 2q(n) as in the proof of
Theorem 3).

8.1 Main Construction

Recall that Mi, S,R, n are fixed. Let A denote the current relativization oracle at the beginning of
this round. There exists a y ∈ {0, 1}n such that py ≤ 1/4nlog n and sy ≤ 1/2nd, and there exists a
set X ⊆ {0, 1}n of size |X| = 2n−1 such that for all x ∈ X, px,y ≤ 1/2nlog n. Then there exists a

Z ⊆
{

xy : x ∈ X
}

, an x ∈ X, and a randomized function B : {0, 1}nd
→ {0, 1,⊥} which is a valid

AvgZPP oracle for
(

LA∪Z
2 ,DA∪Z

)

at input length nd with respect to δ = 1/nd, such that

Pr
rR,B

[

RB,A∪Z
rR

(x) = LA∪Z
1 (x)

]

< 1/2 + 1/nlog n

since otherwise we can extract an error-correcting code

C : {0, 1}2n−1
→ {0, 1}2nlog n

with the following properties. There is a randomized decoder that can handle up to a 1/2nd fraction
of erasures, and it recovers any bit of the information word with probability at least

(

1/2 + 1/nlog n
)

− 1/2nlog n = 1/2 + 1/2nlog n.

To recover any bit, the decoder runs RB,A(x) for some x ∈ {0, 1}n and some randomized function
B. Since R makes at most 2 queries to B, and since each query to B can be answered with at most
1 query to the corrupted code word C ′, the decoder makes at most 2 queries to C ′.

The bottom line is that there exists a binary error-correcting code with information word
length 2n−1 and code word length 2nlog n

and a decoder that uses 2 queries to recover any bit of
the information word with probability at least 1/2+1/2nlog n when at most a 1/2nd fraction of the
code word bits are erased. This contradicts the following result.
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Theorem 6 (Kerenidis and de Wolf [18]). If there exists a binary error-correcting code with
information word length ν and code word length µ and a decoder that uses 2 queries to recover any
bit of the information word with probability at least 1/2 + ǫ when at most a γ fraction of the code
word bits are erased, then µ ≥ 2Ω(γǫ3ν).

Remarkably, the proof of Theorem 6 is based on quantum information theory. Kerenidis and
de Wolf proved the stronger bound µ ≥ 2Ω(γǫ2ν) assuming that the decoder is guaranteed to work
even if a γ fraction of the code word bits are flipped rather than just erased. The extra ǫ in the
exponent in Theorem 6 grossly accounts for the generalization from flips to erasures. It may be
possible to prove the stronger bound for erasure decoders, but Theorem 6 as stated is already good
enough for our purpose.

The complexity of Mi is immaterial because Theorem 6 holds without any constraints on the
efficiency of the encoder.

9 Open Problems

Impagliazzo [15] conjectures that his proof can be extended to give an oracle relative to which
(

PH,PSamp
)

⊆ AvgZPP but NP 6⊆ BPP. This would subsume Theorem 1, Theorem 2, and
Theorem 3. Until this is confirmed, it is even open to prove that there exists an oracle relative to
which there is no nonadaptive reduction of type

(

PNP,PSamp
)

⊆ HeurBPP ⇒ PNP ⊆ BPP.

In the worst-case setting, it is well-known that relative to every oracle, NP ⊆ BPP implies
Σ2P ⊆ BPP. It is open to prove the average-case analogue

(

NP,PSamp
)

⊆ HeurBPP implies
(

Σ2P,PSamp
)

⊆ HeurBPP. It would be interesting to prove that there exists an oracle relative to
which this is not true. Note that every such oracle gives a relativized heuristica, since relative to
every oracle, (Σ2P,PSamp

)

6⊆ HeurBPP implies Σ2P 6⊆ BPP implies NP 6⊆ BPP.
Impagliazzo and Levin [16] proved that relative to every oracle, there exists a nonadaptive

reduction of type
(

NP,U
)

⊆ HeurBPP ⇒
(

NP,PSamp
)

⊆ HeurBPP.

This reduction uses polynomially many queries. It is open to construct such a reduction using a
smaller number of queries, ideally a mapping reduction. It would be interesting to prove that there
exists an oracle relative to which no such mapping reduction exists.

Bogdanov and Trevisan [5] proved that relative to every oracle, if there exists a nonadaptive
reduction of type

(

NP,PSamp
)

⊆ HeurBPP ⇒ NP ⊆ BPP

then the polynomial-time hierarchy collapses to the third level. It is open to extend this result to
adaptive reductions. It would be interesting to prove that there exists an oracle relative to which
such an adaptive reduction exists and yet the polynomial-time hierarchy is infinite. Can the “Book
trick” [8] be used? Less generally, it would be interesting to prove that there exists an oracle relative
to which an adaptive reduction of the above type exists but no nonadaptive reduction of the above
type exists.
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