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We prove that the Nisan-Wigderson generators based on computa-
tionally hard functions and suitable matrices are hard for propositional
proof systems that admit feasible interpolation.

Introduction

Proof complexity generators refer to candidate hard tautologies for strong
proof systems like Frege proof system or Extended Frege. They were in-
dependently introduced by Krajíček [4] and by Alekhnovich, Ben-Sasson,
Razborov, and Wigderson [1].

Roughly speaking, the tautologies encode the fact that b /∈ Rng(g)
for an element b outside of the range of a map (the actual generator)
g : {0, 1}n 7→ {0, 1}m, where m > n, defined by a circuit of size mO(1).

If g : {0, 1}t(n)O(1) 7→ {0, 1}2n

sends codes of t(n)-size circuits with n
inputs to the truth tables of functions they compute, then the tautologies
f /∈ Rng(g) say that f has no t(n)-size circuits. Denote such a formula by
¬Circuitt(n)(f). The hardness of such tautologies can be interpreted as the
hardness of proving circuit lower bounds. This captures an element of a
self-reference in the P vs NP problem.

As Razborov pointed out in [8], to prove the hardness of ¬Circuitt(n)(f)
in a proof system, it is sufficient to show that there exists a generator
g : {0, 1}t0(n) 7→ {0, 1}2n

which is (i) constructive: for every x ∈ {0, 1}t0(n),
there is a t(n)-size circuit computing y-th bit of g(x) from y ∈ {0, 1}n, and
(ii) hard: it is hard to prove f /∈ Rng(g) in the given proof system. Condition
(i) means that for each x ∈ {0, 1}t0(n), the function given by the truth table
g(x) is computable by t(n)-size circuits. Therefore, since by (ii) it is hard
to prove that f differs from all g(x), it is also hard to prove that it is not
computable by a t(n)-size circuit.

A prominent example of a constructive generator in the above sense is the
Nisan-Wigderson generator (based on functions computable by t(n)-size cir-
cuits), cf. [6]. Razborov [8] conjectured that the Nisan-Wigderson generator
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with the original parameters as in [6] based on any poly-time function that is
hard on average for NC1/poly is hard for the Frege proof system. We prove
a weak version of the conjecture, namely that it holds for proof systems that
admit certain form of interpolation.

Background and definitions

Symbol P always refers to probability with respect to the uniform distri-
bution. For a natural number n, [n] := {1, ..., n}. We write x for a sequence
of variables x1, ..., xn where n is a number determined by the context (anal-
ogously for y, z..). If S ⊆ [n], then x|S denotes all variables xi’s such that
i ∈ S. For an assigment a to x, a|S is a restricted to x|S. When we write
a formula A(x, y) ∨ B(x, z) we understand that x = x1, ..., xn are the only
common variables of A and B and that y = y1, ..., ym, z = z1, ..., zl are some
of (not necessarily all) additional variables in the respective formulas.

Definition 1. A proof complexity generator g : {0, 1}∗ 7→ {0, 1}∗ is a func-
tion computed by mO(1)-size circuits {Cn} representing restrictions of g,
gn : {0, 1}n 7→ {0, 1}m for some injective function m = m(n) > n.

For a proof complexity generator g and any string b ∈ {0, 1}m define the
τ -formula τ(Cn)b as b 6≡ Cn(x). The variables of τ(Cn)b are x1, ..., xn for
inputs of Cn, and y1, ..., ymO(1) for gates of Cn.

τ(Cn)b is a tautology iff b /∈ Rng(Cn). We shall denote the formulas
simply τ(g)b because circuits Cn are though as canonically determined by g.
We also often speak about proof complexity generators while we mean the τ
formulas they define.

Definition 2. A generator g is a hard proof complexity generator for a
propositional proof system P iff there is no polynomial size P -proof of any
τ(g)b (for m tending to infinity).

A promising class of proof complexity generators is inspired by the Nisan-
Wigderson generators (shortly NW-generators), cf. [6].

Definition 3. Let n < m and A be an m×n 0-1 matrix with l ones per row.
Ji(A) := {j ∈ [n]|Aij = 1}. Let f : {0, 1}l 7→ {0, 1} be a Boolean function.
Define function NWA,f : {0, 1}n 7→ {0, 1}m as follows: The i-th bit of the
output is computed by f from the bits x|Ji(A).

We speak about these functions as about NW-generators but in computa-
tional complexity the term NW-generator usually refers to the construction
where f is a suitably hard function and A is in addition a (d, l) combinatorial
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design. The design property means that Ji(A) ∩ Jk(A) has size ≤ d for any
two different rows i, j.

Assuming that the NW-generators are based on the combinatorial designs
with the same parameteres as in the seminal paper [6], Razborov proposed,

Conjecture 1 (Razborov [8]). Any NW-generator based on any poly-time
function that is hard on average for NC1/poly, is hard for the Frege proof
system.

Conjecture 2 (Razborov [8]). Any NW-generator based on any function
in NP∩coNP that is hard on average for P/poly, is hard for Extended Frege.

The parameters are actually not specified more precisely in [8]. We prove

◦ (in Proposition 4:) Any NW-generator based on a combinatorial design as
the one constructed in the proof of Lemma 2.5 in [6], and on any poly-time
function hard for NC1/poly (not necessarily hard on average), is hard for
any proof system with the formula interpolation.

◦ (in Proposition 2:) Any NW-generator based on any function such that
for any mO(1)-size circuit C, |P[C(x) = f(x)]− 1

2 | < 1
2m , (and on a matrix

that is not necessarily a combinatorial design), is hard for any proof system
with the constructive interpolation.

Definition 4. A proof system P admits

EIP - effective interpolation iff there is a polynomial p(x) such that for any
disjunction A(x, y) ∨ B(x, z) with P-proof of size m there is a p(m)-size
circuit C(x) that for each assigment a to x finds out a tautology from the set
{A(a, y), B(a, z)}.

CIP - constructive interpolation iff there is a polynomial p(x) such that for
any disjunction A(x, y)∨B(x, z) with P-proof of size m there is a p(m)-size
circuit C(x) that for each assigment a to x finds out an O(m)-size proof for
a tautology in {A(a, y), B(a, z)}.

FIP - formula interpolation iff P admits EIP but the circuit C(x) is in fact
a formula.

These interpolations are not believed to hold in strong proof systems.
Krajíček [3] however proved that resolution admits EIP and one of his proofs
gives also CIP. Pudlák [7] later gave a different proof of CIP with better
bound on proofs: the constructed proof is of size ≤ m. It is also not hard to
see that tree-like resolution admits FIP.
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Results of the paper

The idea behind using feasible interpolation for the lengths-of-proofs lower
bounds is to find a pair of disjoint NP sets that is not possible to separate
by a set in P/poly: The tautologies expressing the disjointness of the pair
cannot have short proofs in any proof system with EIP.

We now observe that this idea can be captured via the τ -formulas.

Denote [f(x) 6= 0 ∨ f(x) 6= 1] the tautology τ(NWA,f )(0,1) where A is a
2 × n 0-1 matrix full of ones and f ∈ NP ∩ coNP (so the tautologies say
that for any x, f(x) 6= 0 or f(x) 6= 1).

Conditions f(x) = 0 and f(x) = 1 define two NP sets and the formula
[f(x) 6= 0 ∨ f(x) 6= 1] asserts their disjointness.

Proposition 1. [f(x) 6= 0∨ f(x) 6= 1] based on a function f ∈ NP ∩ coNP
which does not have nO(1)-size circuits is hard for any proof system P with
EIP.

Proof: For the sake of contradiction assume that there is a proof system P
with EIP and nO(1)-size P-proof of the given tautology. By EIP there is an
nO(1)-size circuit that can decide for every assigment a to x whether f(a) 6= 0
or f(a) 6= 1, hence it determines the value of f(a), contradicting complexity
of f . ¥

Note that we need the assumption f ∈ NP ∩ coNP to express the tau-
tology τ(NWA,f )(0,1) as an nO(1)-size formula. Analogously, the assumption
f ∈ NTime(mO(1)) ∩ coNTime(mO(1)) for m ≥ nO(1) allows to express
τ(NWA,f )(b1,...,bm) based on an m× n matrix A as mO(1)-size formula

∨

i≤m

¬αbi(x|Ji(A), vi)

using NTime(mO(1))-definitions of f(x|Ji(A)) = ε, for ε = 0, 1:

f(x|Ji(A)) = ε iff ∃v (|v| ≤ mO(1)) αε(x|Ji(A), v)

where αε is a polynomial time relation. The tuples of variables vi in the
disjunction are disjoint.

We use this in the following weak version of Conjecture 2.
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Proposition 2. Any NW -generator based on

1. any m× n 0-1 matrix A with l ones per row (not necessarily a combina-
torial design)

2. any function f : {0, 1}l 7→ {0, 1} in NTime(mO(1)) ∩ coNTime(mO(1))
such that for any mO(1)-size circuit C, |Px∈{0,1}l [C(x) = f(x)]− 1

2 | < 1
2m

is hard for any proof system P with CIP.

Proof: Assume that there is a proof system P with CIP and s = mO(1)-size
P-proof of some τ(NWA,f )(b1,...,bm). We will describe an mO(1)-size circuit
C such that |Px∈{0,1}l [C(x) = f(x)]− 1

2 | ≥ 1
2m .

Our f is in NTime(mO(1)) ∩ coNTime(mO(1)). As we noted, this means
that τ(NWA,f )(b1,...,bm) can be expressed as

∨

i≤m

¬αbi(x|Ji(A), vi)

CIP implies that there is an mO(1)-size circuit which for any assigment a
to the variables x outputs proof of one of the disjunctions

k∨

i=1

¬αbi(a|Ji(A), vi),
m∨

i=k+1

¬αbi(a|Ji(A), vi)

where k =
⌊

m
2

⌋
. The new proof has the size at most O(s). Therefore, we

can iterate the usage of CIP log m times and get the true value of some
f(a|Ji(A)). The resulting circuit C ′ consisting of all circuits given by CIP
remains mO(1)-size and for any input a it outputs the true value of some
f(a|Ji(A)).

Fix an i ∈ [m] such that C ′ outputs the value of f(a|Ji(A)) for at least
2n

m a′s ∈ {0, 1}n. Now, let C be an mO(1)-size circuit which uses C ′ to check
whether given input leads to the fixed value of f(a|Ji(A)). If it does, then it
outputs the value of f(a|Ji(A)), otherwise it outputs always zero or always
one, whichever is better on the remaining inputs. Therefore,

Px∈{0,1}n [C(x) = f(x|Ji(A))] ≥ 1− 1/m

2
+

1
m

=
1
2

+
1

2m

Since f(x|Ji(A)) does not depend on all bits of x = x1, ..., xn we can
rewrite Px∈{0,1}n [C(x) = f(x|Ji(A))] as the average over all possible choices
of values of bits from [n] \ Ji(A) of the same expression where only x|Ji(A)
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are choosen at random. It follows that for some particular choice of these
additional values the circuit C preserves the advantage.

¥

We can weaken the assumption of CIP to EIP but this will require an
additional property of the matrices A in the NW-generators.

Definition 5. Let A be an m× n 0-1 matrix with l ones per row. Ji(A) =
{j ∈ [n]|Ai,j = 1}. A is l-uniform iff there is a partition of [n] into l sets such
that there is exactly one element of each Ji(A) in each set of the partition.

Note that m × n (log m, l) design matrices with l =
√

n ones per row
constructed in the proof of Lemma 2.5 in [6] are

√
n-uniform.

Proposition 3. Any NW-generator based on

1. any m× n l-uniform matrix A with l ones per row
2. any function f : {0, 1}l 7→ {0, 1} in NTime(mO(1)) ∩ coNTime(mO(1))

such that f does not have mO(1)-size circuits

is hard for any proof system P with EIP.

Proof: Assume that there is a proof system P with EIP and mO(1)-size proof
of some τ(NWA,f )b. This τ(NWA,f )b can be expressed in a form

∨

i

¬α0(x|Ji(A), vi) ∨
∨

j

¬α1(x|Jj(A), vj)

where ¬α0(x|Ji(A), vi) encodes f(x|Ji(A)) 6= 0 and ¬α1(x|Jj(A), vj) encodes
f(x|Jj(A)) 6= 1.

By EIP, there exists an mO(1)-size circuit C that for every assigment a to
x finds out which of

∨
i ¬α0(a|Ji(A), vi),

∨
j ¬α1(a|Jj(A), vj) is true.

Denote now by S a partition of [n] certifying that A is l-uniform. An
mO(1)-size circuit computing f proceed as follows.

It extends input a ∈ {0, 1}l to a ∈ {0, 1}n where ai for i ∈ K, K a block
of S, has the same value as aj where j ∈ K ∩J1(A) (which is uniquely deter-
mined). Then it uses the circuit C to find out which of

∨
i ¬α0(a|Ji(A), vi),∨

j ¬α1(a|Jj(A), vj) is true. If it is the former one, then it outputs 1, other-
wise 0.

This circuit finds the true value of f(a) because the uniformity of A im-
plies that if

∨
i ¬α0(a|Ji(A), vi) then all ¬α0(a|Ji(A), vi)’s hold, resp. if∨

j ¬α1(a|Jj(A), vj) then all ¬α1(a|Jj(A), vj)’s hold.
¥

To derive a weak version of Conjecture 1 we need to consider the strong
form FIP of the interpolation property.
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Proposition 4. Any NW-generator based on any m×n l-uniform matrix A
with l ones per row, and on any poly-time function which is not in NC1/poly,
is hard for any pps P with FIP.

Proof: If we replace EIP by FIP in proof of Proposition 3, we obtain a
poly-size formula computing f . Using a well known technique, the formula
can be equivally rewritten as poly-size formula with logarithmic depth. ¥

It is easy to construct an m × n l-uniform matrix for m = 2nδ

, where
δ < 1 (in the proof of Lemma 2.5 in [6], Nisan and Wigderson constructed
2nδ × n

√
n-uniform matrices that are also (nδ,

√
n) designs). Our Proposi-

tions hold for such large m too. Moreover, NW-generators based on poly-time
functions are constructive. Therefore, according to the discussion from the
introduction, Proposition 4 implies that if there exists a poly-time function
hard for NC1/poly, then it is hard to prove any superpolynomial circuit lower
bound in proof systems with FIP, this applies e.g. to tree-like resolution.

Let us note in the end that if NP = coNP , then there is a function
f ∈ NTime(2O(l))∩ coNTime(2O(l)) such that (∗): for any 2Ω(l)-size circuit
C, |P[C(x) = f(x)]− 1/2| < 1/2Ω(l) (see Theorem 3.1 in [5]).

If we set m = 2l (and e.g. l =
√

n) in Proposition 4, then its assumptions
require a function such that |P[C(x) = f(x)]− 1/2] < 1/2O(l) for any 2O(l)-
size circuit C. Of course, such function does not exist. If we could slightly
weaken this assumption to ask for a function such that (∗), then NP = coNP
would imply that there is no polynomially bounded proof system with CIP,
hence (unconditionally) P 6= NP .
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