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Abstract. We present a logspace algorithm for computing a canonical
interval representation and a canonical labeling of interval graphs. As a
consequence, the isomorphism and automorphism problems for interval
graphs are solvable in logspace.

1 Introduction

There has been persistent interest in the algorithmic aspects of interval graphs in
the past decades, also spurred by their applicability to DNA sequencing (cf. [23])
and scheduling problems (cf. [18]). In 1976, Booth and Lueker presented the
first recognition algorithm for interval graphs [2] running in time linear in the
number of vertices and edges, which they followed up by a linear-time interval
graph isomorphism algorithm [17]. These algorithms are based on a special data
structure called PQ-trees. By pre-processing the graph’s modular decomposition
tree, Hsu and Ma [9] later presented a simpler linear-time recognition algorithm
that avoids the use of PQ-trees. Habib et al. [7] achieve the same time bound
employing the lexicographic breadth-first search of Rose, Tarjan, and Lueker [21]
and in combination with smart pivoting. A parallel NC2 algorithm was given by
Klein in [11].

All of the above algorithms have in common that they compute a perfect
elimination ordering (peo) of the graph’s vertices. This ordering has the property
that for every vertex, its neighborhood among its successors in the ordering forms
a clique. Fulkerson and Gross [6] show that a graph has a peo if and only if it is
chordal, and the above methods determine whether a graph is an interval graph
once its peo has been determined in linear time.

The method we present here does neither rely on computing the graph’s
peo, nor do we use transitive orientation algorithms for comparability graphs as
in [14]. Instead, the basis of our work is the observation of Laubner [15] that in
an interval graph, the graph’s maximal cliques and a certain modular decompo-
sition tree are definable by means of first-order logic. This makes these objects
tractable in logarithmic space and leads us to an L-algorithm for computing a
canonical interval representation for any interval graph. This result is presented
in Sections 4 and 5.
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In the work of Reif [19], the recognition of the class of interval graphs is
reduced to the problem of deciding the connectivity query in undirected graphs.
By the result of Reingold [20], interval graphs can therefore be recognized in L.
In Section 3 we additionally show that recognition and isomorphism testing is
hard for logspace, thereby proving L-completeness for both problems.

Finding logspace algorithms for the graph isomorphism problem of restricted
graph classes is an active research area. It was started by Lindell with his canon-
ization algorithm for trees [16]. In a series of results, Datta, Limaye, Nimbhorkar,
Thierauf and Wagner generalize this to planar graphs [4]. Köbler and Kuhnert
show the generalization to k-trees [13]. In each of these cases the isomorphism
problem has a matching lower bound, i. e. it is shown to be L-complete. The
graph classes considered in these results have in common that their clique size is
bounded by a constant. To the best of our knowledge, the L-completeness result
for interval graph isomorphism is the first for a natural graph class containing
cliques of arbitrary size.

2 Preliminaries

As usual, L is the class of all languages decidable by Turing machines with read-
only input tape and an O(log n) bound on the space used on the working tapes.
FL is the class of all functions computable by Turing machines that additionally
have a write-only output tape.

2.1 Graphs

We write G ∼= H to say that G and H are isomorphic graphs. The vertex set of
a graph G is denoted by V (G). The set of all vertices having distance at most
1 from a vertex v ∈ V (G) is called its neighborhood and denoted by N(v). Note
that v ∈ N(v). We also use N(u, v) = N(u)∩N(v) for the common neighborhood
of two vertices u, v ∈ V (G).

We say that a vertex w separates vertices u and v if it is adjacent to exactly
one of them. Two vertices inseparable by any other vertex are called twins.

We denote intervals (over nonnegative integers) as [a, b] =
{
i ∈ N

∣∣ a ≤ i ≤ b}.
We say [a1, b1] < [a2, b2] if a1 < a2 or if a1 = a2 and b1 < b2. When we store an
interval [a, b] we represent it as tuple (a, b).

Let F be a family of sets, which will also be called a set system. We do not
exclude the possibility that A = B for some A,B ∈ F , i.e., F is a multiset whose
elements are sets. The intersection graph of F is the graph with vertex set F
where A and B are adjacent if they have a nonempty intersection. Note that, if
A = B, these two vertices are twins in the intersection graph.

A graph G is an interval graph if it is isomorphic to the intersection graph
of a family of intervals. The latter is called an interval representation of G.
Given an interval representation of G and a correspondence between the intervals
and the vertices, we will use notation Iv for the interval corresponding to a
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vertex v ∈ V (G). An interval representation is called minimal, if the union of its
intervals has minimal size.

An interval labeling of a graph G is a function ` : V (G) → {[l, r] | l, r ∈ N},
such that ` is an isomorphism from G to the intersection graph G` of the set
system {`(v) | v ∈ V (G)}. A canonical interval labeling is a function that maps
an interval graph G to an interval labeling `G such that G ∼= H ⇔ G`G = H`H .
We call V (G`G) the canonical interval representation of G. Note that a canoni-
cal interval labeling implies a canonical labeling, as the intervals can be sorted
and renamed. We show how a canonical interval labeling can be constructed in
logspace.

2.2 Bundles of maxcliques

An inclusion-maximal clique in a graph G will be called a maxclique. We denote
the set of all maxcliques byM. The following lemma allows us to use maxcliques
in logspace algorithms.

Lemma 1. Let G be an interval graph. Every maxclique C in G contains vertices
u and v such that C = N(u, v).

Proof. We have C ⊆ N(u, v) for any u, v ∈ C and, therefore, we only need to find
u, v such that N(u, v) ⊆ C. For this purpose, consider an interval representation
of G and choose u, v ∈ C so that Iu ∩ Iv is inclusion-minimal. For any w ∈ C,
we have Iw ⊇ Iu ∩ Iv for else Iu ∩ Iw or Iw ∩ Iv would be strictly included in
Iu∩Iv. Suppose now that z ∈ N(u, v). Since Iz intersects Iu∩Iv, it has nonempty
intersection with Iw for each w ∈ C. By maximality, z ∈ C. ut

The (maxclique) bundle Bv at a vertex v consists of all maxcliques contain-
ing v. The bundle graph B(G) is the intersection graph of the family of all bundles
{Bv}v∈V (G).

Lemma 2. B(G) ∼= G.

Proof. The mapping f(v) = Bv is an isomorphism from G to B(G). Indeed, if
Bv and Bu have a common maxclique C, then C contains both v and u and,
hence, those are adjacent. Conversely, if v and u are adjacent, then Bv and Bu

share any maxclique containing the two vertices. ut

Lemma 2 will allow us to deal with B(G) instead of the original graph G, sim-
ulating adjacency of u and v in G by the intersection property of Bu and Bv. We
will gain more expressiveness, obtaining a possibility to speak also on inclusion
and other set-theoretic relations between the bundles.

We say that sets A and B overlap and write A G B if A and B intersect
(i.e., have a nonempty intersection) but neither of them includes the other. The
overlap graph O(G) is a spanning subgraph of B(G) where bundles Bv and Bu

are adjacent iff they overlap or are equal. Of course, O(G) can be disconnected
even if B(G) is connected. Connected components of O(G) will be referred to



4 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky

as overlap components of the bundle graph. By 〈B〉 we will denote the overlap
component containing a bundle B. For an overlap component L, we denote the
set of maxcliques occurring in some bundle B ∈ V (L) by ML =

⋃
V (L).

Lemma 3. Let L and L′ be different overlap components. If a bundle A ∈ L
includes at least one bundle in L′, then A includes all bundles in L′.

Proof. The lemma follows from a simple observation that the conditions B ⊂ A,
B G B′, and ¬(B′ G A) imply that B′ ⊂ A. ut

It is well known that there is a one-to-one correspondence between the max-
cliques of an interval graph G and the numbers used in a minimal interval rep-
resentation of G. Moreover the hypergraph of bundles and the hypergraph of
intervals are isomorphic. This will allow us to apply a geometric intuition for
investigating properties of the bundle graph.

We call a bundle B G-isolated if there is no bundle B′ such that B G B′.
Suppose that B is not G-isolated. If B G B′, we will call the intersection B ∩B′
a cut of B. Let Cut(B) denote the set of all cuts of B. Observe that Cut(B) is
either an inclusion chain or it is split into two inclusion chains, as the cuts must
be at the sides of B in any interval representation. We will call B marginal if it
has only one inclusion chain.

The following lemma follows from the mentioned isomorphism between the
hypergraph of bundles and the hypergraph of intervals.

Lemma 4. Unless an overlap component consists of a single G-isolated bundle,
it has, up to set equality, exactly two inclusion-maximal marginal bundles.

3 Hardness of interval graph problems

All hardness results in this section are under DLOGTIME-uniform AC0 reduc-
tions.

Lemma 5. The problem of deciding whether a given graph is an interval graph
is L-hard.

Proof. We reduce from the L-complete problem ORD (cf. [5]): Given a directed
path P and vertices s, t ∈ V (P ), decide if there is a path from s to t.

If P is such a directed path, it can be checked uniformly in constant depth
if s or t are among the first 3 vertices in the path. If so, output a trivial yes or
no-instance depending on whether s has been encountered first.

If neither s nor t are among the first 3 vertices of P , then we construct an
undirected graph G on the same vertex set as P as follows: delete the incoming
edge of s, delete the outgoing edge of t (if any), insert an edge connecting the
first vertex in P and t, and then forget about the directions of the edges. Below
is an illustration of this construction. It can clearly be done in DLOGTIME-
uniform AC0. We claim that G is an interval graph if and only if there is a path
from s to t in P .
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In fact, if there is no such path, then t lies on an undirected cycle of length at
least 4, thus G is not an interval graph. If there is such a path, however, then G
consists of two disjoint paths, which is an interval graph. ut

By results of Reif [19] and Reingold [20], this problem is also contained in L.
Thus, interval graph recognition is L-complete.

Remark 6. The reduction given in the proof of Lemma 5 also proves that it is
L-hard to decide whether a given graph is chordal. Again, by results of Reif [19]
and Reingold [20], recognition of chordal graphs is therefore L-complete.

Lemma 7. Given an interval graph G, the problem of deciding if it has a non-
trivial automorphism is L-hard. The same holds for the problem of deciding if
two interval graphs are isomorphic.

Proof. We only show the hardness of deciding whether there is a non-trivial
automorphism. The construction for the hardness of the isomorphism problem
is very similar.

As in Lemma 5, we reduce from ORD. Let a directed path P and vertices
s, t ∈ V (P ) = {v1, . . . vn} be given. In constant depth, we can check for the cases
when s or t are contained among the first or last two vertices in P , or s is within
distance 1 from t. Otherwise, let P ′ be an isomorphic copy of P on the vertex
set {v′1, . . . , v′n}, and construct the undirected graph G as follows: start with the
disjoint union of P and P ′ and vertices {r, r′, s′′}. If v′ is the vertex directly
following t′ in P , then delete the edge from t′ to v′ and add instead an edge
from t to v′. Now forget about the edge directions and add undirected edges rv1,
rv′1, rr′, and ss′′ (where v1, v′1 are the first vertices in P , P ′, respectively). The
following drawing illustrates the construction.

s t t s

s′ t′

s

ts′′

r′ r
t′ s′

t

s

s′′

r′ r

It is clear that G is an interval graph. If there is a path from s to t in P , then
the path in G which contains t has a nontrivial automorphism. However, if there
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is no such path in P , then the vertices r′ and s′′ fix the two non-isomorphic
connected components of G, so that it has no automorphism except for the
identity morphism. ut

4 Canonizing overlap components

In this section we show how to compute a canonical interval labeling of an overlap
component L of some interval graph G. Our canonical interval labeling has the
additional property that for all Bv ∈ V (L) : ‖`(Bv)‖ = ‖Bv‖. This property
facilitates easier combination of the canonical interval labelings of the overlap
components to a canonical interval labeling of the whole graph G, as the span
of the intervals is already that of the interval labeling of G. We can assume that
there are no twins, as our algorithm also handles colored graphs and twins can
be replaced by a single node colored with their multiplicity.

The key observation for obtaining the canonical interval labeling is that an
overlap component L (without twins) is either rigid or has exactly one nontrivial
isomorphism α. The latter case occurs iff L has a symmetric interval represen-
tation; α then corresponds to mirroring this interval representation.

Let L be an overlap component of an interval graphG. We call two maxcliques
M,M ′ ∈ML indistinguishable in L (denoted as M ∼L M ′), if there is no bundle
Bv ∈ V (L) that contains exactly one of them. Clearly, ∼L is an equivalence
relation on ML.

If L consists of a single bundle Bv, we have the canonical interval labeling `L
that maps Bv to [0, ‖ML‖ − 1]. So from now on we can assume that L consist
of at least two bundles. By Lemma 4 we know that L has only two inclusion-
maximal marginal bundles B1, B2, one at each side of any interval representation
of L. We now choose two maxcliques M1,M2 representing the two sides of L: Let
Bi be the set of marginal bundles that are contained in Bi (including Bi itself;
this excludes marginal bundles at the other side). Choose Mi ∈ Bi such that it
is not contained in any bundle B ∈ V (L) \ Bi and in as few B ∈ Bi as possible.
We call M1 and M2 side-cliques of L.

Following [15] we can use a side-clique M to define a partial order ≺M on
ML as the smallest relation that satisfies the following two properties:

1. M ≺M C for all maxcliques C ∈ML \ {M}.
2. For each bundle Bv in L and maxcliques C1, C2 ∈ Bv, D /∈ Bv:

C1 ≺M D ⇔ C2 ≺M D and D ≺M C1 ⇔ D ≺M C2 (1)

C ≺M D can be read as “if M is leftmost, then C is left of D”. Note that ≺M1

does not depend on the choice of the side-clique M1, as all possible choices for M1

are indistinguishable in L. Likewise, ≺M2 does not depend on the choice of M2.
Laubner proves that incomparability w. r. t. ≺M is an equivalence relation. He
also proves the following properties which we rephrase to match our terminology.

Lemma 8 ([15, Corollary 4.4]). If two maxcliques C,D ∈ ML are incom-
parable w. r. t. ≺M (M being a side-clique in ML), then C and D are indistin-
guishable in L. �
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Lemma 9 ([15, Section 4.2]). For each bundle Bv and maxcliques C1, C2 ∈
Bv there is no maxclique D ∈ML \Bv with C1 ≺M D ≺M C2. �

Also it is easy to see that ≺M is invariant under isomorphism, as it only
depends on the structure of G. By Lemma 8 we can use ≺M to define an interval
labeling `M of L:

`M : V (L)→
{

[l, r]
∣∣ l, r ∈ [0, ‖ML‖ − 1

]}
Bv 7→

[
pos(Bv),pos(Bv) + ‖Bv‖ − 1

]
,

where a maxclique C ∈ ML has position pos(C) = ‖{D ∈ ML | D ≺M C}‖
and a bundle Bv ∈ V (L) has position pos(Bv) = min{pos(C) | C ∈ Bv}.

Lemma 10. `M1 and `M2 are indeed interval labelings for L.

Proof. Let M ∈ {M1,M2}. We first show that for each maxclique C ∈ML and
each bundle Bv ∈ V (L) we have C ∈ Bv ⇔ pos(C) ∈ `M (Bv). If C ∈ Bv, then
pos(Bv) ≤ pos(C) (by definition of pos(Bv)) and pos(C) < pos(Bv) + ‖Bv‖ (by
Lemma 9) and thus pos(C) ∈ `M (Bv). If C /∈ Bv, then either pos(C) < pos(Bv)
or pos(C) ≥ pos(Bv)+‖Bv‖, again by Lemma 9. This implies pos(C) /∈ `M (Bv).

This claim already proves that if two bundles Bu, Bv ∈ V (L) share a max-
clique C, then `M (Bu) and `M (Bv) intersect. For the opposite direction let
`M (Bu) ∩ `M (Bv) be nonempty and w. l. o. g. pos(Bu) ≤ pos(Bv). This implies
pos(Bv) ∈ `M (Bu) and thus the maxclique C ∈ Bv with pos(C) = pos(Bv) is
also in Bu. ut

By these observations, we can choose the canonical interval labeling `L of
L among `M1 and `M2 such that the set L`L of intervals becomes minimal. We
denote the corresponding order on the maxcliques of L by ≺L. By ~L we denote
the list of vertices v whose bundles Bv are in L, ordered by their intervals `L(Bv).

Lemma 11. Given an interval graph G and an overlap component L of G, the
following can be done in logspace:

1. Computing the partial order ≺L on ML,
2. computing a canonical interval labeling `L of L,
3. computing the corresponding ordered list of vertices ~L, and
4. deciding if L`L is symmetric or not.

Proof. By Lemma 1 each maxclique of an interval graph G can be represented
as N(u, v) for some u, v ∈ V (G). This implies that the set of all maxcliques and
the bundles Bv can be enumerated in logspace.

To prove that C ≺M D can be decided in logspace, we construct an undi-
rected graph H with nodes V (G) =

{
(C1, C2) | C1 6= C2 maxcliques in L

}
meaning “C1 ≺M C2” and edges corresponding to the equivalences given in the
definition (1) of ≺M . Additionally, we add a start vertex s and connect it to all
nodes of the form (M,C). Now we have C ≺M D iff (C,D) is reachable from s in
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H. Reachability in undirected graphs is decidable in logspace using Reingold’s
algorithm [20].

Once ≺M can be decided in logspace, it is easy to compute `M and to choose
the side-clique M ∈ {M1,M2} such that L`M becomes minimal. L`L is symmetric
iff both are minimal.

Given `L, it is easy to compare the bundles in L, and thereby compute ~L. ut

5 Canonizing interval graphs

Let G be an interval graph. Again we assume that G has no twins, but allow a
coloring of G instead. We also assume that G is connected – if not, we add a new
vertex and connect it to all others. We define the slots of an overlap component
L of G as the equivalence classes [C]∼L

of the relation ∼L, namely slots(L) =
{[C]∼L

| C ∈ ML}. The position of a slot S in L is defined analogously to that
of a bundle, namely pos(S) = min{pos(C) | C ∈ S}. Additionally we define the
position of S from the right: rpos(S) = minC∈S ‖{D ∈ ML | C ≺L D}‖. If an
overlap component L has a symmetric canon L`L , we call a slot S of L low if
pos(S) < rpos(S), middle if pos(S) = rpos(S), and high if pos(S) > rpos(S).
If L`L is not symmetric, we call all its slots low. We say an overlap component
L′ is located at a slot S (of L), if ML′ ⊆ S and there is no overlap component
L′′ such that ML′ ⊂ML′′ ⊂ML (note that different overlap components have
different maxclique sets, as twins are not allowed).

5.1 Tree representation

Using the above notions, we now define a tree representation for interval graphs.

Definition 12. For a connected interval graph G without twins, its tree repre-
sentation T(G) is defined by

V (T(G)) ={~L, loL,miL, hiL | L is an overlap component of G}
∪ {S | S is a slot of some overlap component L of G}

E(T(G)) ={(~L, loL), (~L,miL), (~L, hiL) | L is an overlap component of G}
∪ {(loL, S), (miL, S), (hiL, S) | S is a low/middle/high slot in L}

∪ {(S, ~L) | the overlap component L is located at slot S}

Further we define a coloring c of the component-nodes ~L and slot-nodes S by

c(~L) = L`L

c(S) =

{
pos(S) if S is low or middle
rpos(S) if S is high

If G is colored, the intervals in c(~L) = L`L also inherit the colors of the corre-
sponding vertices in V (G).
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S0
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Fig. 1. An interval graph representation of a graph G and the corresponding tree
representation T(G). Gray rectangles in T(G) indicate the color of overlap components.
Overlap components have color {[0, 0]} where not indicated. Slot name Sk

{Ci,...,Cj}
denotes slot {Ci, . . . , Cj} and indicates that its color is k.

As G is connected, there is an overlap component L0 such that ML0 =M. ~L0

is the root of the directed tree T(G).
Our goal is to compute a canonical interval labeling of G using a modified

version of Lindell’s canonization algorithm for trees [16] on T(G). For this ap-
proach, we must first compute T(G) in logspace.

Lemma 13. For a given interval graph G, T(G) can be computed in FL.

Proof. Lemma 11 allows us to compute ~L, ≺L and `L for an overlap component
L in logspace. A slot S of an overlap component L can be represented by a tuple
(L,M), where M is a maxclique contained in S: We then have S = [M ]∼L

. To
make this representation unique, we choose the M ∈ S that occurs first in the
input. Using this representation and ≺L, we can enumerate all slots and compute
pos(S) and rpos(S). Using this information, T(G) can easily be constructed in
logspace. ut

We proceed to show a basic structural property of T(G) that we exploit to
compute the canonical interval labeling.

Lemma 14. There is a one-to-one correspondence between maxcliques of G and
leaf-nodes of T(G) that are slots.

Proof. Let S be a slot of some overlap component L such that S is a leaf of
T(G). By definition of slots, the maxcliques in S are not distinguished by L.
This implies that the maxcliques in S are also not distinguished by any bundle
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in an overlap component on the path to the root. By Lemma 3 no maxclique
in S can be contained in any overlap component not on the path from S to the
root. So there is no vertex v ∈ V (G) whose bundle Bv contains only a part of
S. So S must be a single maxclique of G.

For the opposite direction, let M be any maxclique of G. Then M ∈ ML0 ,
as the root overlap component L0 contains all maxcliques. Now if M ∈ ML for
some overlap component L, then M is in exactly one of the slots of L, as slots
are equivalence classes and thus partition ML. And if M is contained in some
slot S that is not a child in T(G), M must be contained in exactly one overlap
component located at S (if none, M would not be maximal, if more, these overlap
components would overlap or contain twins). Using these observations, we can
trace M to a single slot S that is a leaf of T(G). ut

We will need to compute a canonical labeling of T(G) and call it `T(G). We
observe a generalization of Lindell’s tree canonization algorithm [16].

Lemma 15. Lindell’s algorithm [16] can be extended to colored trees and to
output not only a canonical form, but also a canonical labeling. This modification
preserves the logarithmic space bound.

Proof sketch. Colors can be handled by extending the tree isomorphism order
defined in [16] by using color(s) < color(t) as additional condition (where s and
t are the roots of the trees to compare). The canonical labeling can be computed
by using a counter i initialized to 0: Instead of printing (the opening parenthesis
of) the canon of a node v, increment i and print “v 7→ i”. ut

5.2 Computing a canonical interval labeling

Our aim is a traversal of T(G) that is left-to-right in the resulting canon. That is,
we visit the leaf slots in ascending order of the positions of their corresponding
maxcliques in the computed canonical interval representation. To achieve this,
we use the canonical labeling `T(G).

We first recall the logspace tree traversal that is used in Lindell’s canoniza-
tion algorithm. Only the current node must be remembered, as the following
operations are possible in logspace:

– Given a node, go to its first child.
– Given a node, go to its next sibling.
– Given a node, go to its parent.

“First” and “next” can be respective to any order on the children of a node that
can be evaluated in logspace. In our left-to-right traversal we use the following
order:

– The children of an overlap component node ~L are either ordered loL < miL <
hiL (if L`L is not symmetric or if `T(G)(loL) < `T(G)(hiL)) or hiL < miL <
loL (otherwise).
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– The children of the first child of an overlap component node ~L (this can be
either loL or hiL) are visited in ascending order of their colors.

– The children of the last child of an overlap component node ~L (this can be
either hiL or loL) are visited in descending order of their colors.

– The children of a slot node are ordered by their label assigned by `T(G).

Note that the children of loL and hiL all have different colors. Also, miL can
have at most one child. All these conditions can be evaluated in logspace without
using non-local information. Traversing T(G) in this order makes sure that the
slots of an overlap component L are visited either in ascending or descending
order of their positions. The latter case can only occur if L`L is symmetric.

We complete the description of our algorithm by showing how, while process-
ing T(G), a canonical interval labeling can be computed in logspace. Additionally
to the current node we store a current offset o that equals to the number of max-
cliques we have passed already. Formally, we initialize o = 0 and increment it by
1 whenever the logspace tree traversal passes a slot node that is a leaf. When-
ever we enter an overlap component node ~L = (v1, . . . , vk) for the first time, we
output the mappings vi 7→ [li + o, ri + o] where [li, ri] is the ith-smallest interval
in c(~L) = L`L if loL < miL < hiL, and the ith-largest interval otherwise. In the
first case this results in `G(v) = `L(Bv) + o. In the second case this association
is mirrored: If α : V (L) → V (L) mirrors L, then `G(v) = `L(α(Bv)) + o. After
traversing all of T(G), we have output a mapping for each v ∈ V (G). We call
this mapping `G.

Lemma 16. `G is an interval labeling of G.

Proof. Take any u, v ∈ V (G). Let L = 〈Bu〉 and L′ = 〈Bv〉. Let o (resp. o′) be
the current offset when L (resp. L′) is entered for the first time. If L = L′, we
are done by Lemma 10, as the offset o preserves intersection. If ML and ML′

do not intersect, then u and v are not adjacent. W. l. o. g. assume o < o′. Indeed
we have o + ‖ML‖ ≤ o′, as the offset is advanced by one for each slot leaf in
the subtree of ~L (which correspond to the maxcliques in ML by Lemma 14).
As `L(u) < ‖ML‖ (see the definition of `L), `(u) and `(v) do not intersect.
If ML and ML′ do intersect, one must be contained in the other. W. l. o. g.
assume ML′ ⊂ ML and let S be the slot of L in which ML′ is contained. If u
is contained in some maxclique M ∈ S (and thereby contained in all M ∈ S),
then u and v are adjacent. By Lemma 14 and the order of our tree traversal we
have `L(Bu) + o ⊇ [o′, o′ + ‖ML′‖]. Finally, if u is contained in no maxclique
M ∈ S, then u and v are not adjacent. Also the slot leaves corresponding to the
maxcliques in Bu will be processed all before or all after ~L′, so `G(v) and `G(u)
do not intersect. ut

In the remainder of this section we prove that the interval labeling `G is canon-
ical. The next lemma shows that the colored tree representations of isomorphic
interval graphs are also isomorphic.
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Lemma 17. Let φ ∈ Sn be an isomorphism between two connected interval
graphs G and H without twins. Then there is an isomorphism φ′ between T(G)
and T(H).

Proof. Since φ induces a unique mapping of the overlap components L of G
to isomorphic overlap components L′ of H, it is clear how to define φ′ on the
component-nodes ~L of T(G). Further, since the canonical interval representations
L`L and L′`L′ coincide, ~L and φ′(~L) indeed have the same colors.

In order to define φ′ on the lo, mi and hi nodes of T(G), consider a com-
ponent-node ~L = (u1, . . . , uk) of T(G). If L`L is not symmetric, then it fol-
lows that ~L′ = (φ(u1), . . . , φ(uk)). Otherwise, it is also possible that ~L′ =
(φ(uk), . . . , φ(u1)). In the first case we let φ′ map the children loL, miL, hiL
of ~L to φ′(loL) = loL′ , φ′(miL) = miL′ , φ′(hiL) = hiL′ . If however ~L′ =
(φ(uk), . . . , φ(u1)), then we let φ′ map the children of ~L to φ′(loL) = hiL′ ,
φ′(miL) = miL′ and φ′(hiL) = loL′ .

Finally, since all children of a lo, mi or hi node have different colors there is
a unique way to define φ′ on the slot-nodes of T(G).

Now it can be easily checked that φ′ indeed is an isomorphism between T(G)
and T(H). ut

Now we are ready to prove our main result.

Theorem 18. Given an interval graph G, a canonical interval labeling `G for
G can be computed in FL.

Proof. We have already shown that the labeling `G is computable in FL and
that G`G is isomorphic to G. It remains to show that the labelings `G and `H
of any two isomorphic interval graphs G and H map these graphs to the same
interval representation G`G = H`H .

To see this, note that by Lemma 17, the colored trees T(G) and T(H) are
isomorphic. Hence it follows that the canonical labelings `T(G) and `T(H) map
these trees to the same colored tree T(G)`T(G) = T(H)`T(H) . Further, it is easy
to see that the interval representation G`G only depends on the tree T(G)`T(G) ,
implying that G`G = H`H . ut

There is a standard Turing reduction of the automorphism group problem
(i.e., computing a generating set of the automorphism group of a given graph)
to the search version of graph isomorphism for colored graphs (cf. [8, 12]). It is
not hard to see that this reduction can be performed in logspace.

Corollary 19. Computing a generating set of the automorphism group of a
given interval graph, and hence computing a canonical labeling coset for a given
interval graph is in FL. Further, the automorphism problem (i. e., deciding if a
given graph has a non-trivial automorphism) for interval graphs is L-complete.
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6 Conclusion

We have proved that a canonical interval labeling of an interval graph can be
computed in logarithmic space. In particular, this puts into FL the problems of
computing an interval representation, deciding interval graph isomorphism, and
finding a generating set of an interval graph’s automorphism group. Furthermore,
we showed L-hardness of the problems of recognition and isomorphism of interval
graphs and of deciding if an interval graph has a non-trivial automorphism. We
conclude that all these problems are in fact L-complete.

Going beyond interval graphs, there are several natural graph classes that
suggest an investigation whether they can similarly be handled in L. For ex-
ample, circular-arc graphs generalize interval graphs as intersection graphs of
arcs on a circle. Just like interval graphs, circular-arc graphs can be recognized
efficiently in linear time (cf. [10]). However, while intuition suggests a reduction
of circular-arc graphs to interval graphs by “cutting open” the circle that carries
the graph’s circular-arc representation, all known algorithms require additional
techniques that are fairly specific to circular-arc graphs. One of the obstacles
is that maxcliques cannot be handled as easily as in Lemma 1, since there are
possibly exponentially many of them.

Another generalization of interval graphs is the class of rooted directed path
graphs, i.e., intersection graphs of paths in a rooted and directed tree. While in
this class, maxcliques can still be recognized in a similar way as in this paper,
the recursive procedure for linearly ordering maxcliques as given in Section 4
cannot be employed in the presence of tree nodes of degree ≥ 3 (cf. [15]).

We observe that in the above paragraph, it is important that trees are rooted
and directed accordingly, since otherwise the class becomes graph isomorphism-
complete (cf. [1]). The same is true for boxicity-d graphs (d ≥ 2), the intersection
graphs of axis-parallel boxes in Rd (cf. [22]). Finally, we would like to point to [3]
for further graph classes for which it is unknown if recognition and isomorphism
can be handled in L.
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