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Abstract

Dispersers and extractors for affine sources of dimension d in Fn
p — where Fp denotes the

finite field of prime size p — are functions f : Fn
p → Fp that behave pseudorandomly when their

domain is restricted to any particular affine space S ⊆ Fn
p of dimension at least d. For dispersers,

“pseudorandom behavior” means that f is nonconstant over S, i.e., |{f(s) | s ∈ S}| > 1. For
extractors, it means that f(s) is distributed almost uniformly over Fp when s is distributed
uniformly over S. Dispersers and extractors for affine sources have been considered in the context
of deterministic extraction of randomness from structured sources of imperfect randomness.
Previously, explicit constructions of affine dispersers were known for every d = Ω(n), due to
Barak, Kindler, Shaltiel, Sudakov, and Wigderson [2005] and explicit affine extractors for the
same dimension were obtained by Bourgain [2007].

The main result of this paper is an efficient deterministic construction of affine dispersers for
sublinear dimension d = Ω(n4/5). Additional results include a new and simple affine extractor
for dimension d > 2n/5, and a simple disperser for multiple independent affine sources. The
main novelty in this paper lies in the method of proof, which makes use of classical algebraic
objects called subspace polynomials. In contrast, the papers mentioned above relied on the
sum-product theorem for finite fields and other recent results from additive combinatorics.
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1 Introduction

A one-output-bit seedless disperser (often called a deterministic disperser) for a family F of subsets
of {0, 1}m is a function Disp : {0, 1}m → {0, 1} satisfying the property that on any subset X ∈ F ,
X ⊂ {0, 1}m (the set X is often called a “source” in the derandomization literature) the function
Disp takes more than one value, i.e., |{Disp(x) : x ∈ X}| > 1. An extractor for F is a function Extr :
{0, 1}m → {0, 1} satisfying the stronger requirement that for every X ∈ F , if x is picked uniformly
over X, then Extr(x) is nearly-uniformly distributed. We think of dispersers and extractors as
behaving pseudorandomly on sources X ∈ F because in typical settings where the size of F is not
too large, a random function is indeed an extractor and hence also a disperser. Extractors and
dispersers have been intensively studied in recent years in the context of extracting randomness
from imperfect sources of randomness. The goal of these studies has been to obtain extractors and
dispersers computable in polynomial time, and today several constructions of seedless dispersers
for various structured families of subsets are known, including for “bit-fixing” and “samplable”
sources [Chor et al., 1985, Gabizon et al., 2006, Trevisan and Vadhan, 2000, Kamp and Zuckerman,
2007]. We refer the reader to [Barak et al., 2005] for more information on seedless dispersers and
extractors.

A particularly interesting family of structured subsets that has been considered in this context,
and is also the focus of our paper, is the family of affine subspaces over a fixed finite field Fp of
size p (think of p = 2). Extractors and dispersers for this family of sources are known as affine
extractors and dispersers. Affine extractors for spaces of dimension greater than m/2 are relatively
easy to construct [Ben-Sasson et al., 2001]. However, for spaces of dimension smaller than m/2
the problem becomes much harder, and to date, only two explicit pseudorandom constructions
are known [Barak et al., 2005, Bourgain, 2007]1. Both these works give constructions that are
shown to behave pseudorandomly on all affine spaces of dimension ≥ εm, where ε > 0 is any fixed
constant. The work of Barak et al. [2005] constructs affine dispersers and that of Bourgain [2007]
constructs affine extractors. Both constructions use recent sum-product theorems over finite fields
[Bourgain et al., 2004, 2006] and related results from additive combinatorics, along with several
other non-trivial ideas.

1.1 Results

Our main result (Theorem 2.2) is the explicit construction of an affine disperser for spaces of
dimension o(m). Specifically, our disperser works for spaces of dimension at least 6m4/5. The
structure of our main affine disperser is as follows. The m coordinates are grouped into r blocks,
each with an equal number k of coordinates, and each block is interpreted as specifying an element
of the finite field Fpk . The r elements thus obtained in Fpk are now substituted into a certain
polynomial over Fpk , and its output, which is an element of Fpk , is projected onto Fp via a nontrivial
Fp-linear mapping of Fpk to Fp.

The techniques we use allow for a host of results with a similar flavor. The simplest-to-state result
is a “univariate” affine extractor below the m/2 barrier. By “univariate” we mean that the function

1A related, though incomparable, result of Gabizon and Raz [2005] constructs extractors for affine sources over
“large” finite fields, where “large” means p > m2, see also DeVos and Gabizon [2009] for recent improvements along
this line of research.
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we use to compute the extractor is naturally viewed as a univariate polynomial. Let φ : Fmp → Fpm
be any Fp-linear isomorphism and π : Fpm → Fp be any nontrivial Fp-linear map2. We show that
the function f : Fmp → Fp defined by

f(x) = π
(

(φ(x))1+p+p
2
)

(1)

is an extractor for dimension at least 2m/5 + O(1), as long as m is odd. Another pseudorandom
univariate construction appearing in this paper is

f(x) = π
(

(φ(x))1+p+p
2+p3

)
(2)

which we prove is an affine disperser for dimension greater than n/3 + O(1). We conjecture that
this construction is in fact an extractor and that both univariate constructions are merely the first
two members of a larger family of univariate extractors (see Conjecture 2.8).

We point out that if m is even, then Fpm has a subfield Fpm/2 which is also a m/2-dimensional
subspace of Fpm for which the above mentioned constructions will not be a disperser. Indeed,
when x belongs to Fpm/2 then so does every power of x, hence some nontrivial Fp-linear map π will

be constant on both
{
x1+p+p

2
∣∣∣ x ∈ Fpm/2

}
and

{
x1+p+p

2+p3
∣∣∣ x ∈ Fpm/2

}
. In the next section we

comment on the role that the oddness of m, and more generally, the absence of subfields, plays in
our proofs.

On subspaces and polynomials Our analysis makes use of a class of polynomials called sub-
space polynomials. These polynomials were first systematically studied by Ore in the 1930’s [Ore,
1933, 1934]. They have numerous applications in the study of finite fields and in the theory of
error correcting codes (See Berlekamp [1968, Chapter 11] and Lidl and Niederreiter [1997, Chapter
3, Section 4]). More recently, they have been used within computational complexity to construct
short PCPs [Ben-Sasson et al., 2004, Ben-Sasson and Sudan, 2005, Ben-Sasson et al., 2005] and to
study limitations on the list-decodability of the Reed-Solomon code [Ben-Sasson et al., 2006].

The polynomials studied in this last line of works are what we call the kernel-subspace3 polynomial
associated to a linear subspace L ⊆ Fpm , which is a polynomial whose set of roots equals L. In this
work we analyze our dispersers using elementary properties of the image-subspace polynomial of a
linear subspace L. These polynomials have the property that their image, i.e., the set of values they
take over Fpm , equals L. Our proofs begin by first reformulating the property of being an affine
disperser in terms of these polynomials. We then use a simple-to-prove, yet extremely powerful,
structural lemma about these polynomials, to get our main results.

Pseudorandomness from the absence of subfields It was recently realized, starting with
the work of Barak et al. [2004] and further developed in [Zuckerman, 2006, Kamp et al., 2006,
Barak et al., 2006, Bourgain, 2007], that finite fields without large subfields are the source of many

2Explicitly, φ is a bijection between the vector space Fmp and the finite field Fpm and π is a nonzero linear map
from Fpm to Fp. Both mappings are Fp-linear, i.e., they respect addition and multiplication by scalars in Fp.

3The terms “kernel-” and “image-subspace polynomials” were suggested by Prahladh Harsha and we thank him
for introducing this nomenclature.
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pseudorandom phenomena, and that this can be put to good use in the construction of extractors
and dispersers. The above mentioned works all harnessed this pseudorandomness via recent results
from additive combinatorics such as the sum-product theorem of Bourgain, Katz, and Tao [2004]
and the related multilinear exponential sum estimates of Bourgain, Glibichuk, and Konyagin [2006].

In our work, we offer a different algebraic incarnation of this phenomenon. Specifically, we show
that the absence of large subfields directly affects the structure of the image-subspace polynomials
of the field. Image-subspace polynomials are linearized, which means that they are of the form∑m−1

i=0 aiX
pi . Roughly speaking, our main structural lemma (Lemma 3.10) says that the image-

subspace polynomial of a subspace A of dimension d cannot have d consecutive coefficients ai that
are all zero. Moreover, and this is the crucial part, if A is not contained in a constant multiple of a
subfield of Fpn , then the polynomial cannot have even d−1 consecutive coefficients that are all zero.
This lemma has a short proof (appearing in Section 3.3), yet is extremely powerful. Surprisingly,
reducing the maximal length of a sequence of zero-coefficients by 1 (from d to d−1) for spaces that
are not contained in subfields is all it takes for the underlying pseudorandomness to get exposed.

1.2 Proof strategy for affine dispersers

We now give a brief description of the basic proof strategy that we use to prove that a function is
an affine disperser. We demonstrate the steps involved in the special case of the function f defined
in (1) for the case of p = 2 and π(y) = Tr(y) (where Tr : F2m → F2 is the Trace map). We will
show in Theorem 2.6 that if m is odd (so that F2m has no proper subfields of size 2m/2), then for
any affine space A ⊆ F2m of dimension ≥ 2m/5 + Ω(1), we have

{
Tr(a7)

∣∣ a ∈ A} = F2.

1. Reduce to showing that a certain polynomial h is not a constant polynomial: We
first parameterize the affine space A using subspace polynomials. Let Q(X) be the image-
subspace of A, so that A = {Q(x) : x ∈ F2m}. In terms of the polynomial Q(X), we want to
show that the composed map f ◦Q : F2m → F2 is non-constant. Let h(X) be the polynomial
Tr(Q(X)7) mod 〈X2m −X〉, so that h(x) = f(Q(x)) for each x ∈ F2m (cf. Proposition 3.1).
Thus to show that h is a nonconstant map, it suffices to show that h(X) is a nonconstant
polynomial. We do this in the next two steps of our proof strategy, by finding a monomial of
positive degree that appears in h(X) with a nonzero coefficient.

2. Express the coefficients of h in terms of the coefficients of the subspace polyno-
mials: To show that h has a monomial of positive degree with a nonzero coefficient, it will
be convenient to get an explicit expression for the coefficients themselves. Such an explicit
expression can be obtained by direct substitution. In all the cases we consider, there is a good
deal of structure in the resulting formulae. For example, for the polynomial we obtained while
studying f(x) = Tr(x7), we have the following lemma.

Lemma 1.1 Let Q(X) =
∑m−1

i=0 aiX
2i. Let h(X) = Tr(Q(X)7) mod 〈X2m −X〉. Then for

distinct j, k, l, the coefficient of X2j+2k+2l in h(X) is given by the expression:

m−1∑
r=0

Perm

 aj−r ak−r al−r
a2j−r−1 a2k−r−1 a2l−r−1
a4j−r−2 a4k−r−2 a4l−r−2

2r

, (3)
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where Perm is the matrix permanent, and the subscripts of the a’s are taken mod m.

3. Argue combinatorially that some coefficient of h must be nonzero: Finally, we show
that some positive degree monomial of h has a nonzero coefficient. Using the regular form of
the coefficients of the polynomial h, for example as given in Lemma 1.1, and the structural
results about the coefficients of subspace polynomials, this part of the argument reduces to
the combinatorics of cyclic shifts on Zm. More to the point, we use our main structural lemma
(Lemma 3.10) to prove that there is a choice of j, k, l such that (i) the matrix appearing in
the first summand (corresponding to r = 0) in equation (3) is lower triangular with nonzero
entries on its diagonal, hence its permanent is nonzero, whereas (ii) the matrices appearing
in all other summands in equation (3) (corresponding to r = 1, . . . ,m − 1) contain a zero
column, hence have a zero permanent.

1.3 From affine dispersers to extractors

We believe that all constructions provided in this paper are affine extractors, not merely dispersers.
We can prove this only for our simplest construction, that described in (1). This proof goes via a
general theorem saying that every degree-3 function that is an affine disperser for dimension d, is
also an affine extractor for dimension d+ d′, with the bias decreasing as the dimension-redundancy
d′ increases. Here, a degree-3 function is one that, when viewed as an m-variate polynomial over
Fp, is cubic, i.e., has degree at most 3. Indeed, the function described in (1) is of this form (cf.
Proposition 3.2) whereas that appearing in (2) is already of degree 4 and the other dispersers
analyzed here have even higher degree.

For cubic functions we show (in Theorem 2.9) that having large bias on a certain subspace implies
being constant on a slightly smaller subspace contained in it. Thus, assuming we have proved that
a cubic function is a disperser for dimension d we can immediately deduce that it is an extractor for
dimension d + d′. The bias in this case is bounded by 1/poly(d′) (recently Haramaty and Shpilka
[2009] showed that the bias is in fact bounded by exp(−d′ε) for some ε > 0). We conjecture that
for the special cubic function appearing in (1) the actual bound on bias should be exp(−O(d′)) (see
Conjecture 2.8).

The method by which we convert cubic affine dispersers to affine extractors differs significantly
from the rest of this paper. It involves tools from additive combinatorics, most notably the method
introduced by Bogdanov and Viola [2007] for approximating a biased function by a majority of its
(randomly chosen) directional derivatives, and a so-called “energy increment” argument that is in
the spirit of the proof of Roth’s theorem over Fn3 due to Meshulam [1995] (see Section 5 for more
details).

2 Main results

In this section, we state our main results. We start by formally defining affine dispersers and
extractors.

5



Definition 2.1 (Fp-affine dispersers and extractors) A function f : Fmp → Fp is an Fp-affine
disperser for dimension d if for every affine subspace S ⊆ Fmp of dimension at least d, we have
|f(A)| > 1.

A function f : Fmp → Fp is an Fp-affine ε-extractor for dimension d if for every affine subspace
S ⊆ Fmp , if x is picked uniformly at random from S, the statistical distance of f(x) from the uniform
distribution on Fp is at most ε.

We briefly indicate the relation between this definition and the more general setting. Following
the derandomization literature, we will refer to a distribution over a domain D as a “source”. A
function f : D → R is said to be an ε-extractor for a set of sources S if, for every S ∈ S, if x is
picked according S, then the statistical distance of f(x) from the uniform distribution on R is at
most ε (ε is called the error-parameter of the extractor). The function f is a disperser for S if it
is an ε-extractor for some ε < 1. (This is equivalent to saying that f is nonconstant on the support
of S for each source S ∈ S).

A d-dimensional affine source in Fmp is the uniform distribution over some d-dimensional affine
space. In this language, we see that a function f : Fmp → Fp is an Fp-affine disperser (ε-extractor,
respectively) for dimension d if and only if it is a disperser (ε-extractor, respectively) for the set of
d-dimensional affine sources in Fmp .

A more standard definition of a disperser, as appearing in, say, [Shaltiel, 2002], requires that for
every d-dimensional affine source S, f(supp(S)) equals the full range Fp. Notice that for the case
of p = 2 the two definitions match. All our constructions give Fp-affine dispersers according to
Definition 2.1. When p is clear from the context, we simply refer to them as affine dispersers.

2.1 Disperser for affine spaces of sublinear dimension

We begin by describing the function f : Fmp → Fp which will prove to be a disperser over Fp for
affine sources of sublinear dimension. The integers n, r and t are parameters of the construction
to be specified later. As in [Bourgain, 2007], we partition the m coordinates of an input x into r
blocks (x1, . . . , xr) of n coordinates each (we assume n divides m by discarding a few field-elements,
if necessary). We will pick n to be prime, so that Fpn has no nontrivial subfields. Each block xi is
interpreted as an element of Fpn by using an Fp-linear isomorphism from Fnp to Fpn . We then raise
each xi to a suitable distinct power and let yi denote the result of this powering. Next, we apply
the tth symmetric polynomial to y1, . . . , yr, and get z ∈ Fpn , where this polynomial is defined by

Symt
r(Y1, . . . , Yr) =

∑
I⊆[r],|I|=t

∏
i∈I

Yi.

Finally, we take a nontrivial Fp-linear map π : Fpn → Fp, and output π(z). We now formally state
our main result.

Theorem 2.2 (Affine dispersers for sublinear dimension) Given integer m fix parameters
n, r, t as follows. Let n be the smallest prime bigger than 2 ·m3/5. Let r = dm/ne and let t = d

√
re.

(We have n ≈ m3/5, r ≈ m2/5 and t ≈ m1/5.) Let φ : Fmp → (Fpn)r be an injective Fp-linear map,
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where φ(y) = (φ1(y), . . . , φr(y)) and φi(y) ∈ Fpn. Let π : Fpn → Fp be a nontrivial Fp-linear map.
Then the function f : Fmp → Fp defined by

f(x) = π
(
Symt

r

(
(φ1(x))1+p , (φ2(x))1+p+p

2

, . . . , (φr(x))1+p+p
2+...+pr

))
(4)

is an affine disperser for dimension greater than 6m4/5, i.e., for all affine A ⊆ Fmp with dim(A) >

6m4/5 we have |f(A)| > 1.

Notice f can be computed in polynomial time in p and m because Symt
r can be computed efficiently

in the said time (using the Newton-Girard identities). From a computational viewpoint our con-
struction is more efficient than that of [Bourgain, 2007] which for spaces of dimension εm required

a running time of m2Ω(1/ε)
.

The method by which we prove Theorem 2.2 is quite general and in the following subsections we
show that a few natural variants of it can also be shown to be good affine dispersers and extractors
in various settings.

2.2 Disperser for independent affine sources

Informally, we say a function f : (Fnp )t → Fp is a disperser for independent affine sources if on every
set of affine spaces A1, . . . ,At ⊆ Fnp of sufficiently large dimensions, we have |f(A1×· · ·×At)| > 1.
The following theorem presents an affine disperser for independent sources that works as long as
the sum of dimensions is greater than n. The analysis of this independent source affine disperser
turns out to play a crucial role in our proof Theorem 2.2.

In what follows, a proper subfield of Fpn is a subfield K of size < pn and an affine shift of K is
a set of the form {a · s+ b | s ∈ K} for some fixed a, b ∈ Fpn . (Notice that every one-dimensional
Fp-affine subspace of Fpn , n > 1 is an affine shift of the proper subfield Fp.)

Theorem 2.3 (Disperser for independent affine sources) Let π : Fpn → Fp be a nontrivial
Fp-linear map. Consider the function f : Ftpn → Fp given by

f(x1, . . . , xt) = π

(
t∏
i=1

x1+pi

)
. (5)

Let A1, · · · ,At ⊆ Fpn be Fp-affine spaces of dimensions d1, . . . , dt respectively, where
∑t

i=1(di−2) >
n. Suppose furthermore that no Ai is contained in an affine shift of a proper subfield of Fpn. Then
|f(A1 × · · · × At)| > 1.

Remark 2.4 The assumption that Ai is not contained in an affine shift of a proper subfield is
necessary. Without it we could set Ai = K for a proper subfield K, and select some nontrivial π
such that the resulting function f is constant on A1 × . . .×At.
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Remark 2.5 A result of Hou et al. [2002] implies the following statement (cf. DeVos and Gabizon
[2009]). Let A1, . . . ,At ⊆ Fpn be affine spaces of dimensions d1, . . . , dt respectively and none are
contained in affine shifts of proper subfields. Then

dim

(
span

{∏
i

xi

∣∣∣∣∣ xi ∈ Ai
})
≥ min

{
n,
∑
i

(di − 1)

}
.

So if
∑

(di − 1) ≥ n then π
(∏t

i=1 xi
)

is nonconstant on A1 × · · · × At. The proof technique of
Hou et al. [2002] differs significantly from ours and it is not clear how to derive one result from
the other.

2.3 Univariate dispersers

Our next set of results is a pair of constructions based on univariate polynomials. We treat our
input x ∈ Fnp as a single element of the field Fpn by using any Fp-linear isomorphism between Fnp
and Fpn . We raise x to a suitable power and map the result to Fp using any nontrivial Fp-linear
map. The first construction will be shown in the next subsection to be an extractor for dimension
greater than 2n/5 and the second works for lower dimension (n/3) but we cannot show that it is
an extractor (cf. Conjecture 2.8). We call the next construction “cubic”, and the one that follows
“quartic”, because the relevant functions f , when viewed as having domain (Fp)n, are computed
by polynomials of degree 3 and 4 respectively (cf. the first bullet of Proposition 3.2).

Theorem 2.6 (Univariate cubic affine disperser) Let π : Fpn → Fp be a nontrivial Fp-linear
map. The function f : Fpn → Fp given by

f(x) = π
(
x1+p+p

2
)

is a disperser for the set of affine spaces of dimension greater than 2n
5 + 10 that are not contained

in an affine shift of a proper subfield of Fpn.

In particular, if n is odd, then f is an affine disperser for dimension 2n
5 + 10.

Theorem 2.7 (Univariate quartic affine disperser) Let π : Fpn → Fp be a nontrivial Fp-
linear homomorphism. The function f : Fpn → Fp given by

f(x) = π
(
x1+p+p

2+p3
)

is a disperser for the set of affine spaces of dimension greater than n
3 + 10 that are not contained

in an affine shift of a proper subfield of Fpn.

In particular, if n is odd, then f is an affine disperser for dimension n
3 + 10.

We believe that the dimension bound in the above pair of theorems is not tight. In particular, we
think the cubic construction of Theorem 2.6 should be a disperser for dimension > n/3 and the
quartic construction of Theorem 2.7 should work for dimension > n/4. In fact, we believe in the
stronger conjecture stated next.
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Conjecture 2.8 (Univariate extractors) For every prime p and integer k there exists an integer
c = c(p, k) and constant ε = ε(p, k) > 0 such that the following holds for all sufficiently large n. Let
π : Fpn → Fp be a nontrivial Fp-linear map. Let sk =

∑k
i=0 p

i. The function fk : Fpn → Fp given
by

fk(x) = π (xsk)

is an exp(−εd)-extractor for the set of affine spaces of dimension greater than
(
n
k + c

)
+ d that are

not contained in an affine shift of a proper subfield of Fpn.

2.4 A cubic affine disperser is an affine extractor

Our final set of results shows that any cubic function that is a disperser for dimension d, is an
ε(d′)-extractor for dimension d+ d′, where ε(d′) goes to 0 as d′ increases.

Theorem 2.9 (Cubic affine dispersers are affine extractors) There exists a universal con-
stant ε > 0 such that the following holds. Let f : Fmp → Fp be computed by a cubic polynomial. If

f is an affine disperser for dimension d0 then f is an affine O(dε)-extractor for dimension d0 + d̂.

Using the cubic construction from Theorem 2.6, the previous theorem implies the following affine
extractor.

Corollary 2.10 (Univariate cubic affine extractor) There exists a universal constant ε > 0
such that the affine disperser f defined in Theorem 2.6 is an affine O(d−ε)-extractor for dimension(
2n
5 + 10

)
+ d.

Remark 2.11 Recent work of Haramaty and Shpilka [2009] gives a better bound on the error-
parameter of f stated in 2.9. They show a bound of exp(−dε) on the error-parameter for some
universal constant ε > 0.

Unfortunately, quartic affine dispersers are not necessarily affine extractors for comparable dimen-
sion (see Section 5.3 for a counter-example). So, although we believe the quartic construction of
Theorem 2.7 is an affine extractor (cf. Conjecture 2.8), a proof of this conjecture will have to rely
on the particular algebraic structure of this quartic function.

Returning to cubic affine extractors, counting arguments show that there exist cubic functions that
are dispersers for affine spaces of dimension as small as

√
n (see Lemma 5.10). Given Theorem 2.9,

this implies that one way to get affine extractors for sublinear dimension is to find an explicit cubic
affine disperser that works for the same dimension bound.

Organization of the rest of the paper The next section gives a brief introduction to the theory
of subspace polynomials and establishes the properties we need for our analysis. Of particular
importance are (i) the Main Structural Lemma 3.10 which connects the fact that a subspace is
not an affine shift of a subfield to the zero-nonzero pattern of the coefficients of its corresponding
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subspace polynomial, and (ii) Lemma 3.13 which is used to show that our constructions, when
restricted to a subspace of sufficiently large dimension, are polynomials of positive degree.

The proofs of our main results go in increasing order of complexity. In Section 4 we discuss
our univariate constructions, proving Theorems 2.6 and 2.7. In Section 5 we prove that cubic
affine dispersers are extractors. In Section 6 we analyze the disperser for independent sources and
prove Theorem 2.3. In Section 7 we analyze our construction for sublinear dimension and prove
Theorem 2.2. Together, Sections 3, 6, and 7 contain a complete proof of Theorem 2.2.

3 Properties of subspace polynomials

In this section we build up some preliminaries on polynomials and subspace polynomials. This
section is organized as follows. In Section 3.1 we discuss basic properties of polynomials, and
the relationship between polynomials over Fpn and polynomials over Fnp . In Section 3.2 we define
linearized and subspace polynomials and mention some of their properties. We follow this in
Section 3.3 with the key structural Lemma 3.10 regarding coefficients of subspace polynomials.
Finally, in Section 3.4 we state and prove Lemma 3.13 which discusses the coefficient structure
of products of linearized polynomials and will be employed in all subsequent proofs of our affine
disperser results.

3.1 Preliminaries

Throughout this paper capital letters such as Xi are used for formal variables, and small letters
such as xi are used for field-elements. For a polynomial h(X1, . . . , Xr) ∈ Fpn [X1, . . . , Xr], abusing
notation we define

h(X1, . . . , Xr) mod 〈(Xpn

i −Xi)i∈[r]〉

to be the unique polynomial congruent to h(X1, . . . , Xn) mod 〈(Xpn

i −Xi)i∈[r]〉 of degree < pn

in each variable. Equivalently, h′ is the polynomial obtained by starting with h and repeatedly
replacing, for each i, every occurrence of Xpn

i by Xi. The following proposition, stated without
proof, will be used repeatedly in our arguments.

Proposition 3.1 Let h(X1, . . . , Xr) ∈ Fpn [X1, . . . , Xr]. Let

h′(X1, . . . , Xr) = h(X1, . . . , Xr) mod 〈(Xpn

i −Xi)i∈[r]〉.

Then for any x ∈ Frpn we have h(x) = h′(x).

Consequently, |h(Frpn)| > 1 if and only if h′(X1, . . . , Xr) is a polynomial of degree greater than 0.

For a nonnegative integer i, let wtp(i) denote the sum of the digits of i in the base-p representation.

If m(X1, . . . , Xt) ∈ Fpn [X1, . . . , Xt] is the monomial
∏t
i=1X

βi
i , we define the Fp-degree of m in

the variable Xi to be wtp(βi). We define the Fp-degree of the monomial M to be the sum of the
Fp-degrees of M in each variable Xi. We then define the Fp-degree of a polynomial to be the
maximum Fp-degree of any of its monomials.
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Proposition 3.2 Let P (X1, . . . , Xt), Q(X1, . . . , Xt) be polynomials in Fpn [X1, . . . , Xt] with Fp-
degrees d1, d2 < n respectively. Let φ = (φ1, . . . , φt) : Fn·tp → Ftpn be an Fp-linear isomorphism.
and π : Fpn → Fp be an Fp-linear map. Then

• Let f = (f1, . . . , fn) : Fn·tp → Fp be given by f(x) = π (P (φ1(x), . . . , φt(x))). Then f is
computed by a polynomial P ′ ∈ Fp[Y1, . . . , Yn·t] of total degree at most d1.

• The Fp-degree of P (X1, . . . , Xt) ·Q(X1, . . . , Xt) is at most d1 + d2.

• The Fp-degree of P (X1, . . . , Xt)
pr mod 〈(Xpn

i −Xi)i∈[t]〉 equals d1.

We recall one final basic fact about finite field extensions — that Fp-linear maps from Fpn to Fp
are computed by trace maps (cf. Lidl and Niederreiter [1997]).

Proposition 3.3 Let Tr(Y ) =
∑n−1

i=0 Y
pi be the trace map from Fpn to Fp. For every Fp-linear

map π : Fpn → Fp there exists µ = µπ ∈ Fpn such that for all x ∈ Fpn we have

π(x) = Tr(µ · x).

Furthermore, π is trivial if and only if µ = 0.

3.2 Introduction to the theory of subspace polynomials

The information in this subsection was first described in the work of Ore [1933, 1934]. We state
the minimal set of definitions and claims that will be needed to analyze our constructions and we
refer the reader interested in a more thorough introduction to the subject to [Lidl and Niederreiter,
1997, Chapter 4] and to [Berlekamp, 1968, Chapter 11].

A polynomial P ∈ Fpn [X] is said to be Fp-linearized if it is of the form:

P (X) =
n−1∑
i=0

aiX
pi , ai ∈ Fpn

(when p is clear from context, we will simply refer to them as linearized polynomials). P being
linearized is equivalent to having P (βb+ γc) = βP (b) + γP (c) for all b, c ∈ Fpn and β, γ ∈ Fp. By
extension, a polynomial is said to be affine linearized if P (X) = P̂ (X) + â where P̂ is linearized
and â ∈ Fpn . The affine linearized polynomials over Fpn are precisely the polynomials of Fp-degree
at most 1.

Lemma 3.4 Let φ : Fnp → Fpn be an Fp-linear isomorphism. There is a one-to-one correspondence
between affine transformations from Fnp to Fnp and affine linearized polynomials in Fpn [X], i.e.,
for every affine transformation T : Fnp → Fnp there exists a unique affine linearized polynomial PT
satisfying PT (φ(b)) = T (φ(b)) for all b ∈ Fnp .

We shall take particular interest in a special class of linearized polynomials that split completely
in Fpn to a set of roots that forms a Fp-affine subspace of Fpn .
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Definition 3.5 (Kernel-subspace polynomial) Let L ⊆ Fpn be an affine subspace of dimension
d. Define PL(X) ∈ Fpn [X], the kernel-subspace polynomial of L, to be

PL(X) =
∏
α∈L

(X − α).

Lemma 3.6 (Kernel-subspace polynomials are affine) If L ⊆ Fpn is an affine subspace of
dimension d then PL(X) is a monic affine linearized polynomial of degree pd. Furthermore, PL is
linearized iff L is a linear space.

Every kernel-subspace polynomial PL corresponds to an affine transformation whose kernel is L, so
by linearity P (Fpn) is an affine subspace of Fpn of dimension n− dim(L). Surprisingly, the images
of all d-dimensional subspace polynomials are precisely all the n− d dimensional subspaces of Fpn .
These image-subspace polynomials will be the starting point of our analysis of affine dispersers.

Lemma 3.7 (Existence of an image-subspace polynomial) If L ⊆ Fpn is an affine subspace
of dimension d then there exists a monic affine linearized polynomial QL(X) with deg(QL) = pn−d,
called the image-subspace polynomial of L, such that

L = QL(Fpn) , {QL(c) | c ∈ Fpn}.

Moreover, if PL(X) is the subspace polynomial of L then

PL(QL(X)) ≡ QL(PL(X)) ≡ Xpn −X. (6)

Thus the kernel of QL : Fpn → Fpn is the image of PL : Fpn → Fpn. In particular QL(X) has pn−d

roots in Fpn, and is thus also a kernel subspace polynomial of some (n− d)-dimensional subspace.

For the sake of completeness we include the (short) proof of this lemma from Berlekamp [1968].

Proof Let L′ = PL(Fpn) be the image of PL(X). Define QL(X) to be PL′(X), the kernel-subspace
polynomial of L′.

Notice thatQL(PL(X)) is a monic polynomial of degree pn that vanishes on Fpn , henceQL(PL(X)) =
Xpn−X. Thus PL(QL(PL(X)))) = PL(Xpn−X) = PL(Xpn)−PL(X) = PL(X)p

n−PL(X). Letting
g(Y ) be the polynomial PL(QL(Y )) − (Y pn − Y ), we have just proved that g(PL(X)) = 0. This
implies g(Y ) = 0, since deg(g(PL(X))) = (deg g(Y )) · (deg(PL(X))).

So PL(QL(y)) = 0 for each y ∈ Fpn . In particular, we see that the image of QL is contained in L,
and by dimension counting, the image of QL equals L. �

3.3 Coefficients of subspace polynomials

The following claims will be needed to prove our main structural lemma. In what follows, let Fp
denote the algebraic closure of Fp.

Claim 3.8 Let k > 1, and suppose a, c ∈ Fpn are such that ap
k − ca = 0. Then, letting b be any

(pk − 1)-th root of c in Fp, we have a ∈ b · Fpk .
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Proof If a = 0 then the claim is trivial. Otherwise, we have ap
k

= ca, and hence ap
k−1 = c.

Thus (a/b)p
k−1 = 1, which implies that a/b ∈ Fpk . �

Claim 3.9 For linearized polynomial Q(X) =
∑n−1

j=0 ajX
pj + â ∈ Fpn [X] and integer t, we have

(Q(X))p
t

(mod Xpn −X) ≡
n−1∑
j=0

(
a((j−t) mod n)

)pt
Xpj + âp

t
.

The proof follows by direct expansion, using the Fp-linearity of the map Z 7−→ Zp
t
.

We now state and prove our main structural lemma about the zero/nonzero pattern of consecutive
coefficients of subspace polynomials.

Lemma 3.10 (Main structural lemma for subspace polynomials) Let L be a d-dimensional
linear subspace in Fpn. Let QL(X) =

∑n−1
j=0 ajX

pj be the image-subspace polynomial of L.

1. For any integer r and set J = {(r + j) mod n | j = 0, . . . , d− 1} of d consecutive indices in
Zn, there is some j ∈ J with aj 6= 0. In particular, a0 and an−d are nonzero.

2. Suppose that L is not contained in any constant multiple of a proper subfield of Fpn, i.e.
L 6⊆ β · Fpk for any β ∈ Fpn and any Fpk ⊂ Fpn. Then for any integer r 6= n − d + 1 and
set J = {(r + j) mod n | j = 0, . . . , d− 2} of d− 1 consecutive indices in Zn, there is some
j ∈ J with aj 6= 0.

Proof For the first part, suppose aj = 0 for all j ∈ J . Note that by Lemma 3.7, QL has

pn−d distinct roots in Fpn . Let Q′(X) := QL(X)p
n−(r+d)

mod Xpn − X. Then, by Claim 3.9 we

conclude Q′(X) =
∑n−1

j=0 a
pn−(r+d)

j+r+d−nX
pj . Now for any j ∈ [n − d, n − 1], we have aj+r+d−n = 0

by assumption, and thus Q′(X) is of degree at most pn−d−1. In addition, by Proposition 3.1,

Q′(α) = QL(α)p
n−(r+d)

= 0 for every α ∈ Fpn satisfying QL(α) = 0, and hence Q′ has at least pn−d

roots. This is a contradiction.

In particular, since by definition an−d+1, . . . , an−1 forms a sequence of d−1 consecutive coefficients
that are all zero, we conclude both an−d and a0 must be nonzero.

For the second part, suppose aj = 0 for all j ∈ J . Again, by Lemma 3.7, QL has pn−d distinct roots
in Fpn . Let k = n − (r + d) + 1 (note that 0 < k < n). Then as above the polynomial Q′(X) :=

QL(X)p
k

mod Xpn − X is nonzero of degree at most pn−d. In addition, Q′(α) = QL(α)p
k

= 0
for every α ∈ Fpn for which QL(α) = 0. As Q′ and QL are of the same degree pn−d, there is a
constant c ∈ Fpn such that Q′(X)− cQL(X) is of degree at most pn−d−1 and vanishes on the pn−d

roots of QL(X). Thus the polynomial Q′(X)− cQL(X) is identically zero. Recalling the definition

of Q′(X), have just showed that QL(X)p
k − cQL(X) = 0 mod Xpn −X. Thus for each α ∈ Fpn ,

we have QL(α)p
k − cQL(α) = 0. Now, since the image of QL is L, by Claim 3.8 we conclude that

L ⊆ b · Fpk (where b ∈ Fp is a pk − 1-th root of c). This almost gives the desired contradiction, but
for the possibility that b 6∈ Fpn , and that Fpk may not be a subfield of Fpn .

Let β ∈ L \ {0}. For any α ∈ L, we have α/β ∈ (b · Fpk)/(b · Fpk), and hence α/β ∈ Fpk . Thus
β−1 · L ⊆ Fpk ∩ Fpn = Fp(k,n) , where (k, n) = gcd(k, n). Thus L ⊆ β · Fp(k,n) , contradicting the
hypothesis on L. �
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3.4 Coefficients of products of subspace polynomials

In our subsequent arguments, we will need time and again to prove that a certain polynomial P ,
which is the trace of products of linearized polynomials reduced mod 〈(Xpn

i −Xi)i∈[r]〉, is not a
constant. In this subsection we describe a lemma that will allow us to argue such statements by
showing that a well-chosen monomial of P has a nonzero coefficient. We start with a definition.

Definition 3.11 (Associated matrix and its zero-one indicator matrix) For a linearized poly-

nomial Q(X) =
∑n−1

i=0 aiX
pi over Fpn, we define its associated matrix MQ ∈ F{0,...,n−1}×{0,...,n−1}pn

by setting the (i, j)-entry of MQ to be (aj−i)
pi, where both rows and columns are indexed by

{0, 1, . . . , n − 1} and index arithmetic, as well as powers of p are computed modulo n. Explic-
itly, MQ is the following matrix

a0 a1 a2 . . . . . . an−1
(an−1)

p (a0)
p (a1)

p . . . . . . (an−2)
p

(an−2)
p2

(an−1)
p2

(a0)
p2

. . . . . . (an−3)
p2

...
...

...
. . .

. . .
...

(a1)
pn−1

(a2)
pn−1

(a3)
pn−1

. . . . . . (a0)
pn−1

 .

For ai ∈ Fpn let a′i indicate whether ai is zero, i.e., a′i = 0 if ai = 0 and otherwise a′i = 1. Similarly,
let M ′ = M ′Q denote the zero-one indicator matrix of MQ. The (i, j)-entry of this matrix is a′j−i,
or, in other words, the (i, j)-entry of M ′ indicates whether the (i, j)-entry of M is nonzero.

The use of the associated matrix is captured by the following claim. The proof of the claim (which
is omitted) follows immediately from Claim 3.9.

Claim 3.12 The (i, j)-entry of MQ is the coefficient of Xpj in the linearized polynomial (Q(X))p
i

mod Xpn −X.

To state the main lemma of this subsection we need the following notation. For A,B nonempty
subsets of {0, . . . , n− 1} let M [A,B] be the minor corresponding to rows A and columns B. For
an integer r, let B + r = {s+ r mod n | s ∈ B}.

Lemma 3.13 Let µ ∈ Fpn \{0}. Let A1, . . . , At, B1, . . . , Bt ⊆ {0, . . . , n− 1} satisfy |Ai| = |Bi| > 0
for i = 1, . . . , t. Let αi =

∑
j∈Ai p

j , βi =
∑

k∈Bi p
k. Let Q1(X1), . . . , Qt(Xt) be linearized polynomi-

als with associated matrices M1, . . . ,Mt and zero-one indicator matrices M ′1, . . . ,M
′
t respectively.

The coefficient cM of the monomial M =
∏t
i=1X

βi
i in

R(X1, . . . , Xt) = Tr

(
µ

t∏
i=1

(Qi(Xi))
αi

)
mod 〈(Xpn

i −Xi)i∈[t]〉 (7)

is given by the expression

cM =

n−1∑
r=0

µp
r ·

t∏
i=1

Perm (Mi[Ai + r,Bi]) =

n−1∑
r=0

µp
r ·

t∏
i=1

Perm (Mi[Ai, Bi − r])p
r

. (8)
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Proof Notice

Tr

(
µ

t∏
i=1

(Qi(Xi))
αi

)
=

n−1∑
r=0

µp
r ·

t∏
i=1

(Qi(Xi))
αi·pr .

Thus, cM is a sum of n elements, where the rth element, denoted c
(r)
M , is the coefficient of m in

the rth summand in the right hand side above. We can break c
(r)
M further into µp

r
times a product

of t terms, where the ith term is the coefficient of Xβi
i in (Qi(Xi))

αi·pr . So to prove the lemma it

suffices to show that the coefficient of Xβi
i in (Qi(Xi))

αi·pr is Perm (Mi[Ai + r,Bi]).

Expand (Qi(Xi))
αi·pr as ∏

j∈Ai

(Qi(Xi))
pj+r =

∏
j∈Ai+r

(Qi(Xi))
pj .

By assumption |Ai| = |Bi| and expanding Xβi
i as

∏
k∈Bi X

pk

i we see that for every one-to-one map-

ping h : Bi → Ai we get a contribution to the coefficient of Xβi
i by picking Xpk

i from (Qi(Xi))
ph(k)+r

,

i.e., the coefficient of Xβi
i is (using Claim 3.12):∑

h:Bi→Ai,h one-to-one

∏
k∈Bi

ap
h(k)+r

i,k−(h(k)+r) = Perm(Mi[Ai + r,Bi]).

This completes the proof of the lemma. �

The above lemma gives us an explicit formula for the coefficients of a certain polynomials. The
following remark describes the exact way in which this lemma gets used to show that such a
polynomial is nonzero.

Remark 3.14 Keep the notation of the previous lemma. Suppose that the following two conditions
hold:

1. M ′1[A1, B1], . . . ,M
′
t [At, Bt] are each, up to reordering of rows and columns, upper triangular

with every diagonal entry nonzero.

2. For every r ∈ {1, . . . , n− 1} there exists ir ∈ {1, . . . , t} such that M ′ir [Air , Bir − r] contains
an all-zero column.

Then the coefficient cM of the monomial M in R(X1, . . . , Xt) is nonzero.

Indeed, assumption 1 implies that the first summand on the right hand side of (8) is nonzero, because
it is a product of permanents of upper triangular matrices with nonzero diagonal. Assumption 2
implies that all other summands are zero, because one matrix in the product has a zero permanent
on account of its all-zero column.

4 Univariate constructions

In this section we prove our results about univariate dispersers. We start with the cubic affine
disperser (in the next section, we will show that it is even an affine extractor).
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4.1 Cubic affine disperser

Theorem 2.6 (Univariate cubic affine disperser, restated) Let π : Fpn → Fp be a nontrivial
Fp-linear map. The function f : Fpn → Fp given by

f(x) = π
(
x1+p+p

2
)

is a disperser for the set of affine spaces of dimension greater than 2n
5 + 10 that are not contained

in an affine shift of a proper subfield of Fpn.

In particular, if n is odd, then f is an affine disperser for dimension 2n
5 + 10.

Proof We assume without loss of generality that dim(A) = d = d2n5 e+ 10 (by replacing A with
an arbitrary subspace of A of this dimension). By Proposition 3.3, we know that π(x) is of the
form Tr(µx) for some µ ∈ Fpn \ {0}. Let Q(X) be the image-subspace polynomial of A, so that
A = Q(Fpn). Let

R(X) = Tr(µ ·Q(X)1+p+p
2
) mod 〈Xpn −X〉,

so that by Proposition 3.1, R(x) = f(Q(x)) for each x ∈ Fpn and hence R(Fpn) = f(A). The same
proposition implies that to prove Theorem 2.7, it suffices to show that R(X) has a monomial of
positive degree, and this is what we shall do.

To find the desired monomial we start by invoking Lemma 3.13. Applying this lemma to our case
we have t = 1 and we get a single linearized polynomial Q1(X1) = Q(X). The set A = Ai is
{0, 1, 2}, which corresponds to the exponent α = α1 = p0 + p1 + p2. Thus, Lemma 3.13 reads in
our case as follows.

Claim 4.1 For B = {i, j, k} ⊆ {0, . . . , n− 1} let β = pi + pj + pk. The coefficient cM of the
monomial M = Xβ in

Tr
(
µ ·Q(X)p

0+p1+p2
)

(mod Xpn −X)

is given by

cM =
n−1∑
r=0

µrPerm (M [A,B − r])p
r

. (9)

By Remark 3.14, the above claim implies that in order to show that R(X) is nonconstant, letting
M ′ = M ′Q be the zero-one indicator matrix of MQ as defined in Definition 3.11, it suffices to find
a B ⊆ {0, . . . , n− 1} with |B| = 3, such that:

1. The matrix M ′[{0, 1, 2}, B] is, up to reordering of rows and columns, upper triangular with
each diagonal entry nonzero.

2. For every r ∈ {1, . . . , n− 1} the matrix M ′[{0, 1, 2}, B − r] contains an all-zero column.

We proceed to find such a B. Thus all the action is in the first 3 rows of the matrix M ′.

To this end, we state a few useful properties of the coefficients of Q that all follow immediately
from Lemma 3.10 and will be used later on in the proof. Notice that (iv) below follows via the
second part of Lemma 3.10 from our assumption that A is not contained in an affine shift of a
proper subfield of Fpn .
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Claim 4.2 Let Q(X) =
∑n−1

i=0 aiX
pi + â be the image-subspace polynomial of A. Letting d =

dim(A) we have (i) d ≥ 2n
5 + 10, (ii) a0, an−d 6= 0, (iii) an−d+1 = . . . = an−1 = 0 and (iv) for every

0 ≤ j ≤ n− d there is at least one nonzero coefficient amongst aj , aj+1, . . . , aj+d−2.

To further simplify notation, for r1 < r2 let [r1, r2] denote the set of integers in the interval [r1, r2].
Let I0 = {i ∈ [0, n − 1] : ai = 0} denote the set of indices of the zero coefficients of Q and let
I1 = [0, n− 1] \ I0 be the set of indices of nonzero ones.

We show the existence of a set B satisfying properties 1 and 2 and break the proof into three cases
according to the structure of I0, I1.

Case I — I1 ∩ [n/5 − 15, 2n/5 + 7] 6= ∅: Let j ∈ I1 ∩ [n/5 − 15, 2n/5 + 7]. We claim the set
B = {0, j + 1, n− d+ 2} satisfies our pair of properties. Property 1 holds because

M ′[{0, 1, 2}, {0, j + 1, n− d+ 2}] =

 a′0 a′j+1 a′n−d+2

a′n−1 a′j a′n−d+1

a′n−2 a′j−1 a′n−d

 =

 a′0 a′j+1 0

0 a′j 0

0 a′j−1 a′n−d

 =

 1 ∗ 0
0 1 0
0 ∗ 1

 .

The second equality holds because of Claim 4.2 (i) , (ii) .

We now argue property 2. We have

M ′[A,B − r] = M ′[{0, 1, 2}, {n− r, j + 1− r, n− d+ 2− r}] =

 a′n−r a′j+1−r a′n−d+2−r
a′n−r−1 a′j−r a′n−d+1−r
a′n−r−2 a′j−1−r a′n−d−r


For r ∈ [1, d − 3] the first column of M ′[A,B − r] is seen to be zero because the set of indices
appearing there is

{n− r, n− r − 1, n− r − 2} ⊆ [n− d+ 1, n− 1] ⊆ I0,

(the last inclusion follows from Claim 4.2 (ii) ). Similarly, for r ∈ [n−(d−3), n−1] the last column
of M ′[A,B − r] is zero, since the set of indices appearing there,

{n− d+ 2− r, n− d+ 1− r, n− d− r} ⊆ [n− d+ 1, n− 1] ⊆ I0.

Finally, for the remaining r ∈ [d − 2, n − (d − 2)] ⊆ [2n/5 + 8, 3n/5 − 8], using the fact that
j ∈ [n/5 − 15, 2n/5 + 7], we see that the middle column of M ′[A,B − r] is zero, since the set of
indices appearing there,

{j + 1− r, j − r, j − 1− r} ⊆
[(n

5
− 15

)
− 1−

(
3n

5
− 8

)
,

(
2n

5
+ 7

)
+ 1−

(
2n

5
+ 8

)]
⊆

[
3n

5
− 8, n− 1

]
⊆ I0,

where the last inclusion uses the bound on d which implies 3n/5 − 8 > n − d. We conclude that
property 2 also holds and the proof of the first case is complete.
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Case II — I1 ∩ [n/5− 15, 2n/5 + 7] = ∅: Let j1 be the largest element in [0, n/5− 15] ∩ I1 and
let j2 be the minimal element in [2n/5 + 7, n − d] ∩ I1. By Claim 4.2 (iii) we cannot have both
j1 = 0 and j2 = n − d. Consider the following four intervals: [0, j1] (whose end points are in I1),
[j1+1, j2−1] (which is contained int I0), [j2, n−d] (whose end points are in I1), and [n−d+1, n−1]
(which is contained in I0). Denote the length of these intervals by α1, . . . , α4 respectively. Notice
the length of each of the zero intervals (α2, α4) is strictly greater than the length of the other two
“nonzero” intervals. Moreover, by the assumption that A is not contained in an affine shift of a
proper subfield, part 2 of Lemma 3.10 implies that α4 > α2. By assumption α1, α3 < n/5− 10. We
summarize this for future reference by

d− 2 = α4 > α2 > max{α1, α3}+ 10. (10)

There are two subcases,

Case II.a — α1 6= α3: Assume without loss of generality α1 > α3. We claim that B =
{0, n− d+ 1, j1 + 2} satisfies our pair of properties. (The case of α1 < α3 can be seen to be
identical by using the argument below to show B = {j2, j1 + 1, n− d+ 2} satisfies the said pair of
properties.) Property 1 holds because

M ′[{0, 1, 2}, {0, n− d+ 1, j1 + 2}] =

 a′0 a′n−d+1 a′j1+2

a′n−1 a′n−d a′j1+1

a′n−2 a′n−d−1 a′j1

 =

 1 0 0
0 1 0
0 ∗ 1

 .

Regarding property 2, the key observation is that any nonzero shift will force either the first or
the last column to be all zero. Indeed, the difference between the top left and bottom right indices
of M ′[A,B − r = {n− r, n− d+ 1− r, j1 + 2− r}] is j1 = α1 − 1, and the difference between any
other pair of indices chosen one from each of the first and third columns is between j1 and j1 + 4.
Thus, by (10) the only value of r such that both these columns are not entirely zero is r = 0. We
conclude property 2 holds and the proof of this case is complete.

Case II.b — α1 = α3: In this case we claim that B = {0, j2 + 1, j1 + 2} satisfies our pair of
properties. Property 1 can be verified by inspection as in the previous two cases. Furthermore,
since the first and last column in this case are identical to the first and last column in the previous
case, the same argument as there shows that the only nonzero shift that has both these columns
nonzero must be r = n− j2. We get the following matrix

M ′[{0, 1, 2}+ (n− j2), B = {0, j2 + 1, j1 + 2}] =

 a′j2 a′2j2+1 a′n−d+2

a′j2−1 a′2j2 a′n−d+1

a′j2−2 a′2j2−1 a′n−d

 =

 1 ∗ 0
0 a′2j2 0

0 ∗ 1

 .

The only way the matrix above can be nonzero is if a′2j2 6= 0. Since j2 > 2n/5 the only way this
can happen is to have j2 ≥ n/2. But in this case we get α1 + α2 ≥ α3 + α4 which contradicts (10).
We conclude the above matrix has permanent 0 and property 2 holds. This completes the proof
for the final case and Theorem 2.6 follows. �
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4.2 Quartic affine disperser

Theorem 2.7 (Univariate quartic affine disperser, restated) Let π : Fpn → Fp be a nontrivial
Fp-linear homomorphism. The function f : Fpn → Fp given by

f(x) = π
(
x1+p+p

2+p3
)

is a disperser for the set of affine spaces of dimension greater than n
3 + 10 that are not contained

in an affine shift of a proper subfield of Fpn.

In particular, if n is odd, then f is an affine disperser for dimension n
3 + 10.

Proof The proof is similar to that of Theorem 2.6. Let µ be as before. Let Q(X) be the
image-subspace polynomial of A, so that A = Q(Fpn). Let

R(X) = Tr(µ ·Q(X)1+p+p
2+p3

) mod 〈Xpn −X〉.

As in the case of the previous proof, it is sufficient to prove the existence of a quadruple B ⊆
{0, . . . , n− 1} which satisfies the conditions of Remark 3.14. We get started by adapting Lemma 3.13
to our present situation.

Claim 4.3 For B = {i1, . . . , i4} ⊆ {0, . . . , n− 1} let β = pi1 + pi2 + pi3 + pi4. The coefficient cM
of the monomial M = Xβ in

Tr
(
µ ·Q(X)p

0+p1+p2+p3
)

(mod Xpn −X)

is given by

cM =
n−1∑
r=0

µp
r
Perm (M [A,B − r])p

r

. (11)

As in Remark 3.14, letting M ′ = M ′Q (as defined in Definition 3.11), we seek B ⊆ {0, . . . , n− 1}
with |B| = 4 such that:

1. The matrix M ′[{0, 1, 2, 3}, B] is, up to reordering of rows and columns, upper triangular with
a nonzero diagonal.

2. For every r ∈ {1, . . . , n− 1} the matrix M ′[{0, 1, 2, 3}, B − r] contains an all-zero column.

Having found such a B, the above claim lets us conclude that the polynomial R(X) defined above
is nonconstant.

As in the analysis of the cubic affine disperser, we begin by stating a few useful properties of the
coefficients of Q that all follow immediately from Lemma 3.10 and will be used later on in the
proof. Notice that (iv) below follows via the second part of Lemma 3.10 from our assumption that
A is not contained in an affine shift of a proper subfield of Fpn .

Claim 4.4 Let Q(X) =
∑n−1

i=0 aiX
pi + â be the image-subspace polynomial of A. Letting d =

dim(A) we have (i) d ≥ n
3 + 10, (ii) a0, an−d 6= 0, (iii) an−d+1 = . . . = an−1 = 0 and (iv) for every

0 ≤ j ≤ n− d there is at least one nonzero coefficient amongst aj , aj+1, . . . , aj+d−1.
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We use the notation introduced in the proof of Theorem 2.6 in the previous subsection. Recalling
the definition of I0, I1, notice that (ii) implies {0, n − d} ∈ I1, (iii) implies [n − d + 1, n − 1] ⊆ I0
and (iv) implies I1 ∩ [j, j + d− 1] 6= ∅.

As stated earlier, we show that a set B satisfying part 2 of Claim 4.3 exists, thereby proving
Theorem 2.7. Our proof is divided into three cases according to the structure of I0, I1.

Case I — I1 ∩ [n/3 − 14, n/3 + 4] 6= ∅: Let j ∈ I1 ∩ [n/3 − 14, n/3 + 4]. We claim B =
{0, 1, j + 2, n− d+ 3} satisfies the two properties. Property 1 holds because

M ′[A,B] =


a′0 a′1 a′j+2 a′n−d+3

a′n−1 a′0 a′j+1 a′n−d+2

a′n−2 a′n−1 a′j a′n−d+1

a′n−3 a′n−2 a′j−1 a′n−d

 =


1 ∗ ∗ 0
0 1 ∗ 0
0 0 1 0
0 0 ∗ 1

 , where a′i =

{
0 ai = 0
1 ai 6= 0

.

Regarding property 2, consider

M ′[A,B − r] =


a′n−r a′n+1−r a′j+2−r a′n−d+3−r
a′n−1−r a′n−r a′j+1−r a′n−d+2−r
a′n−2−r a′n−1−r a′j−r a′n−d+1−r
a′n−3−r a′n−2−r a′j−1−r a′n−d−r

 .

For r ∈ [1, d− 4], the first column of M ′[A,B − r] is zero, since the set of indices appearing there

[n− 3− r, n− r] ⊆ [n− d+ 1, n− 1] ⊆ I0

The last inclusion follows from Claim 4.4 (iii) . Similarly, for r ∈ [n− (d−4), n−1] the last column
of M ′[A,B − r] is zero, since

[n− d+ 3− r, n− d− r] ⊆ [n− d+ 1, n− 1] ⊆ I0.

Finally, for the remaining r ∈ [d−3, n−(d−3)] ⊆ [n/3+7, 2n/3−7] the third column of M ′[A,B−r]
is zero by selection of j ∈ [n/3− 14, n/3 + 4], since

[j − 1− r, j + 2− r] ⊆ [(n/3− 15)− (2n/3− 7), (n/3 + 6)− (n/3 + 7)] ⊆ [2n/3− 8, n− 1] ⊆ I0,

where the last inclusion uses Claim 4.4 (i) . We conclude property 2 also holds and the proof of
the first case is complete.

Case II — I1 ∩ [n/3 − 14, n/3 + 4] = ∅: As in the proof of Theorem 2.6, let j1 be the largest
element in [0, n/3− 15]∩ I1 and let j2 be the minimal element in [n/3 + 5, n−d]∩ I1. By Claim 4.4
(iv) we cannot have both j1 = 0 and j2 = n−d. Consider the following four intervals: [0, j1] (whose
end points are in I1), [j1 + 1, j2 − 1] (which is contained int I0), [j2, n − d] (whose end points are
in I1), and [n − d + 1, n − 1] (which is contained in I0). Denote the length of these intervals by
α1, . . . , α4 respectively. Notice α4 = d− 2 > α1 + 10, α3 + 10. There are two subcases.
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Case II.a — α1 6= α3: Assume without loss of generality α1 > α3. We claim that the set
B = {0, j2 + 1, n− d+ 2, j1 + 3} satisfies both properties. (The case of α1 < α3 can be seen to
be identical by using the argument below to show that B = {j2, 1, j1 + 2, n− d+ 3} satisfies our
properties.) Property 1 holds because

M ′[A,B] =


a′0 a′j2+1 a′n−d+2 a′j1+3

a′n−1 a′j2 a′n−d+1 a′j1+2

a′n−2 a′j2−1 a′n−d a′j1+1

a′n−3 a′j2−2 a′n−d−1 a′j1

 =


1 ∗ 0 0
0 1 0 0
0 0 1 0
0 0 ∗ 1

 .

Regarding property 2, the key observation is that any the difference between the top left and bottom
right indices of M ′[A,B − r] — and this difference is independent of r — equals j1 = α1 − 1, and
similarly the difference between any other pair of indices chosen one from each of the first and third
columns is between j1 and j1 + 6. Since α4−10 > α1 > α3 and α2 ≥ 20 the only shifts r that make
both the first and the last columns nonzero must satisfy r ∈ [n− j1, n− 10]. This implies that the
third column is zero (since this choice of r puts the indices of its entries in I0), hence property 2
holds and the proof of this case is complete.

Case II.b — α1 = α3: We claim that B = {0, j2 + 1, n− d+ 2, j1 + 3} satisfies both our prop-
erties. Indeed, property 1 holds by the reasoning of case II.a. By the same reasoning as in that
case, the only nonzero shift r for which both the first and last columns are nonzero is the shift
r = n− j2 which gives

M ′[A,B− (n− j2)] =


a′j2 a′2j2+1 a′n−d+j2+2 a′j2+j1+3

a′j2−1 a′2j2 a′n−d+j2+1 a′j2+j1+2

a′j2−2 a′2j2−1 a′n−d+j2 a′j2+j1+1

a′j2−3 a′2j2−2 a′n−d+j2−1 a′j2+j1

 =


1 ∗ ∗ 0
0 a′2j2 a′n−d+j2+1 0

0 a′2j2−1 a′n−d+j2 0

0 ∗ ∗ 1

 .

The last column is calculated using α1 = α3 which implies j2 + j1 = n − d. Consider the middle
2× 2 matrix on the right hand side above. The difference between the upper left and bottom right
indices is n − d + j2 − 2j2 = n − d − j2 = j1 and that between the bottom left and upper right is
j1 + 2. Thus, we conclude a′n−d+j2+1 = a′2j2−1 = 0. Claim 4.4 (iv) , which relies on the fact that
A is not contained in an affine shift of a proper subfield, implies that α2 < α4. Together with the
assumption α1 = α3 we conclude α1 + α2 < α3 + α4. This implies j2 < n/2 which, together with
the assumption j2 > n/3 gives us n − d < 2j2 < n. This implies, via part (i) of Claim 4.4, that
a2j2 = 0 and the third column is all zero. This shows property 2.

Summing up, in each of the three cases above, we have shown the existence of a set B that satisfies
both properties of part 2 of Claim 4.3. This implies R(X) is nonzero and Theorem 2.7 follows. �

5 Cubic affine dispersers are affine extractors

In this section we show that cubic polynomials that are dispersers for dimension d are also extractors
for dimension d′ � d and the bias of these extractors decreases as d′ grows larger. The method-of-
proof of Theorem 2.9, restated next, is very different from what we use in the rest of this paper. It

21



relies on an energy-increment argument regarding random directional derivatives and does not use
subspace polynomials. (In particular, to follow the proof one does not need Sections 3–4).

Theorem 2.9 (Cubic affine dispersers are affine extractors, restated) There exists a uni-
versal constant ε > 0 such that the following holds. Let f : Fmp → Fp be computed by a cubic

polynomial. If f is a disperser for degree d0 then f is an extractor for dimension d0 + d̂ with bias
≤ d̂ε.

The rest of this section is devoted to a proof of the theorem for the binary case of p = 2, stated
below. This proof can be readily extended to hold for all prime p. Since a tighter bound is provided
in the recent work of Haramaty and Shpilka [2009] we prefer simplicity of proofs to generality of
statement.

Theorem 5.1 (Cubic affine dispersers are affine extractors — binary case) Let f : Fn2 →
F2,deg(f) = 3,bias(f) ≥ β > 0. Then f is constant on a F2-affine space S ⊆ Fn2 of co-dimension

at most O
(
log 1/β
β2

)
.

Roughly speaking, the proof of this theorem goes by way of contradiction as follows. Assume A is an
affine space of very large dimension on which f is very biased. Using an energy-increment argument
(Claim 5.7) we restrict our view to a subspace of A that is also of very large dimension, and on
which f is very biased and all its directional derivatives are very small. In this case f is very-well
approximated by a function of a constant number of its directional derivatives, and these derivatives
are quadratic functions (this idea of approximating a function by its directional derivatives is from
Bogdanov and Viola [2007].) Using our understanding of biased quadratic polynomials we conclude
that f is in fact constant on a subspace of A of very large dimension, contradicting the assumption
that f is an affine disperser.

5.1 Bias of random directional derivatives

We start by introducing a formal notation for the bias of a function on a subset of inputs.

Definition 5.2 (Bias) For f : Fn2 → F2 and S ⊂ Fn2 let

βS(f) = Ex[(−1)f(x)]

and let biasS(f) = |βS(f)|. For simplicity of notation let β(f) and bias(f) denote βFn2 (f) and
biasFn2 (f), respectively.

The following lemma, an immediate consequence of Dickson’s Theorem (cf. [Lidl and Niederreiter,
1997, Chapter 6]), characterizes the set of quadratic functions with large bias.

Lemma 5.3 (Biased quadratics) If deg(f) ≤ 2 and bias(f) = β > 0 then Fn2 can be partitioned
into 2/β affine spaces of co-dimension 1 + log 1/β such that f is constant on each of them.
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Proof By Dickson’s Theorem, up to a linear renaming of variables, f is of the form

f(x1, . . . , xn) =
r∑
i=1

x2i−1x2i + ax2r+1 + b for some a, b ∈ F2.

Since β > 0 we must have a = 0. Clearly bias(f) = 2−r, or, equivalently, r = log 1
β . Let

I = {2, 4, . . . , 2r}. For each ρ ∈ FI2 notice deg(f |ρ) ≤ 1. Thus, f |ρ : F[n]\I
2 → F2 is either constant

on F[n]\I
2 or else, being an affine-linear function, can be partitioned into two affine spaces such that

f |ρ is constant on each. �

Let us recall the notion of a random directional derivative.

Definition 5.4 (Bias of random directional derivatives) For a ∈ Fn2 let fa be the directional
derivative of f in direction a, defined by fa(x) = f(x+a)−f(x). Let Z denote the random variable
β(fa) over random direction a.

We now bound the first and second moment of the random variable Z. The expectation in both
claims is over a uniformly random direction a.

Claim 5.5 (First moment) Ea[Z] = β2(f).

Proof We have

Ea[Z] = Ea
[
Ex
[
(−1)f(a+x)−f(x)

]]
= Ea,x

[
(−1)f(a+x)−f(x)

]
= Ex

[
(−1)f(x)Ea

[
(−1)f(a+x)

]]
= β(f) · Ex

[
(−1)f(x)

]
= β2(f).

�

For α ∈ Fn2 let f̂α be the α-Fourier coefficient of f defined by

f̂α = Ex[(−1)f(x) · χα(x)]

where χα : Fn2 → {−1, 1} is the α-character of Fn2 defined by χα(x) =
∏n
i=1(−1)αi·xi . Notice

β(f) = f̂0.

Claim 5.6 (Second moment) Var[Z] =
∑

α 6=0 f̂
4
α.

Proof We have

E[Z2] = Ea
[
Ex
[
(−1)f(a+x)−f(x)

]
· Ex′

[
(−1)f(a+x

′)−f(x′)
]]

= Ea,x,x′
[
(−1)f(a+x)+f(x)+f(a+x

′)+f(x′)
]

= Ea,x,x′
[ ∑
α1,...,α4

f̂α1 · f̂α2 · f̂α3 · f̂α4 · χα1(a+ x) · χα2(x) · χα3(a+ x′) · χα4(x′)

]
=

∑
α1,...,α4

f̂α1 · f̂α2 · f̂α3 · f̂α4 · Ea [χα1+α3(a)] · Ex [χα1+α2(x)] · Ex′
[
χα3+α4(x′)

]
=

∑
α

f̂4α.
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Thus,

Var[Z] =
∣∣Ea[Z2]− E2

a[Z]
∣∣ =

∑
α

f̂4α − f̂40 .

The last equality follows from Claim 5.5 and β(f) = f̂0 and this completes the proof. �

The next claim says that if f has a large Fourier coefficient, then f has an even larger bias on a
subspace of codimension 1. Such a claim is known as an energy increment argument and appears
in many proofs in additive combinatorics, a notable example is the proof of Roth’s Theorem over
Fn3 of Meshulam [1995] (cf. [Tao and Vu, 2006, Chapter 10]).

Claim 5.7 (Energy increment) For α 6= 0 let L0 = {x ∈ Fn2 | 〈x, α〉 = 0} and L1 = Fn2 \ L0.
Then for every function f : Fn2 → F2 and b ∈ {0, 1} we have

βLb(f) = β(f) + (−1)b · f̂α.

Proof Assume b = 0 (the proof for the case of b = 1 is identical). Let β = β(f). By definition
we have

β = Pr
x

[f(x) = 0]− Pr
x

[f(x) = 1].

Thus,

Pr
x

[f(x) = 0] =
1 + β

2
.

Similarly, letting , β′ = βL0(f) we get

Pr
x∈L0

[f(x) = 0] =
1 + β′

2
.

Finally, letting γ = f̂α we have

1

2

(
Pr
x∈L0

[f(x) = 0] + Pr
x∈L1

[f(x) = 1]

)
=

1 + γ

2
.

The second summand on the left hand side in the previous equation can be rewritten as

Pr
x∈L1

[f(x) = 1] = 2

(
Pr
x

[f(x) = 1]− 1

2
Pr
x∈L0

[f(x) = 1]

)
Plugging in Prx[f(x) = 1] = 1−β

2 and Prx∈L0 [f(x) = 1] = 1−β′
2 we get

1 + γ

2
=

1

2

(
1 + β′

2
+ (1− β)− 1− β′

2

)
.

Rearranging terms we get 1 + γ = 1 + β′ − β which gives β′ = β + γ as claimed. �
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5.2 Proof of Theorem 5.1

To prove Theorem 5.1 we find, using Claim 5.7, a subspace on which f is biased and all its nonzero
Fourier coefficients are small. On this subspace, by Claim 5.6 the variance of f is very small. So
for most directions the derivative fa, which has degree 2, is also biased. The work of Bogdanov and
Viola [2007] showed that in this case f can be very well approximated by a majority of (random)
derivatives. Since our random derivatives are biased we can use Lemma 5.3 to argue that they
jointly partition the space into a small number of affine spaces on which f is constant. But since f
agrees with the majority of derivatives almost everywhere there must be a subspace on which the
two agree completely. Details follow.

Proof of Theorem 5.1: We use positive constants c1, c2 whose value will be fixed later. First,
using the energy increment Claim 5.7 we inductively construct a sequence of affine spaces A0 =
Fn2 ⊃ A1 ⊃ A2 ⊃ . . . and sequence of functions fi : Ai → F2 of increasing biases β0 = β < β1 < . . . as
follows. Let f0 = f . For i ≥ 0 if fi has a Fourier coefficient that is greater in magnitude than β2/c1
then by Claim 5.7 there exists a subspace A′ ⊂ Ai such that biasA′(fi) ≥ bias(fi) = βi+β

2/c1 so set
Ai+1 = A′ and let fi+1 be the restriction of f to Ai+1. By induction we have βi ≥ β(1 +β2/c1)

i we
conclude that this process must stop after t ≤ c1/β2 steps. Let f ′ = ft and notice that f ′ : Fm2 → F2

for m = n− t ≥ n− c1/β2 satisfies bias(f ′) ≥ β and for all α 6= 0 we have |f̂ ′α| ≤ β2/c1.

Next, set s = c2/β
2 and pick s random directions a1, . . . , as ∈ Fm2 . Let Bi be the “bad” event that

bias(f ′ai) < β2/2. Let C be the “bad” event that Prx∈Fm2 [f(x) 6= majority(fa1(x), . . . , fas(x))] >
2−5. Theorem 5.1 follows from the following claim, whose proof appears below.

Claim 5.8
Pr

a1,...,as∈Fm2
[B1 ∨ . . . ∨Bs ∨ C] < 1.

Let us complete the proof of the theorem. Fix a1, . . . , as for which none of B1, . . . , Bs, C occur,
Claim 5.8 proves these ai’s exist. We have bias(f ′ai) ≥ β

2/2 for i = 1, . . . , s. By Lemma 5.3 each f ′ai
partitions Fm2 into spaces of codimension ≤ 2+2 log 1/β each, such that f ′ai is constant on each such

space. Thus, we can partition Fm2 into affine spaces of codimension ≤ s · (2+2 log 1/β) ≤ O( log 1/β
β2 )

each such that for each such space A we have that f ′ai is constant on A for i = 1, . . . , s.

Furthermore, for all but a 2−5 fraction of inputs, we have that f ′ agrees with g = majority(f ′a1
, . . . , f ′as).

Consider one of the spaces A. If f ′ does not agree with g completely on A then the two must dis-
agree on a 2−3 fraction of points of A, because g is constant on A so the degree of the function
f − g, when restricted to A, is at most 3. We conclude that there must be some space on which
f ′ and g agree completely. But g is fixed on A which is an affine space of codimension O( log 1/ββ ).

Adding the codimension of n − m ≤ O(1/β2) which we incurred when moving from f to f ′ we
complete the proof of Theorem 2.2. �

Proof of Claim 5.8: First consider Bi. Using the random variable Z defined as bias(f ′a) we have
from Claim 5.5 that E[Z] ≥ β2 because bias(f ′) ≥ β and from Claim 5.6 we get Var[Z] ≤ β4/c21.
Using Chebychev’s inequality we get

Pr[bias(f ′ai) ≤ β
2/2] ≤ 4β2

c21
.
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Next consider C. Fix x ∈ Fm2 and consider the “bad” event Cx which is “f(x) 6= majority(f ′a1
(x), . . . , f ′as(x))”.

We know that f(x) = f ′ai(x) if and only if f(a + x) = 0 and this happens with probability 1+β
2 .

Using the independence of ai and Chernoff’s bound we conclude

Pr[Cx] ≤ exp(−β2s/16).

By linearity of expectation the expected fraction of inputs on which f(x) 6= majority(f ′a1
(x), . . . , f ′as(x))

is at most exp(−β2s/16). By Markov’s inequality the probability that the fraction of errors is more
than 2 exp(−β2s/16) is at most half. We now fix c1, c2 so that

2 exp(−β2s/16) = 2 exp(−c2/16) ≤ 2−5

and additionally

s · 4β2

c21
=

4c2
c21

< 1/2.

We conclude using a union bound that the probability that none of C or B1, . . . , Bs occur is nonzero
and this completes the proof of Claim 5.8. �

5.3 Quartic affine dispersers are not necessarily affine extractors

The next lemma shows that for f : Fn2 → F2, deg(f) > 3, any connection between bias(f) and the
dimension of the largest subspace on which f is constant, must depend on n. In particular, to show
that the quartic affine disperser given in Theorem 2.7 is an affine extractor, one cannot simply rely
on the dispersing nature of this function and a deeper algebraic understanding of it is required.

Lemma 5.9 The function f :
(
Fn/42

)4
→ F2 defined by

f(x, y, z, w) =

n/4∑
i=1

xiyi

 ·
n/4∑
i=1

ziwi


is an affine disperser for dimension d > 3n/4 and has bias(f) = 1

2 − o(1).

Before giving the proof, notice f can be computed by the 4-variate polynomial over F2n/4 given by

f(X,Y, Z,W ) = Tr(µXY ) · Tr(µZW )

where Tr is the trace map from F2n/4 to F2 and µ is some element of F2n/4 (cf. Proposition 3.3).

Proof The bias of f on
(
Fn/42

)4
can be readily seen to be 1

2 − o(1) as it is the product of two

independent random coins that are each 0 with probability 1
2 − o(1). Next we argue that f is a

disperser. Fix a space A ⊆ F[n]
2 ,dim(A) > 3n/4. By Bourgain’s decomposition (Lemma 7.1) there

exist affine spaces

A0 ⊆ F{1,...,n/2}2 , A1 ⊆ F{n/2+1,...,n}
2 ,dim(A0) + dim(A1) = dim(A)
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and an affine transformation
T : F{1,...,n/2}2 → F{n/2+1,...,n}

2

such that
A = {a0 + T (a0) + a1 | a0 ∈ A0, a1 ∈ A1}.

Notice both dim(A0),dim(A1) > n/4. It was shown in Ben-Sasson et al. [2001] that the function∑n/4
i=1 xiyi is an affine disperser for dimension > n/4 (in fact, it is even an affine extractor). Hence,

there exist (x′, y′), (x′′, y′′) ∈ A0 such that
∑n/4

i=1 x
′
iy
′
i = 0 and

∑n/4
i=1 x

′′
i y
′′
i = 1. In the first case

f obtains the value 0. In the second case there exists (z′, w′) ∈ A1 such that f evaluates on
(x′′, y′′)+T (x′′, y′′)+(w′, z′) to 1. This holds because T (x′′, y′′)+A1 is an affine space of dimension

> n/4 and the function
∑n/4

i=1 ziwi is an affine disperser for dimension > n/4. We conclude f is not
constant on A, thereby completing the proof. �

We end our discussion of cubic extractors by showing that some of them reach dimension as low as√
n. This offers a possible way to get affine extractors for polynomially small dimension (something

out of reach of current techniques) — by constructing a cubic affine disperser for polynomially small
dimension.

Lemma 5.10 (Cubic affine dispersers for small dimension) There exists a cubic function
f : Fnp → Fp that is a disperser for affine spaces of dimension Ω(

√
n).

Proof Let f be a uniformly random degree 3 polynomial in n variables over Fp. Notice that for
any fixed affine space A of dimension d, the restriction of f to A is again a uniformly random degree
3 polynomial (but of course, these events are not independent across different A). Letting

(
d
≤k
)

=∑
j≤k

(
d
j

)
, the probability that the restriction of f to A is zero equals p

−( d
≤3) ≤ p−d

3/6. Taking

a union bound over all subspaces A of dimension 3
√
n, and there are less than (pn)3

√
n = p3n

3/2

of them, we see that the probability that the restriction of f to every dimension 3
√
n subspace is

nonzero is at least
1− p3n3/2 · p−

27
6
n3/2

> 0,

which completes the proof of the lemma. �

6 Disperser for independent affine sources

In this section we prove Theorem 2.3, restated below. Although the analysis is simpler than what
is involved in the proof of our main disperser for sublinear dimension (Theorem 2.2), the proof of
the following theorem lies at the heart of the more complicated case which is discussed in the next
section.

Theorem 2.3 (Disperser for independent affine sources, restated) Let π : Fpn → Fp be a
nontrivial Fp-linear map. Consider the function f : Ftpn → Fp given by

f(x1, . . . , xt) = π

(
t∏
i=1

x1+pi

)
. (12)
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Let A1, . . . ,At ⊆ Fpn be Fp-affine spaces of dimensions d1, . . . , dt respectively, where each Ai is not
contained in an affine shift of a proper subfield of Fpn. If

∑t
i=1(di−2) > n, then |f(A1×· · ·×At)| >

1.

Proof We follow the steps outlined in our strategy described in Section 1.2. First, we notice that

f(A1, . . . ,At) = f(Q1(Fpn), . . . , Qt(Fpn))

where Qi(Xi) is the image-subspace polynomial of Ai. By Propositions 3.1, 3.3, in order to show
|f(A1 × · · · × At)| > 1 it suffices to show that for any µ ∈ Fpn \ {0} the polynomial

R(X1, . . . , Xt)
def
= Tr

(
µ

t∏
i=1

(Qi(Xi))
αi

)
mod 〈(Xpn

i −Xi)i∈[t]〉

contains a monomial of positive degree with nonzero coefficient. We use Lemma 3.13 to prove the
existence of such a monomial and in the proof we rely on the structural properties of image-subspace
polynomials given in Lemma 3.10.

The key step in our proof is given by the following theorem. We state a somewhat more general
form than needed for the proof of Theorem 2.3. The added generality will be useful in the proof
of Theorem 2.2. (The general form we refer to deals with large powers αi whereas for Theorem 2.3
setting all αi to 1 + p would be sufficient.)

Theorem 6.1 (Disperser for independent affine sources — Algebraic version) Assume that
A1, . . . ,At ⊆ Fpn are affine subspaces of dimensions d1, . . . , dt > 1, none of which are contained in
an affine shift of a proper subfield of Fpn. Let Qi(Xi) ∈ Fpn [Xi] be the image-subspace polynomial
of Ai. Let µ ∈ Fpn \ {0}. Let e1, . . . , et satisfy 1 ≤ ei < di − 1 and let αi =

∑et
j=0 p

j. Let

R(X1, . . . , Xt)
def
= Tr

(
µ

t∏
i=1

(Qi(Xi))
αi

)
mod 〈(Xpn

i −Xi)i∈[t]〉 (13)

If
∑t

i=1(di − (ei + 1)) > n − max di + 1, then R(X1, . . . , Xt) has a monomial
∏t
i=1X

βi
i with

wtp(βi) = ei + 1, which has a nonzero coefficient. In particular, |R(Ftpn)| > 1.

Before giving the proof of Theorem 6.1, let us first show how to use it to complete the proof of
Theorem 2.3. We may assume without loss of generality that di > 2 by fixing nonzero elements of
those spaces that have dimension 2. Next, in Theorem 6.1 we set µ = 1 and e1 = . . . = et = 1,
which gives α1 = . . . = αt = 1+p. Using Proposition 3.1, the polynomial R defined in (13) satisfies
R(Ftpn) = f(A1× · · ·×At). Since

∑
(di− 2) =

∑
(di− (ei + 1)) > n we conclude from Theorem 6.1

that |f(A1, . . . ,At)| > 1 and this completes the proof of Theorem 2.3. �

Proof of Theorem 6.1: Let Ai = {0, . . . , ei}. By the first part of Lemma 3.13, if B1, . . . , Bt ⊂
{0, . . . , n− 1}, |Bi| = ei + 1 and βi =

∑
k∈Bi p

i, then the coefficient of M =
∏t
i=1X

βi
i in R, which

is denoted henceforth by cM, equals

n−1∑
r=0

µp
r ·

t∏
i=1

Perm (Mi[Ai, Bi − r])p
r

, (14)
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where Mi is the matrix associated with Qi (cf. Definition 3.11). We will find suitable powers βi
with wtp(βi) = ei + 1 such that cM 6= 0. We define βi by specifying Bi with |Bi| = ei + 1 and
setting βi =

∑
k∈Bi p

k.

Assume without loss of generality d1 = max di. To define Bi let `1 = 0 and for 1 ≤ i < t let
`i+1 = `i+di−(ei+1) mod n. In other words, `i =

∑
i′<i(di−(ei+1)) ( mod n) where `1 = 0. Let

Qi(Xi) =
∑n−1

j=0 ai,jX
pj + âi. Our definition of Bi splits into two cases, depending on whether ai,`i is

nonzero or zero. In the first case we set Bi to be the set {`i, n− di + 1, n− di + 2, . . . , n− di + ei}.
In the second case let ji be the smallest index j′ greater than `i such that ai,j′ is nonzero. Similarly,

let ĵi be the largest index ĵ′ smaller than `i such that a
i,ĵ′

is nonzero. Let qi = ji − ĵi − 1 be the

length of the interval of zero-coefficients of Qi between indices ĵi and ji. Let si = min {qi, ei}. We
set Bi to be the set

{ji} ∪
{
ĵi + 1, . . . , ĵi + si

}
∪ {n− di + si + 1, . . . , n− di + ei}.

The last set might be empty in case si = ei.

Our proof again employs the strategy of Remark 3.14 via the next two claims, proved below. We
point out that the noncontainment of Ai in a proper subfield and the implication this has on the
structure of coefficients of Qi (cf. Theorem 3.10) will be crucially used in the proof of Claim 6.3
below. Let M ′i denote the zero-one indicator matrix of Mi as given in Definition 3.11.

Claim 6.2 For all i = 1, . . . , t the matrix M ′i [Ai, Bi] is lower triangular with nonzero diagonal
entries.

Claim 6.3 For all r ∈ {1, . . . , n− 1} there exists i ∈ {1, . . . , t} such that M ′i [Ai, Bi − r] contains
an all-zero column.

Assuming these two claims, Lemma 3.13 and Remark 3.14 imply Theorem 6.1. �

Proof of Claim 6.2: Notice that, by definition, M ′i [Ai, Bi] is a (ei + 1) × (ei + 1) matrix
constructed by taking the minor corresponding to the first ei + 1 rows of M ′i and the columns
indexed by Bi. To see that M ′i [Ai, Bi] is lower diagonal with nonzero diagonal entries, consider Bi.

To simplify notation in this proof let aj = ai,j be the coefficient of Xpj in Q(Xi) and let a′j be its
zero-one indicator (cf. Definition 3.11). There are two cases.
a′`i = 1: We have Bi = {`i, n− di + 1, . . . , n− di + ei}. Consider the indices j of the coefficients
a′j residing in the various entries of M ′i [Ai, Bi]. By assumption ei < di so the entries above the
diagonal of M ′i [Ai, Bi] have indices belonging to

{n− di + 1, . . . , n− di + ei} ⊆ {n− di + 1, . . . , n− 1}

and this proves M ′i [Ai, Bi] is lower triangular. Regarding the diagonal, at the topmost left entry
we have a′`i = 1 and in all subsequent positions we have a′n−di , which is nonzero by Lemma 3.10.
This completes the proof of this case.

a′`i = 0: In this case we have Bi = {ji} ∪
{
ĵi + 1, . . . , ĵi + si

}
∪ {n− di + si + 1, . . . , n− di + ei}

where
ji = min {j > `i | ai,j 6= 0} and ĵi = max {j < `i | ai,j 6= 0}.
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The uppermost left (si + 1)× (si + 1) submatrix of M ′i [Ai, Bi] in this case is
a′ji a′

ĵi+1
. . . a′

ĵi+si
a′ji−1 a′

ĵi
. . . a′

ĵi+si−1
...

...
...

...
a′ji−si a′

(ĵi+1)−si
. . . a′

ĵi


which is lower triangular because the a′

ĵi+1
= . . . = aĵi+si = 0, and the diagonal entries of this

submatrix are nonzero because a′ji , a
′
ĵi

are nonzero. The last ei−si columns of the matrix — if they

exist — are identical to the same last columns of the previous case and this shows that M ′i [Ai, Bi]
is lower triangular with nonzero diagonal entries. This completes the proof of Claim 6.2. �

Proof of Claim 6.3: In what follows we denote for c < d by [c, d] the set of integers in the
interval [c, d] and by [c, d] mod n the set {i mod n | i ∈ [c, d]}. We start by observing that

M ′i [Ai, {k} − r] =


a′i,k−r

a′i,k−(r+1)
...

a′i,k−(r+ei)

 .

Thus for any k ∈ Bi, if r is such that

[k − (r + ei), k − r] mod n ⊆ [n− di + 1, n− 1], (15)

then the matrix M ′i [Ai, Bi − r] contains a zero column. So we get the following proposition.

Proposition 6.4 Whenever k ∈ Bi and

r ∈ [k + 1, k + di − (ei + 1)] mod n

then M ′i [Ai, Bi − r] contains an all-zero column.

Thus, to prove the claim it suffices to show

[1, n− 1] ⊆
t⋃
i=1

∪k∈Bi [k + 1, k + (di − ei)− 1]. (16)

(Notice that Claim 6.2 implies the containment in the previous equation is in fact an equality.)

Indeed, since `1 = 0 we have B1 = {0} ∪ [n− d1 + 1, n− d1 + e1], which implies by Proposition 6.4
that M ′1[A1, B1 − r] contains a zero column for r belonging to

[1, d1 − (e1 + 1)] ∪ [n− d1 + 2, n− 1] = [`1 + 1, `2] ∪ [n− d1 + 2, n− 1]. (17)

Let t′ be the minimal i such that
∑

i′≤i(di′ − (ei′ + 1)) ≥ n − d1 + 1, noticing such t′ exists by
assumption. In this case we have

∑
i′≤t′(di′ − (ei′ + 1)) < n and so `t′+1 =

∑
i′≤t′(di′ − (ei′ + 1)).
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We claim that for 1 < i ≤ t′ we have⋃
k∈Bi

[k + 1, k + di − (ei + 1)] ⊇ [`i + 1, `i+1]. (18)

which, together with (17), proves (16) and completes the proof of our claim. There are two cases
to consider when proving (18).

ai,`i 6= 0: In this case `i ∈ Bi so the claim follows from Proposition 6.4 by recalling that `i+1 =
`i + di − (ei + 1).

ai,`i = 0: There are two subcases to consider.

Case 1: qi < ei. In this case

Bi = {ji} ∪ [̂ji + 1, ĵi + qi] ∪ [n− di + qi + 1, n− di + ei].

Substituting ĵi + (qi + 1) for ji and reordering elements of Bi we get

Bi = [̂ji + 1, ji = ĵi + qi + 1] ∪ [n− di + qi + 1, n− di + ei].

We conclude `i ∈ Bi so by Proposition 6.4 our proof is complete, as in the case of ai,`i 6= 0 above.

Case 2: qi ≥ ei. In this case we have

Bi = {ji} ∪ [̂ji + 1, ĵi + ei].

Substituting ji = ĵi + qi + 1 we get

Bi = [̂ji + 1, ĵi + ei] ∪
{
ĵi + qi + 1

}
Now we use the fact that Ai is not contained in an affine shift of a proper subfield. We notice that
since i ≤ t′ we have by maximality of d1 that

ĵi < `i ≤ n− d1 ≤ n− di

which implies (using the maximality of d1 again) that ĵi + 1 6= n− di + 1. As Ai is not contained
in an affine shift of a proper subfield and ĵi + 1 6= n − di + 1, our Structural Lemma 3.10 implies
that ji − ĵi ≤ di − 1, or, equivalently, ji ≤ ĵi + di − 1.

Taking all but the last element of Bi in the previous equation notice⋃
k∈[̂ji+1,̂ji+ei]

[k + 1, k + di − (ei + 1)] ⊇ [̂ji + 2, ĵi + di − 1],

which contains ji. Now, since ĵi < `i < ji when we reinsert ji into Bi we conclude

∪k∈Bi [k + 1, k + di − (ei + 1)] ⊇ [̂j1 + 2, ji + di − (ei + 1)]

⊇ [`i + 1, `i+1].

This completes the last case and with it the proof of Claim 6.3 is complete. �
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7 Disperser for affine spaces of sublinear dimension

In this section we prove Theorem 2.2. We start by examining what happens to A ⊂ Fnrp when it is
partitioned into r blocks of size n. Then we prove the main theorem, by essentially reducing it to
the case of independent affine sources described in Theorem 6.1.

7.1 Preparatory lemmata

Our first lemma, already used by Bourgain [2007] in his construction of affine extractors, gives a
certain kind of direct sum decomposition of Fp-affine subspaces of Frpn .

Lemma 7.1 (Bourgain’s decomposition) Let A ⊆ (Fnp )r be an Fp-affine subspace. Let γ ∈ A.
Then there exist linear spaces Y1, . . . , Yr ⊆ Fnp and linear maps σij : Yj → Fnp such that:

A = {(x1, . . . , xr) | ∃yi ∈ Yi such that xi = γi + yi +
∑
j<i

σij(yj)}

and dimA =
∑

i∈[r] dimYi.

This lemma amounts to taking the echelon-form of a matrix whose rows form a basis for the linear
subspace underlying the affine subspace A.

The next lemma should be thought of as a complement to Theorem 6.1. It expands the class of
sources on which the function R given in that theorem is nonconstant. This expanded class is what
we will use in the proof of our main theorem.

Lemma 7.2 For each i ∈ [r], let Pi(Xi) ∈ Fpn [Xi] be a linearized polynomial. For each j < i,
let Pij(Xj) ∈ Fpn [Xj ] be a linearized polynomial. Let γ ∈ Frpn. Let I0 ⊆ [r] with I0 = {i1 < i2 <
. . . < it}. Let ei1 , . . . , eit > 1 be integers and let αi =

∑ei
k=0 p

i, for i ∈ I0. Let µ ∈ Fpn \ {0}. Let
g(X1, . . . , Xr) ∈ Fpn [X1, . . . , Xr] be the polynomial

Tr

µ∏
i∈I0

Pi(Xi) +
∑
j<i

Pij(Xj) + γi

αi mod 〈Xq
i −Xi〉i∈[r].

Let g′(X1, . . . , Xr) ∈ Fpn [X1, . . . , Xr] be the polynomial

Tr

µ∏
i∈I0

Pi(Xi)
αi

 mod 〈Xq
i −Xi〉i∈[r].

Then for any (βi1 , . . . , βit) where wtp(βik) = eik + 1, the coefficients of the monomial
∏
i∈I0 X

βi
i in

g and in g′ are equal.
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Proof We want to show that the coefficient of
∏
i∈I0 X

βi
i in g(X1, . . . , Xr) is the same as in

g′(X1, . . . , Xr). We do this by expanding out the expressions for g(X1, . . . , Xr) and g′(X1, . . . , Xr)
and keeping track of the monomials.

LetX<i denote the tuple of variables (X1, . . . , Xi−1). Let P̂i(X<i) be the polynomial
∑

j<i Pij(Xj)+
γi.

Expanding g(X1, . . . , Xr) we get

g(X1, . . . , Xr) =

n−1∑
r=0

µ∏
i∈I0

(
Pi(Xi) + P̂i(X<i)

)αipr

mod 〈(Xpn

i −Xi)i∈[r]〉 (19)

=
n−1∑
r=0

µp
r

∏
i∈I0

(
Pi(Xi) + P̂i(X<i)

)∑ei
l=0 p

r+l

 mod 〈(Xpn

i −Xi)i∈[r]〉.(20)

We now expand the term
(
Pi(Xi) + P̂i(X<i)

)∑ei
l=0 p

r+l

to obtain

ei∏
l=0

(
Pi(Xi) + P̂i(X<i)

)pr+l
(21)

=

ei∏
l=0

(
Pi(Xi)

pr+l + P̂i(X<i)
pr+l
)

(22)

=

ei∏
l=0

(Pi(Xi))
pr+l +

∑
L⊆{0,1,...,ei}

L6=∅

∏
l 6∈L

Pi(Xi)
pr+l

(∏
l′∈L

P̂i(X<i)
pr+l

′
)

(23)

Now the first term has Fp-degree in Xi equal to ei + 1, while all the other terms have Fp-degree in
Xi strictly less than ei + 1. The reason for this is that the polynomial P̂i(X<i) does not mention

the variable Xi, and each Pi(Xi))
pr+l and P̂i(X<i)

pr+l
′

are linearized polynomials (and hence of
Fp-degree 1). Let us summarize this by writing (23) as

(Pi(Xi))
∑ei
l=0 p

r+l

+Gi(X≤i)

and noting that the Fp-degree of Gi in Xi is at most ei.

Now let us go back to (20) and consider the rth summand within the parenthesis.

∏
i∈I0

(
Pi(Xi) + P̂i(X<i)

)∑ei
l=0 p

r+l

=
∏
i∈I0

(
(Pi(Xi))

∑ei
l=0 p

r+l

+Gi(X≤i)
)

=

(
(Pit(Xit))

∑eit
l=0 p

r+l

+Git(X≤it)

)
·
∏

i∈I0,i<it

(
(Pi(Xi))

∑ei
l=0 p

r+l

+Gi(X≤i)
)

=

(
(Pit(Xit))

∑eit
l=0 p

r+l

+Git(X≤it)

)
·Ht(X≤it−1)
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The rightmost term above, denoted Ht, does not mention Xit . Furthermore, as stated above Gt has
Fp-degree at most eit in Xit . But mξ has Fp-degree eit + 1 in Xit , so to contribute to the coefficient

of mξ we must select terms only from (Pit(Xt))
∑eit
l=0 p

r+l

and multiply them by the appropriate
terms in Ht. Next, consider the terms inside Ht,

Ht(X≤it−1) =

((
Pit−1(Xit−1)

)∑eit−1
l=0 pr+l

+Git−1(X≤it−1)

)
·Ht−1(X≤it−2)

where,

Ht−1(X≤it−2) =
∏

i∈I0,i<it−1

(
(Pi(Xi))

∑ei
l=0 p

r+l

+Gi(X≤i)
)

As before, we notice that Ht−1(X≤it−2) does not mention Xit−1 and Ht−1 has Fp-degree eit−1 in
Xit−1 . But mξ has Fp-degree eit−1 + 1 in Xit−1 , implying that we must select terms only from(
Pit−1(Xit−1)

)∑eit−1
l=0 pr+l

. Continuing in this manner for i = it−2, . . . , i1 we conclude that the only

contributions to the coefficient of mξ come from
(∏

i∈I0 (Pi(Xi))
∑ei
l=0 p

l
)pr

. Summing up over all

r, the lemma follows. �

7.2 Proof of Theorem 2.2

We can now analyze our main affine disperser construction. Theorem 2.2 will follow by setting the
proper parameters into the following theorem.

Theorem 7.3 (Affine disperser — non-parameterized version) Let t < r be integers. Let
n be prime with n ≥ r(r + 1)/t. For each i ∈ [r], let ei = r + 1 − i and let αi =

∑ei
k=0 p

k. Let
µ ∈ Fpn \ {0}. Let f : Frpn → Fp be given by

f(x1, . . . , xr) = Tr

µ ∑
I⊆[r],|I|=t

∏
i∈I

xαii

 .

Let A ⊆ Frpn be any Fp-affine space with dim(A) > nr
t + nt+ r(r + 1). Then |f(A)| > 1.

Before proving this theorem let us show how it implies Theorem 2.2.

Proof of Theorem 2.2: For our selection of parameters n, t, r we notice the assumptions of
Theorem 7.3 hold. Indeed, by Bertrand’s postulate we can bound n from above by 4m3/5, hence
r ≥ m2/5/4. Notice that for our setting of parameters

r(r + 1)/t ≤
√
r(r + 1) ≤ m3/5 < n

and if d > 6m4/5 then we have

nr

t
+ nt+ r(r + 1) ≤ 4√

2
m4/5 +

4√
2
m4/5 +

1

4
m4/5 + o(m4/5) < d.
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Thus, the function f in Theorem 7.3 has the property that for any A with dim(A) > 6m4/5, we
have |f(A)| > 1. Finally notice that Proposition 3.3 implies that f as defined in Theorem 7.3 is
identical to f defined in Theorem 2.2, up to renaming of the variables xi. This completes the proof.
�

Proof of Theorem 7.3: Our proof strategy is again as outlined in the introduction. Our first
goal is to find a polynomial mapping H : Frpn → Frpn such that H(Frpn) = A. We will then show
that the composed function f ◦H is a non-constant map, by showing that in its representation as
a polynomial, there is a positive degree monomial with a nonzero coefficient.

To define the mapping H, we first decompose the affine space A using Lemma 7.1. Let γ ∈ A.
Then by that lemma, we may find a collection of Fp-linear subspaces Y1, . . . , Yr ⊆ Fpn and linear
maps σij : Fpn → Fpn for i, j ∈ [r] with i < j such that:

A = {(x1, . . . , xr) | ∃yi ∈ Yi such that xi = γi + yi +
∑
j<i

σij(yj)}

and dimA =
∑

i∈[r] dimYi.

Let Qi(X) ∈ Fpn [X] be the image-subspace polynomial of Yi. Let Qij(X) be the linearized poly-
nomial (guaranteed to exist by Lemma 3.7) such that Qij(x) = σij(Qi(x)) for each x ∈ Fnp . Let
Ri(X1, . . . , Xr) ∈ Fpn [X1, . . . , Xr] be the polynomial Qi(Xi)+

∑
j<iQij(Xj)+γi. Then by the above

comments, the image of the function H mapping x = (x1, . . . , xr) ∈ Frpn to (R1(x), . . . , Rr(x)) is
precisely A.

Now let h(X1, . . . , Xr) ∈ Fpn [X1, . . . , Xr] be the polynomial representing f ◦H, namely

h(X1, . . . , Xr) = f(R1(X1, . . . , Xr), . . . , Rr(X1, . . . , Xr)) mod 〈Xq
i −Xi〉i∈[r] (24)

=
∑

I⊆[r],|I|=t

Tr

(
µ
∏
i∈I

Ri(X1, . . . , Xr)
αi

)
mod 〈Xq

i −Xi〉i∈[r] (25)

By Proposition 3.1, we have h(Frpn) = f(A).

Therefore, to show that |f(A)| > 1, it suffices to show that |h(Frpn)| > 1. We do this by showing
that h(X1, . . . , Xr) has a monomial of positive degree with a nonzero coefficient and invoking
Proposition 3.1.

To find this monomial, we consider the representation (25) of the polynomial h(X1, . . . , Xn). We
will first find a set I0 ⊆ [r], with |I0| = t, of “blocks with high entropy”. Then via Theorem 6.1,
we will argue that the summand in (25) corresponding to I0 is a nonzero polynomial, with certain
monomial M having a nonzero coefficient. We will then show that no other summand in the
sum (25) can have the monomial M with a nonzero coefficient, thus establishing that M appears
in h with a nonzero coefficient, as desired.

We proceed with implementing this plan. Let di = dim(Yi) and let d = dim(A) > nr
t +nt+r(r+1).

We have
∑

i di = d. Let S = {i ∈ [r] | di > r + 1}. Then we get

• |S| ≥ t (since each di ≤ n and
∑
di > nt+ r(r + 1)).

•
∑

i∈S di ≥
∑

i∈[r](di − r − 1) = d− r(r + 1) ≥ nr/t+ nt.
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Thus there exists I0 ⊆ S (and hence each i ∈ I0 has di > r + 1) with |I0| = t such that

∑
i∈I0

(di − (r + 1)) ≥

(∑
i∈S

di

)
t

r
− (r + 1)t ≥ n+ nt2/r − (r + 1)t ≥ n, (26)

where the last inequality used the hypothesis that n ≥ r(r + 1)/t.

Let us focus on the term

g(X1, . . . , Xr) = Tr

µ∏
i∈I0

Ri(X1, . . . , Xr)
αi

 mod 〈Xq
i −Xi〉i∈[r]

in the representation (25) of the polynomial h(X1, . . . , Xr).

Putting g′(X1, . . . , Xr) = Tr
(
µ
∏
i∈I0 Qi(Xi)

αi
)

mod 〈Xq
i −Xi〉i∈[r] and noting that each ei + 1 ≤

r + 1, Equation (26) and Theorem 6.1 imply that there is a monomial M =
∏
i∈I0 X

βi
i with

wtp(βi) = wtp(αi) = ei + 1, which has a nonzero coefficient in g′. Lemma 7.2 now implies that the
coefficient of M in g is exactly the same as the coefficient of M in g′, and hence nonzero.

We now show that in the representation (25) of the polynomial h(X1, . . . , Xr), no summand other
than g can have a nonzero coefficient for the monomial M. First notice that each Ri(X1, . . . , Xr)

is a polynomial only in the variables X1, X2, . . . , Xi, and is a sum of monomials of the form aXpb

k

plus possibly a constant term (i.e., monomials of total Fp-degree at most 1).

Let J ⊆ [r] with |J | = t, and consider the expression Tr(µ
∏
j∈J Rj(X1, . . . , Xr)

αj ) mod 〈(Xpn

i −Xi)i∈[r]〉.
By definition, it equals:

Tr

µ∏
j∈J

ej∏
l=0

Rj(X1, . . . , Xj)
pl

 mod 〈(Xpn

i −Xi)i∈[r]〉.

Suppose the monomial M appeared in the above polynomial with a nonzero coefficient. Then,
expanding the trace map, there is some w ∈ [n− 1] such that M appears in

∏
j∈J

ej∏
l=0

Rj(X1, . . . , Xj)
pl+w mod 〈(Xpn

i −Xi)i∈[r]〉

with a nonzero coefficient. Letting Rjl = Rp
l+w

j , we may rewrite the last polynomial as

∏
j∈J

r−j+1∏
l=0

Rjl(X1, . . . , Xj) mod 〈(Xpn

i −Xi)i∈[r]〉,

where each Rjl is a sum of monomials of total Fp-degree at most 1. Each monomialM′ that appears
in this product is obtained by choosing, for each j ∈ J and l ∈ [0, r − j + 1], a monomial from
Rjl(X1, . . . , Xj), and multiplying all these monomials out. Since we know that M appears in this
product, let us focus on the choices made in order forM to appear. We set λj(l) = i if for (j, l) we
chose a monomial from Rjl(X1, . . . , Xj) whose variable is indexed by i (i.e., we chose some aXb

i ).
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Observe that the Fp-degree in Xi of M is at most the number of (j, l) pairs for which λj(l) = i
(which may be compactly written as

∑
j∈J |λ

−1
j (i)|). However, we know that for any i ∈ I0, the

Fp-degree of M in the variable Xi is ei + 1 (which equals r + 2 − i). The following combinatorial
claim (whose proof appears next) now shows that J must be equal to I0.

Claim 7.4 Let I0 ⊆ [r] with |I0| = t. Suppose J ⊆ [r] with |J | = t, and that there exist functions
λj : {0, 1, . . . , r + 1− j} → {1, . . . , j} for j ∈ J , with the property that for each i ∈ I0,∑

j∈J
|λ−1j (i)| ≥ r + 2− i. (27)

Then J = I0.

Therefore, we have shown that there is precisely one summand, namely the one corresponding to
I0, in the representation (25) of h(X1, . . . , Xr) that has a nonzero coefficient for the monomial M.
Thus M appears in h with a nonzero coefficient, and thus |h(Frpn)| > 1, as desired. �

Proof of Claim 7.4: Note that for any j ∈ J we have∑
i∈I0

|λ−1j (i)| ≤ |{0, 1, . . . , r + 1− j}| = r + 2− j.

Thus ∑
i∈I0

(r + 2− i) ≤
∑
j∈J

∑
i∈I0

|λ−1j (i)| ≤
∑
j∈J

(r + 2− j).

As |I0| = |J |, we have
∑

i∈I0 i ≥
∑

j∈J j.

Consider now the expression
∑

j∈J
∑r+1−j

l=0 (j − λj(l)), which is ≥ 0, because λj(l) ≤ j. Thus,

∑
j∈J

(r + 2− j) · j ≥
∑
j∈J

r+1−j∑
l=0

λj(l) ≥
∑
i∈I0

(r + 2− i) · i.

The last inequality follows from the assumption (27). Rearranging, we get,∑
i∈I0

i2 −
∑
j∈J

j2 ≥ (r + 2) · (
∑
i∈I0

i−
∑
j∈J

j) ≥ 0.

Thus
∑

i∈I0 i
2 ≥

∑
j∈J j

2.

For general k, considering the expression
∑

j∈J
∑r+1−j

l=0 (jk − λj(l)k), which is nonnegative, we get∑
i∈I0

ik+1 −
∑
j∈J

jk+1 ≥ (r + 2) · (
∑
i∈I0

ik −
∑
j∈J

jk),

which by induction on k is ≥ 0. Thus for all k,∑
i∈I0

ik ≥
∑
j∈J

jk (28)
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This implies that i1 := max(I0) ≥ max(J) =: j1. However, i1 ≤ j1, otherwise λ−1j (i1) = ∅ for each
j. Thus i1 = j1. This forces λj1(l) = i1 for each l.

Taking this information back to Equation (28), we now see that the second-largest element i2 of
I0 ≥ the second-largest element j2 of J . But we must have i2 ≤ j2, otherwise λ−1j (i2) = ∅ for all j
(recall that λj1(l) = i1 for each l, and there is no other j for which i1 ≤ j). Thus i2 = j2.

Inducting now on s, and arguing about the s-th largest element of I0 and J , we get that I0 = J .

�
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