
Relativized Worlds Without Worst-Case to Average-Case

Reductions for NP

Thomas Watson∗

June 10, 2012

Abstract

We prove that relative to an oracle, there is no worst-case to average-case reduction for NP.
We also handle classes that are somewhat larger than NP, as well as worst-case to errorless-
average-case reductions. In fact, we prove that relative to an oracle, there is no worst-case
to errorless-average-case reduction from NP to BPPNP

‖ . We also handle reductions from NP
to the polynomial-time hierarchy and beyond, under restrictions on the number of queries the
reductions can make.

1 Introduction

The study of average-case complexity concerns the power of algorithms that are allowed to make
mistakes on a small fraction of inputs. Of particular importance is the relationship between worst-
case complexity and average-case complexity. For example, cryptographic applications require
average-case hard problems, and it would be desirable to base the existence of such problems on
minimal, worst-case complexity assumptions.

For the class PSPACE, it is known that worst-case hardness and average-case hardness are
equivalent [BFNW93]. That is, if PSPACE is worst-case hard then it is also average-case hard.
For the class NP, the situation is not well-understood. A central open problem in average-case
complexity is to prove that if NP is worst-case hard then it is also average-case hard. Considering
the lack of progress toward proving this proposition, a natural goal is to exhibit barriers to proving
it, by ruling out certain general proof techniques. Bogdanov and Trevisan [BT06b] considered the
possibility of a proof by reduction. Building on [FF93], they showed that the proposition cannot be
proven by a nonadaptive randomized reduction unless the polynomial-time hierarchy collapses; it
remains open to provide evidence against the existence of adaptive reductions.1 Another possibility
that has been considered is a relativizing proof. In 1995, Impagliazzo and Rudich claimed [Imp95]
that they had constructed a relativized heuristica, which is a world in which NP is worst-case hard
but average-case easy, thus ruling out this possibility. However, they have since retracted their
claim. We make progress toward obtaining relativized heuristica, by ruling out the possibility of a

∗Computer Science Division, University of California, Berkeley. This material is based upon work supported by
the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0946797 and by the National
Science Foundation under Grant No. CCF-1017403.

1It can be shown without difficulty that there is no deterministic adaptive worst-case to average-case reduction
for NP unless P = NP.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 42 (2010)

relativizing proof by reduction. Our barrier holds even for adaptive reductions. More formally, we
prove that there exists an oracle relative to which there is no reduction of type

(

NP,PSamp
)

⊆ HeurBPP ⇒ NP ⊆ BPP

where
(

NP,PSamp
)

is the class of distributional NP problems under polynomial-time samplable
distributions, and HeurBPP is the class of distributional problems with polynomial-time average-
case randomized algorithms.

We also generalize this result in various ways. The proposition that if NP is worst-case hard then
it is also average-case hard concerns average-case algorithms that may output the wrong answer
on a small fraction of inputs. In light of the aforementioned barriers, it is natural to consider the
following proposition, which is potentially easier to prove: If NP is worst-case hard then it is also
hard for errorless average-case algorithms, which may output “don’t know” on a small fraction of
inputs but must never output the wrong answer.2 Our result generalizes to rule out relativizing
proofs by reduction of this proposition. Further, we show how to rule out relativizing proofs by
reduction that if NP is worst-case hard then certain classes larger than NP are errorless-average-case
hard.

Independently of our work, Impagliazzo [Imp11] has succeeded in constructing a relativized
heuristica; we discuss his result in Section 1.3 below.

1.1 Notions of Reductions and Relationship to Previous Work

Various models of worst-case to average-case reductions for NP have been considered in the litera-
ture, and they can be informally classified as follows.

For the moment let us gloss over the issue of which distribution on inputs an average-case
algorithm is judged with respect to. A worst-case to average-case reduction for NP must show that
for every L1 ∈ NP there exists an L2 ∈ NP such that if L2 has a polynomial-time average-case
algorithm then L1 has a polynomial-time worst-case algorithm. The worst-case algorithm for L1

depends on the hypothesized average-case algorithm for L2 in some way, which we call the decoding.
There are the following four natural types of dependence, in decreasing order of strength.

(1) Black-box dependence means that the worst-case algorithm for L1 has oracle access to the
average-case algorithm for L2, and it must solve L1 on all inputs for every oracle that solves
L2 on most inputs, regardless of whether the oracle represents an efficient algorithm.

(2) The worst-case algorithm for L1 might have oracle access to the average-case algorithm for
L2 but only be guaranteed to solve L1 when the oracle is, in fact, an efficient average-case
algorithm for L2.

(3) The worst-case algorithm for L1 might require the code of an efficient average-case algorithm
for L2.

(4) The dependence can be arbitrary, meaning that if L2 has an efficient average-case algorithm
then L1 has an efficient worst-case algorithm. This type of dependence allows for arbitrary
proofs that if NP is worst-case hard then it is also average-case hard.

2An equivalent notion of an errorless average-case algorithm is one that always outputs the correct answer but
whose running time is only “polynomial-on-average” [Lev86].

2

For the first three types, the algorithm that solves L1 with the aid of a hypothesized average-case
algorithm for L2 is called the reduction itself. In this paper we consider type (1) decoding. Note
that since our results are about relativization, the reductions we consider have access to two oracles:
the reduction oracle (representing the hypothesized average-case algorithm) and the relativization
oracle.

Bogdanov and Trevisan [BT06b] also considered type (1) decoding. They showed that such
a reduction cannot exist unless the polynomial-time hierarchy collapses, provided the reduction
is nonadaptive in its oracle access to the hypothesized average-case algorithm. Compared to the
Bogdanov-Trevisan barrier, our barrier has the advantages that it is unconditional and it applies
to adaptive reductions, but has the disadvantage that it only applies to reductions that relativize.

Gutfreund et al. [GSTS07] showed a positive result, namely that there is a worst-case to average-
case reduction for NP with type (2) decoding, under a distribution on inputs that is samplable in
slightly-superpolynomial time. Building on this result, Gutfreund and Ta-Shma [GTS07] showed
that under a certain weak derandomization hypothesis, there is a worst-case to average-case reduc-
tion from NP to nondeterministic slightly-superpolynomial time with type (2) decoding, under the
uniform distribution on inputs. Moreover, the results of [GSTS07, GTS07] relativize.

A natural goal is to extend our results to handle type (2) decoding. However, this turns out
to be as hard as extending our results to handle type (4) decoding (which was independently
accomplished by Impagliazzo [Imp11], at least for NP). For example, we claim that relative to
every oracle, the following are equivalent.

(A) There is no reduction of type

(

NP,PSamp
)

⊆ HeurBPP ⇒ NP ⊆ BPP

with type (2) decoding.

(B)
(

NP,PSamp
)

⊆ HeurBPP and NP 6⊆ BPP.

Clearly (B) implies (A). To see that (A) implies (B), consider two cases. If NP ⊆ BPP, then
there is a trivial reduction that ignores the hypothesized HeurBPP algorithm for

(

NP,PSamp
)

. If
(

NP,PSamp
)

6⊆ HeurBPP, then there is some problem in
(

NP,PSamp
)

for which every algorithm
is vacuously an appropriate type (2) decoder, because the universal quantification over HeurBPP
algorithms for that problem is over an empty set.

The classes PPP and PSPACE both have an O(n)-query worst-case to average-case reduction
under the uniform distribution, with type (1) decoding, using multilinear extensions [BFNW93].
Moreover, these results relativize.

For certain promise problems regarding lattices, e.g., certain versions of the shortest vector
problem, worst-case to average-case reductions to problems in

(

NP,PSamp
)

are known, with type
(1) decoding. However, these lattice problems are not known or believed to be NP-hard. We refer
to [BT06a, Reg06] for surveys of these results.

Another aspect of worst-case to average-case reductions is the encoding, which refers to the way
in which L2 depends on L1. Black-box encoding means that the algorithm that defines L2 has
oracle access to L1, and for every language L1 (not just those in NP), if the corresponding L2 has
an efficient average-case algorithm then L1 has an efficient worst-case algorithm (via one of the
above four types of decoding).

3

Viola [Vio05a, Vio05b] proved two results about worst-case to average-case reductions with
black-box encoders implementable in the polynomial-time hierarchy. In [Vio05a] he proved uncon-
ditionally that such a reduction with type (1) decoding does not exist. In [Vio05b] he proved that
if such a reduction with type (4) decoding exists then PH is average-case hard, and thus basing
the average-case hardness of PH on the worst-case hardness of PH in this way is no easier than
unconditionally proving the average-case hardness of PH.

1.2 Results

Our first result concerns the class BPPNP
‖ . Recall that AvgZPP denotes the class of distributional

problems with polynomial-time errorless average-case randomized algorithms.

Theorem 1. There exists an oracle relative to which there is no reduction of type

(

BPPNP
‖ ,PSamp

)

⊆ AvgZPP ⇒ UP ⊆ BPP.

Note that the type of reduction considered in Theorem 1 is weaker than a worst-case to average-
case reduction for NP, because BPPNP

‖ is larger than NP, AvgZPP is smaller than HeurBPP, and
UP is smaller than NP. Ruling out weaker reductions yields a stronger result.

If we restrict our attention to reductions that use a limited number of queries, then we can
handle classes even larger than BPPNP

‖ .

Theorem 2. For every polynomial q there exists an oracle relative to which there is no q-query
reduction of type

(

PH,PSamp
)

⊆ AvgZPP ⇒ UP ⊆ BPP.

Since BPPNP
‖ ⊆ PH holds relative to every oracle, it may appear at first glance that Theorem 2

subsumes Theorem 1. The reason it does not is because of the order of the quantifiers. In Theorem
2, the reduction may not make as many queries as it likes; it may only make a fixed polynomial q
number of queries even though its running time may be an arbitrarily high degree polynomial.

If we are willing to sacrifice all but two queries, then we can go quite a bit further than PH.

Theorem 3. For every uniform complexity class of languages C there exists an oracle relative to
which there is no 2-query reduction of type

(

C,PSamp
)

⊆ AvgZPP ⇒ UP ⊆ BPP.

The term “uniform complexity class of languages” has a somewhat technical meaning, which is
explained in Section 2, but it encompasses all “ordinary” complexity classes such as PSPACE and
EXPEXP.

Our theorems can be generalized in various ways. For example, Theorem 1 and Theorem 2 both
hold with AvgZPP replaced by the deterministic version AvgP, by essentially the same proofs.3

We have chosen to state the results using AvgZPP because we feel it is more natural to allow
randomized algorithms in average-case complexity. As another example, Theorem 1 holds with
BPP replaced by BQP, by inserting a quantum query lower bound for the OR function [BBBV97]
at the appropriate point in the argument, instead of a randomized lower bound. We have chosen

3For Theorem 1 exactly the same proof works; for Theorem 2 a minor tweak is needed.

4

the particular statements of our three theorems so as to highlight the interesting aspects and make
the relationships among them clear.

In the original ECCC version of this paper [Wat10], we also proved two results similar to
Theorem 1. One is a generalization of Theorem 1 where BPPNP

‖ is generalized to allow multiple

rounds of adaptivity in the NP oracle access (up to o(n/ log n) rounds). In the other result, BPPNP
‖

is replaced with the class BPPpath, which was introduced in [HHT97] and which captures the power
of polynomial-time randomized computations conditioned on efficiently testable events. Relative to
every oracle, PNP

‖ ⊆ BPPpath ⊆ BPPNP
‖ , and thus this result is subsumed by Theorem 1. However,

our proof of the BPPpath result is still interesting because the heart of the proof is genuinely different
from the heart of our proof of Theorem 1, and it exploits the definition of BPPpath in a particularly
intuitive way, without going through approximate counting. We refer the reader to [Wat10] for
details about these results.

1.3 Independent Work

Independently of our work, Impagliazzo [Imp11] has succeeded in constructing a relativized heuris-
tica, even for errorless average-case algorithms. In fact, he constructs an oracle relative to which
(

NP,PSamp
)

⊆ AvgP but UP 6⊆ P/poly. Thus relative to his oracle, there is no worst-case to
average-case reduction for NP with any of the four types of decoding discussed in Section 1.1. This
subsumes our result for NP (which only applies to black-box decoding).

The results of [Imp11] do not subsume our results for classes higher than NP, although Im-
pagliazzo conjectures that this may be possible using his techniques. Furthermore, our techniques
can be adapted without difficulty (though we do not argue this here) to show that there exists an
oracle relative to which there is no reduction of type

(

NP,PSamp
)

⊆ HeurBPP ⇒
(

NP,PSamp
)

⊆ AvgZPP

while it remains open to prove that there exists an oracle relative to which
(

NP,PSamp
)

⊆
HeurBPP but

(

NP,PSamp
)

6⊆ AvgZPP.
Another benefit of our paper is that our techniques are genuinely different (and more elementary)

than Impagliazzo’s. The outline of his argument is that he puts a random permutation into the
oracle so that inverting the permutation is a worst-case hard NP problem, and to make NP average-
case easy he puts the answers to all NP problems into the oracle but “censors” a certain small
fraction of the answers in a way that preserves the worst-case hardness of inverting the permutation.
Ensuring consistency between the conflicting requirements is a delicate business, and involves results
on random restrictions of so-called matching DNFs. In contrast, our proof of our result for NP does
not use such machinery. While much of the work in Impagliazzo’s proof is in the analysis rather
than the construction of the oracle, our argument is more directly adversarial. We use a potential
function technique to guide the construction to converge to an oracle with the desired properties.
We employ elementary counting arguments to achieve this.

Also, our proofs of Theorem 2 and Theorem 3 illustrate a new connection between lower bounds
for error-correcting codes and relativized lower bounds.

1.4 Organization

In Section 2 we provide preliminaries, which clarify the precise meanings of our theorems. In Section
3 we give the intuition for our proofs. In Section 4 we describe the basic setup that is common to

5

the formal proofs of all three theorems. Section 5 contains the formal proof of Theorem 1. Section
6 contains the formal proof of Theorem 2. Section 7 contains the formal proof of Theorem 3. In
Section 8 we conclude the paper with a list of open problems regarding oracles in average-case
complexity.

2 Preliminaries

We refer the reader to the textbooks [AB09, Gol08] for background on complexity theory and
definitions of standard complexity classes. We refer the reader to the survey paper [BT06a] for
background on average-case complexity. In this section we provide preliminaries that are not
completely standard.

2.1 Complexity Classes

For any randomized algorithm M , we let Mr denote M using internal randomness r.
We now define the average-case complexity classes we need. Recall that in average-case com-

plexity, we study distributional problems (L,D) where L is a language and D = (D1,D2, . . .) is
an ensemble of probability distributions, where Dn is distributed over {0, 1}n. Recall that PSamp
denotes the class of polynomial-time samplable ensembles, and U denotes the class consisting of
only the uniform ensemble U . If C is a class of languages and D is a class of ensembles then
(C,D) =

{

(L,D) : L ∈ C and D ∈ D
}

.

Definition 1. HeurBPP denotes the class of distributional problems (L,D) that have a polynomial-
time heuristic scheme, that is, a randomized algorithm M that takes as input x and δ > 0, runs in
time polynomial in |x| and 1/δ, and for all n and all δ > 0 satisfies

Pr
x∼Dn,r

[

Mr(x, δ) 6= L(x)
]

≤ δ.

Definition 2. AvgZPP denotes the class of distributional problems (L,D) that have a polynomial-
time errorless heuristic scheme, that is, a randomized algorithm M that takes as input x and δ > 0,
runs in time polynomial in |x| and 1/δ, always outputs L(x) or ⊥, and for all n and all δ > 0
satisfies

Pr
x∼Dn,r

[

Mr(x, δ) = ⊥
]

≤ δ.

2.2 Reductions

In this section we informally explain what we mean when we say there exists a reduction of type

C′
2 ⊆ C2 ⇒ C′

1 ⊆ C1

where C′
2, C2, C

′
1, C1 are four complexity classes. In Section 2.3 below we give formal definitions for

the specific classes to which our theorems apply.
A complexity class is a set of computational problems, such as languages or distributional

problems. We assume for concreteness that each of C1 and C2 is defined in the following way.
By an input-output relationship we mean a randomized function. There is a set of algorithms,
each of which induces an input-output relationship. That is, each algorithm takes an input and

6

produces an output sampled from some distribution depending on the input. There is a predicate
that indicates for each input-output relationship and each computational problem whether the
input-output relationship solves the problem. There is a notion of computational resources used
by the algorithms, and an algorithm is said to be efficient if it satisfies certain resource constraints.
The class is defined as the set of problems solved by efficient algorithms. This type of definition
encompasses classes defined in terms of (uniform or nonuniform) deterministic, randomized, or
quantum algorithms, but it could be generalized to handle other models as well.

We also assume that for C1 there is an analogous set of algorithms that can make queries to
a reduction oracle, which represents an input-output relationship.4 We assume that plugging any
algorithm from C2’s set into the reduction oracle yields an algorithm from C1’s set.

Now suppose P1 is a computational problem of the appropriate kind for C1 and P2 is a compu-
tational problem of the appropriate kind for C2.

Definition 3. A reduction of type

P2 ∈ C2 ⇒ P1 ∈ C1

is an algorithm from C1’s set of reduction oracle algorithms, such that (i) for every reduction oracle
that solves P2 according to C2, the reduction solves P1 according to C1, and (ii) for every reduction
oracle, the reduction satisfies C1’s resource constraints if we pretend each query to the reduction
oracle uses any amount of resources allowed by C2’s resource constraints.

In other words, if the reduction oracle is correct then the reduction is correct, and if we pretend
the reduction oracle is efficient then the reduction is efficient.

Note that if we plug an actual, efficient algorithm for P2 (according to C2) into the reduction
oracle of such a reduction, then the reduction becomes an efficient algorithm for P1 (according to
C1). Thus if there exists a reduction satisfying Definition 3 then P2 ∈ C2 implies P1 ∈ C1. But the
reduction must work even when the reduction oracle is an input-output relationship that is not
efficiently implementable.

As an example, suppose C2 = BPTIME(2n
ǫ
). Then the reduction must solve P1 according to

C1 when the reduction oracle is any randomized function from {0, 1}∗ to {0, 1} that, on input w,
returns P2(w) with probability ≥ 2/3.5 Further, the reduction must satisfy the resource constraints
of C1 when we pretend each query of length n to the reduction oracle takes time O(2n

ǫ
).

Definition 4. We say there exists a reduction of type

C′
2 ⊆ C2 ⇒ C′

1 ⊆ C1

if for every P1 ∈ C′
1 there exists a P2 ∈ C′

2 and a reduction of type

P2 ∈ C2 ⇒ P1 ∈ C1.

We make a few remarks about Definition 4.

4In particular, the reduction oracle is not like a relativization oracle, which just answers queries to a language.
5One might wonder about reductions that can also choose the randomness used by the reduction oracle. While

this would be more general in one sense, it would be more restrictive in the sense that it would limit the randomness
complexity of the reduction oracle. In this paper, queries are always just inputs to an input-output relationship as
defined above.

7

• When C′
1 has an appropriately complete problem P1, this is equivalent to saying there exists

a P2 ∈ C′
2 and a reduction of the above type, for the fixed problem P1.

• Note that we do not require that the reduction is uniform in the sense of there being a fixed
algorithm R that computes the reduction for every P1 ∈ C′

1 given the code for a C′
1-type

algorithm for P1.

• Note that when we say there is a reduction of the above type, this assertion gets weaker as
C′
2 and C1 get larger and C2 and C′

1 get smaller.

2.3 Relativization

When we relativize to an oracle language A, every computation gets unrestricted oracle access to A.
This includes samplers and reductions. Thus reductions have access to two oracles: the reduction
oracle and the relativization oracle. When we write RB,A we mean B is the reduction oracle and
A is the relativization oracle for reduction R.

To illustrate the formal framework set up so far, we give the precise statement of Theorem 1.

There exists a language A and a language L1 ∈ UPA such that for all languages L2 ∈
(

BPPNP
‖

)A
,

all ensembles D ∈ PSamp
A, and all polynomial-time randomized reductions R◦,◦, R◦,A is not of

type
(L2,D) ∈ AvgZPPA ⇒ L1 ∈ BPPA.

The latter means that there exists an x ∈ {0, 1}∗ and a randomized function B : {0, 1}∗ × R>0 →
{0, 1,⊥} which is a valid AvgZPP oracle for (L2,D), such that

Pr
r,B

[

RB,A
r (x) = L1(x)

]

< 2/3

where the probability is over both the internal randomness of R and the randomness of B (each
query is answered with fresh independent randomness). When we say B is a valid AvgZPP oracle
for (L2,D) we mean that B(w, δ) always returns L2(w) or ⊥, and for all n and all δ > 0,

Pr
w∼Dn,B

[

B(w, δ) = ⊥
]

≤ δ.

When we say R◦,◦ runs in polynomial time, this includes the fact that each query B(w, δ) to the
reduction oracle is charged time polynomial in |w| and 1/δ. In other words, δ must always be at least
inverse polynomial. Throughout the paper we tacitly assume that “polynomial-time reductions”
have this restriction, since C2 is always AvgZPP. We clarify that D ∈ PSamp

A means that for some
randomized algorithm S◦, SA(n) runs in time polynomial in n and outputs a sample distributed

according to Dn. Finally, we clarify that
(

BPPNP
‖

)A
is the class of languages L2 for which there

exists a language L3 ∈ NPA and a polynomial-time randomized algorithm M◦,◦ that accesses its
first oracle nonadaptively, such that for all x ∈ {0, 1}∗,

Pr
r

[

ML3,A
r (x) = L2(x)

]

≥ 2/3.

Regarding Theorem 2 and Theorem 3, there is one further issue to consider. For reductions
that are allowed an unlimited number of queries (like in Theorem 1), the error probability of 1/3 in
the definition of BPP is unimportant since it can be amplified from 1/2− 1/poly(n) to 1/2poly(n).

8

However, amplification increases the number of queries, so the error probability is not arbitrary
for Theorem 2 and Theorem 3. For example, the existence of a q-query

(

1/2 − 1/poly(n)
)

-error
reduction of type

(

PH,PSamp
)

⊆ AvgZPP ⇒ UP ⊆ BPP

does not seem to imply the existence of a q-query 1/3-error reduction of the same type, but it
still does imply that if

(

PH,PSamp
)

⊆ AvgZPP then UP ⊆ BPP. For this reason, we allow an
error probability of 1/2− 1/poly(n) (for arbitrarily high degree polynomials) in Theorem 2 and in
Theorem 3.

2.4 Uniform Complexity Classes

We now precisely define the restriction on C in Theorem 3.

Definition 5. We say that C is a uniform complexity class of languages if there is a countable
collection of functions {M1,M2, . . .} mapping oracle languages A to languages MA

i , such that the
following three conditions all hold.

• For every i and every x, MA
i (x) only depends on a finite number of bits of A.

• For every i and every x there exists a property Pi,x(A) that only depends on the bits of A that
MA

i (x) depends on, such that CA =
{

MA
i : ∀x Pi,x(A)

}

.

• For every i and every linear-time computable function f : {0, 1}∗ → {0, 1}∗ there exists a j
such that for all A the following two conditions hold: MA

j = MA
i ◦ f , and if MA

i ∈ CA then

MA
j ∈ CA.

The second condition says the class is defined by a property of the computation (for example,
bounded error) holding for all inputs. The third condition says the class is closed under linear-
time deterministic mapping reductions. Observe that BPPNP

‖ , PH, PSPACE, and EXPEXP are all
examples of uniform complexity classes under this definition.

3 Intuition

In Section 3.1 we describe the intuition behind the proof of Theorem 1. Then in Section 3.2 we
describe the intuition behind the proofs of Theorem 2 and Theorem 3.

3.1 Intuition for Theorem 1

We start by informally describing how to construct an oracle relative to which there is no reduction
of type

(

NP,U
)

⊆ HeurBPP ⇒ UP ⊆ BPP.

To obtain Theorem 1 we must strengthen HeurBPP to AvgZPP,6 strengthen U to PSamp, and
strengthen NP to BPPNP

‖ . We describe how to do these things below.

6Usually AvgZPP is thought of as being a weaker class than HeurBPP (since AvgZPP ⊆ HeurBPP), but it is
stronger in our situation.

9

Fix an arbitrary NP-type algorithm M and an arbitrary polynomial-time randomized reduction
R, and fix a sufficiently large n. For simplicity we assume that on inputs of length n, R only queries
the reduction oracle on inputs of length nd (for some positive integer d) and only with some fixed
polynomially small δ; thus we can omit the δ from the queries. We consider relativization oracles of
the form A : {0, 1}n×{0, 1}n → {0, 1}, which we think of as 2n×2n tables. Let LA

1 : {0, 1}n → {0, 1}
be defined by LA

1 (x) =
∨

y A(xy). That is, L
A
1 is the language of strings x such that there exists a

1 in the xth row of A. Let LA
2 : {0, 1}n

d
→ {0, 1} denote the language computed by MA. We only

consider A,LA
1 , L

A
2 at these input lengths since all other input lengths are irrelevant.

We explain how to diagonalize against the pair M,R. We wish to construct an A such that for
some x ∈ {0, 1}n and some deterministic7 reduction oracle B : {0, 1}n

d
→ {0, 1}, B agrees with LA

2

on at least a 1− δ fraction of inputs and RB,A(x) outputs LA
1 (x) with probability < 2/3. This will

show that R fails to be a reduction of type

(

LA
2 , U

)

∈ HeurBPPA ⇒ LA
1 ∈ BPPA.

We also need to ensure that there is at most one 1 in each row of A so that LA
1 ∈ UPA, but this

will fall right out of the construction. We construct A through an iterative process, and we use
a potential function argument to show that this process makes steady progress toward our goal.
The process iteratively modifies the relativization oracle, and we use A to denote the relativization
oracle throughout the whole process.8 Thus the table denoted by A changes many times throughout
our argument, and the languages LA

1 and LA
2 change accordingly. Initially A is all 0’s.

Let us consider the computation of R on some input x. It is trying to figure out whether there
is a 1 in the xth row of A, in other words, compute LA

1 (x). It has two sources of information about
LA
1 (x): the relativization oracle A itself, and the reduction oracle B. If R did not have access to

B, then we could diagonalize in a standard way: Observe how R behaves given that the xth row
of A is all 0’s. If R outputs 1 with high probability, then we are done. If R outputs 1 with low
probability, then we find a bit in the xth row that R queries with only tiny probability and flip that
bit (such a bit must exist because R does not have enough time to keep an eye on the entire row);
then R still outputs 1 with low probability, but now x ∈ LA

1 . Thus R must rely on the reduction
oracle B for help.

Our construction has two stages. The goal of stage 1 is to gain the upper hand by rendering
B useless to R. Then in stage 2 we deliver the coup de grâce with the standard diagonalization
argument. We cannot guarantee that B is useless for every x, but we only need it to be useless for
some x. Specifically, suppose we could set up A in such a way that there exists an x such that

(1) the xth row of A is all 0’s, and

(2) for all y, flipping A(xy) would cause LA
2 (w) to change for at most a δ fraction of w’s.

Then declaring B to be LA
2 for the particular A we have set up, we know that we can leave A alone

or we can flip any bit in the xth row, and for all these possibilities B is a valid HeurBPP oracle
for the new LA

2 . Then we can observe the behavior of R on input x, using this fixed B for the

7B will be deterministic here even though randomness is allowed; this makes the result stronger.
8More formally, we could say we define a sequence of relativization oracles A0, A1, A2, . . . that leads to some final

version Ak = A. We omit the subscripts throughout the argument and simply refer to A with the understanding that
this means the “current” version.

10

reduction oracle, and diagonalize against R in the standard way with the assurance that whatever
happens to A during this second stage, B will remain valid.

How do we set up A so that such an x exists? We do this iteratively. In each iteration, we find
a certain x whose row is currently all 0’s, which is our “best guess” for the good x. If condition (2)
is satisfied for this x, then we are done. Otherwise, there is some column y that violates condition
(2). Then we flip the bit A(xy) to 1 and continue with the next iteration. We just need to show
that there are < 2n iterations before we succeed. For this, we define a potential function ΦA that
assigns an energy value to A. The key is to show that if y violates condition (2) for our best
guess x, then flipping A(xy) must cause a significant decrease in potential. Since ΦA must remain
bounded, there cannot be too many iterations before M is beaten into submission and our best
guess x works.

Let us hold off on the definition of ΦA and focus on finding a best guess x. Our ultimate goal is
to ensure that if we flip any bit in the xth row, most of the inputs to LA

2 “don’t notice”. There is

an asymmetry between inputs that are accepted by MA and those that are rejected. If w ∈ {0, 1}n
d

is such that MA(w) rejects, then if any of the exponentially many computation paths “notices” a
change in A, the whole computation could become accepting. However, if MA(w) accepts, then
we can pick an arbitrary accepting computation path of MA(w) to be the “designated” one. Only
polynomially many bits of A are queried by M on this path, and as long as none of these bits is
flipped, w “won’t notice” any change to A because MA(w) will still accept. In particular, there are
only polynomially many x’s such that MA(w) queries some bit in the xth row on the designated
path. Thus for every w with LA

2 (w) = 1, the vast majority of x have the property that flipping any
bit in the xth row does not cause LA

2 (w) to change to 0. By an averaging argument, most x have

the property that for most w ∈ {0, 1}n
d
, flipping any bit in the xth row does not cause LA

2 (w) to
change from 1 to 0. For the current A, there must exist an x with the latter property and such
that the xth row is all 0’s, since (by induction) we know there are not very many x’s with a 1 in
their row currently. This is our best guess x.

We know that flipping any bit in the xth row causes only a small fraction of all w ∈ {0, 1}n
d
to

change from 1 to 0 under LA
2 . This is good, but it is only half the story. We would also like that

flipping any bit in the xth row causes only a small fraction of w’s to change from 0 to 1. Suppose
we budget a δ/2 fraction of w’s to change from 1 to 0, and a δ/2 fraction to change from 0 to 1.
Now if some y violates condition (2), then it must be the case that flipping A(xy) causes at least a
δ/2 fraction of w’s to change from 0 to 1. We want to define the potential function so that having
w’s change from 0 to 1 under LA

2 causes a decrease in potential. A natural choice is

ΦA = Pr
w∼U

nd

[

LA
2 (w) = 0

]

.

Flipping A(xy) causes at least a δ/2 probability mass to leave the event LA
2 (w) = 0. However, as

much as a δ/2 probability mass could enter the event due to w’s that change from 1 to 0, which
could essentially cancel out the drop in potential from the w’s that changed from 0 to 1! The
solution is to change our budgeting. If we budget a δ/3 fraction of w’s to change from 1 to 0 and a
2δ/3 fraction to change from 0 to 1, then flipping A(xy), where y violates condition (2), causes at
least a 2δ/3 probability mass to leave the event, while at most a δ/3 probability mass enters the
event. Thus ΦA goes down by at least δ/3, and there are at most 3/δ < 2n iterations before our
best guess x works. This concludes the argument.

Very roughly, the big picture is as follows. For an input that is accepted by MA, it is easy to
ensure that the answer under LA

2 does not change when we make modifications to A. For an input

11

that is rejected by MA, we cannot ensure that the answer does not change, but the point is that if
it does change, then we can ensure that it does not change again, since the input is now accepted.

3.1.1 Intuition for Strengthening HeurBPP to AvgZPP

Let x denote our best guess at the end of stage 1. Suppose we knew that there exists a set
W ⊆ {0, 1}n

d
of density at most δ such that for all w 6∈ W and all y, flipping A(xy) does not

change LA
2 (w). Then setting

B(w) =

{

LA
2 (w) if w 6∈ W

⊥ if w ∈ W
(1)

where A is the relativization oracle at the end of stage 1, we would have that B is a valid AvgZPP
oracle for LA

2 no matter whether we leave A alone or flip any bit in the xth row. Then we could
diagonalize in the standard way, by observing how R behaves on input x using this fixed B and
the current A, and either leaving A alone or flipping some bit in the xth row to make R output the
wrong answer with high probability.

The existence of such a W is too much to ask for. However, this is only because we were trying
to find a B that would remain a valid AvgZPP oracle for all of the 2n +1 diagonalization options.
We do not really need all these options. Let Y be an arbitrary fixed set of columns of size |Y | = 4t,
where t is the running time of R on inputs of length n. Then running R on input x with any fixed
B and the current A, there must be a y ∈ Y such that A(xy) gets queried with probability ≤ 1/4.
If R outputs 1 with probability ≤ 1/3 then after flipping this A(xy), R outputs 1 with probability
< 2/3 and hence errs. Thus it suffices to have 4t + 1 diagonalization options, namely leaving A

alone or flipping some A(xy) with y ∈ Y . Suppose we knew that there exists a set W ⊆ {0, 1}n
d
of

density at most δ such that for all w 6∈ W and all y ∈ Y , flipping A(xy) does not change LA
2 (w).

Then defining B as in Equation (1), we could diagonalize by either leaving A alone or flipping
A(xy) for some y ∈ Y with the assurance that whatever happens, B will remain valid.

Now the existence of such a W is not too much to ask for. Using the argument for the HeurBPP
case with a small adjustment of parameters, we can ensure that flipping any bit in the xth row
causes LA

2 (w) to change for at most a δ/4t fraction of w’s. Then we can take W to be the set of
all w such that there exists a y ∈ Y such that flipping A(xy) changes LA

2 (w).

3.1.2 Intuition for Strengthening U to PSamp

There are two approaches: one that is direct, and one that uses a result of Impagliazzo and Levin
[IL90]. Neither is difficult. We first describe the direct approach.

First, observe that if Und were replaced by some other distribution on {0, 1}n
d
that is inde-

pendent of A, then the whole argument above would carry through, just by replacing “fraction of
w’s” with “probability mass of w’s” under this distribution. Now in addition to M and R, we need
to worry about an arbitrary polynomial-time sampler S, and we need to ensure that B is a valid
AvgZPP oracle for

(

LA
2 ,D

A
)

, where DA denotes the distribution sampled by SA(nd). If S did not
query A at all, then DA would be independent of A and thus we could use the same argument, by
the above observation. Two issues arise because S is allowed to query A. First, when we flip a bit
during stage 1, this affects

ΦA = Pr
w∼DA

[

LA
2 (w) = 0

]

12

in terms of not only the event but also the distribution. Second, when we flip a bit during stage 2,
this affects the distributional problem

(

LA
2 ,D

A
)

for which B needs to be a valid AvgZPP oracle,
in terms of not only the language but also the distribution.

Handling these issues is just a matter of tweaking the argument to ensure that our modifications
to A cause only small statistical deviations inDA. Specifically, consider the beginning of an iteration
of stage 1, and let D denote DA for the current A (thus D is fixed and will not react to changes in
A). Now suppose we choose our best guess x as before, but based on this distribution D. Then by
the above argument we know that for every y, flipping A(xy) would either cause

Pr
w∼D

[

LA
2 (w) = 0

]

to go down by a significant amount, or cause LA
2 (w) to change with only small probability over

w ∼ D. It can be shown that this is good enough for our purpose provided that for all y, flipping
A(xy) results in a DA that is statistically very close to D. To ensure the latter, we choose our best
guess x not only so that the xth row is all 0’s and flipping any bit in the xth row only causes a
small probability mass of w ∼ D to change from 1 to 0 under LA

2 , but also so that the probability
SA(nd) queries any bit in the xth row is small. This is possible because the vast majority of x’s
satisfy the latter condition since S runs in polynomial time.

An alternative approach to handling PSamp uses a result due to Impagliazzo and Levin [IL90].
They proved that if C is a class of languages containing NP and satisfying certain simple closure
properties, then relative to every oracle, there exists a reduction of type

(

C,U
)

⊆ AvgZPP ⇒
(

C,PSamp
)

⊆ AvgZPP.

The proof of this result appears in Section 5.2 of [BT06a] and is based on a result of Impagliazzo and
Luby on distributionally inverting one-way functions [IL89]. By composing this reduction with the
hypothesized reduction, we can assume without loss of generality that the distributional problem
we are reducing to uses the uniform ensemble. In the formal proof of Theorem 1, rather than use
the Impagliazzo-Levin result we opt to directly handle the samplable ensembles because doing so
makes the argument self-contained at only a slight cost in complicatedness.

3.1.3 Intuition for Strengthening NP to BPPNP
‖

There exists a simple reduction of type

(

NP,PSamp
)

⊆ HeurBPP ⇒
(

BPPNP
‖ ,PSamp

)

⊆ HeurBPP

(and this fact relativizes). Thus if we consider HeurBPP rather than AvgZPP, then the result for
BPPNP

‖ follows from the result for NP by composing reductions. To handle AvgZPP, we directly

adapt the NP argument to work for BPPNP
‖ . Let us revert from PSamp to U .

Instead of a single algorithm M we have a pair M,N where N is an NP-type algorithm and M
is a polynomial-time randomized algorithm that accesses its first oracle nonadaptively. We let LA

3

denote the language computed by NA, and we let LA
2 denote the language computed by MLA

3 ,A

(assuming bounded error is satisfied for every input).9 Let us make the simplifying assumption

9We again only deal with LA
2 on inputs of length nd, but we consider LA

3 on all input lengths. We could assume all
queries M makes to its first oracle have the same length, but it turns out this would not make the proof any simpler.

13

that M has oracle access only to LA
3 and not to A. (Extending the argument to the general case

is not difficult; it just involves taking an extra precaution when picking our best guess x to ensure
that hardly any w’s “notice” changes to A via the second oracle.)

The differences from the above proof are in the definition of the potential function ΦA, the
choice of our best guess x, and the argument that if some y violates condition (2) for our best guess

x, then flipping A(xy) causes a significant decrease in potential. Let M
LA
3

r (w)j ∈ {0, 1}∗ denote the

jth query to LA
3 made by the computation M

LA
3

r (w) (in our simplified setting, this query does not
depend on A), and consider the bits

LA
3

(

M
LA
3

r (w)j

)

over the choice of w, r, j. We define ΦA to be the fraction of these bits that are 0.
Consider an arbitrary iteration of stage 1, and let A denote the current relativization oracle.

By choosing our best guess x appropriately, we can ensure that the xth row of A is all 0’s, and no
matter what y is, only a tiny fraction of the w, r, j bits go from 1 to 0 when we flip A(xy) (and
thus bits going from 1 to 0 can only contribute a tiny increase in potential). Suppose there is a y
such that flipping A(xy) causes LA

2 (w) to change for a significant fraction of w’s. We want it to be
the case that flipping A(xy) also causes a significant decrease in potential, and for this it suffices to
show that a significant fraction of w, r, j bits go from 0 to 1. Let A′ denote A with A(xy) flipped
to 1. For each w such that LA′

2 (w) 6= LA
2 (w), it must be the case that

M
LA′

3
r (w) 6= M

LA
3

r (w) (2)

for at least 1/3 of the r’s. Thus we know that Inequality (2) holds for a significant fraction of pairs
w, r. If Inequality (2) holds for w, r then there must exist a j such that the w, r, j bit changes when
we go from A to A′. But the fraction of pairs w, r such that the w, r, j bit goes from 1 to 0 for
some j is tiny (at most polynomially larger than the fraction of triples w, r, j that go from 1 to 0).
Thus a significant fraction of pairs w, r are such that the w, r, j bit goes from 0 to 1 for some j,
and hence a significant fraction (possibly a polynomially smaller fraction) of triples w, r, j go from
0 to 1. Thus we have a significant decrease in potential when we flip A(xy).

3.2 Intuition for Theorem 2 and Theorem 3

It is well-known that error-correcting codes can be used to construct worst-case to average-case
reductions, at least for large complexity classes such as PSPACE [BFNW93, STV01]. To be appli-
cable, the codes must have very efficient encoders (since this dictates the complexity of the language
being reduced to) and very efficient decoders (since this dictates the complexity of the reduction
itself). Our strategy for proving Theorem 2 and Theorem 3 is to set up the relativization oracle in
such a way that error-correcting codes are in some sense the only way to construct worst-case to
average-case reductions of the appropriate types, and then argue that the efficiency of the resulting
encoders and decoders is too good to be true. That is, we would like to be able to extract a good
error-correcting code from any purported reduction and then apply known lower bounds on the
efficiency of encoders and decoders for such codes. For Theorem 2, we use a result due to Viola
[Vio05a] which states that good error-correcting codes10 cannot be encoded by small constant-depth

10His result even applies to list-decodable codes, but we do not need this stronger result.

14

circuits. For Theorem 3, we use a lower bound due to Kerenidis and de Wolf [KdW04] on the length
of 2-query locally decodable codes.

Our approach for Theorem 2 and Theorem 3 is in some sense a dual approach to the one we
used for Theorem 1. As before, we have a reduction R that is trying to solve a problem with the
aid of a relativization oracle A and a reduction oracle B. Before, our goal was to render B useless
to R so we could focus on how R interacted with A. Now, our goal is to render A useless to R so
we can focus on how R interacts with B. Before, we found a good row of A and filled in that row
adversarially. Now, we find a good column of A and fill in that column adversarially.

Unlike in the proof of Theorem 1, we cannot use the Impagliazzo-Levin result to reduce PSamp
to U since it uses too many queries. But again, directly handling the samplable ensembles presents
no major difficulties. Thus, for the rest of this section we assume PSamp is replaced by U .

The basic setup is the same as before. We have an algorithm M (PH-type for Theorem 2 or
arbitrary complexity for Theorem 3). We have a polynomial-time randomized reduction R that
uses a limited number of queries to the reduction oracle. For simplicity we assume that on inputs
of length n, R only queries the reduction oracle on inputs of length nd (for some positive integer d)
and only with some fixed polynomially small δ. We construct a sequence of relativization oracles
A : {0, 1}n × {0, 1}n → {0, 1}, and we define LA

1 : {0, 1}n → {0, 1} by LA
1 (x) =

∨

y A(xy), and we

let LA
2 : {0, 1}n

d
→ {0, 1} denote the language computed by MA. For the final version of A, we

want RB,A(x) to output LA
1 (x) with probability < 1/2 + 1/nlogn for some x ∈ {0, 1}n and some

B : {0, 1}n
d
→ {0, 1,⊥} that agrees with LA

2 on at least a 1− δ fraction of inputs and returns ⊥ on
the rest. We have 1/2 + 1/nlogn instead of 2/3 for the reason discussed at the end of Section 2.3.

Let us start by pretending that R never queries A. Then it is completely straightforward to
extract a good binary error-correcting code from M,R: Pick an arbitrary column y and define

C : {0, 1}2
n

→ {0, 1}2
nd

by viewing the input as a function Z : {0, 1}n → {0, 1} and the output as a function C(Z) :

{0, 1}n
d
→ {0, 1} given by C(Z) = LAZ

2 where AZ denotes the relativization oracle with Z as the
yth column and 0’s everywhere else. If R really is of the hypothesized type no matter which Z we
use, then it immediately follows that R is a decoder that recovers any bit Z(x) = LAZ

1 (x) of the
information word from any corrupted code word B that has at most a δ fraction of erasures (and
no flipped bits).

For Theorem 2, note that C has relative minimum distance > δ and each bit of C is encodable
by a small constant-depth circuit since M is a PH-type algorithm with oracle access to Z [FSS84].
This contradicts a result of Viola [Vio05a] which says that such a code cannot exist. Thus there
must be some Z for which R is not of the hypothesized type.

For Theorem 3, note that C is a 2-query locally decodable code in the sense that each bit
of the information word can be recovered with probability at least 1/2 + 1/nlog n assuming there
are at most a δ fraction of erasures.11 Since the code word length is only quasipolynomial in the
information word length, this contradicts a result of Kerenidis and de Wolf [KdW04] which says
that the length of such a code must be nearly exponential.12 Thus there must be some Z for which

11Usually, locally decodable codes are defined in terms of flipped bits rather than erasures, but they are equivalent
up to small differences in parameters.

12The lower bound is only nearly exponential since the relative minimum distance and the advantage over 1/2 in
correct decoding probability are subconstant in our case.

15

R is not of the hypothesized type. Since the lower bound holds regardless of the complexity of
encoding, we can handle any uniform complexity class of languages.

Now we return to the “real world” where R may query A. Then the above argument, with
an arbitrary fixed y, does not work because R might know y in which case R can easily go look
up the answers to LA

1 in the yth column. We must choose y so as to “hide” the answers from R.
Restricting the number of queries R can make to B is essential for this: If R can make n queries
then M can easily let R know what y is by explicitly writing y over and over again in the truth
table LA

2 , and R would have no trouble retrieving this information from any B that has sufficient
agreement with LA

2 . (Of course in Theorem 2, R can use n, or any fixed polynomial, number of
queries. But this is easily remedied by just adding 2poly(n) columns to the table A, with a high
enough degree polynomial, so that we can hide the answers from R. Henceforth we assume R only
uses no(1) queries, so that we can stick with 2n columns.)

Suppose we could choose y so that for every x and every B : {0, 1}n
d
→ {0, 1,⊥}, the probability

that RB,0(x) (where 0 denotes the all 0’s relativization oracle) queries a bit in the yth column is at
most 1/2nlog n. Then we would know that for every Z, every x, and every B that is valid for LAZ

2 ,

the probability RB,0(x) outputs LAZ
1 (x) is within 1/2nlog n of the probability RB,AZ (x) outputs

LAZ

1 (x) and is hence at least 1/2 + 1/2nlog n. This would suffice for a contradiction, because we
could use RB,0 for the decoder. Actually this property of y is more than we really need. If we
replace “every x” with “most x” then we could just remove the bad x’s from consideration, at
a small loss in the information word length, and we would still get a contradiction. Now to find
such a y, we use the fact that quantifying over all B is the same as quantifying over all paths of
adaptivity in R’s access to B, and there are a limited number of such paths. Specifically, for every
x and every r there are only a small number of columns of the relativization oracle that get queried
by R◦,0

r (x) over all possible reduction oracles (namely, at most the running time of R times 3 to
the number of reduction oracle queries). By an averaging argument, there is some y such that for
most x’s, all but a 1/2nlogn fraction of r’s are such that RB,0

r (x) does not query any bit in the yth
column, for any B. This is good enough for our purpose.

The bottom line is that there are basically only two ways M could help R solve LA
1 : by telling

R the answers, or by telling R where to find the answers in A. The former is impossible because
then we would have an error-correcting code that is too good to be true, and the latter is impossible
because R cannot make enough queries to B to retrieve the identity of y.

4 Generic Setup for the Formal Proofs

We first need the following complicated-looking lemma, which just says that in all three of our
theorems, we can assume without loss of generality that on inputs of length n, any candidate
reduction only queries the reduction oracle on inputs of length nd and only with δ = 1/nd for some
positive integer d.

Lemma 1. For every polynomial-time randomized reduction R◦,◦ (where the reduction oracle is of
the form {0, 1}∗×R>0 → {0, 1,⊥}) there exists a polynomial-time randomized reduction R◦,◦

clean
and

a positive integer d such that the following holds. For every polynomial-time sampler S◦ there exists
a polynomial-time sampler S◦

clean
, and for every uniform complexity class of languages C and every

i there exists an iclean, such that for every relativization oracle A, the following properties all hold.

16

• If R◦,A is of type
(

MA
i ,DA

)

∈ AvgZPPA ⇒ L ∈ BPPA

for some language L, where DA is the ensemble sampled by SA, then R◦,A
clean

is of type
(

MA
iclean

,DA
clean

)

∈ AvgZPPA ⇒ L ∈ BPPA

where DA
clean

is the ensemble sampled by SA
clean

.

• On inputs of length n, Rclean only queries the reduction oracle on inputs of length nd and only
with δ = 1/nd.

• Rclean always makes the same number of queries to the reduction oracle as R does.

• If MA
i ∈ CA then MA

iclean
∈ CA.

Proof sketch. The basic idea is to take the answers to all the inputs to MA
i up to the longest length

R on inputs of length n could possibly query the reduction oracle, and put them in some larger
input length nd. Here d needs to be large enough that 1/nd times the longest length R could query
is less than the smallest value of δ that R could possibly query (which is at least inverse polynomial).
The reason for multiplying by the longest length is that an error of 1/nd in the AvgZPP oracle
could get amplified by this amount when restricted to any particular input length that is stored
“within” nd. The index iclean is just the j guaranteed by Definition 5 for index i and the mapping
reduction we just informally described.

We now describe the basic setup that is common to the proofs of all three theorems. However,
this setup will need to be customized a bit for each of the three proofs.

We have a uniform complexity class of languages C with enumeration {M1,M2, . . .}. Consider
an arbitrary triple i, S,R where i ∈ N, S is a polynomial-time sampler, and R is a polynomial-time
randomized reduction. Using Lemma 1 we can assume without loss of generality that on inputs of
length n, R only queries the reduction oracle on inputs of length nd and only with δ = 1/nd for
some positive integer d. For an arbitrary relativization oracle A ⊆ {0, 1}∗ we make the following
definitions. Let LA

1 denote the NPA language defined by

LA
1 =

{

x : ∃y such that |y| = |x| and xy ∈ A
}

.

If MA
i defines a language in CA then let LA

2 denote this language.13 Let DA denote the PSamp
A

ensemble defined by SA.
We wish to construct a relativization oracle A∗ so that LA∗

1 ∈ UPA∗
(by ensuring that in the

definition of LA∗

1 , y is always unique if it exists) and so that for all i, S,R, either MA∗

i fails to define
a language in CA∗

, or otherwise

Pr
rR,B

[

RB,A∗

rR
(x) = LA∗

1 (x)
]

< 2/3

for some x ∈ {0, 1}∗ and some randomized function B : {0, 1}∗ × R>0 → {0, 1,⊥} which is a valid
AvgZPP oracle for

(

LA∗

2 ,DA∗)

, thereby ensuring that the reduction R◦,A∗
fails to be of type

(

LA∗

2 ,DA∗)

⊆ AvgZPPA∗
⇒ LA∗

1 ⊆ BPPA∗
.

13Technically MA
i equals the language LA

2 according to Definition 5, but the notation LA
2 is more convenient for

the proofs.

17

We construct a sequence of relativization oracles by starting with ∅ and adding strings and
never taking them back out. We take A∗ to be the limit of this sequence. Throughout the proofs,
we simply refer to the “current” A with the understanding that this is the set of strings that have
been included so far. We diagonalize against each triple i, S,R in sequence. After each round of
diagonalization, we have the requirement that A∗ matches the current A up through a certain input
length, and we know that the current A contains no strings longer than that length. Now consider
an arbitrary round, and suppose i, S,R is the triple to diagonalize against.

If there exists an A′ consistent with the requirements of previous rounds and such that MA′

i

fails to define a language in CA′
, say with x as the violating input, then we update A to match A′

up through the largest input length MA′

i (x) can query, and we require that A∗ matches the new A
up through this input length. This ensures that MA∗

i fails to define a language in CA∗
, and we can

move on to the next round.
Otherwise, we know that whatever we do to A, LA

2 will always be defined. Choose n large
enough so that the following three things hold.

• The relativization oracle is fresh for all input lengths ≥ n.

• The asymptotic constraints throughout the arguments are satisfied.

• The “relevant computations” all run in time nlogn without a big O.

The “relevant computations” include S on input nd, R on inputs of length n, and (depending on
the theorem) possibly the underlying computations of Mi on inputs of length nd. We construct A
at input length 2n to ensure that at the end of this round,

Pr
rR,B

[

RB,A
rR

(x) = LA
1 (x)

]

< 2/3

for some x ∈ {0, 1}n and some randomized function B : {0, 1}n
d
→ {0, 1,⊥} which is a valid

AvgZPP oracle for
(

LA
2 ,D

A
)

at input length nd with respect to δ = 1/nd. Note that it makes
sense to run RB,A(x) since this computation only queries B on inputs of length nd and only with
δ = 1/nd (so we are justified in omitting the δ). This suffices to diagonalize against i, S,R because
we can require that A∗ matches the new A up through input length nlogn and up through the
longest input length Mi can query on inputs of length nd, thus ensuring the following three things.

• LA∗

1 (x) = LA
1 (x).

• RB,A∗
(x) behaves the same as RB,A(x).

• LA∗

2 |nd = LA
2 |nd and DA∗

nd = DA
nd , which implies that B is a valid AvgZPP oracle for

(

LA∗

2 ,DA∗)

at input length nd with respect to δ = 1/nd and can thus be extended to a
full valid AvgZPP oracle for

(

LA∗

2 ,DA∗)

without changing the behavior of RB,A∗
(x).

5 Proof of Theorem 1

We use the setup from Section 4, customized as follows. We have C = BPPNP
‖ , and Mi corresponds

to a pair M,N where M is a BPP◦
‖-type algorithm and N is an NP-type algorithm. Thus LA

2 is the
(

BPPNP
‖

)A
language computed by MLA

3 ,A where LA
3 denotes the NPA language computed by NA.

18

Also, M on inputs of length nd, as well as N on all inputs that could be queried by M on inputs
of length nd, count as “relevant computations” and thus all run in time nlogn without a big O.

Assume without loss of generality that for some positive integer e, M on inputs of length nd

always makes exactly ne queries to its first oracle, and let M
LA
3 ,A

rM (w)j ∈ {0, 1}∗ denote the jth of
these queries when the input is w and the randomness is rM .

5.1 Main Construction

Recall that M,N,S,R, n are fixed. For all relativization oracles A (not just the one we have
constructed so far) we define the potential

ΦA = E
rS ,rM ,j

[

1− LA
3

(

M
LA
3 ,A

rM

(

SA
rS
(nd)

)

j

)

]

where j ∈ {1, . . . , ne} is chosen uniformly at random. The construction has two stages.

Stage 1. This stage proceeds in iterations. For a given iteration, let A denote the current rela-
tivization oracle after the previous iteration. If there exist x ∈ {0, 1}n and y ∈ {0, 1}n such that
x 6∈ LA

1 and ΦA∪{xy} ≤ ΦA − 1/n3 logn then update A := A ∪ {xy} and continue with the next
iteration. Otherwise, halt stage 1 and proceed to stage 2.

The following lemma is the technical heart of the proof of Theorem 1. We first finish the proof
of Theorem 1 assuming the lemma, and then we prove the lemma in Section 5.2.

Lemma 2. At the end of stage 1, there exists an x ∈ {0, 1}n such that x 6∈ LA
1 and for all

y ∈ {0, 1}n,

Pr
rS

[

L
A∪{xy}
2

(

SA
rS
(nd)

)

6= LA
2

(

SA
rS
(nd)

)

]

≤ 1/8nd+log n (3)

and
Pr
rS

[

SA∪{xy}
rS

(nd) 6= SA
rS
(nd)

]

≤ 1/2nd. (4)

Stage 2. Let A denote the current relativization oracle at the end of stage 1, and let x be as
guaranteed by Lemma 2. Let Y ⊆ {0, 1}n be an arbitrary set of size 4nlogn. Define a deterministic

reduction oracle B : {0, 1}n
d
→ {0, 1,⊥} by

B(w) =

{

LA
2 (w) if L

A∪{xy}
2 (w) = LA

2 (w) for all y ∈ Y

⊥ otherwise
.

There are two cases.

Case 1. If
Pr
rR

[

RB,A
rR

(x) = 1
]

> 1/3

then we will use A for the relativization oracle at the beginning of the next round of diagonalization,
without changing it. Since x 6∈ LA

1 , we have

Pr
rR

[

RB,A
rR

(x) = LA
1 (x)

]

< 2/3.

19

We just need to verify that B is a valid AvgZPP oracle for
(

LA
2 ,D

A
)

at input length nd with respect
to δ = 1/nd. Obviously, B(w) always returns LA

2 (w) or ⊥, by our definition of B. We have

Pr
w∼DA

nd

[

B(w) = ⊥
]

= Pr
rS

[

B
(

SA
rS
(nd)

)

= ⊥
]

= Pr
rS

[

∃y ∈ Y such that L
A∪{xy}
2

(

SA
rS
(nd)

)

6= LA
2

(

SA
rS
(nd)

)

]

≤
∑

y∈Y

Pr
rS

[

L
A∪{xy}
2

(

SA
rS
(nd)

)

6= LA
2

(

SA
rS
(nd)

)

]

≤
∑

y∈Y

1/8nd+log n

= |Y | · 1/8nd+log n

= 1/2nd

≤ 1/nd = δ

where the fourth line follows by Lemma 2. Thus we have succeeded in diagonalizing against
M,N,S,R as described at the end of Section 4.

Case 2. If
Pr
rR

[

RB,A
rR

(x) = 1
]

≤ 1/3

then for each y ∈ Y we define

πy = Pr
rR

[

RB,A
rR

(x) queries A(xy)
]

.

Since RB,A(x) runs in time nlogn, we have
∑

y∈Y πy ≤ nlogn. Thus there exists a y ∈ Y such that

πy ≤ nlogn/|Y | = 1/4. Fix this y. We will update the relativization oracle to be A ∪ {xy} for the

end of this round of diagonalization. Since x ∈ L
A∪{xy}
1 , we have

Pr
rR

[

RB,A∪{xy}
rR

(x) = L
A∪{xy}
1 (x)

]

≤ Pr
rR

[

RB,A
rR

(x) = 1 or RB,A∪{xy}
rR

(x) 6= RB,A
rR

(x)
]

≤ Pr
rR

[

RB,A
rR

(x) = 1 or RB,A
rR

(x) queries A(xy)
]

≤ Pr
rR

[

RB,A
rR

(x) = 1
]

+ πy

≤ 1/3 + 1/4

< 2/3.

We just need to verify that B is a valid AvgZPP oracle for
(

L
A∪{xy}
2 ,DA∪{xy}

)

at input length nd

with respect to δ = 1/nd. Since y ∈ Y , we have that for all w, if B(w) 6= ⊥ then B(w) = LA
2 (w) =

L
A∪{xy}
2 (w), by our definition of B. We also have

Pr
w∼D

A∪{xy}

nd

[

B(w) = ⊥
]

= Pr
rS

[

B
(

SA∪{xy}
rS

(nd)
)

= ⊥
]

≤ Pr
rS

[

B
(

SA
rS
(nd)

)

= ⊥ or SA∪{xy}
rS

(nd) 6= SA
rS
(nd)

]

20

≤ Pr
rS

[

B
(

SA
rS
(nd)

)

= ⊥
]

+ Pr
rS

[

SA∪{xy}
rS

(nd) 6= SA
rS
(nd)

]

≤ 1/2nd + 1/2nd

= 1/nd = δ

where the fourth line follows by the calculation from case 1 and by Lemma 2. Thus we have
succeeded in diagonalizing against M,N,S,R as described at the end of Section 4.

5.2 Proof of Lemma 2

For all A (not just the one we have constructed so far) and all rS , rM , j, let us define

ΦA
rS ,rM ,j = 1− LA

3

(

M
LA
3 ,A

rM

(

SA
rS
(nd)

)

j

)

and
ΦA
rS ,rM

= E
j

[

ΦA
rS ,rM ,j

]

so that ΦA = ErS ,rM

[

ΦA
rS ,rM

]

. We always have 0 ≤ ΦA ≤ 1.
From here on out, A denotes the current relativization oracle at the end of stage 1. Since there

are at most n3 logn iterations before stage 1 terminates, we have

Pr
x∈{0,1}n

[

x ∈ LA
1

]

≤ n3 logn/2n

where x is chosen uniformly at random. For x ∈ {0, 1}n define

px = Pr
rS ,rM

[

∃y ∈ {0, 1}n such that M
LA
3 ,A

rM

(

SA
rS
(nd)

)

queries A(xy)
]

.

Since MLA
3 ,A(w) runs in time nlogn for all w ∈ {0, 1}n

d
, we have

∑

x px ≤ nlogn and thus

Pr
x∈{0,1}n

[

px > 1/n3 logn
]

< n4 logn/2n.

For every v ∈ LA
3 pick an arbitrary accepting computation path of NA(v) to be the “designated”

path. For x ∈ {0, 1}n define

qx = Pr
rS ,rM ,j

[

M
LA
3 ,A

rM

(

SA
rS
(nd)

)

j
∈ LA

3 and ∃y ∈ {0, 1}n such that

NA
(

M
LA
3 ,A

rM

(

SA
rS
(nd)

)

j

)

queries A(xy) on the designated path

]

where j is chosen uniformly at random. Since NA(v) runs in time nlogn for every v of interest, we
have

∑

x qx ≤ nlogn and thus

Pr
x∈{0,1}n

[

qx > 1/n4 logn
]

< n5 logn/2n.

For x ∈ {0, 1}n define

sx = Pr
rS

[

∃y ∈ {0, 1}n such that SA
rS
(nd) queries A(xy)

]

.

21

Since SA(nd) runs in time nlogn, we have
∑

x sx ≤ nlogn and thus

Pr
x∈{0,1}n

[

sx > 1/n3 logn
]

< n4 logn/2n.

By a union bound we find that

Pr
x∈{0,1}n

[

x 6∈ LA
1 and px ≤ 1/n3 logn and qx ≤ 1/n4 logn and sx ≤ 1/n3 logn

]

> 1−
(

n3 logn/2n
)

−
(

n4 logn/2n
)

−
(

n5 logn/2n
)

−
(

n4 logn/2n
)

> 0.

Thus there exists an x ∈ {0, 1}n such that x 6∈ LA
1 and px ≤ 1/n3 logn and qx ≤ 1/n4 logn and

sx ≤ 1/n3 logn. Fix this x. We claim that this x satisfies the conditions of Lemma 2. Suppose
for contradiction that there exists a y ∈ {0, 1}n such that either Inequality (3) does not hold or
Inequality (4) does not hold. Fix this y. We claim that ΦA∪{xy} ≤ ΦA−1/n3 logn, thus contradicting
the fact that stage 1 halted. Henceforth we let A′ denote A ∪ {xy}. We partition the joint sample
space of S’s internal randomness and M ’s internal randomness into five events.

E1 =
{

(rS , rM) : SA′

rS
(nd) 6= SA

rS
(nd)

}

E2 =
{

(rS , rM) : (rS , rM) 6∈ E1 and M
LA
3 ,A

rM

(

SA
rS
(nd)

)

queries A(xy)
}

E3 =
{

(rS , rM) : (rS , rM) 6∈ E1 ∪ E2 and ∃j such that M
LA
3 ,A

rM

(

SA
rS
(nd)

)

j
∈ LA

3 \L
A′

3

}

E4 =
{

(rS , rM) : (rS , rM) 6∈ E1 ∪ E2 ∪ E3 and ∃j such that M
LA
3 ,A

rM

(

SA
rS
(nd)

)

j
∈ LA′

3 \LA
3

}

E5 =
{

(rS , rM) : (rS , rM) 6∈ E1 ∪ E2 ∪ E3 ∪ E4

}

Claim 1. PrrS ,rM
[

(rS , rM) ∈ E1

]

≤ 1/n3 logn and for all (rS , rM) ∈ E1, Φ
A′

rS ,rM
−ΦA

rS ,rM
≤ 1.

Claim 2. PrrS ,rM
[

(rS , rM) ∈ E2

]

≤ 1/n3 logn and for all (rS , rM) ∈ E2, Φ
A′

rS ,rM
−ΦA

rS ,rM
≤ 1.

Claim 3. PrrS ,rM
[

(rS , rM) ∈ E3

]

≤ 1/n3 logn and for all (rS , rM) ∈ E3, Φ
A′

rS ,rM
−ΦA

rS ,rM
≤ 1.

Claim 4. PrrS ,rM
[

(rS , rM) ∈ E4

]

≥ 1/n2 logn and for all (rS , rM) ∈ E4, Φ
A′

rS ,rM
−ΦA

rS ,rM
≤ −1/ne.

Claim 5. PrrS ,rM
[

(rS , rM) ∈ E5

]

≤ 1 and for all (rS , rM) ∈ E5, Φ
A′

rS ,rM
− ΦA

rS ,rM
≤ 0.

From these five claims it follows that

ΦA′
− ΦA = E

rS ,rM

[

ΦA′

rS ,rM
− ΦA

rS ,rM

]

=

5
∑

k=1

E
rS ,rM

[

ΦA′

rS ,rM
−ΦA

rS ,rM

∣

∣

∣
(rS , rM) ∈ Ek

]

· Pr
rS ,rM

[

(rS , rM) ∈ Ek

]

≤ 1/n3 logn + 1/n3 logn + 1/n3 logn − 1/ne+2 logn

≤ − 1/n3 logn

which is what we wanted to show.

22

Proof of Claim 1. The first assertion follows because

Pr
rS ,rM

[

(rS , rM) ∈ E1

]

≤ Pr
rS

[

SA
rS
(nd) queries A(xy)

]

≤ sx ≤ 1/n3 logn.

The second assertion follows trivially from the fact that ΦA′

rS ,rM
≤ 1 and ΦA

rS ,rM
≥ 0.

Proof of Claim 2. The first assertion follows because

Pr
rS ,rM

[

(rS , rM) ∈ E2

]

≤ Pr
rS ,rM

[

M
LA
3 ,A

rM

(

SA
rS
(nd)

)

queries A(xy)
]

≤ px ≤ 1/n3 logn.

The second assertion follows trivially from the fact that ΦA′

rS ,rM
≤ 1 and ΦA

rS ,rM
≥ 0.

Proof of Claim 3. The first assertion follows because

Pr
rS ,rM

[

(rS , rM) ∈ E3

]

≤ Pr
rS ,rM

[

∃j such that M
LA
3 ,A

rM

(

SA
rS
(nd)

)

j
∈ LA

3 \L
A′

3

]

≤ Pr
rS ,rM

[

∃j such that M
LA
3 ,A

rM

(

SA
rS
(nd)

)

j
∈ LA

3 and

NA
(

M
LA
3 ,A

rM

(

SA
rS
(nd)

)

j

)

queries A(xy) on the designated path

]

≤ ne · qx

≤ 1/n3 logn

where the second-to-last line follows using a union bound and the last line follows because qx ≤
1/n4 logn. The second assertion follows trivially from the fact that ΦA′

rS ,rM
≤ 1 and ΦA

rS ,rM
≥ 0.

Proof of Claim 4. This claim is in some sense the crux of the whole proof. Since 1/n3 logn ≤ 1/2nd,
Claim 1 implies that Inequality (4) holds and therefore Inequality (3) does not hold. We claim that
if (rS , rM) 6∈ E1 ∪ E2 ∪E3 ∪ E4 then

M
LA′

3 ,A′

rM

(

SA
rS
(nd)

)

= M
LA
3 ,A

rM

(

SA
rS
(nd)

)

.

This is because every query M
LA
3 ,A

rM

(

SA
rS
(nd)

)

makes to its second oracle has the same answer under

A′ and A, and every query it makes to its first oracle has the same answer under LA′

3 and LA
3 .

Thus the computations M
LA′

3 ,A′

rM

(

SA
rS
(nd)

)

and M
LA
3 ,A

rM

(

SA
rS
(nd)

)

proceed identically, making the
same queries and receiving the same answers, and hence they produce the same output. The first
assertion now follows because

Pr
rS ,rM

[

(rS , rM) ∈ E4

]

≥ Pr
rS ,rM

[

(rS , rM) 6∈ E1 ∪ E2 ∪E3 and M
LA′

3 ,A′

rM

(

SA
rS
(nd)

)

6= M
LA
3 ,A

rM

(

SA
rS
(nd)

)

]

≥ Pr
rS ,rM

[

M
LA′

3 ,A′

rM

(

SA
rS
(nd)

)

6= M
LA
3 ,A

rM

(

SA
rS
(nd)

)

]

−
3

∑

k=1

Pr
rS ,rM

[

(rS , rM) ∈ Ek

]

≥ Pr
rS

[

LA′

2

(

SA
rS
(nd)

)

6= LA
2

(

SA
rS
(nd)

)

]

/3 −
3

∑

k=1

Pr
rS ,rM

[

(rS , rM) ∈ Ek

]

23

> 1/24nd+log n − 1/n3 logn − 1/n3 logn − 1/n3 logn

≥ 1/n2 logn

where the third line follows by a union bound and the second-to-last line follows by the negation
of Inequality (3) and by Claim 1, Claim 2, and Claim 3.

We now argue the second assertion. Since (rS , rM) 6∈ E1, we have SA′

rS
(nd) = SA

rS
(nd). Let w

denote this string. Since (rS , rM) 6∈ E1 ∪ E2, we have

M
LA′

3 ,A′

rM (w)j = M
LA
3 ,A

rM (w)j

for all j. Let vj denote these strings, and note that ΦA′

rS ,rM ,j = 1−LA′

3 (vj) and ΦA
rS ,rM ,j = 1−LA

3 (vj).

Since (rS , rM) 6∈ E3, we have ΦA′

rS ,rM ,j ≤ ΦA
rS ,rM ,j for all j. By the definition of E4, we have

ΦA′

rS ,rM ,j = 0 and ΦA
rS ,rM ,j = 1 for some j. Therefore,

ΦA′

rS ,rM
− ΦA

rS ,rM
=

1

ne

∑

j

(

ΦA′

rS ,rM ,j − ΦA
rS ,rM ,j

)

≤ − 1/ne.

Proof of Claim 5. The first assertion is trivial. We now argue the second assertion. In the proof of

Claim 4 we argued that if (rS , rM) 6∈ E1 ∪ E2 ∪ E3 ∪ E4 then the computations M
LA′

3 ,A′

rM

(

SA′

rS
(nd)

)

and M
LA
3 ,A

rM

(

SA
rS
(nd)

)

proceed identically, making the same queries and receiving the same answers.

In particular, ΦA′

rS ,rM ,j = ΦA
rS ,rM ,j for all j, which implies that ΦA′

rS ,rM
= ΦA

rS ,rM
.

6 Proof of Theorem 2

Fix a polynomial q. We use the setup from Section 4, customized as follows. We have C = PH, and
Mi corresponds to a PH-type algorithm M . We redefine

LA
1 =

{

x : ∃y such that |y| = |x|+ 2q(|x|) and xy ∈ A
}

using |y| = |x| + 2q(|x|) instead of |y| = |x|, and thus we need to construct A at input length
2n+2q(n) rather than 2n. We only diagonalize against reductions R that use at most q queries to
the reduction oracle. Also, M on inputs of length nd counts as “relevant computations” and thus
runs in time nlogn without a big O. For the reason discussed at the end of Section 2.3, we have the
stronger requirement that at the end of this round,

Pr
rR,B

[

RB,A
rR

(x) = LA
1 (x)

]

< 1/2 + 1/nlogn

with 1/2 + 1/nlog n instead of 2/3. Finally, note that it can never be the case that MA fails to
define a language in PHA, since PH is a syntactically defined class.

We generalize the notion of a reduction oracle: If B : {0, 1}n
d
→ {0, 1,⊥}N is a deterministic

function then running RB,A
rR (x) means that for each w, the ith time the computation queries B(w)

it gets B(w)(i) as a response. Thus a randomized function B : {0, 1}n
d
→ {0, 1,⊥} is a distribution

over such deterministic functions, where each B(w)(i) is independent and the distribution ofB(w)(i)
depends only on w and not on i.

24

6.1 Main Construction

Recall that M,S,R, n are fixed. Let A denote the current relativization oracle at the beginning of
this round. For x ∈ {0, 1}n and y ∈ {0, 1}n+2q(n) define

px,y = Pr
rR

[

∃B : {0, 1}n
d

→ {0, 1,⊥}N and ∃x′ ∈ {0, 1}n such that RB,A
rR

(x) queries A(x′y)
]

and
py = E

x∈{0,1}n

[

px,y
]

where x is chosen uniformly at random. For each x ∈ {0, 1}n and rR, the computation RB,A
rR (x)

has at most 3q(n) computation paths over the possible responses it could get from B (recall that
A is fixed). On each of these computation paths, RB,A

rR (x) can query at most nlogn bits of A since
it runs in time nlogn. Thus there are at most nlogn3q(n) pairs (x′, y) ∈ {0, 1}n × {0, 1}n+2q(n) for

which there exists a B : {0, 1}n
d
→ {0, 1,⊥}N such that RB,A

rR (x) queries A(x′y). It follows that
∑

y py ≤ nlogn3q(n) and thus

Pr
y∈{0,1}n+2q(n)

[

py > 1/2nlog n
]

< 2n2 logn3q(n)/2n+2q(n)

where y is chosen uniformly at random. For y ∈ {0, 1}n+2q(n) define

sy = Pr
rS

[

∃x′ ∈ {0, 1}n such that SA
rS
(nd) queries A(x′y)

]

.

Since SA(nd) runs in time nlogn, we have
∑

y sy ≤ nlogn and thus

Pr
y∈{0,1}n+2q(n)

[

sy > 1/2nd
]

< 2nd+logn/2n+2q(n).

By a union bound we find that

Pr
y∈{0,1}n+2q(n)

[

py ≤ 1/2nlog n and sy ≤ 1/2nd
]

> 1−
(

2n2 logn3q(n)/2n+2q(n)
)

−
(

2nd+logn/2n+2q(n)
)

> 0.

Thus there exists a y ∈ {0, 1}n+2q(n) such that py ≤ 1/2nlog n and sy ≤ 1/2nd. Fix this y. Now

Pr
x∈{0,1}n

[

px,y ≥ 1/nlogn
]

≤ 1/2

and thus there exists a set X ⊆ {0, 1}n of size |X| = 2n−1 such that for all x ∈ X, px,y < 1/nlog n.
To prove the theorem, it suffices to show that there exists a Z ⊆

{

xy : x ∈ X
}

, an x ∈ X, and a

randomized function B : {0, 1}n
d
→ {0, 1,⊥} which is a valid AvgZPP oracle for

(

LA∪Z
2 ,DA∪Z

)

at
input length nd with respect to δ = 1/nd, such that

Pr
rR,B

[

RB,A∪Z
rR

(x) = LA∪Z
1 (x)

]

< 1/2 + 1/nlog n

25

because we can then update the relativization oracle to be A ∪ Z for the end of this round.
Suppose for contradiction that this does not hold. We can assume that rS is sampled uniformly

at random from {0, 1}n
log n

when S is run on input nd. Define an error-correcting code

C : {0, 1}2
n−1

→ {0, 1}2
nlog n

as follows, where the information word is viewed as a subset Z ⊆
{

xy : x ∈ X
}

and the code

word is viewed as a function C(Z) : {0, 1}n
log n

→ {0, 1}.

C(Z)(rS) = LA∪Z
2

(

SA
rS
(nd)

)

Claim 6. The relative minimum distance of C is > 1/2nd.

We prove Claim 6 shortly. Let k denote the number of quantifiers M uses, and recall that M
runs in time nlogn on inputs of length nd. Since each bit of C(Z) corresponds to running MA∪Z

on a fixed input of length nd, each bit of C(Z) is computable by a circuit of depth k and size

2n
log n

where each input to the circuit is the output of a deterministic computation running in time
nlogn with oracle access to A∪Z. Since A is fixed, each of the inputs to this circuit is computable
by a DNF with top fan-in 2n

log n
and bottom fan-in nlogn whose inputs correspond to strings in

{

xy : x ∈ X
}

, that is, coordinates of the information word.
The bottom line is that there exists a binary error-correcting code with information word length

2n−1 and relative minimum distance > 1/2nd such that each bit of the code word is computable by

a circuit of depth k + 2 and size 22n
log n

nlogn. This contradicts the following result.

Theorem 4 (Viola [Vio05a]). If there exists a binary error-correcting code with information
word length ν and relative minimum distance γ such that each bit of the code word is computable
by a circuit of depth κ and size σ, then νγ ≤ O(logκ−1 σ).

Theorem 4 holds regardless of the rate of the code.

Proof of Claim 6. In Figure 1 we exhibit a decoder that can handle up to a 1/2nd fraction of
erasures. For an arbitrary Z ⊆

{

xy : x ∈ X
}

, assume that C ′ agrees with C(Z) on at least a
1− 1/2nd fraction of rS’s and outputs ⊥ on the rest. Then we just need to show that Z ′ = Z. We
do this by showing that for an arbitrary x ∈ X,

Pr
rR,B

[

RB,A
rR

(x) = LA∪Z
1 (x)

]

> 1/2

which implies that xy ∈ Z ′ if and only if x ∈ LA∪Z
1 if and only if xy ∈ Z.

We start by showing that B is a valid AvgZPP oracle for
(

LA∪Z
2 ,DA∪Z

)

at input length nd

with respect to δ = 1/nd. We have that B(w) always equals LA∪Z
2 (w) or ⊥, since if rS is such that

SA
rS
(nd) = w and C ′(rS) 6= ⊥ then

C ′(rS) = C(Z)(rS) = LA∪Z
2

(

SA
rS
(nd)

)

= LA∪Z
2 (w).

We have

Pr
rS ,B

[

B
(

SA
rS
(nd)

)

= ⊥
]

=
∑

w∈{0,1}nd

Pr
rS ,B

[

B
(

SA
rS
(nd)

)

= ⊥
∣

∣

∣
SA
rS
(nd) = w

]

· Pr
rS ,B

[

SA
rS
(nd) = w

]

26

• Input: C ′ : {0, 1}n
log n

→ {0, 1,⊥}

• Output: Z ′ ⊆
{

xy : x ∈ X
}

given by

Z ′ =
{

xy : Pr
rR,B

[

RB,A
rR

(x) = 1
]

> 1/2
}

where the randomized function B : {0, 1}n
d
→ {0, 1,⊥} is defined by

Pr
B

[

B(w) = b
]

= Pr
rS

[

C ′(rS) = b
∣

∣

∣
SA
rS
(nd) = w

]

if
Pr
rS

[

SA
rS
(nd) = w

]

> 0

and otherwise
Pr
B

[

B(w) = ⊥
]

= 1

Figure 1: Decoder for Claim 6

=
∑

w∈{0,1}nd

Pr
B

[

B(w) = ⊥
]

· Pr
rS

[

SA
rS
(nd) = w

]

=
∑

w∈{0,1}nd

Pr
rS

[

C ′(rS) = ⊥
∣

∣

∣
SA
rS
(nd) = w

]

· Pr
rS

[

SA
rS
(nd) = w

]

= Pr
rS

[

C ′(rS) = ⊥
]

≤ 1/2nd

and

Pr
rS

[

SA∪Z
rS

(nd) 6= SA
rS
(nd)

]

≤ Pr
rS

[

∃z ∈ Z such that SA
rS
(nd) queries A(z)

]

≤ sy ≤ 1/2nd

and thus

Pr
w∼DA∪Z ,B

[

B(w) = ⊥
]

= Pr
rS ,B

[

B
(

SA∪Z
rS

(nd)
)

= ⊥
]

≤ Pr
rS ,B

[

B
(

SA
rS
(nd)

)

= ⊥ or SA∪Z
rS

(nd) 6= SA
rS
(nd)

]

≤ Pr
rS ,B

[

B
(

SA
rS
(nd)

)

= ⊥
]

+ Pr
rS

[

SA∪Z
rS

(nd) 6= SA
rS
(nd)

]

≤ 1/2nd + 1/2nd

= 1/nd = δ.

Now we have

Pr
rR,B

[

RB,A∪Z
rR

(x) 6= RB,A
rR

(x)
]

≤ E
B

[

Pr
rR

[

∃z ∈ Z such that RB,A
rR

(x) queries A(z)
]

]

27

≤ E
B

[

px,y
]

= px,y

< 1/nlog n

and thus

Pr
rR,B

[

RB,A
rR

(x) = LA∪Z
1 (x)

]

≥ Pr
rR,B

[

RB,A∪Z
rR

(x) = LA∪Z
1 (x) and RB,A∪Z

rR
(x) = RB,A

rR
(x)

]

≥ Pr
rR,B

[

RB,A∪Z
rR

(x) = LA∪Z
1 (x)

]

− Pr
rR,B

[

RB,A∪Z
rR

(x) 6= RB,A
rR

(x)
]

>
(

1/2 + 1/nlogn
)

− 1/nlogn

= 1/2

where the third line follows by our contradiction assumption.

7 Proof of Theorem 3

We use the setup from Section 4, customized as follows. We only diagonalize against reductions R
that use at most 2 queries to the reduction oracle. For the reason discussed at the end of Section
2.3, we have the stronger requirement that at the end of this round,

Pr
rR,B

[

RB,A
rR

(x) = LA
1 (x)

]

< 1/2 + 1/nlogn

with 1/2 + 1/nlog n instead of 2/3. The proof is so similar to the proof of Theorem 2 that we just
sketch how it plays out. We can work with |y| = n (rather than |y| = n + 2q(n) as in the proof of
Theorem 2).

7.1 Main Construction

Recall that Mi, S,R, n are fixed. Let A denote the current relativization oracle at the beginning of
this round. There exists a y ∈ {0, 1}n such that py ≤ 1/4nlog n and sy ≤ 1/2nd, and there exists a
set X ⊆ {0, 1}n of size |X| = 2n−1 such that for all x ∈ X, px,y ≤ 1/2nlog n. Then there exists a

Z ⊆
{

xy : x ∈ X
}

, an x ∈ X, and a randomized function B : {0, 1}n
d
→ {0, 1,⊥} which is a valid

AvgZPP oracle for
(

LA∪Z
2 ,DA∪Z

)

at input length nd with respect to δ = 1/nd, such that

Pr
rR,B

[

RB,A∪Z
rR

(x) = LA∪Z
1 (x)

]

< 1/2 + 1/nlog n

since otherwise we can extract an error-correcting code

C : {0, 1}2
n−1

→ {0, 1}2
nlog n

with the following properties. There is a randomized decoder that can handle up to a 1/2nd fraction
of erasures, and it recovers any bit of the information word with probability at least

(

1/2 + 1/nlog n
)

− 1/2nlogn = 1/2 + 1/2nlog n.

28

To recover any bit, the decoder runs RB,A(x) for some x ∈ {0, 1}n and some randomized function
B. Since R makes at most 2 queries to B, and since each query to B can be answered with at most
1 query to the corrupted code word C ′, the decoder makes at most 2 queries to C ′.

The bottom line is that there exists a binary error-correcting code with information word
length 2n−1 and code word length 2n

log n
and a decoder that uses 2 queries to recover any bit of

the information word with probability at least 1/2+1/2nlog n when at most a 1/2nd fraction of the
code word bits are erased. This contradicts the following result.

Theorem 5 (Kerenidis and de Wolf [KdW04]). If there exists a binary error-correcting code
with information word length ν and code word length µ and a decoder that uses 2 queries to recover
any bit of the information word with probability at least 1/2 + ǫ when at most a γ fraction of the
code word bits are erased, then µ ≥ 2Ω(γǫ3ν).

Remarkably, the proof of Theorem 5 is based on quantum information theory. Kerenidis and
de Wolf proved the stronger bound µ ≥ 2Ω(γǫ2ν) assuming that the decoder is guaranteed to work
even if a γ fraction of the code word bits are flipped rather than just erased. The extra ǫ in the
exponent in Theorem 5 grossly accounts for the generalization from flips to erasures. It may be
possible to prove the stronger bound for erasure decoders, but Theorem 5 as stated is already good
enough for our purpose.

The complexity of Mi is immaterial because Theorem 5 holds without any constraints on the
efficiency of the encoder.

8 Open Problems

Impagliazzo [Imp11] gave an oracle relative to which
(

NP,PSamp
)

⊆ AvgZPP but NP 6⊆ BPP,
but it is open to give an oracle relative to which

(

NP,PSamp
)

⊆ HeurBPP but
(

NP,PSamp
)

6⊆
AvgZPP.

Impagliazzo and Levin [IL90] proved that relative to every oracle, there exists a nonadaptive
reduction of type

(

NP,U
)

⊆ HeurBPP ⇒
(

NP,PSamp
)

⊆ HeurBPP.

This reduction uses polynomially many queries. It is open to construct such a reduction using a
smaller number of queries, ideally a mapping reduction. It would be interesting to prove that there
exists an oracle relative to which no such mapping reduction exists.

Bogdanov and Trevisan [BT06b] proved that relative to every oracle, if there exists a nonadap-
tive reduction of type

(

NP,PSamp
)

⊆ HeurBPP ⇒ NP ⊆ BPP

then the polynomial-time hierarchy collapses to the third level. It is open to extend this result to
adaptive reductions. It would be interesting to prove that there exists an oracle relative to which
such an adaptive reduction exists and yet the polynomial-time hierarchy is infinite. Can the “Book
trick” [For99] be used? Less generally, it would be interesting to prove that there exists an oracle
relative to which an adaptive reduction of the above type exists but no nonadaptive reduction of
the above type exists.

29

Acknowledgments

First and foremost, I thank Luca Trevisan for suggesting the research topic. I thank Luca Trevisan,
Dieter van Melkebeek, Ronen Shaltiel, and anonymous reviewers for helpful comments.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[BBBV97] Charles Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths
and weaknesses of quantum computing. SIAM Journal on Computing, 26(5):1510–
1523, 1997.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subex-
ponential time simulations unless EXPTIME has publishable proofs. Computational
Complexity, 3:307–318, 1993.

[BT06a] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Foundations and Trends
in Theoretical Computer Science, 2(1), 2006.

[BT06b] Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for NP
problems. SIAM Journal on Computing, 36(4):1119–1159, 2006.

[FF93] Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of complete sets. SIAM
Journal on Computing, 22(5):994–1005, 1993.

[For99] Lance Fortnow. Relativized worlds with an infinite hierarchy. Information Processing
Letters, 69(6):309–313, 1999.

[FSS84] Merrick Furst, James Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge
University Press, 2008.

[GSTS07] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. If NP languages are hard on
the worst-case, then it is easy to find their hard instances. Computational Complexity,
16(4):412–441, 2007.

[GTS07] Dan Gutfreund and Amnon Ta-Shma. Worst-case to average-case reductions revisited.
In Proceedings of the 11th International Workshop on Randomization and Computation,
pages 569–583, 2007.

[HHT97] Yenjo Han, Lane Hemaspaandra, and Thomas Thierauf. Threshold computation and
cryptographic security. SIAM Journal on Computing, 26(1):59–78, 1997.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity
based cryptography. In Proceedings of the 30th IEEE Symposium on Foundations of
Computer Science, pages 230–235, 1989.

30

[IL90] Russell Impagliazzo and Leonid Levin. No better ways to generate hard NP instances
than picking uniformly at random. In Proceedings of the 31st IEEE Symposium on
Foundations of Computer Science, pages 812–821, 1990.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of the
10th IEEE Conference on Structure in Complexity Theory, pages 134–147, 1995.

[Imp11] Russell Impagliazzo. Relativized separations of worst-case and average-case complexi-
ties for NP. In Proceedings of the 26th IEEE Conference on Computational Complexity,
pages 104–114, 2011.

[KdW04] Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally
decodable codes via a quantum argument. Journal of Computer and System Sciences,
69(3):395–420, 2004.

[Lev86] Leonid Levin. Average case complete problems. SIAM Journal on Computing,
15(1):285–286, 1986.

[Reg06] Oded Regev. Lattice-based cryptography. In Proceedings of the 26th International
Cryptology Conference, pages 131–141, 2006.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without
the XOR Lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

[Vio05a] Emanuele Viola. The complexity of constructing pseudorandom generators from hard
functions. Computational Complexity, 13(3-4):147–188, 2005.

[Vio05b] Emanuele Viola. On constructing parallel pseudorandom generators from one-way func-
tions. In Proceedings of the 20th IEEE Conference on Computational Complexity, pages
183–197, 2005.

[Wat10] Thomas Watson. Relativized worlds without worst-case to average-case reductions for
NP. Technical Report TR10-042, Electronic Colloquium on Computational Complexity,
2010.

31

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

