

# Nisan-Wigderson generators in proof systems with forms of interpolation

Ján Pich<sup>1</sup>

## Faculty of Mathematics and Physics Charles University in Prague March, 2010

We prove that the Nisan-Wigderson generators based on computationally hard functions and suitable matrices are hard for propositional proof systems that admit feasible interpolation.

## Introduction

Proof complexity generators refer to candidate hard tautologies for strong proof systems like Frege proof system or Extended Frege. They were independently introduced by Krajíček [4] and by Alekhnovich, Ben-Sasson, Razborov, and Wigderson [1].

Roughly speaking, the tautologies encode the fact that  $b \notin Rng(g)$ for an element b outside of the range of a map (the actual generator)  $g: \{0,1\}^n \mapsto \{0,1\}^m$ , where m > n, defined by a circuit of size  $m^{O(1)}$ . If  $g: \{0,1\}^{t(n)^{O(1)}} \mapsto \{0,1\}^{2^n}$  sends codes of t(n)-size circuits with n

If  $g : \{0,1\}^{t(n)^{O(1)}} \mapsto \{0,1\}^{2^n}$  sends codes of t(n)-size circuits with n inputs to the truth tables of functions they compute, then the tautologies  $f \notin Rng(g)$  say that f has no t(n)-size circuits. Denote such a formula by  $\neg Circuit_{t(n)}(f)$ . The hardness of such tautologies can be interpreted as the hardness of proving circuit lower bounds. This captures an element of a self-reference in the P vs NP problem.

As Razborov pointed out in [8], to prove the hardness of  $\neg Circuit_{t(n)}(f)$ in a proof system, it is sufficient to show that there exists a generator  $g: \{0,1\}^{t_0(n)} \mapsto \{0,1\}^{2^n}$  which is (i) constructive: for every  $x \in \{0,1\}^{t_0(n)}$ , there is a t(n)-size circuit computing y-th bit of g(x) from  $y \in \{0,1\}^n$ , and (ii) hard: it is hard to prove  $f \notin Rng(g)$  in the given proof system. Condition (i) means that for each  $x \in \{0,1\}^{t_0(n)}$ , the function given by the truth table g(x) is computable by t(n)-size circuits. Therefore, since by (ii) it is hard to prove that f differs from all g(x), it is also hard to prove that it is not computable by a t(n)-size circuit.

A prominent example of a constructive generator in the above sense is the Nisan-Wigderson generator (based on functions computable by t(n)-size circuits), cf. [6]. Razborov [8] conjectured that the Nisan-Wigderson generator

<sup>&</sup>lt;sup>1</sup>Partially supported by a grant from The John Templeton Foundation

with the original parameters as in [6] based on any poly-time function that is hard on average for  $NC^1/poly$  is hard for the Frege proof system. We prove a weak version of the conjecture, namely that it holds for proof systems that admit certain form of interpolation.

#### **Background and definitions**

Symbol  $\mathbb{P}$  always refers to probability with respect to the uniform distribution. For a natural number  $n, [n] := \{1, ..., n\}$ . We write x for a sequence of variables  $x_1, ..., x_n$  where n is a number determined by the context (analogously for y, z..). If  $S \subseteq [n]$ , then x|S denotes all variables  $x_i$ 's such that  $i \in S$ . For an assignment a to x, a|S is a restricted to x|S. When we write a formula  $A(x, y) \vee B(x, z)$  we understand that  $x = x_1, ..., x_n$  are the only common variables of A and B and that  $y = y_1, ..., y_m, z = z_1, ..., z_l$  are some of (not necessarily all) additional variables in the respective formulas.

**Definition 1.** A proof complexity generator  $g : \{0,1\}^* \mapsto \{0,1\}^*$  is a function computed by  $m^{O(1)}$ -size circuits  $\{C_n\}$  representing restrictions of g,  $g_n : \{0,1\}^n \mapsto \{0,1\}^m$  for some injective function m = m(n) > n.

For a proof complexity generator g and any string  $b \in \{0,1\}^m$  define the  $\tau$ -formula  $\tau(C_n)_b$  as  $b \neq C_n(x)$ . The variables of  $\tau(C_n)_b$  are  $x_1, ..., x_n$  for inputs of  $C_n$ , and  $y_1, ..., y_{m^{O(1)}}$  for gates of  $C_n$ .

 $\tau(C_n)_b$  is a tautology iff  $b \notin Rng(C_n)$ . We shall denote the formulas simply  $\tau(g)_b$  because circuits  $C_n$  are though as canonically determined by g. We also often speak about proof complexity generators while we mean the  $\tau$ formulas they define.

**Definition 2.** A generator g is a hard proof complexity generator for a propositional proof system P iff there is no polynomial size P-proof of any  $\tau(g)_b$  (for m tending to infinity).

A promising class of proof complexity generators is inspired by the Nisan-Wigderson generators (shortly NW-generators), cf. [6].

**Definition 3.** Let n < m and A be an  $m \times n$  0-1 matrix with l ones per row.  $J_i(A) := \{j \in [n] | A_{ij} = 1\}$ . Let  $f : \{0,1\}^l \mapsto \{0,1\}$  be a Boolean function. Define function  $NW_{A,f} : \{0,1\}^n \mapsto \{0,1\}^m$  as follows: The *i*-th bit of the output is computed by f from the bits  $x|J_i(A)$ .

We speak about these functions as about NW-generators but in computational complexity the term NW-generator usually refers to the construction where f is a suitably hard function and A is in addition a (d, l) combinatorial design. The design property means that  $J_i(A) \cap J_k(A)$  has size  $\leq d$  for any two different rows i, j.

Assuming that the NW-generators are based on the combinatorial designs with the same parameteres as in the seminal paper [6], Razborov proposed,

**Conjecture 1 (Razborov** [8]). Any NW-generator based on any poly-time function that is hard on average for  $NC^1$ /poly, is hard for the Frege proof system.

**Conjecture 2 (Razborov** [8]). Any NW-generator based on any function in  $NP \cap coNP$  that is hard on average for P/poly, is hard for Extended Frege.

The parameters are actually not specified more precisely in [8]. We prove

- (in Proposition 4:) Any NW-generator based on a combinatorial design as the one constructed in the proof of Lemma 2.5 in [6], and on any poly-time function hard for  $NC^1/poly$  (not necessarily hard on average), is hard for any proof system with the formula interpolation.
- (in Proposition 2:) Any NW-generator based on any function such that for any  $m^{O(1)}$ -size circuit C,  $|\mathbb{P}[C(x) = f(x)] \frac{1}{2}| < \frac{1}{2m}$ , (and on a matrix that is not necessarily a combinatorial design), is hard for any proof system with the constructive interpolation.

#### **Definition 4.** A proof system P admits

EIP - effective interpolation iff there is a polynomial p(x) such that for any disjunction  $A(x, y) \vee B(x, z)$  with P-proof of size m there is a p(m)-size circuit C(x) that for each assignent a to x finds out a tautology from the set  $\{A(a, y), B(a, z)\}$ .

CIP - constructive interpolation iff there is a polynomial p(x) such that for any disjunction  $A(x, y) \vee B(x, z)$  with P-proof of size m there is a p(m)-size circuit C(x) that for each assignent a to x finds out an O(m)-size proof for a tautology in  $\{A(a, y), B(a, z)\}$ .

FIP - formula interpolation iff P admits EIP but the circuit C(x) is in fact a formula.

These interpolations are not believed to hold in strong proof systems. Krajíček [3] however proved that resolution admits EIP and one of his proofs gives also CIP. Pudlák [7] later gave a different proof of CIP with better bound on proofs: the constructed proof is of size  $\leq m$ . It is also not hard to see that tree-like resolution admits FIP.

#### **Results of the paper**

The idea behind using feasible interpolation for the lengths-of-proofs lower bounds is to find a pair of disjoint NP sets that is not possible to separate by a set in P/poly: The tautologies expressing the disjointness of the pair cannot have short proofs in any proof system with EIP.

We now observe that this idea can be captured via the  $\tau$ -formulas.

Denote  $[f(x) \neq 0 \lor f(x) \neq 1]$  the tautology  $\tau(NW_{A,f})_{(0,1)}$  where A is a  $2 \times n$  0-1 matrix full of ones and  $f \in NP \cap coNP$  (so the tautologies say that for any  $x, f(x) \neq 0$  or  $f(x) \neq 1$ ).

Conditions f(x) = 0 and f(x) = 1 define two NP sets and the formula  $[f(x) \neq 0 \lor f(x) \neq 1]$  asserts their disjointness.

**Proposition 1.**  $[f(x) \neq 0 \lor f(x) \neq 1]$  based on a function  $f \in NP \cap coNP$  which does not have  $n^{O(1)}$ -size circuits is hard for any proof system P with EIP.

**Proof:** For the sake of contradiction assume that there is a proof system P with EIP and  $n^{O(1)}$ -size P-proof of the given tautology. By EIP there is an  $n^{O(1)}$ -size circuit that can decide for every assignment a to x whether  $f(a) \neq 0$  or  $f(a) \neq 1$ , hence it determines the value of f(a), contradicting complexity of f.

Note that we need the assumption  $f \in NP \cap coNP$  to express the tautology  $\tau(NW_{A,f})_{(0,1)}$  as an  $n^{O(1)}$ -size formula. Analogously, the assumption  $f \in NTime(m^{O(1)}) \cap coNTime(m^{O(1)})$  for  $m \geq n^{O(1)}$  allows to express  $\tau(NW_{A,f})_{(b_1,...,b_m)}$  based on an  $m \times n$  matrix A as  $m^{O(1)}$ -size formula

$$\bigvee_{i \le m} \neg \alpha_{b_i}(x|J_i(A), v^i)$$

using  $NTime(m^{O(1)})$ -definitions of  $f(x|J_i(A)) = \epsilon$ , for  $\epsilon = 0, 1$ :

$$f(x|J_i(A)) = \epsilon \quad \text{iff} \quad \exists v \ (|v| \le m^{O(1)}) \ \alpha_{\epsilon}(x|J_i(A), v)$$

where  $\alpha_{\epsilon}$  is a polynomial time relation. The tuples of variables  $v^{i}$  in the disjunction are disjoint.

We use this in the following weak version of Conjecture 2.

**Proposition 2.** Any NW-generator based on

- 1. any  $m \times n$  0-1 matrix A with l ones per row (not necessarily a combinatorial design)
- 2. any function  $f : \{0,1\}^l \mapsto \{0,1\}$  in  $NTime(m^{O(1)}) \cap coNTime(m^{O(1)})$ such that for any  $m^{O(1)}$ -size circuit C,  $|\mathbb{P}_{x \in \{0,1\}^l}[C(x) = f(x)] - \frac{1}{2}| < \frac{1}{2m}$
- is hard for any proof system P with CIP.

**Proof:** Assume that there is a proof system P with CIP and  $s = m^{O(1)}$ -size P-proof of some  $\tau(NW_{A,f})_{(b_1,\ldots,b_m)}$ . We will describe an  $m^{O(1)}$ -size circuit C such that  $|\mathbb{P}_{x \in \{0,1\}^l}[C(x) = f(x)] - \frac{1}{2}| \geq \frac{1}{2m}$ .

Our f is in  $NTime(m^{O(1)}) \cap coNTime(m^{O(1)})$ . As we noted, this means that  $\tau(NW_{A,f})_{(b_1,\ldots,b_m)}$  can be expressed as

$$\bigvee_{i \le m} \neg \alpha_{b_i}(x|J_i(A), v^i)$$

CIP implies that there is an  $m^{O(1)}$ -size circuit which for any assignment a to the variables x outputs proof of one of the disjunctions

$$\bigvee_{i=1}^{k} \neg \alpha_{b_i}(a|J_i(A), v^i), \quad \bigvee_{i=k+1}^{m} \neg \alpha_{b_i}(a|J_i(A), v^i)$$

where  $k = \lfloor \frac{m}{2} \rfloor$ . The new proof has the size at most O(s). Therefore, we can iterate the usage of CIP log m times and get the true value of some  $f(a|J_i(A))$ . The resulting circuit C' consisting of all circuits given by CIP remains  $m^{O(1)}$ -size and for any input a it outputs the true value of some  $f(a|J_i(A))$ .

Fix an  $i \in [m]$  such that C' outputs the value of  $f(a|J_i(A))$  for at least  $\frac{2^n}{m} a's \in \{0,1\}^n$ . Now, let C be an  $m^{O(1)}$ -size circuit which uses C' to check whether given input leads to the fixed value of  $f(a|J_i(A))$ . If it does, then it outputs the value of  $f(a|J_i(A))$ , otherwise it outputs always zero or always one, whichever is better on the remaining inputs. Therefore,

$$\mathbb{P}_{x \in \{0,1\}^n}[C(x) = f(x|J_i(A))] \ge \frac{1 - 1/m}{2} + \frac{1}{m} = \frac{1}{2} + \frac{1}{2m}$$

Since  $f(x|J_i(A))$  does not depend on all bits of  $x = x_1, ..., x_n$  we can rewrite  $\mathbb{P}_{x \in \{0,1\}^n}[C(x) = f(x|J_i(A))]$  as the average over all possible choices of values of bits from  $[n] \setminus J_i(A)$  of the same expression where only  $x|J_i(A)$  are choosen at random. It follows that for some particular choice of these additional values the circuit C preserves the advantage.

We can weaken the assumption of CIP to EIP but this will require an additional property of the matrices A in the NW-generators.

**Definition 5.** Let A be an  $m \times n$  0-1 matrix with l ones per row.  $J_i(A) = \{j \in [n] | A_{i,j} = 1\}$ . A is l-uniform iff there is a partition of [n] into l sets such that there is exactly one element of each  $J_i(A)$  in each set of the partition.

Note that  $m \times n \ (\log m, l)$  design matrices with  $l = \sqrt{n}$  ones per row constructed in the proof of Lemma 2.5 in [6] are  $\sqrt{n}$ -uniform.

#### **Proposition 3.** Any NW-generator based on

- 1. any  $m \times n$  l-uniform matrix A with l ones per row
- 2. any function  $f : \{0,1\}^l \mapsto \{0,1\}$  in  $NTime(m^{O(1)}) \cap coNTime(m^{O(1)})$ such that f does not have  $m^{O(1)}$ -size circuits
- is hard for any proof system P with EIP.

**Proof:** Assume that there is a proof system P with EIP and  $m^{O(1)}$ -size proof of some  $\tau(NW_{A,f})_b$ . This  $\tau(NW_{A,f})_b$  can be expressed in a form

$$\bigvee_{i} \neg \alpha_{0}(x|J_{i}(A), v^{i}) \lor \bigvee_{j} \neg \alpha_{1}(x|J_{j}(A), v^{j})$$

where  $\neg \alpha_0(x|J_i(A), v^i)$  encodes  $f(x|J_i(A)) \neq 0$  and  $\neg \alpha_1(x|J_j(A), v^j)$  encodes  $f(x|J_j(A)) \neq 1$ .

By EIP, there exists an  $m^{O(1)}$ -size circuit C that for every assignment a to x finds out which of  $\bigvee_i \neg \alpha_0(a|J_i(A), v^i), \bigvee_j \neg \alpha_1(a|J_j(A), v^j)$  is true.

Denote now by S a partition of [n] certifying that A is *l*-uniform. An  $m^{O(1)}$ -size circuit computing f proceed as follows.

It extends input  $a \in \{0,1\}^l$  to  $\overline{a} \in \{0,1\}^n$  where  $\overline{a}_i$  for  $i \in K$ , K a block of S, has the same value as  $a_j$  where  $j \in K \cap J_1(A)$  (which is uniquely determined). Then it uses the circuit C to find out which of  $\bigvee_i \neg \alpha_0(\overline{a}|J_i(A), v^i)$ ,  $\bigvee_j \neg \alpha_1(\overline{a}|J_j(A), v^j)$  is true. If it is the former one, then it outputs 1, otherwise 0.

This circuit finds the true value of f(a) because the uniformity of A implies that if  $\bigvee_i \neg \alpha_0(\overline{a}|J_i(A), v^i)$  then all  $\neg \alpha_0(\overline{a}|J_i(A), v^i)$ 's hold, resp. if  $\bigvee_i \neg \alpha_1(\overline{a}|J_j(A), v^j)$  then all  $\neg \alpha_1(\overline{a}|J_j(A), v^j)$ 's hold.

To derive a weak version of Conjecture 1 we need to consider the strong form FIP of the interpolation property. **Proposition 4.** Any NW-generator based on any  $m \times n$  l-uniform matrix A with l ones per row, and on any poly-time function which is not in  $NC^1$ /poly, is hard for any pps P with FIP.

**Proof:** If we replace EIP by FIP in proof of Proposition 3, we obtain a poly-size formula computing f. Using a well known technique, the formula can be equivally rewritten as poly-size formula with logarithmic depth.

It is easy to construct an  $m \times n$  *l*-uniform matrix for  $m = 2^{n^{\delta}}$ , where  $\delta < 1$  (in the proof of Lemma 2.5 in [6], Nisan and Wigderson constructed  $2^{n^{\delta}} \times n \sqrt{n}$ -uniform matrices that are also  $(n^{\delta}, \sqrt{n})$  designs). Our Propositions hold for such large m too. Moreover, NW-generators based on poly-time functions are constructive. Therefore, according to the discussion from the introduction, Proposition 4 implies that if there exists a poly-time function hard for  $NC^1/poly$ , then it is hard to prove any superpolynomial circuit lower bound in proof systems with FIP, this applies e.g. to tree-like resolution.

Let us note in the end that if NP = coNP, then there is a function  $f \in NTime(2^{O(l)}) \cap coNTime(2^{O(l)})$  such that (\*): for any  $2^{\Omega(l)}$ -size circuit C,  $|\mathbb{P}[C(x) = f(x)] - 1/2| < 1/2^{\Omega(l)}$  (see Theorem 3.1 in [5]).

If we set  $m = 2^{l}$  (and e.g.  $l = \sqrt{n}$ ) in Proposition 4, then its assumptions require a function such that  $|\mathbb{P}[C(x) = f(x)] - 1/2| < 1/2^{O(l)}$  for any  $2^{O(l)}$ size circuit C. Of course, such function does not exist. If we could slightly weaken this assumption to ask for a function such that (\*), then NP = coNPwould imply that there is no polynomially bounded proof system with CIP, hence (unconditionally)  $P \neq NP$ .

### Acknowledgement

I would like to thank Jan Krajíček for helpful discussions and suggestions.

#### References

- M.Alekhnovich, E.Ben-Sasson, A.A.Razborov, and A.Wigderson, Pseudorandom generators in propositional proof complexity, SIAM Journal on Computing, 34(1):67-88, 2004. In Proc. 41st IEEE Symposium on FOCS: 43-53, 2000.
- [2] J.Krajíček, Bounded arithmetic, propositional logic and complexity theory, Cambridge University Press, 1995.

- [3] J.Krajíček, Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic, Journal of Symbolic Logic, 62(2):457-486, 1997.
- [4] J.Krajíček, On the weak pigeonhole principle, Fundamenta Mathematicae, 170(1-3):123-140, 2001.
- [5] J.Krajíček, Diagonalization in proof complexity, Fundamenta Mathematicae, 182:181-192, 2004.
- [6] N.Nisan and A.Wigderson, Hardness vs. randomness, Journal of Computer and System Sciences, 49(2):149-167, 1994.
- [7] P.Pudlák, Lower bounds for resolution and cutting planes proofs and monotone computations, Journal of Symbolic Logic, 62(3):981-998, 1997.
- [8] A.A.Razborov, Pseudorandom generators hard for k-DNF resolution and polynomial calculus resolution, preprint, 2003.

ECCC

8