
Interval Graphs:
Canonical Representations in Logspace

Johannes Köbler1, Sebastian Kuhnert1, Bastian Laubner1, and Oleg Verbitsky2

1 Humboldt-Universität zu Berlin
2 Institute for Applied Problems of Mechanics and Mathematics, Ukrainian Academy

of Sciences, Lviv. Supported in part by the Alexander von Humboldt foundation.
{koebler,kuhnert,laubner,verbitsk}@informatik.hu-berlin.de

Abstract. We present a logspace algorithm for computing a canonical
labeling, in fact a canonical interval representation, for interval graphs.
To achieve this, we compute canonical interval representations of interval
hypergraphs. This approach also yields a canonical labeling of convex
graphs. As a consequence, the isomorphism and automorphism problems
for these graph classes are solvable in logspace.
For proper interval graphs we also design a logspace algorithm computing
their canonical representations by proper and by unit interval systems.

1 Introduction

There has been persistent interest in the algorithmic aspects of interval graphs
in the past decades, also spurred by their applicability to DNA sequencing
(cf. [ZSF+94]) and scheduling problems (cf. [Möh84]). In 1976, Booth and Lueker
presented the first recognition algorithm for interval graphs [BL76] running in
time linear in the number of vertices and edges, which they followed up by a
linear-time interval graph isomorphism algorithm [LB79]. These algorithms are
based on a special data structure called PQ-trees. By pre-processing the graph’s
modular decomposition tree, Hsu and Ma [HM99] later presented a simpler
linear-time recognition algorithm that avoids the use of PQ-trees. Habib et al.
[HMP+00] achieve the same time bound employing the lexicographic breadth-
first search of Rose, Tarjan, and Lueker [RTL76] in combination with smart
pivoting. A parallel AC2 algorithm was given by Klein in [Kle96].

All of the above algorithms have in common that they compute a perfect
elimination ordering (peo) of the graph’s vertices. This ordering has the property
that for every vertex, its neighborhood among its successors in the ordering forms
a clique. Fulkerson and Gross [FG65] show that a graph has a peo if and only if
it is chordal, and the above methods determine whether a graph is an interval
graph in linear time once a peo is known.

Our methods are optimized for space complexity. As such, our exposition
neither relies on computing the graph’s peo, nor do we use transitive orientation
algorithms for comparability graphs as in [KVV85]. Instead, the basis of our
work is the observation of Laubner [Lau10] that in an interval graph, the set

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 43 (2010)

2 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky

of maximal cliques and a modular decomposition tree are definable in a certain
logical formalism. This makes these objects tractable in logarithmic space and
leads us to the first logspace algorithm for computing a canonical interval rep-
resentation for any interval graph (note that recognition of interval graphs in
logspace follows from the results of Reif [Rei84]). More specifically, we reduce
canonization of interval graphs to that of interval hypergraphs. We split interval
hypergraphs into overlap components whose interval representations are essen-
tially unique and show how to compute their interval representations canonically
using Reingold’s algorithm [Rei08]. We color these components with their canon-
ical interval representations and place them in a tree that allows us to combine
the canonical interval representations of the components to one for the whole
hypergraph. To achieve this, we apply Lindell’s algorithm [Lin92] to the colored
decomposition tree.

As another consequence of our logspace canonization of interval hypergraphs,
we show that convex graphs can be canonized in logspace. The isomorphism prob-
lem for this class was previously known to be decidable by a parallel algorithm
in AC2 [Che96] and by a sequential algorithm in linear time [Che99]. Convex
graphs include bipartite permutation graphs. The isomorphism problem for the
latter class was only known to be in AC1 [CY93,YC96].

Finding logspace algorithms for the graph isomorphism problem of restricted
graph classes is an active research area. It was started by Lindell with his canon-
ization algorithm for trees [Lin92]. In a series of results, Datta, Limaye, Nimb-
horkar, Thierauf and Wagner generalize this to planar graphs [DLN+09] (in fact,
excluding one of K5 or K3,3 as minor is sufficient [DNT+09]), whereas Köbler
and Kuhnert show the generalization to k-trees [KK09]. The graph classes con-
sidered in these results have in common that their clique size is bounded by
a constant. To the best of our knowledge, our logspace completeness result for
interval graph isomorphism is the first for a natural class of graphs containing
cliques of arbitrary size. In each of these cases, the isomorphism problem has a
matching lower bound, i. e. it turns out to be logspace complete.

An interval graph is called proper if it admits an interval representation
where no interval is contained in another. Such representations can be found in
linear time by algorithms of Deng, Hell, and Huang [DHH96] and Hell, Shamir,
and Sharan [HSS01]. An AC2 algorithm is designed by Bang-Jensen, Huang, and
Ibarra [BHI07]. We show how to compute canonical proper interval representa-
tions in logspace, implying also logspace recognition of proper interval graphs.
Unit interval graphs are interval graphs representable by systems of unit inter-
vals over rationals. Any such graph is obviously a proper interval graph, and the
converse is also true by a classical result of Roberts, see [BLS99, Theorem 4.3.3].
Corneil et al. [CKN+95] show how to construct a unit interval representation
in linear time. Based on their methods, we observe that logspace is sufficient to
derive a unit interval representation from a proper one.

Organisation of the paper. Section 2 introduces some preliminaries, no-
tably the decomposition of interval hypergraphs into overlap components. In
Section 3 we show how to compute a canonical interval representation for a sin-

Interval Graphs: Canonical Representations in Logspace 3

gle overlap component in logspace. Section 4 contains our main result: We give a
logspace algorithm to obtain a canonical interval representation of an arbitrary
interval hypergraph. In Section 5, we state our results for interval graphs and
convex graphs. Section 6 contains our algorithms for proper and unit interval
representations. In Section 7 we summarize our results and show that recogni-
tion and isomorphism testing of interval and convex graphs is hard for logspace,
thereby proving logspace completeness for these problems.

2 Definitions and basic facts

As usual, L is the class of all languages decidable by Turing machines with a
read-only input tape using only O(log n) bounded space on the working tapes.
FL is the class of all functions computable by such machines that additionally
have a write-only output tape. For a set S, we denote its cardinality by ‖S‖.

2.1 Graphs and set systems

We write G ∼= H to say that G and H are isomorphic graphs. The vertex set
of a graph G is denoted by V (G). The set of all vertices at distance at most 1
from a vertex v ∈ V (G) is called the (closed) neighborhood of v and denoted by
N [v]. Note that v ∈ N [v]. We also use N [u, v] = N [u] ∩ N [v] for the common
neighborhood of two vertices u and v. If N [u] = N [v], we call these vertices twins
(note that only adjacent vertices can be twins according to our terminology).
We denote the degree of a vertex v ∈ V (G) as deg(v) = ‖N [v] \ {v}‖.

Let F be a family of sets, which will also be called a set system. We allow
A = B for some A,B ∈ F , i. e. F is a multiset whose elements are sets. The
support of F is defined by supp(F) =

⋃
X∈F X. A slot is an inclusion-maximal

subset S of supp(F) such that each set A ∈ F contains either all of S or none
of it.

The intersection graph of F is the graph I(F) with vertex set F where A
and B are adjacent if they have a nonempty intersection. Note that, if A = B,
these two vertices are twins in the intersection graph.

We consider intervals in the set of nonnegative integers N0, using the standard
notation [a, b] = {i ∈ N0 | a ≤ i ≤ b}. We say [a1, b1] < [a2, b2] if a1 < a2 or
if a1 = a2 and b1 < b2. For interval systems I and J , we write I < J if the
smallest uncommon interval (with due regard to the multiplicities) belongs to I.

A graph G is an interval graph if it is isomorphic to the intersection graph of
a family of intervals I. This is equivalent to the standard definition of interval
graphs as intersection graphs of real intervals. Indeed, if we understand [a, b]
as a real interval, this does not change the intersection graph. On the other
hand, given a finite system of real intervals I, denote the set of all endpoints
by P . Then the system of discrete intervals induced by I on P has the same
intersection graph. It remains to embed P in N0 so that the order is preserved.

An isomorphism ` : V (G) → I from G to I(I) is called an interval labeling
of G. The interval system I is called interval representation of G and will also
be denoted by G`.

4 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky

A labeling of a graph G is a bijection ` : V (G) → {1, . . . , ‖V (G)‖}. In this
case G` will denote the isomorphic image of G on the vertex set {1, . . . , ‖V (G)‖}.
A canonical (interval) labeling for a class of graphs G is a function that for any
graph G ∈ G produces an (interval) labeling `G such that G`G = H`H whenever
G ∼= H. Note that a canonical interval labeling implies a canonical labeling, as
the intervals can be sorted and renamed.

2.2 Hypergraphs

We only consider hypergraphs (V,H) without isolated vertices, i. e., the vertex
set V is exactly supp(H). Hence, we often refrain from explicitly mentioning V .
In order to represent multiple hyperedges, we assign to each hyperedge H ∈ H
a positive integer c(H) ≥ 1, called the multiplicity of H. An isomorphism from
a hypergraph H to a hypergraph K is a bijection φ : supp(H) → supp(K) such
that

• H ∈ H iff φ(H) ∈ K for every H ⊆ supp(H), and
• c(H) = c(φ(H)) for every H ∈ H.

We say that two hyperedges A and B overlap and write A G B if A and
B have a nonempty intersection but neither of them includes the other. The
overlap graph O(H) is the subgraph of the intersection graph I(H) where the
vertices corresponding to the hyperedges A and B are adjacent if and only if
they overlap.

Of course, O(H) can be disconnected even if I(H) is connected. A subset O
of the hyperedges of H corresponding to a connected component of O(H) will
be referred to as an overlap component of H. This is a subhypergraph of H and
should not be confused with the corresponding induced subgraph of O(H). If
O and O′ are different overlap components, then either every two hyperedges
A ∈ O and A′ ∈ O′ are disjoint or all hyperedges of one of the two components
are contained in a single slot of the other component. (This follows from a
simple observation that the conditions B ⊂ A, B G B′, and ¬(B′ G A) imply
that B′ ⊂ A.) This containment relation determines a tree-like decomposition
of H into its overlap components. In the case that O(H) is connected, H will be
called an overlap-connected hypergraph.

We call an interval system I an interval representation of a hypergraph H
if I viewed as hypergraph is isomorphic to H. Hypergraphs having interval rep-
resentations are known in the literature as interval hypergraphs [BLS99, Section
8.7]. Note that interval graphs are not just 2-uniform interval hypergraphs, as
the latter correspond to systems of intervals containing exactly 2 points. This
difference stems from the fact that intervals correspond to the vertices of interval
graphs and to the hyperedges of interval hypergraphs.

Any isomorphism φ from H to I induces a labeling `φ : H → I of the hy-
peredges in H with intervals from I where `φ(H) =

{
φ(x) | x ∈ H

}
. We call a

function ` : H → I an interval labeling of H if ` = `φ for some φ. For another
hypergraph isomorphism ψ, we have `φ = `ψ if and only if ψ−1φ maps every

Interval Graphs: Canonical Representations in Logspace 5

slot of H onto itself. In other words, an interval labeling ` : H → I specifies an
isomorphism from H to I up to arbitrary rearrangements within slots.

Speaking of an interval representation I, we will suppose that supp(I) =
[0, k], where k = ‖supp(I)‖− 1. The map r(x) = k− x will be called the mirror
reflection and the isomorphic interval system I∗ = r(I) will be referred to as
the mirror image of I. The mirror image of an interval labeling ` : H → I is the
interval labeling `∗ : H → I∗ defined as `∗(A) = r(`(A)).

Lemma 2.1. Let H be an overlap-connected hypergraph with at least two hy-
peredges. Then H has either none or exactly two interval labelings, being mirror
images of each other.

Proof. Let ` : H → I be an interval labeling of H. Since I and H are isomorphic,
O(I) is connected and I contains at least two intervals. The intervals I ∈ I con-
taining 0 (resp. ‖supp(I)‖ − 1) will be called leftmost (resp. rightmost). Denote
the longest leftmost (resp. rightmost) interval I ∈ I by L (resp. R). Note that
L 6= R for else I would contain only one interval or O(I) would not be connected.
Call a hyperedge X ∈ H marginal if, for all Y ∈ H such that Y G X, the overlaps
X ∩ Y form a single inclusion chain. It is not hard to see that `(X) ∈ {L,R} iff
X is inclusion-maximal and marginal. The latter conditions define an unordered
pair of hyperedges, A and B, in H, that does not depend on `. Without loss of
generality, suppose that `(A) = L and `(B) = R. By definition, `∗(B) = r(R).

Now consider any interval labeling `′ : H → I ′ mapping H to an arbitrary
interval system I ′ with supp(I ′) = [0, ‖supp(H)‖ − 1]. As we just observed, the
leftmost interval in I ′ equals either `′(A) or `′(B). Consider first the former
case. We have `′(A) = [0, ‖A‖ − 1] = L, that is, `′ coincides with ` on A. Using
induction on the distance d between A and X in O(H), we prove that `′ and `
coincide on all X ∈ H. If d = 1, then `′(X) = `(X) because both intervals must
be equal to [‖A\X‖−1, ‖A∪X‖−1]. If d ≥ 2, let Z G Y G X be the terminal part
of a shortest path from A to X in O(H). By the induction hypothesis, we have
`′(Y) = `(Y) = I and `′(Z) = `(Z) = J . It suffices to show that the intervals I
and J uniquely determine `(X) and `′(X) and the determination rules for both
are identical. Indeed, both `(X) and `′(X) contain exactly one endpoint of I,
which is shared with J iff X and Z have nonempty intersection. This determines
the side of I where `(X) and `′(X) have to be attached. The exact position of
`(X) and `′(X) is determined by the length of the overlap with I, which is equal
to ‖X ∩ Y ‖. We have proved that `′ = `.

In the case that `′(B) is leftmost, we have `′(B) = [0, ‖B‖ − 1] = `∗(B) and
the same argument shows that `′ = `∗. Thus, there exists no interval labeling of
H different from ` and `∗. ut

In Section 3 we will prove a constructive version of Lemma 2.1, namely Lemma 3.2,
showing that the unique pair of mutually reversed interval labelings is efficiently
computable. In fact, in Section 3 we switch into another, equivalent language.
Given an isomorphism φ from a hypergraph H to an interval system I, note
that φ takes a slot of H onto a slot of I and the slots of I form a partition of
supp(I) into intervals. Thus, φ determines a natural geometric order ≺φ between

6 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky

the slots of H: for two slots S and S′ we put S ≺φ S′ if φ(S) lies completely
on the left from φ(S′) in N0. It is easy to see that ≺φ=≺ψ exactly when ψ−1φ
maps every slot of H onto itself. Therefore, we have equality `φ = `ψ for interval
labelings exactly when we have equality ≺φ=≺ψ for slot orderings. Moreover,
given `φ, it is easy (in logspace) to construct ≺φ and vice versa; hence, the two
notions are equivalent for our purposes.

2.3 Bundles of maxcliques

An inclusion-maximal clique in a graph G will be called a maxclique. The (max-
clique) bundle Bv at a vertex v consists of all maxcliques containing v. The
bundle hypergraph of G is defined by the set system BG = {Bv}v∈V (G), i. e., it
has the maxcliques of G as vertices and the bundles in BG as hyperedges. Note
that for twins u, v ∈ V (G), the bundles Bu and Bv are equal; in this case BG
has multiple hyperedges.

G:

c

b

d

a e

f

I:

0 1 2 3

b

a

c d e f

BG:

C0

Bc

C1

Bd

C2

Be

C3

Bf

Bb Ba

Fig. 1. An interval graph G, a minimal interval representation I of G, and the bundle
hypergraph BG of G. The maxcliques of G are C0 = {b, c}, C1 = {a, b, d}, C2 = {a, e},
and C3 = {a, f}.

Lemma 2.2. Every maxclique C of an interval graph G contains vertices u and
v such that C = N [u, v].

Proof. Given an interval representation of G, we will use notation Iv for the
interval corresponding to a vertex v ∈ V (G). We have C ⊆ N [u, v] for any
u, v ∈ C and, therefore, we only need to find u, v such that N [u, v] ⊆ C. For this
purpose, consider an interval representation of G and choose u, v ∈ C so that
Iu∩Iv is inclusion-minimal. For any w ∈ C, we have Iw ⊇ Iu∩Iv for else Iu∩Iw
or Iw ∩ Iv would be strictly included in Iu ∩ Iv. Suppose now that z ∈ N [u, v].
Since Iz intersects Iu ∩ Iv, it has nonempty intersection with Iw for each w ∈ C.
By maximality, z ∈ C. ut

In any graph G, if N [u, v] is a clique, it is maximal. Lemma 2.2 shows that, in
an interval graph G, any maxclique is of this kind and, hence, can be represented
by a pair of vertices u and v (satisfying the first-order definable condition that
N [u, v] is a clique). A bundle Bv can be represented by the corresponding vertex
v. The binary relations Bu ⊆ Bv and Bu G Bv between bundles become first-
order definable (in terms of the adjacency and equality relations on V (G)) and,
therefore, decidable in logspace.

Interval Graphs: Canonical Representations in Logspace 7

We call an interval representation I of an interval graph G minimal, if the size
of supp(I) is the smallest possible. The following lemma has several important
consequences. First, it implies that the bundle hypergraph BG of an interval
graph G is an interval hypergraph. Furthermore, BG captures all information
about a minimal interval representation of G, which is unique up to hypergraph
isomorphism. In particular, BG retains the isomorphism type of G (in fact, G ∼=
I(BG) holds for any graph, not just for interval graphs).

Lemma 2.3. For every minimal representation I of an interval graph G, the
interval system I viewed as a hypergraph is isomorphic to the bundle hypergraph
BG of G.

Proof. Denote the set of all maxcliques of G by M . As in the proof of Lemma 2.2,
the interval of I corresponding to a vertex v of G will be denoted by Iv. This
proof actually shows that every C ∈ M contains vertices u and v such that the
three conditions w ∈ C, Iu ∩ Iv ⊆ Iw, and (Iu ∩ Iv) ∩ Iw 6= ∅ are equivalent. It
follows that for each C we can choose a point xC ∈ supp(I) (in fact, an arbitrary
point in Iu ∩ Iv) so that

w ∈ C ⇔ Iw 3 xC . (1)

Note that xC 6= xC′ if C 6= C ′. Let X = {xC | C ∈ M} and I ′w = Iw ∩X. The
system I ′ = {I ′w | w ∈ V (G)} is still an interval representation of G (here we
speak of intervals in the linearly ordered set X). Indeed, if u and v are adjacent,
let C be a maxclique containing u and v and note that both I ′u and I ′v contain
xC ; if u and v are nonadjacent, then I ′u ∩ I ′v = ∅ because Iu ∩ Iv = ∅.

By minimality of I, we conclude that I ′ = I and supp(I) = X. Therefore,
the correspondence C 7→ xC is a bijection from M to supp(I). By (1), this is
actually a hypergraph isomorphism from BG to I (since the condition w ∈ C
can be rewritten as C ∈ Bw). ut

2.4 An overview of our canonization algorithms

Given an interval labeling ` : H → I of a hypergraph H, we will denote the
interval system I also by H`. By a canonical interval labeling for hypergraphs
we mean an algorithm that, given an interval hypergraph H, produces its in-
terval labeling `H so that H`H = K`K whenever H ∼= K. Lemma 2.3 reduces
canonization of interval graphs to canonization of their bundle hypergraphs.

Lemma 2.4. Computing a canonical interval labeling for an interval graph G
is reducible in logspace to computing a canonical interval labeling of an interval
hypergraph by setting `G(v) = `BG

(Bv). �

Given an interval hypergraph H, we start computing a canonical interval
labeling `H piecewise, finding first interval representations for each overlap com-
ponent O of H. Notice that the overlap components of H can be computed in
logspace using undirected reachability in O(H) [Rei08]. By Lemma 2.1, O has
exactly two interval labelings ` : O → I and `∗ : O → I∗. As the canonical ver-
sion IO we take the smaller of I and I∗ with respect to the order on interval

8 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky

systems introduced in Section 2.1 (or any of them in the mirror-symmetric case
I = I∗). Section 3 explains how to perform this phase in logarithmic space.

To compose all IO’s into an interval representation IH of the whole hyper-
graph H, we use the tree-like decomposition of H into overlap components (see
Section 2.2) to construct a tree representation T(H) of H (see Section 4). Lin-
dell’s tree canonization algorithm [Lin92] allows us to compute IH canonically.

3 Canonizing overlap components

In this section we show how to compute a canonical interval labeling for the
class of overlap-connected interval hypergraphs. Let O be such a hypergraph.
We call two vertices u, v ∈ supp(O) indistinguishable in O and write u ∼O v, if
there is no hyperedge B ∈ O that contains exactly one of them. Clearly, ∼O is
an equivalence relation on supp(O). The equivalence classes of ∼O are the slots
of O. If O consists of a single hyperedge B, we use the interval labeling `O that
maps B to [0, ‖B‖− 1]. So from now on we additionally assume that O consists
of at least two hyperedges.

By Lemma 2.1 we know that O has a unique, up to reversing, interval labeling
`. Recall that an interval labeling of O uniquely determines the action of the
underlying isomorphism on slots of O (see Section 2.2). The slots of O placed
by ` at the left or right end will be called side-slots. We first show that the
two side-slots of O can be identified in logarithmic space; then we show how to
compute the order on the other slots once the left end is fixed.

Lemma 3.1. Let O be an overlap-connected interval hypergraph with at least
two hyperedges. Then the two side-slots of O can be found in FL.

Proof. As O is an interval hypergraph, there exists an interval labeling ` of O. By
Lemma 2.1, ` is unique up to reversing. Like in the proof of that lemma, we call a
hyperedge B marginal if its intersections with the overlapping hyperedges B′ G B
form a single inclusion chain. We can identify the two hyperedges B1, B2 ∈ O
that are mapped by ` to the longest interval starting leftmost and the longest
interval ending rightmost: (1) They are marginal, and (2) they are not included
in any other hyperedge in O. (Other hyperedges are overlapped from both sides,
yielding two inclusion chains, or covered by a larger hyperedge; otherwise O
would not be overlap-connected.)

We observe that the side slot Si at the side of Bi can be characterized by the
following conditions:

1. Si ⊆ Bi,
2. ∀B ∈ O : Si ⊆ B ⇒ B is marginal ∧B ⊆ Bi, and
3. ‖{B ∈ O | Si ⊆ B}‖ is minimal.

Clearly, the construction is possible in logspace. To represent a slot S in logspace,
we store a vertex s ∈ S; the other vertices in S can be easily computed since the
relation ∼O is decidable in logspace.

Interval Graphs: Canonical Representations in Logspace 9

It remains to prove the correctness of this construction. It is clear that a
side-slot Si can only be contained in marginal hyperedges that are subsets of
Bi. Denote the set of all hyperedges with these properties by Bi. Let Ui =
supp(O \ Bi). Note that Si ⊂ Bi \ Ui. Let B′i =

{
B ∈ Bi

∣∣B 6⊂ Ui}. Thus, the
inclusion Si ⊂ B is possible only for B ∈ B′i.

We claim that φ(Ui) is an interval, where φ is any isomorphism underlying the
interval labeling `. It is clear that φ(Ui) contains the interval supp(O`)\`(Bi) and
we have to show that φ(Ui)∩ `(Bi) is an interval too. Without loss of generality,
suppose that `(Bi) is leftmost. If every nonmarginal A ⊂ Bi is included in some
B G Bi, then φ(Ui)∩ `(Bi) is equal to the intersection of the intervals `(Bi) and⋃
BGBi

`(B). Otherwise, among nonmarginal subhyperedges of Bi that are not

covered by any B G Bi we choose the hyperedge A ⊂ Bi with `(A) leftmost. If
there are two or more candidates (with the same left end point), we choose the
one with the longest `(A). We are done if we show that there exists an overlap-
chain of hyperedges Bi G A1 G A2 G · · · G Ak = A with all Aj ’s nonmarginal,
possibly except A1. For this role we consider a shortest overlap-path from Bi
to A. Since A1 G A2 G · · · G Ak has the smallest possible length k, we have
Aj ⊂ Bi for all j > 1. In particular, A2 overlaps with A1 on the left. It suffices
to verify that this is so along all the path: Aj+1 overlaps with Aj on the left for
all j < k. Assume the contrary and set j (1 < j < k) to be the smallest index
such that Aj+1 overlaps with Aj on the right. We must have Aj+1 ⊂ Aj−1 for
else the overlap-path A1 G A2 G · · · G Ak could be shortened. Note that either
Aj−1 ⊂ Bi is nonmarginal or Aj−1 = A1 G Bi. By assumption, in any case `(A)
must be strictly on the left of `(Aj−1). Therefore, the path Aj+1 G · · · G Ak
should eventually go outside of Aj−1 and can be at that point shortened. This
contradiction proves the claim.

Denote the left endpoint of `(A) by xi. Thus, we have proved that φ(Ui) is the
interval with one endpoint xi and the other endpoint equal to the right endpoint
of supp(O`). It is now not hard to see that xi ∈ `(B) for every B ∈ B′i. It follows
that the intervals `(B) \ Ui for B ∈ B′i form an inclusion-chain. Therefore, the
third condition in our construction uniquely determines the side-slot among the
candidate slots S ⊆ Bi\Ui that remain after the first two conditions. An example
can be found in Fig. 2. ut

0 1 2 3 4 5 6

a
b

c
d

e

Fig. 2. Identification of the side-slots S1 and S2: The two inclusion-maximal marginal
hyperedges are B1 = b and B2 = e. We have B1 = {a, b, c} and B2 = {e}, yielding
S1 = {0, 1} and S2 = {6}. Note that x1 = 3.

10 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky

Following [Lau10], we can now use a side-slot S to define a partial order ≺S
on supp(O) as the smallest relation that satisfies the following properties:

1. u ≺S v for each u ∈ S and v /∈ S.
2. For each hyperedge B in O and vertices u, v ∈ B, w /∈ B:

u ≺S w ⇔ v ≺S w and w ≺S u⇔ w ≺S v (2)

u ≺S v can be read as “if slot S is leftmost, then vertex u is left of v”.

Lemma 3.2. If S is a side-slot of O, then ≺S induces a strict linear order on
the slots of O, which is equal to the order in which slots appear in an interval
labeling of O.

Proof. Let I be an interval representation of O and φ be a hypergraph isomor-
phism from O to I. Suppose that φ(S) is placed leftmost (reverse the interval
representation if necessary). Define a relation ≺ on supp(O) by setting u ≺ v
iff the interval φ([u]∼O) lies strictly on the left of the interval φ([v]∼O). Since
Conditions 1 and 2 in the definition of ≺S are true for ≺, ≺S is a subrelation of
≺. We will prove that ≺S is actually equal to ≺.

Given u 6∼O v, it suffices to show that either u ≺S v or v ≺S u. Let B0 G · · · G
Bk be a shortest overlap-path in O such that S ⊆ B0 and Bk contains precisely
one of u and v. The claim is proved by induction on the length k of the path.
If k = 0, the claim clearly holds. If k ≥ 1, suppose w. l. o. g. that u ∈ Bk. If
v /∈ Bk−1 then for any w ∈ Bk−1 we have either v ≺S w or w ≺S v by induction,
and since Bk−1∩Bk 6= ∅ the claim follows by (2). If v ∈ Bk−1, then also u ∈ Bk−1
since we assumed the path to be shortest. Then for any w′ ∈ Bk \Bk−1, we have
v ≺S w′ or w′ ≺S v by induction, and again the claim follows by (2). ut

By Lemma 3.2 we can use ≺S to define an interval labeling `S of O by

`S(B) =
[

pos(B),pos(B) + ‖B‖ − 1
]
, (3)

where a vertex v ∈ supp(O) has position pos(v) = ‖{u ∈ supp(O) | u ≺S v}‖
and a hyperedge B ∈ O has position pos(B) = min{pos(v) | v ∈ B}.

Let `S1 and `S2 be the interval labelings for O corresponding to the two side-
slots S1 and S2 of O. By Lemma 2.1, these are the only two interval labelings
of O. It easily follows that the pair {O`S1 ,O`S2} is a complete invariant of O.
Hence, we can choose a canonical interval labeling `O of O among `S1

and `S2
by

requiring that the set O`O =
{
`O(B) | B ∈ O

}
of intervals becomes minimal (if

O`S1 is mirror-symmetric, we choose it arbitrarily). We denote the corresponding

partial order on the vertices of O by ≺O. By ~O we denote the list of hyperedges
B ∈ O, ordered by their intervals `O(B) (we will need it in the next section).

Lemma 3.3. Given an overlap-connected hypergraph O, the following can be
done in logspace:

1. Computing the partial order ≺O on supp(O),

Interval Graphs: Canonical Representations in Logspace 11

2. computing a canonical interval labeling `O of O,
3. computing the corresponding ordered list of hyperedges ~O, and
4. deciding if O`O is mirror-symmetric or not.

Proof. To prove that u ≺S v can be decided in logspace, we construct an auxil-
iary undirected graph G:

V (G) = {s} ∪
{

(u, v) | u, v ∈ supp(O) with u 6= v
}

E(G) =
{
{s, (u, v)} | u ∈ S, v /∈ S

}
∪
{
{(u,w), (v, w)} | ∃B ∈ O : u, v ∈ B,w /∈ B

}
∪
{
{(w, u), (w, v)} | ∃B ∈ O : u, v ∈ B,w /∈ B

}
A node (u, v) corresponds to the statement “u ≺S v”. Using this interpretation,
the edges of G correspond closely to Conditions 1 and 2 in the definition of ≺S ;
so we have u ≺S v iff there is a path from s to (u, v) in G. Reachability in
undirected graphs is decidable in L using Reingold’s algorithm [Rei08].

Once ≺S can be decided in logspace, it is easy to compute `S according to
(3) and to choose the left side-slot S ∈ {S1, S2} so that O`S = min{O`S1 ,O`S2 }.
Furthermore,O`O is mirror-symmetric iff both interval representations are equal.

Given `O, it is easy to sort the hyperedges in O, and thereby compute ~O. ut

4 Canonizing interval hypergraphs

Let H be an interval hypergraph. We assume that H is connected: To ensure
this, we add an additional hyperedge B0 = supp(H); it can be discarded once
the canonical interval labeling is computed.

4.1 The tree representation

As noted before, the overlap components ofH form a tree. We say that an overlap
component O′ is located at a slot S (of an overlap component O), if supp(O′) ⊆ S
and there is no intermediate overlap component O′′, i. e. supp(O′′) ⊆ S and O′
is contained in some slot of O′′.

Our goal is to construct a tree representation T(H) of an interval hypergraph
H such that H1

∼= H2 ⇔ T(H1) ∼= T(H2). To achieve this, we color the compo-
nent nodes with their canonical interval representation and introduce slot nodes
to make sure that overlap components that are located at the same slot are
kept together in any isomorphic copy of the tree representation. However, this
is not enough to ensure that isomorphic tree representations imply isomorphic
hypergraphs, as can be seen in Fig. 3.

To make sure that isomorphic trees imply isomorphic hypergraphs, we con-
strain the order of the slots of an overlap component. For overlap components
with mirror-symmetric interval representation we fix the slot order up to revers-
ing; for asymmetric ones we fix it completely. The latter can be achieved by just
using the position from the left as colors for the slots; in the former case we use

12 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky

H1:

0 1 2 3 4 5 6 7

a
b

c

d e
f g h i j k l m

H2:

0 1 2 3 4 5 6 7

a
b

c

d e
f g h i j k l m

a, b, c

S0,1

d

S2

f

S3

g

S2,3

e

S2

h

S3

i

S4,5

j k

S6,7

l m

Fig. 3. The interval hypergraphs H1 and H2 are non-isomorphic. Yet they end up with
isomorphic tree representations, if only component and slot nodes are used.

the position from the margin which is closer. Here, the position of a slot S in O
from the left and from the right is determined by counting the number of slots
that are placed by ≺O to the left and to the right of S, respectively:

lpos(S) = ‖{S′ | S′ is a slot of O with S′ ≺O S}‖
rpos(S) = ‖{S′ | S′ is a slot of O with S ≺O S′}‖

Now we need to make sure that either all or none of the slots with the same
color change their positions. To do so, we introduce an additional type of nodes
in the tree to group the slots. If O has a mirror-symmetric canon O`O , we call
a slot S of O low if lpos(S) < rpos(S), middle if lpos(S) = rpos(S), and high if
lpos(S) > rpos(S). If O`O is not mirror-symmetric, we call all its slots low.

Using these notions, we now define a tree representation for interval hyper-
graphs.

Definition 4.1. For a connected interval hypergraph H, its tree representation
T(H) is defined by

V (T(H)) ={ ~O, loO,miO, hiO | O is an overlap component of H}
∪ {S | S is a slot of some overlap component O of H}

E(T(H)) ={(~O, loO), (~O,miO), (~O, hiO) | O is an overlap component of H}
∪ {(loO, S), (miO, S), (hiO, S) | S is a low/middle/high slot in O}

∪ {(S, ~O) | the overlap component O is located at slot S}

Further we define a coloring c of the component-nodes ~O and slot-nodes S by

c(~O) = O`O

c(S) =

{
lpos(S) if S is low or middle,

rpos(S) if S is high.

Interval Graphs: Canonical Representations in Logspace 13

As H is connected, there is an overlap component O0 with supp(H) =

supp(O0). ~O0 is the root of the directed tree T(H). See Fig. 4 for an exam-
ple of a tree representation.

Note that, for an overlap component O with symmetric interval representa-
tion, the definition of ≺O is only unique up to reversing, so lpos and rpos can
exchange their values depending on the arbitrary choice of ≺O. These choices
influence the construction of the tree. However, T(H) is unique up to isomor-
phism, as only the loO and hiO nodes can be exchanged and the colors of the
slots stay the same.

0 1 2 3 4 5 6

a e f
i

j
b

d
c

g h
{[0, 1], [1, 5], [2, 6]}

b, d, c

lo mi hi

S0
{0} S6

{6}S2
{2,...,5}S1

{1}

a

lo mi hi

S0
{0}

j

lo mi hi

S0
{6}

e

lo mi hi

S0
{2}

{[0, 1], [1, 2]}
g, h

lo mi hi

S1
{4}S0

{3} S0
{5}

f

lo mi hi

S0
{3}

i

lo mi hi

S0
{5}

Fig. 4. An interval hypergraph H and the corresponding tree representation T(H).
Gray rectangles in T(H) indicate the color of overlap components. Overlap components
have color {[0, 0]} where not indicated. Slot name Sk

{i,...,j} denotes slot {i, . . . , j} and
indicates that its color is k. We omit the indices of the lo, mi and hi nodes as they are
clear from the structure of the tree.

Our goal is to compute a canonical interval labeling of H using a modified
version of Lindell’s canonization algorithm for trees [Lin92] on T(H). For this
approach, we must first compute T(H) in logspace.

Lemma 4.2. For a given interval hypergraph H, its tree representation T(H)
can be computed in FL.

Proof. Notice that a slot S of an overlap component O can be represented by a
tuple (u,B), where u is any vertex contained in S and B is any hyperedge in O.

Lemma 3.3 allows us to compute ~O, ≺O and `O for an overlap component O
in logspace. Using ≺O, we can enumerate all slots and compute lpos(S) and
rpos(S). Using this information, T(H) can easily be constructed in logspace. ut

14 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky

We proceed to show a basic structural property of T(H) that we exploit in
order to compute the canonical interval labeling. We call a slot S of an overlap
component O leaf-slot if it occurs as a leaf-node in T(H). Note that S is a
leaf-slot iff it contains no other overlap component.

Lemma 4.3. Each slot of H occurs exactly once as leaf-slot in T(H).

Proof. It is easy to see that every leaf-slot S is a slot of the hypergraph H and,
vice versa, every slot of H is a leaf-slot of some overlap component. Note also
that the same slot S of H cannot be a leaf-slot of different overlap components.
Therefore, we have a one-to-one correspondence between the leaves of T(H) and
the slots of H. ut

We will compute a canonical labeling of T(H) and call it `T(H). For this, we
observe a generalization of Lindell’s tree canonization algorithm [Lin92].

Lemma 4.4. Lindell’s algorithm [Lin92] can be extended to colored trees and to
output not only a canonical form, but also a canonical labeling. This modification
preserves the logarithmic space bound.

Proof sketch. Colors can be handled by extending the tree isomorphism order
defined in [Lin92] by using color(s) < color(t) as additional condition (where
s and t are the roots of the trees to compare). The canonical labeling can be
computed by using a counter i initialized to 0: Instead of printing (the opening
parenthesis of) the canon of a node v, increment i and print “v 7→ i”. ut

4.2 Computing a canonical interval labeling

Our aim is a traversal of T(H) that is left-to-right in the resulting canon. That is,
we visit the leaf-slots in ascending order of the positions of their corresponding
vertex sets in the computed canonical interval representation. To achieve this,
we use the canonical labeling `T(H) of T(H).

We first recall the logspace tree traversal that is used in Lindell’s canonization
algorithm to traverse a tree where the children of each node are linearly ordered.
Only the current node must be remembered, because when given a node, it is
possible in logspace to (1) go to its first child, (2) go to its next sibling, and
(3) go to its parent. “First” and “next” can be respective to any order on the
children of a node that can be evaluated in logspace. In our left-to-right traversal
we use the following order:

– The children of an overlap component node ~O are either ordered loO <
miO < hiO (if O`O is not mirror-symmetric or if `T(H)(loO) < `T(H)(hiO))
or hiO < miO < loO (otherwise).

– The children of the first child of an overlap component node ~O (this can be
either loO or hiO) are visited in ascending order of their colors.

– The children of the last child of an overlap component node ~O (this can be
either hiO or loO) are visited in descending order of their colors.

Interval Graphs: Canonical Representations in Logspace 15

– The children of a slot node are ordered by the label assigned to them by
`T(H).

Note that the children of loO and hiO all have different colors. Also,miO can have
at most one child. All these conditions can be evaluated in logspace without using
non-local information. Traversing T(H) in this order makes sure that the slots
of an overlap component O are visited either in ascending or descending order
of their positions. The latter case can only occur if O`O is mirror-symmetric.

We complete the description of our algorithm by showing how, while process-
ing T(H), a canonical interval labeling can be computed in logspace. Additionally
to the current node we store a current offset o that equals to the number of ver-
tices in the leaf-slots we have passed already. We initialize o = 0 and increment
it whenever the logspace tree traversal passes a leaf-slot node by the size of that
slot. Whenever we enter an overlap component node ~O = (B1, . . . , Bk) for the
first time, we output the mappings Bi 7→ [li + o, ri + o] where [li, ri] is the ith-

smallest interval in c(~O) = O`O if loO < miO < hiO, and the ith-largest interval
otherwise. In the first case this results in `H(B) = `O(B) + o. In the second case
this association is mirrored: If r : O → O is the hypergraph isomorphism that
reverses O, then `H(B) = `O(r(B)) + o. After traversing all of T(H), we have
output a mapping for each B ∈ H. We call this mapping `H.

Lemma 4.5. `H is an interval labeling of H.

Proof. Take any two hyperedges B,B′ ∈ H. Let O and O′ be the overlap com-
ponents containing B and B′, and let o and o′ be the current offsets when O
and O′ are first entered, respectively. If O = O′, we are done because `O is an
interval labeling and the offset o preserves intersection.

If supp(O) and supp(O′) do not intersect, then B and B′ are not adjacent.
W. l. o. g. assume o < o′. Indeed we have o + ‖supp(O)‖ ≤ o′, as each vertex in

supp(O) is contained in a leaf-slot below ~O and the offset is advanced by one for
each of these. As `O(B) ⊆ [0, ‖supp(O)‖ − 1] (see the definition of `O), `H(B)
and `H(B′) do not intersect.

If supp(O) and supp(O′) do intersect, one must be contained in the other.
W. l. o. g. assume supp(O′) ⊂ supp(O) and let S be the slot of O in which
supp(O′) is contained. If B ⊇ S, then B and B′ are adjacent. By Lemma 4.3
and the order of our tree traversal we have `O(B) + o ⊇ [o′, o′ + ‖supp(O′)‖ −
1]. Finally, if B ∩ S = ∅, then u and v are not adjacent. Also the leaf-slots

corresponding to the maxcliques in B will be processed all before or all after ~O′,
so `H(B) and `H(B′) do not intersect. ut

In the following we prove that the interval labeling `H is canonical.

Lemma 4.6. If H and K are isomorphic connected interval hypergraphs, then
T(H) ∼= T(K).

Proof. Since any isomorphism φ between H and K induces a unique mapping
of the overlap components O of H to isomorphic overlap components O′ of K,
it is clear how to define an isomorphism φ′ between T(H) and T(K) on the

16 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky

component-nodes ~O of T(H). Further, since the canonical interval representa-

tions O`O and O′`O′ coincide, ~O and φ′(~O) indeed have the same colors.

In order to define φ′ on the lo,mi and hi nodes of T(H), consider a component-

node ~O = (B1, . . . , Bk) of T(H). If O`O is not mirror-symmetric, then it fol-

lows that ~O′ = (φ(B1), . . . , φ(Bk)). Otherwise, it is also possible that ~O′ =
(φ(Bk), . . . , φ(B1)). In the first case we let φ′(loO) = loO′ , φ′(miO) = miO′ ,
φ′(hiO) = hiO′ ; in the second we let φ′(loO) = hiO′ , φ′(miO) = miO′ and
φ′(hiO) = loO′ .

Finally, since all children of a lo, mi or hi node have different colors, there
is a unique way to define φ′ on the slot-nodes of T(H).

Now it can be easily checked that φ′ indeed is an isomorphism between T(H)
and T(K). ut

Now we are ready to prove our main result on interval hypergraphs.

Theorem 4.7. Given an interval hypergraph H, a canonical interval labeling
`H for H can be computed in FL.

Proof. We have to show that the labelings `H and `K of any two isomorphic inter-
val hypergraphs H and K map these graphs to the same interval representation
H`H = K`K :

By Lemma 4.6, the colored trees T(H) and T(K) are isomorphic. Hence
it follows that the canonical labelings `T(H) and `T(K) map these trees to the

same colored tree T(H)`T(H) = T(K)`T(K) . Further, it is easy to see that the
interval representation H`H only depends on the tree T(H)`T(H) , implying that
H`H = K`K . ut

5 Canonizing interval graphs and convex graphs

The reduction of Lemma 2.4 transforms Theorem 4.7 into a result on interval
graphs.

Corollary 5.1. Given an interval graph G, a canonical interval labeling `G for
G can be computed in FL.

A bipartite graph G is called convex if one of its vertex classes can be lin-
early ordered so that the neighborhoods of the vertices in the other class are
intervals with respect to this order. If both vertex classes have such orderings,
G is called biconvex. The standard representation of hypergraphs as bipartite
graphs transforms a hypergraph with vertex set V and hyperedge set H into the
bipartite graph with vertex classes V and H where vertices v ∈ V and H ∈ H
are adjacent iff v ∈ H. Note that this transformation yields exactly the convex
graphs when applied to interval hypergraphs.

Corollary 5.2. Canonical labelings for convex graphs can be computed in FL.

Interval Graphs: Canonical Representations in Logspace 17

Proof. The open neighborhood of a vertex v is defined by N(v) = N [v] \ {v}.
Let G be a convex graph with vertex classes U and V , which can be found
in logspace using Reingold’s algorithm [Rei08]. Reversing the aforementioned
transformation of hypergraphs into bigraphs, we obtain two hypergraphs HU =
(U, {N(v) | v ∈ V }) and HV = (V, {N(u) | u ∈ U}). Since G is convex, at least
one of them is an interval hypergraph. Suppose that this is true for HU and
let ` be its canonical interval labeling. Sorting the labels `(N(v)), v ∈ V , we
obtain a labeling of V . A labeling of U is obtained from the canonical ordering
of slots of HU given by Lemma 3.2. If HV is an interval hypergraph too (i.e.,
G is biconvex), we compare the two labelings and, if they differ, choose the
lexicographically smaller. ut

6 Computing proper and unit interval representations

Lemma 6.1. Let F and E be overlap-connected hypergraphs with supp(F) =
supp(E), each containing at least two hyperedges. Then their union F ∪ E is
overlap-connected, too.

Proof. Choose F ∈ F and E ∈ E with nonempty intersection. If F G E or
F = E, the claim is obviously true. Otherwise, suppose that E ⊂ F . Note that
F 6= supp(F) because F is not the only hyperedge in F and O(F) is connected.
Let x ∈ supp(F) \ F . Since supp(F) = supp(E), there is a hyperedge E′ ∈ E
containing x. By the connectedness of O(E), there is an G-path E1 G E2 G . . . G El
connecting E = E1 and E′ = El. Let m < l be the largest index such that
Em ⊆ F . Then Em+1 G F . ut

The set system NG = {N [v]}v∈V (G) is called the (closed) neighborhood hy-
pergraph of the graph G. It is clear that NG ∼= NH whenever G ∼= H. Harary
and McKee [HM94] show that the converse is true if G is chordal.

An interval system I is proper if there is no inclusion I ⊆ J between two
intervals I and J in I. An interval labeling ` : V (G)→ I of a graph G is proper
if the interval representation I is proper. Graphs admitting such labelings are
called proper interval graphs. Let I =

{
[ai, bi]

∣∣ 1 ≤ i ≤ n
}

. In the absence of
inclusions, the endpoints ai’s are pairwise distinct and the same is true about
the bi’s. Suppose that ai < ai+1 for all i < n; then we also have bi < bi+1. This
yields a natural geometric order on I.

Let v1, . . . , vn be the corresponding order on V (G), that is, `(vi) = [ai, bi].
Observe that, if vi is adjacent to vj with j > i, then vi is adjacent to vk for
all i < k ≤ j. This implies that each N [vi] is an interval with respect to the
introduced order; therefore, NG is an interval hypergraph.3 If combined with
the aforementioned result of Harary and McKee and our Theorem 4.7, this im-
mediately gives us a logspace computable complete invariant for proper interval
graphs. This invariant is generally not an interval representation of G. Note

3 It is also not hard to prove the converse: If NG is an interval hypergraph, then G is
a proper interval graph (see [Duc84, Corollary 8.9]).

18 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky

also that the minimal interval representation constructed in Corollary 5.1 is not
proper if the graph contains at least one edge (see Fig. 5 for an example). Now
our aim is to come up with a canonical proper interval representation of a given
proper interval graph.

G:
a

b

c

I:

0 1 2 3

Ia
Ib

Ic

BG:

{a, b} {b, c}

Ba

Bb

Bc

NG:

a b c

N [a]
N [b]
N [c]

Fig. 5. A proper interval graph G and a proper interval representation I of G. However,
the bundle hypergraph BG is not proper. The neighborhood hypergraph NG is neither
proper nor an interval representation of G.

It is easy to see that a proper interval graph with n vertices always has a
proper interval representation I =

{
[ai, bi]

∣∣ 1 ≤ i ≤ n
}

where
{
ai, bi

∣∣ 1 ≤ i ≤ n
}

= {1, 2, . . . , 2n}. From now on we will consider only such representations. To-
gether with a proper interval labeling ` : V (G) → I, the graph G has also
the reversed proper interval labeling `∗ : V (G) → I∗ with `∗(vi) = r([ai, bi]),
where r(x) = 2n+ 1− x. Under this interval labeling, the vertices of G appear
as intervals in the reversed order vn, . . . , v1. The first, graph-theoretic part of
the following lemma is a version of a result by Deng, Hell, and Huang [DHH96,
Corollary 2.5]. We state it in another form and prove by a different method,
which allows us to obtain also a logspace computability result.

Lemma 6.2. Let G be a connected proper interval graph with no twins. Then,
up to reversing, G has a unique proper interval labeling. The latter is computable
in logspace.

Proof. Call a vertex u of G central if N [u] = V (G). Since central vertices are
twins, G can have at most one such vertex.

Let ` : V (G)→ I be a proper interval labeling of G. Let v1, . . . , vn be the as-
sociated geometric ordering of the vertices of G. Denote the corresponding strict
order on V (G) by ≺`. As it was mentioned, ≺` defines an interval representation
of the neighborhood hypergraph NG.

Given a non-central vertex vi, let s = s(i) be the largest index such that s < i
and vs /∈ N [vi] and, similarly, t = t(i) be the smallest index such that t > i and
vt /∈ N [vi]. At least one of these indices is well defined. Note that N [vi] G N [vs].
Indeed, vs /∈ N [vi], vi /∈ N [vs], and vs+1 belongs to both sets (vs and vs+1 are
adjacent because G is connected). Similarly, we have N [vi] G N [vt]. Note that
neither vs nor vt is central. It follows that, for any non-central vi, there is a
subsequence of indices i1, . . . , ik containing i such that

N [vi1] G N [vi2] G · · · G N [vik] and N [vi1] ∪N [vi2] ∪ · · · ∪N [vik] = V (G).

Interval Graphs: Canonical Representations in Logspace 19

If there is a central vertex u, remove N [u] from NG and denote the modified
hypergraph by N ′G. By Lemma 6.1 we conclude that N ′G is overlap-connected.
By Lemmas 2.1 and 3.2 there is a canonical pair of mutually reversed strict
orders ≺, ≺∗ on the slots of N ′G such that the slots appear according to one of
these orders in any interval labeling of the hypergraph.

Since G has no twins, the slots of NG are singletons {v1}, . . . , {vn}. Note that
N ′G has all the same slots. Thus, ≺ and ≺∗ can be considered orders on V (G),
and one of them must coincide with ≺`. To prove the uniqueness result, it now
suffices to notice that ≺`, i.e., the sequence v1, . . . , vn, uniquely determines `.
Indeed, we must have

ai = i+ ‖{j < i | vj is non-adjacent to vi}‖
and bi = ai + 1 + deg(vi).

(4)

The computability result readily follows by (4) from the logspace computability
of the sequence v1, . . . , vn and/or its reversal, see Lemma 3.3. ut

Theorem 6.3. Given a proper interval graph G, a canonical proper interval
labeling `G for G can be computed in FL.

Proof. Assume that G is connected. If G has no twins, Lemma 6.2 allows us
to compute two mutually reversed proper interval labelings ` : V (G) → I and
`∗ : V (G) → I∗. We choose ` as canonical if I < I∗ (the order on interval
systems is defined in Section 2.1); otherwise `∗ is chosen (if I = I∗, either choice
is good). If G has twins, we still have a canonical pair `, `∗ which is unique up to
interchanging labels within a twin class. In order to compute this pair, we replace
each twin class by a single representative, obtaining a twins-free quotient graph
G′. As in the proof of Lemma 6.2, we compute the proper ordering v′1, . . . , v

′
n′ on

V (G′) (unique up to reversing). Further, we expand this sequence by substituting
each v′i with all its twins, obtaining an ordering v1, . . . , vn of V (G). Finally, the
intervals `(vi) = [ai, bi] are computed accordingly to (4). Another candidate is
`∗ = r◦`; we choose one of the two which gives a <-least interval representation.

If G is disconnected, we split it into connected components G1, . . . , Gk using
Reingold’s algorithm. For each of them, we compute the canonical labeling `Gj

:
V (Gj)→ Ij and sort out the interval representations I1, . . . , Ik. Then we merge
the `Gj ’s into an integrated labeling `G : V (G)→ I so that the supports of the
Ij ’s appear in supp(I) according to the established order. ut

Note that both the linear time [DHH96,HSS01] and the AC2 [BHI07] representa-
tion algorithms for proper interval graphs are based on computing the canonical
order of vertices of the input graph as in the proof of Lemma 6.2 (as we already
mentioned, this lemma is proved in [DHH96] in a different language and by a
different argument).

Lastly, let us turn to the task of finding a canonical unit interval labeling for
a given proper interval graph. A graph is a unit interval graph if it has an interval
model in which every interval has unit length. It is well-known that the class of
proper interval graphs is equal to the class of unit interval graphs [Rob69].

20 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky

Given a unit interval graphG = (V,E), let `G be the canonical proper interval
labeling for G as in Theorem 6.3. We assume that G is connected; if it is not,
then we deal with the connected components individually and piece them back
together in the end. Let v1, . . . , vn be the vertices of G in the strict ordering
induced by `G. For every vertex v 6= v1, let lv be the least neighbor of v in this
ordering. The edge lvv is called principal edge at v. It is easy to see that the set
of principal edges forms a tree T on V that is rooted at v1.

For every vertex v, let k(v) be the level at which v is located in T , and let p(v)
be the number assigned to v in a postorder traversal of T , where the children
of each node in T are ordered as in the preceding paragraph. Since T is easy to
define in logspace, both values can be computed in FL for any v ∈ V . Assign
to any vertex v the value vL = k(v) + p(v)/n. Corneil et al. show in [CKN+95,
Theorem 3.2] that {(vLi , vLi + 1) | i ∈ [n]} is a unit interval representation of G,
and that assigning (vLi , v

L
i +1) to vi for every i ∈ [n] yields a unit interval labeling

for G. Since we started with a canonical proper interval representation of G and
the procedure does not involve any arbitrary choices, we obtain a canonical unit
interval labeling for G in FL.

7 Completeness results

Having a canonical (interval) labeling for a (hyper)graph class in FL immediately
implies that the isomorphism problem of that class is in L. Thus the isomorphism
problem of interval hypergraphs, interval graphs and convex graphs is in L by
Theorem 4.7, Lemma 2.4 and Corollary 5.2. Moreover, there is a standard Turing
reduction of the automorphism group problem (i. e. computing a generating set
of the automorphism group of a given graph) to the search version of graph
isomorphism for colored graphs (cf. [Hof82,KST93]). It is not hard to see that
this reduction can be performed in logspace. We obtain the following result for
interval graphs.

Corollary 7.1. Computing a generating set of the automorphism group of a
given interval graph, and hence computing a canonical labeling coset for a given
interval graph is in FL. Further, the automorphism problem (i. e., deciding if a
given graph has a non-trivial automorphism) for interval graphs is in L.

The same holds for interval hypergraphs and convex graphs.
In this section, we additionally prove hardness of these problems for L. The

hardness results are under DLOGTIME-uniform AC0 reductions.

Theorem 7.2. The isomorphism and automorphism problems of interval graphs,
bipartite permutation graphs, biconvex graphs, and convex graphs are L-complete.

Bipartite permutation graphs are a subclass of biconvex graphs, which are in
turn a subclass of convex graphs; so the L-algorithms for these classes are al-
ready shown in the previous sections. To prove the hardness, we show that the
isomorphism and automorphism problems are L-hard even for caterpillars, a sub-
class of the mentioned graph classes. Caterpillars are trees that become paths
when all leaves are removed.

Interval Graphs: Canonical Representations in Logspace 21

Lemma 7.3. Given a caterpillar G, it is L-hard to decide if G has a nontrivial
automorphism.

Proof. We reduce from the L-complete problem PathCenter (cf. [KK09]):
Given an undirected path P of odd length and a vertex c ∈ V (P), decide if
c is the center node of P . We can assume that c has distance at least two to
both ends; otherwise the instance can be trivially decided. We use the reduction
(P, c) 7→ G, where G is the graph that is obtained from P by adding a new
vertex c′ and an edge {c, c′}. It is clear that G is a caterpillar. If c is the center
of P , then G has the nontrivial automorphism that reflects P and maps c′ to
itself. If c is not the center of P , consider any automorphism ϕ of G. It must
map c to itself as it is the only vertex of degree 3. Also, it must map c′ and the
ends of p to themselves, as they are the only vertices of degree 1 and all of them
have a different distance to c. This implies that the other vertices are fixed as
well, so ϕ must be the identity. ut

P :
c

P ′:
c7→ 7→

G:
c

c′

G′:
c

c′

Fig. 6. The reduction from PathCenter to the automorphism problem of caterpillars.

The following lemma can be proved using a similar construction, that also
marks either of the two end vertices of P (using two additional vertices) in G1

and G2, respectively.

Lemma 7.4. Given two caterpillars G1 and G2, it is L-hard to decide if G1 and
G2 are isomorphic. �

P :
c

P ′:
c7→ 7→

G1:
c

c′

G2:
c

c′

G′
1:

c

c′

G′
2:

c

c′

Fig. 7. The reduction from PathCenter to the isomorphism problem of caterpillars.

22 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky

We observe that these constructions can be modified to yield unit interval graphs:
For this, we add edges from the newly introduced marker vertices to all neighbors
of the corresponding marked vertex (including other marker vertices). To obtain
a unit interval labeling, the marker vertices can be mapped to the interval of the
corresponding marked vertex, modified by a small offset that does not change
intersections.

Theorem 7.5. The automorphism and isomorphism problems of proper interval
graphs are L-complete.

Another modification of these constructions can be used to show that the au-
tomorphism and isomorphism problems of interval hypergraphs are hard for L:
Paths can also be viewed as 2-uniform hypergraphs. The only difference is that
no new edges are added, but the edges incident to the vertex that is to be marked
is extended to also include the marker vertices.

Theorem 7.6. The automorphism and isomorphism problems of interval hy-
pergraphs are L-complete.

We now turn to the recognition problems of the mentioned graph classes.

Theorem 7.7. It is L-complete to decide if a given graph is

– an interval graph,
– a proper interval graph,
– a convex graph,
– a biconvex graph,
– a bipartite permutation graph,
– a caterpillar, and
– a path, respectively.

Recognition of interval graphs in logspace follows from the results of Reif [Rei84].
Each of the classes of bipartite permutation, biconvex, and convex graphs ad-
mits a characterization in terms of so-called asteroidal triples; see, e.g., [BLS99,
Proposition 6.2.1] and [Spi03, Section 9.7.2]. This characterization enables recog-
nition of each of the three classes in logspace by a simple reduction to the connec-
tivity problem. Interval hypergraphs are also recognizable in logspace either by
using a characterization by Duchet [Duc78] or just by noticing the logspace equiv-
alence between recognition of interval hypergraphs and convex graphs. Proper
interval graphs can be recognized in logspace using our results from Section 6.

Proof. To prove the hardness, we give a reduction from the L-complete problem
Ord such that positive instances are mapped to paths (which are included in all
graph classes listed above) and negative instances are mapped to graphs which
are neither chordal nor bipartite (and thus are not in any of the listed classes).

Ord was proved to be L-complete by Etessami [Ete97] and can be described
as follows: Given a directed path P and vertices s, t ∈ V (P), decide if there is a
path from s to t, that is if s is smaller than t in the order induced by the edge
relation.

Interval Graphs: Canonical Representations in Logspace 23

If P is such a directed path, it can be checked in AC0 if s or t are among the
first 2 vertices in the path. If so, output a trivial yes or no-instance depending
on whether s has been encountered first.

If neither s nor t are among the first 2 vertices of P , then we construct an
undirected graph G from P as follows: For each vertex v ∈ V (P) insert a new
vertex v′ between v and its successor. Replace the incoming edge of s with (t′, s)
and replace the edge (t, t′) with an edge that connects the first vertex in P and t.
Finally forget about the directions of the edges. Fig. 8 shows an illustration of
this construction. It is easy to verify that positive instances of Ord are mapped
to paths, while the image of negative instances contains a chordless circle of odd
length consisting of at least 5 vertices.

This construction can clearly be done in DLOGTIME-uniform AC0. ut

s t t s

7→ 7→

s s′ t t′ t t′ s s′

Fig. 8. The reduction that maps positive instances of Ord to paths and negative
instances to non-chordal non-bipartite graphs.

Remark 7.8. Using Reingold’s undirected graph reachability algorithm [Rei08],
it is easy to see that recognition of bipartite graphs is in L. Together with
a result by Reif [Rei84], Reingold’s algorithm also implies that recognition of
chordal graphs can be done in logspace. Thus, the proof of Theorem 7.7 also
implies L-completeness of the recognition problems of these two graphs classes.

We also remark that deciding if an interval graph is a proper one is in AC0,
as an interval graph is proper iff it has no induced copy of K1,3 [Rob69].

Corollary 7.9. It is logspace complete to compute a perfect elimination order
(peo) or an interval labeling of an interval graph G.

Proof. An interval labeling can be constructed in logspace by Corollary 5.1.
Computing a peo is logspace hard even for paths [KK09]. Finally, it is not hard
to see that the ordering the vertices of G induced by any interval labeling of G
is a peo. ut

8 Conclusion

We have proved that a canonical interval labeling of a interval graphs and in-
terval hypergraphs can be computed in logarithmic space. In particular, this

24 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky

puts into FL the problems of deciding graph isomorphism and finding a generat-
ing set of the automorphism group of interval graphs, interval hypergraphs and
convex graphs. We also gave logspace algorithms to compute interval represen-
tations of interval graphs and interval hypergraphs, and proper and unit interval
representations of proper interval graphs, placing the recognition of proper in-
terval graphs in L as well. Finally, we showed L-hardness of the problems of the
recognition, isomorphism and automorphism problems of these graph classes and
conclude that all these problems are in fact L-complete.

Our canonization techniques can be used to show that each interval graph
can be succinctly defined in first-order logic with counting quantifiers, where the
vocabulary consists of the adjacency and the equality relations on the vertex
set. By the results of Laubner [Lau10], this is possible in a logic with a bounded
number of first-order variables. Cai, Fürer, and Immerman [CFI92] established
a general connection between definability of graphs and solvability of the iso-
morphism problem by the multidimensional Weisfeiler-Lehman algorithm. As
a consequence, there is a constant k such that the k-dimensional Weisfeiler-
Lehman algorithm correctly decides isomorphism of two interval graphs (in time
O(nk)). We are now able to show that interval graphs are definable in a finite-
variable counting logic with logarithmic quantifier depth. By a result of Grohe
and Verbitsky [GV06], this implies that the Weisfeiler-Lehman algorithm solves
the interval graph isomorphism with parallel complexity in TC1. The details will
appear in a follow-up paper.

Going beyond interval graphs, there are several natural graph classes that
suggest an investigation whether they can similarly be handled in L. For example,
circular-arc graphs generalize interval graphs as intersection graphs of arcs on a
circle. Just like interval graphs, circular-arc graphs can be recognized efficiently
in linear time (cf. [KN06]). However, while intuition suggests a reduction of
circular-arc graphs to interval graphs by “cutting open” the circle that carries
the graph’s circular-arc representation, all known algorithms require additional
techniques that are fairly specific to circular-arc graphs. One of the obstacles is
that maxcliques cannot be handled as easily as in Lemma 2.2, since there are
possibly exponentially many of them.

Another generalization of interval graphs is the class of rooted directed path
graphs, i. e. intersection graphs of paths in a rooted and directed tree. While in
this class, maxcliques can still be recognized in a similar way as in this paper,
the recursive procedure for linearly ordering maxcliques as given in Section 3
cannot be employed in the presence of tree nodes of degree ≥ 3 (cf. [Lau10]).

In the above paragraph, it is important that trees are rooted and directed
accordingly, as intersection graphs of paths in undirected trees are isomorphism-
complete (cf. [BPT96]). The same is true for boxicity-d graphs (d ≥ 2), the inter-
section graphs of axis-parallel boxes in Rd (cf. [Ueh08]). Also, the two arguably
most manifest extensions of interval graphs, chordal graphs and co-comparability
graphs, are known to be isomorphism-complete. Finally, we would like to point
to [Spi03] for further graph classes for which recognition and isomorphism is not
known to be in L.

Interval Graphs: Canonical Representations in Logspace 25

Acknowledgement. We thank the anonymous referees of the conference ver-
sion for helpful comments and detailed suggestions on how to improve this paper.

References

[BPT96] L. Babel, I. N. Ponomarenko, and G. Tinhofer. The isomorphism problem
for directed path graphs and for rooted directed path graphs. J. Algo-
rithms, 21(3):542–564, 1996.

[BHI07] J. Bang-Jensen, J. Huang, and L. Ibarra. Recognizing and representing
proper interval graphs in parallel using merging and sorting. Discrete Appl.
Math., 155(4):442–456, 2007.

[BL76] K.S. Booth and G.S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using pq-tree algorithms. J. Comput.
Syst. Sci., 13(3):335–379, 1976.

[BLS99] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph classes: a survey. SIAM
Monographs on Discr. Math. and Appl., SIAM, 1999.

[CFI92] Cai, J. and Fürer, M. and Immerman, N. An Optimal Lower Bound on the
Number of Variables for Graph Identification. Combinatorica, 12(4):389–
410, 1992.

[Che96] L. Chen. Graph isomorphism and identification matrices: Parallel algo-
rithms. IEEE Trans. Paral. Distrib. Syst. 7(3):308-319, 1996.

[Che99] L. Chen. Graph isomorphism and identification matrices: Sequential algo-
rithms. J. Comput. Syst. Sci., 29(3):450–475, 1999.

[CKN+95] D.G. Corneil, H. Kim, S. Natarajan, S. Olariu, and A.P. Sprague. Simple
linear time recognition of unit interval graphs. Inf. Process. Lett., 55(2):99–
104, 1995.

[CY93] L. Chen and Y. Yesha. Efficient parallel algorithms for bipartite permu-
tation graphs. Networks, 23(1):29–39, 1993.

[DHH96] X. Deng, P. Hell, and J. Huang. Linear-time representation algorithms for
proper circular-arc graphs and proper interval graphs. SIAM J. Comput.,
25(2):390–403, 1996.

[DNT+09] S. Datta, P. Nimbhorkar, T. Thierauf, and F. Wagner. Graph isomorphism
for K3,3-free and K5-free graphs is in log-space. In FSTTCS, pages 145–
156, 2009.

[DLN+09] S. Datta, N. Limaye, P. Nimbhorkar, T. Thierauf, and F. Wagner. Planar
graph isomorphism is in log-space. In CCC, pages 203–214, 2009.

[Duc78] P. Duchet. Propriété de helly et problèmes de représentation. Problèmes
combinatoires et théorie des graphes, Orsay 1976, Colloq. int. CNRS
No. 260, 117-118, 1978.

[Duc84] P. Duchet. Classical perfect graphs. Ann. Discrete Math., 21:67–96, 1984.

[Ete97] K. Etessami. Counting quantifiers, successor relations, and logarithmic
space. J. Comput. Syst. Sci., 54(3):400 – 411, 1997.

[FG65] D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs.
Pacific Journal of Mathematics, 15(3):835–855, 1965.

[GV06] M. Grohe and O. Verbitsky. Testing Graph Isomorphism in Parallel by
Playing a Game. ICALP, 3–14, 2006.

[HMP+00] M. Habib, R.M. McConnell, C. Paul, and L. Viennot. Lex-BFS and par-
tition refinement. Theor. Comput. Sci., 234(1-2):59–84, 2000.

26 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky

[HM94] F. Harary and T.A. McKee. The square of a chordal graph. Discrete
Math., 128(1-3):165–172, 1994.

[HSS01] P. Hell, R. Shamir, and R. Sharan. A fully dynamic algorithm for recogniz-
ing and representing proper interval graphs. SIAM J. Comput., 31(1):289–
305, 2001.

[Hof82] C.M. Hoffmann. Group-Theoretic Algorithms and Graph Isomorphism,
volume 136 of LNCS. Springer, 1982.

[HM99] Wen-Lian Hsu and Tze-Heng Ma. Fast and simple algorithms for recogniz-
ing chordal comparability graphs and interval graphs. SIAM J. Comput.,
28(3):1004–1020, 1999.

[KN06] H. Kaplan and Y. Nussbaum. A simpler linear-time recognition of circular-
arc graphs. In SWAT, volume 4059 of LNCS, pages 41–52. Springer, 2006.

[Kle96] P.N. Klein. Efficient parallel algorithms for chordal graphs. SIAM J.
Comput., 25(4):797–827, 1996.

[KK09] J. Köbler and S. Kuhnert. The isomorphism problem for k-trees is complete
for logspace. In MFCS, pages 537–548, 2009.

[KST93] J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Prob-
lem: Its Structural Complexity. Progress in Theoretical Computer Science.
Birkhäuser, 1993.

[KVV85] D. Kozen, U.V. Vazirani, and V.V. Vazirani. NC algorithms for compara-
bility graphs, interval gaphs, and testing for unique perfect matching. In
FSTTCS, volume 206 of LNCS, pages 496–503. Springer, 1985.

[Lau10] B. Laubner. Capturing polynomial time on interval graphs. LICS 2010,
to appear.

[Lin92] S. Lindell. A logspace algorithm for tree canonization. STOC 1992, pages
400–404.

[LB79] G.S. Lueker and K.S. Booth. A linear time algorithm for deciding interval
graph isomorphism. J. ACM, 26(2):183–195, 1979.

[Möh84] R.H. Möhring. Graphs and Order, volume 147 of NATO ASI Series C,
Mathematical and Physical Sciences, pages 41–102. D. Reidel, 1984.

[Rei84] J.H. Reif. Symmetric complementation. J. ACM, 31(2):401–421, 1984.
[Rei08] O. Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17.1–

17.24, 2008.
[Rob69] F.S. Roberts. Indifference graphs. In Proof techniques in graph theory:

Proc. 2nd Ann Arbor Graph Theory Conference, pages 139–146. Academic
Press, 1969.

[RTL76] D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM J. Comput., 5(2):266–283, 1976.

[Spi03] J.P. Spinrad. Efficient graph representations. Volume 19 of Field Institute
Monographs, 2003.

[Tuk72] A. Tucker. A structure theorem for the consecutive 1’s property. J. Comb.
Theory, Series B, 12(2):153–162, 1972.

[Ueh08] R. Uehara. Simple geometrical intersection graphs. In WALCOM, volume
4921 of LNCS, pages 25–33. Springer, 2008.

[YC96] C.-W. Yu and G.-H. Chen. An efficient parallel recognition algorithm for
bipartite-permutation graphs. IEEE Trans. Parallel Distrib. Syst., 7(1):3–
10, 1996.

[ZSF+94] P. Zhang, E.A. Schon, S.G. Fischer, E. Cayanis, J. Weiss, S. Kistler, and
P.E. Bourne. An algorithm based on graph theory for the assembly of
contigs in physical mapping of DNA. Bioinformatics, 10(3):309–317, 1994.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

