Local list decoding with a constant number of queries

Avraham Ben-Aroya Klim Efremenko
Computer Science Dept., Computer Science Dept.,
Tel-Aviv University, Israel, 69978 Tel-Aviv University, Israel, 69978
abrahambe@post.tau.ac.il klimefrem@gmail.com

Amnon Ta-Shma
Computer Science Dept,
Tel-Aviv University, Israel, 69978
amnon@post.tau.ac.il

March 23, 2010

Abstract
Recently Efremenko showed locally-decodable codes of sub-exponential length. That result showed that these codes can handle up to $\frac{1}{4}$ fraction of errors. In this paper we show that the same codes can be locally unique-decoded from error rate $\frac{1}{2} - \alpha$ for any $\alpha > 0$ and locally list-decoded from error rate $1 - \alpha$ for any $\alpha > 0$, with only a constant number of queries and a constant alphabet size. This gives the first sub-exponential codes that can be locally list-decoded with a constant number of queries.

1 Introduction
Locally decodable codes (LDCs) are codes that allow retrieving any symbol of an encoded message by reading only a constant number of symbols from its codeword, even if a large fraction of the codeword is corrupted. Formally, a code C is said to be locally decodable with parameters (α, q, ϵ) if it is possible to recover any symbol x_i of a message x by making at most q queries to $C(x)$, such that even if up to a $1 - \alpha$ fraction of $C(x)$ is corrupted, the decoding algorithm returns the correct answer with probability at least $1 - \epsilon$.

The first formal definition of locally decodable codes was given by Katz and Trevisan in [KT00]. The Hadamard code is the best-known 2-query locally decodable code, and its length is 2^n (where n is the message length). For 2-query LDCs tight lower bounds on the block length of $2^{\Theta(n)}$ were given in [GKST02] for linear codes and in [KdW03] for general codes. For an arbitrary constant number of queries q, there are weak polynomial bounds, see [KT00, KdW03, Woo07].

The first sub-exponential LDCs (with a constant number of queries) were obtained by Yekhanin in [Yek08]. Yekhanin obtained 3-query LDCs with sub-exponential length under a highly believable number theoretic conjecture. Later, Efremenko [Efr09] gave an unconditional construction of sub-exponential LDCs. That construction also allowed a tradeoff between the number of queries and the codeword length. Unfortunately, these constructions could handle only $\frac{1}{q}$ fraction of errors (where q is the number of queries) over a large alphabet and
over the binary alphabet. In [Woo08], Woodruff showed how to increase the handled error rate to $\frac{1}{q}$ over binary alphabets. Very recently, independent of our work, Dvir, Gopalan and Yekhanin [DGY10], showed how to handle $\frac{1}{8}$ fraction of errors.

Locally decodable codes have many applications in cryptography and complexity theory, see surveys [Tre04, Gas04]. Many of these applications require LDCs that can handle high error rates. Therefore, the question of local decoding from a high error rate attracted much attention.

The goal of this paper is to construct LDCs that can handle $1 - \alpha$ fraction of errors. Clearly, when the error rate of a code is above half its distance, it is impossible to find a unique answer. Thus, we have to consider list-decoding. A code C is said to be $(1 - \alpha, L)$-list-decodable if for every word, the number of codewords within relative distance $1 - \alpha$ from that word is at most L. The notion of list-decoding dates back to works by Elias [Eli57] and Wozencraft [Woz58] in the 50s. Roughly speaking, a code C is locally list-decodable if it is $(1 - \alpha, L)$-list-decodable, and given a corrupted word w, an index $k \in [L]$ and a target bit j, the decoder returns the j’th message bit of the k’th codeword that is close to w. As expected, there are some subtleties in the definition. The main issue is guaranteeing that for a fixed k, all answers for inputs (k, j) correspond to the same codeword. More formally, a local list-decoding algorithm generates L machines $\{M_k\}$, such that the machine M_k locally decodes one codeword that is close to w, and the machines $\{M_k\}$ together cover all the codewords that are close to w (for a formal definition, see Section 2).

The notion of local list-decoding is a central one in the theory of computer science. It first (implicitly) appeared in the celebrated Goldreich-Levin result [GL89], that can be seen as a local list-decoding algorithm for the Hadamard code. Later on many local list-decoding algorithms were studied. Most of the currently known locally list-decodable can be divided into three categories: Reed-Muler codes [GRS00, AS03, STV01, GKZ08], direct product and XOR codes [IW97, IJK06, IJKW08] and low-rate random codes [KS09]. Many of these results play an important role in complexity theory.

Our Results In this paper we show how to locally list-decode the codes given in [Efr09] (and which have sub-exponential length) with only a constant number of queries. We also show that one can unique decode this code up to radius close to $\frac{1}{2}$. The code we work with is a linear code over a finite field \mathbb{F} of constant-size, i.e., $|\mathbb{F}| = f(k, \alpha) = \Theta(1)$, where f is some function. For unique local decoding we show:

Theorem 1 (Unique decoding). For every $k \geq 2, \alpha > 0$, there exists a $(\frac{1}{2} + \alpha, q, \epsilon)$ LDC of dimension n over \mathbb{F} of length

$$\exp(\exp(O(\sqrt[3]{\log n \log \log n})^{k-1})))$$

with $q = \Theta\left(\frac{k^k \log(\frac{1}{\epsilon})}{\alpha^2 + k}\right) = \Theta(1)$ queries.

Independent of our work Dvir, Gopalan and Yekhanin in [DGY10] show a restricted version of this theorem for $\alpha \geq \frac{1}{4}$.

For local list-decoding we show:
Theorem 2 (List Decoding). For every \(k \geq 2, \alpha > 0 \), there exists a code of dimension \(n \) over \(\mathbb{F} \) of length
\[
\exp(\exp(O(\sqrt[k]{\log n (\log \log n)^{k-1}})))
\]
which is \((\alpha, L, q, \epsilon)\) locally list-decodable code with probabilistic advice. The number of queries is \(q = O(\frac{k^h \log \frac{1}{\epsilon}}{\alpha^n}) = \Theta(1) \) and the list size is \(L = |\mathbb{F}|^{O(\log \frac{1}{\epsilon})} = \text{poly}(n) \).

As we said before, the above code is a linear code over a finite field \(\mathbb{F} \) of constant-size, i.e., \(|\mathbb{F}| = f(k, \alpha) = \Theta(1)\), where \(f \) is some function. We can get a locally list-decodable binary code, by concatenating the code of Theorem 2 with a good binary code, namely,

Theorem 3. For every \(k \geq 2, \alpha > 0 \), there exists a binary code of dimension at least \(n \) and length
\[
\exp(\exp(O(\sqrt[k]{\log n (\log \log n)^{k-1}}))) \cdot |\mathbb{F}|
\]
which is \((\alpha, L, q, \epsilon)\) locally list-decodable with probabilistic advice. The number of queries is \(q = O(\frac{k^h \log \frac{1}{\epsilon}}{\alpha^n}) \cdot \text{poly}(\log |\mathbb{F}|) = \Theta(1) \) and the list size is \(L = |\mathbb{F}|^{O(\log \frac{1}{\epsilon})} = \text{poly}(n) \). Furthermore, if the field \(\mathbb{F} \) is of characteristic two, the binary code is linear.

We remark that in [Efr09] it is shown that we can use a field \(\mathbb{F} \) of characteristic 2 and of size \(f(k, \alpha) \leq 2^m \) where \(m = (k/\alpha)^{O(k)} \). With this field \(\mathbb{F} \) the resulting binary code is linear. Alternatively, using the Prime Number Theorem for arithmetic progressions it can be shown that we can use a field \(\mathbb{F} \) of prime order \(f(k, \alpha) \approx m \log m \) (for the above \(m \)), which results in a shorter code, fewer queries and shorter output lists, but produces a non-linear binary code.

The rest of the paper is organized as follows. In Section 2 we give the necessary preliminaries. Section 3 gives the formal definitions of locally decodable and list-decodable codes. In Section 4 we revise the construction of the code and analyze its local structure. Sections 5 and 6 contains the proofs of Theorems 1 and 2, respectively. The proof of Theorem 3 will appear in the full version of this paper.

2 Preliminaries

We use the following standard mathematical notation:

- \([s] = \{1, \ldots, s\}\);
- \(\mathbb{F}\) is a finite field;
- \(\mathbb{F}^*\) is the multiplicative group of the field;
- \(\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z}\), the integers modulo \(m \);
- \(\Delta(x, y)\) denotes the relative Hamming distance between vectors \(x, y \in \Sigma^n \), i.e. \(\Delta(w, w') = \Pr_{i \in [n]}[w_i \neq w'_i]\);
- \(\text{Ag}(w, w') \triangleq 1 - \Delta(w, w')\), i.e. \(\text{Ag}(w, w') = \Pr_{i \in [n]}[w_i = w'_i]\);
- \(A^B\) denotes the set of functions from \(B \) to \(A \), i.e., \(A^B = \{f : B \to A\}\). We identify \(A^{|m|}\) with \(A^m\).
A code is a function \(C : \Sigma^n \rightarrow \Sigma^\bar{n} \). We identify a code \(C \) with its image \(C = \{ C(\lambda) \mid \lambda \in \Sigma^n \} \).

The distance \(d \) of the code is the minimum distance between two codewords in \(C \) and the relative distance is \(\delta = d/n \). The Hamming balls of radius \(d/2 \) around codewords are disjoint, and therefore one can uniquely correct up to so many errors. If we allow more than \(d/2 \) errors several decodings are possible. In many cases one can allow almost up to the distance errors and still get only few possible decodings.

For \(w \in \Sigma^n \) and \(\alpha > 0 \), define

\[
\mathcal{L}_C(w, \mu) = \{ z \in C : \Delta(w, z) \leq \mu \}.
\]

When the code \(C \) is implicit from the text we abbreviate \(\mathcal{L}_C(\cdot) \) to \(\mathcal{L}(\cdot) \).

Definition 1. We say that a code \(C \) is \((\mu, L)\) list-decodable if for every \(w \in \Sigma^\bar{n} \) there are at most \(L \) codewords within distance \(\mu \) from \(w \), i.e. \(|\mathcal{L}(w, \mu)| \leq L \).

Fact 4 (The Johnson bound). Let \(C \) be a code with relative distance \(\delta \). Then, for every \(\alpha > \sqrt{1 - \delta} \), the code \(C \) is \((1 - \alpha, \alpha - (1 - \delta) \alpha^2)\) list decodable.

3 Locally Decodable and List Decodable Codes

As always one can study the combinatorial properties of a code, or ask for an explicit decoding algorithm. If the decoding algorithm makes only a few queries to the corrupted word, we say it is local. We begin with a formal definition of local unique decoding:

Definition 2. We say a probabilistic oracle machine \(M^w \) locally outputs a string \(s \) with confidence \(1 - \epsilon \), if

\[
\forall i \Pr[M^w(i) = s_i] \geq 1 - \epsilon,
\]

where the probability is taken over the randomness of \(M \).

Definition 3 (Local Unique Decoding). A code \(C \) over a field \(\mathbb{F} \), \(C : \mathbb{F}^n \rightarrow \mathbb{F}^\bar{n} \) is said to be \((q, \alpha, \epsilon)\) locally decodable if there exists a probabilistic oracle machine \(M^w \) (the decoding algorithm) with oracle access to a received codeword \(w \) such that:

1. For every message \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \mathbb{F}^n \) and for every \(w \in \mathbb{F}^\bar{n} \) such that \(\text{Ag}(C(\lambda), w) \geq \alpha^1 \), it holds that \(M^w \) locally outputs \(\lambda \) with confidence \(1 - \epsilon \).
2. \(M^w(i) \) makes at most \(q \) queries to \(w \) for all \(i \in [n] \).

Recall that a code \(C \) is list decodable if for every codeword \(w \) there are a few codewords near \(w \). Let \(C(y_1), C(y_2), \ldots, C(y_L) \) be the list of codewords near \(w \). Roughly speaking, a code \(C \) is locally list decodable if there exists a machine \(M \) that given \(i, j \) and an oracle access to the received word \(w \), outputs the \(j \)th symbol of \(y_i \). The locality property requires that the machine \(M \) makes a few queries to \(w \). To make this formal:

Definition 4. Let \(C : \Sigma^n \rightarrow \Sigma^\bar{n} \) be a code. We say a set of probabilistic oracle circuits \(M_1, \ldots, M_L \) with oracle queries to \(w \), \((\alpha, L, q, \epsilon) \) local list-decodes \(C \) at the word \(w \in \Sigma^\bar{n} \), if.

\[\text{Note that here } \alpha \text{ denotes agreement and not distance.} \]
• Every oracle circuit M_j makes at most q queries to the input word w.

• For every codeword $c \in C$ with $\text{Ag}(c, w) \geq \alpha$, there exists some $k \in [L]$, such that M_k^w locally outputs c with confidence $1 - \epsilon$.

Definition 5 (Locally List Decodable Codes with deterministic advice). We say a deterministic algorithm $A(\alpha, L, q, \epsilon)$ local list-decodes the code $C : \Sigma^n \rightarrow \Sigma\bar{n}$, if on input 1^n, A outputs probabilistic oracle circuits $M_1 \ldots M_L$ which (α, L, q, ϵ) local list-decode C at every word $w \in \Sigma\bar{n}$.

The code C is (α, L) list-decodable and therefore every $w \in \Sigma^n$ has at most $L \alpha$-close codewords c_1, \ldots, c_L. Each such codeword $c_i = C(\lambda_i)$ is represented by a probabilistic circuit M_i such that $\forall j M_i(j) = \lambda_j$ (recall that M_i is a probabilistic circuit, and therefore $M_i(j) = \lambda_j$ means that M_i outputs λ_j with probability at least $1 - \epsilon$). The algorithm A outputs L machines that are good for every $w \in \Sigma\bar{n}$. One way to think about it, is that $i \in [L]$ is an advice telling which of the L solutions corresponds to the codeword we are interested in.

For instance, in [STV01] the advice string is a position in the codeword and a value of the codeword at this position. Since the code considered in [STV01] is of polynomial length, there is a polynomial number of advice strings. Therefore, the local list decoding algorithm of [STV01] works with deterministic advice. However, for codes with super-polynomial length (such as the Hadamard code and the code considered in this paper) one cannot have a position in a codeword as part of the advice string and still maintain a polynomial number of advice strings. Indeed, the local list decoding for the Hadamard code [GL89] has probabilistic advice, as we define now:

Definition 6 (Locally List Decodable Codes with probabilistic advice). We say a probabilistic algorithm $A(\alpha, L, q, \epsilon)$ local list-decodes the code $C : \Sigma^n \rightarrow \Sigma\bar{n}$, if on input 1^n, A outputs probabilistic oracle circuits $M_1 \ldots M_L$ such that for every word $w \in \Sigma^n$, with probability $2/3$ over the random coins of A,

$$\forall w \in \Sigma^n \Pr_A \left[\forall \lambda \left(\text{Ag}(C(\lambda), w) \geq \alpha \Rightarrow \exists i \forall j \Pr[M_i(j) = \lambda_j] \geq 1 - \epsilon \right) \right] \geq 2/3.$$

In the [GL89] local list decoding algorithm, the algorithm A (which generates the probabilistic circuits M_1, \ldots, M_L) picks a random subset of evaluation points, and takes as advice the value of the codeword on these evaluation points. Therefore, the [GL89] local list decoding algorithm works with probabilistic advice. Notice the order of the quantifiers: for every $w \in \Sigma^n$ most sets (i.e., random coins of A) are good for w, however, it is not the case that most choices of A are good for every w.

4 The Code

In this section we will define the code and study its local properties.

4.1 Definition of the Code

We first review the definition of the code from [Efr09]. Fix a composite number $m = p_1 \cdot p_2 \ldots p_k$ which is a product of k distinct primes. The definition of the code will depend only on m.

5
In order to define the code we need the following definition:

Definition 7. A family of vectors \(\{ u_i \}_{i=1}^n \subseteq \mathbb{Z}_m^h \) is said to be \(S \)-matching if the following conditions hold:

1. \(\langle u_i, u_i \rangle = 0 \) for every \(i \in [n] \).
2. \(\langle u_i, u_j \rangle \in S \) for every \(i \neq j \).

Grolmusz [Gro00] showed how to construct a large set of \(S \)-matching vectors \(\{ u_i \}_{i=1}^n \), \(u_i \in \mathbb{Z}_m^h \), for
\[S = \{ x \in \mathbb{Z}_m \setminus \{ 0 \} \mid \forall i, \ x \text{ mod } p_i \in \{ 0, 1 \} \} . \]

Let \(F \) be a field that contains an element \(\gamma \in F \) of order \(m \), i.e. \(\gamma^m = 1 \) and \(\gamma^i \neq 1 \) for \(i < m \). We define a code \(C : F^n \to F^{m^h} \), where we think of a codeword as a function from \(\mathbb{Z}_m^h \) to \(F \). The encoding of the message \(\lambda_1, \lambda_2, \ldots, \lambda_n \) is the function:
\[
C(\lambda_1, \lambda_2, \ldots, \lambda_n)(x) \triangleq \sum_{i=1}^n \lambda_i \gamma^{\langle u_i, x \rangle} .
\]

Equivalently, we can write
\[
C(\lambda_1, \lambda_2, \ldots, \lambda_n) = \sum_{i=1}^n \lambda_i f_i , \tag{1}
\]
where \(f_i(x) \triangleq \gamma^{\langle u_i, x \rangle} \). We will denote the codeword length by \(\bar{n} = m^h \). An asymptotic relation between \(n \) and \(\bar{n} \) is:
\[
\bar{n} = \exp(\exp(O(\sqrt[4h]{\frac{\log n}{\log \log n}})^{k-1}))).
\]

Note that the asymptotic rate of the code depends only on \(k \), the number of different primes dividing \(m \).

For simplicity sometimes we denote \(G \triangleq \mathbb{Z}_m^h \).

4.2 Local Properties of the Code

In this subsection we study local properties of the code. Specifically we study the restriction of the code to lines.

Definition 8. (line) Let \(v, u \in G \). The line through \(v \) in direction \(u \) is the function \(\ell = \ell_{v,u} \in G^{[m]} \) defined by \(\ell(t) = v + tu \).

Definition 9 (restriction). Let \(\ell \in G^{[m]} \) be a line.

- For a function \(f \in F^G \), the restriction of \(f \) to \(\ell \), denoted by \(f|_\ell \in F^{m^h} \) is defined by \(f|_\ell(t) = f(\ell(t)) \).
- For a code \(C : F^n \to F^G \), the restriction of \(C \) to \(\ell \), denoted by \(C|_\ell : F^n \to F^m \), is the vector space \(\{ C(\lambda)|_\ell \mid \lambda \in F^n \} \).
Now, we analyze the restriction of the code in direction u_j. Observe that
\[
\mathcal{C}(\lambda_1, \ldots, \lambda_n)(v + tu_j) = \sum_i \lambda_i \gamma^{(u_i, v + tu_j)} = \sum_i \lambda_i \gamma^{(u_i, v)} (\gamma^{(u_i, v)})^t
\]
\[
= \sum_{b \in S \cup \{0\}} \left[\sum_{i: (u_i, u_j) = b} \lambda_i \gamma^{(u_i, v)} \right] (\gamma^t)^b.
\]

Define $p : \mathbb{F} \to \mathbb{F}$ by $p(x) = \sum_{b \in S \cup \{0\}} a_b x^b$, where $a_b = \sum_{i: (u_i, u_j) = b} \lambda_i \gamma^{(u_i, v)}$, then $\mathcal{C}|_{\ell_{u_j}}(\lambda)(t) = p(\gamma^t)$. Furthermore, $a_0 = \lambda_j \gamma^{(v, v)}$, and so when $\lambda_j \neq 0$, p is a non-zero polynomial.

Lemma 5. Let \mathcal{C} be the code above. For every $v \in G$ and $j \in [n]$, the code $\mathcal{C}|_{\ell_{u_j}} : \mathbb{F}^m \to \mathbb{F}^m$ is of dimension at most 2^k and distance $d \geq 1 - \sum_{i=1}^{k} \frac{1}{p_i}$.

Proof: In order to prove the lemma we need to show that the polynomial $p(x) = \sum_{b \in S \cup \{0\}} a_b x^b$ does not have too many roots in the set $H = \{ \gamma^t 0 \leq i < m \}$. Recall that the set S is
\[
S = \{ x \in \mathbb{Z}_m \setminus \{0\} \mid \forall i \mod p_i \in \{0, 1\} \}.
\]
Notice that p might have a large degree, and therefore might have a large number of roots in \mathbb{F}. Nevertheless, we show that the number of roots p has in H is at most $\sum_{i=1}^{k} \frac{m}{p_i}$. To see that denote $\tilde{p}(x) = p(x^\frac{\sum_{i} m}{p_i})$. We show that \tilde{p} has the same number of roots as p. Let $s = \sum_{i} \frac{m}{p_i}$. Then,
\[
s \mod p_i = \frac{m}{p_i} \mod p_i \neq 0.
\]
Therefore, $\gcd(s, m) = 1$, that is, s is invertible in \mathbb{Z}_m. This implies the mapping $\psi : H \to H$, $\psi(x) = x^s$ is a bijection.

Thus, in order to show p has few roots in H, it suffices to show that \tilde{p} is a low-degree polynomial. Each monomial of \tilde{p} is of degree $b \cdot s \mod m$ for some $b \in S \cup \{0\}$. Notice that for every $1 \leq i, j \leq k$,
\[
\frac{m}{p_i} \cdot b \mod p_j = \begin{cases} 0 & j \neq i \\ 0 & (j = i) \land (b \mod p_i = 0) \\ \frac{m}{p_i} \mod p_i & (j = i) \land (b \mod p_i = 1)
\end{cases}
\]
This implies that for every i,
\[
\frac{m}{p_i} \cdot b \mod m = \begin{cases} 0 & b \mod p_i = 0 \\ \frac{m}{p_i} & b \mod p_i = 1
\end{cases}
\]
Hence, $b \cdot s \mod m \leq \sum_{i} \frac{m}{p_i} \mod m \leq \sum_{i} \frac{m}{p_i}$. We conclude that \tilde{p} has at most $\sum_{i} \frac{m}{p_i}$ roots in H and therefore so does p.

For a polynomial $p : \mathbb{F} \to \mathbb{F}$ define the vector $\overline{p} \in \mathbb{F}^m$ by $\overline{p}(t) = p(\gamma^t)$. Then, $\mathcal{C}|_{\ell_{u_j}}$ is a linear subspace of the vector-space $\text{Span}\{ \overline{x}^b : b \in S \cup \{0\} \}$, which is a dimension 2^k \mathbb{F}-subspace. Every non-zero codeword corresponds to a non-zero polynomial that can have at most $\sum_{i} \frac{m}{p_i}$ roots. As the elements γ^t are distinct for $1 \leq t \leq m$, every codeword has at most that many zeroes.
Let \(\mathcal{C} \) be the code above. Let \(v \in G \) and \(j \in [n] \). Then every codeword of \(\mathcal{C}|_{\ell_{v,u_j}} \) corresponds to a polynomial with \(2^k \) monomials, where the free coefficient is \(\lambda_j \gamma^{(u_j,v)} \). Thus, any restricted codeword \(z \in \mathcal{C}|_{\ell_{v,u_j}} \) contains information about \(\lambda_j \).

Definition 10. Using the above notation, we denote \(D_{v,j}(z) = \lambda_j \).

In particular,

Corollary 6. Let \(\mathcal{C} \) be the code above. Let \(v \in G \) and \(j \in [n] \). If \(z, z' \in \mathcal{C}|_{\ell_{v,u_j}} \) and \(D_{v,j}(z) \neq D_{v,j}(z') \) then \(z \neq z' \) and therefore \(\Delta(z, z') \geq \delta \).

Another corollary is,

Corollary 7. The distance of the code \(\mathcal{C} \) is at least \(\delta \), where \(\delta = 1 - \sum_{i=1}^k \frac{1}{p_i} \).

Proof: Look at two different codewords \(\mathcal{C}(\lambda) \) and \(\mathcal{C}(\tilde{\lambda}) \) for some \(\lambda \neq \tilde{\lambda} \). Then, there exists some \(j \in [n] \) such that \(\lambda_j \neq \tilde{\lambda}_j \). We can now partition \(G \) to disjoint lines in direction \(u_j \). From Corollary 6 it follows that on each of these lines the restrictions of \(\mathcal{C}(\lambda) \) and \(\mathcal{C}(\tilde{\lambda}) \) are different. From Lemma 5 we know that the distance on each of these lines is at least \(\delta \). It follows that the distance between \(\mathcal{C}(\lambda) \) and \(\mathcal{C}(\tilde{\lambda}) \) is at least \(\delta \).

Remark 8. By taking all \(p_i \)'s of the same order we get that \(\delta = 1 - O\left(\frac{k}{\sqrt{m}}\right) \). In this paper we assume that \(m \) is such a product.

5 Local unique decoding

We are given some word \(w \in \mathbb{F}^G \) that has agreement \(\frac{1}{2} + \alpha \) with some codeword \(\mathcal{C} = \mathcal{C}(\lambda) \). We are also given some \(j \in [n] \). Our goal is to recover (with a good probability) \(\lambda_j \). A first attempt at local decoding is restricting the code to a random line \(\ell_{v,u_j} \) in direction \(u_j \). Intuitively, this is a good step because we restrict the global code to a small fragment of constant size \(m \), while still keeping information about \(\lambda_j \). Specifically, by Lemma 5, \(\mathcal{C}|_{\ell_{v,u_j}} \) is a linear code with a large distance, and by Corollary 6, a codeword \(z = \mathcal{C}(\lambda)|_{\ell_{v,u_j}} \in \mathcal{C}|_{\ell_{v,u_j}} \) corresponds to a polynomial with \(g^k \) monomials, where the free coefficient is \(\lambda_j \gamma^{(u_j,v)} \).

As \(\mathcal{C}(\lambda) \) has \(\frac{1}{2} + \alpha \) agreement with \(w \), when we pick a random line in direction \(u_j \), the expected agreement between \(w|_{\ell_{v,u_j}} \) and \(\mathcal{C}(\lambda)|_{\ell_{v,u_j}} \) is \(\frac{1}{2} + \alpha \). The problem is that it may still happen that with high probability the agreement between \(w|_{\ell_{v,u_j}} \) and \(\mathcal{C}(\lambda)|_{\ell_{v,u_j}} \) is less then \(\frac{1}{2} \) and we will decode wrong value. In order to overcome this problem we can sample \(K = O\left(\frac{\log(\frac{1}{\alpha})}{\alpha^2}\right) \) independent lines. Then with high probability the agreement between \(w \) and \(\mathcal{C}(\lambda) \) is at least \(\frac{1}{2} + \frac{\alpha}{2} \) on the sampled lines. Note that the code \(\mathcal{C}(\lambda) \) restricted to the union of independent lines in direction \(u_j \) may not have a good distance, as two different codewords may coincide on a restriction to a line. However, for any two codewords \(\mathcal{C}(\lambda) \) and \(\mathcal{C}(\tilde{\lambda}) \), where \(\lambda_j \neq \tilde{\lambda}_j \), the distance between the restrictions of these two codewords on each line must be large because of Corollary 6.

Let \(\alpha \geq 2(1-\delta) \) (where \(\delta \) is the distance of the code, and by Lemma 5 is at least \(1 - \sum_i \frac{1}{p_i} \)).

The unique decoding algorithm for \(\frac{1}{2} + \alpha \) agreement is as follows:
Input:
- $w \in \mathbb{F}^G$ that has agreement $\frac{1}{2} + \alpha$ with some codeword C,
- $j \in [n]$,
- $\epsilon > 0$

Randomness: A set of $K = \Theta\left(\frac{\log\left(\frac{1}{\epsilon}\right)}{\alpha^2}\right)$ random elements in G, $\overline{v} = (v_1, \ldots, v_K) \in G$.

Queries: For each $k \in [K]$, the algorithm queries all points on the line ℓ_{v_k,u_j}.

Algorithm: For every $k \in [K]$ and for every symbol $\sigma \in \mathbb{F}$, the algorithm computes
$$\text{weight}_k(\sigma) = \max \left\{ \text{Ag}(w, z) : z \in C|_{\ell_{v_k,u_j}}, D_{v_k,j}(z) = \sigma \right\}.$$

The algorithm then computes $\text{weight}(\sigma) = \frac{1}{K} \sum_{k=1}^{K} \text{weight}_k(\sigma)$. The output of the algorithm is the symbol σ with the highest weight.

Theorem 9. Assume $\alpha \geq 2(1 - \delta)$. For every $\lambda \in \mathbb{F}^n$, $w \in \mathbb{F}^G$ with $\text{Ag}(w, C(\lambda)) \geq \frac{1}{2} + \alpha$ and every $j \in [n]$,
$$\text{Pr}_{\overline{v}}[\text{The algorithm outputs } \lambda_j] \geq 1 - \epsilon.$$

The algorithm uses $\Theta\left(\frac{\log\left(\frac{1}{\epsilon}\right)}{\alpha^2} \cdot m\right)$ queries.

Proof: Suppose that $C(\lambda)$ is a codeword which has $\frac{1}{2} + \alpha$ agreement with the received word w. Then
$$\mathbb{E}_{v \in G} \left[\text{Ag}(w|_{\ell_{v,u_j}}, C(\lambda)|_{\ell_{v,u_j}}) \right] = \frac{1}{2} + \alpha.$$

We say $\overline{v} = (v_1, \ldots, v_k)$ is good, if
$$\frac{1}{K} \sum_{k=1}^{K} \left[\text{Ag}(w|_{\ell_{v_k,u_j}}, C(\lambda)|_{\ell_{v_k,u_j}}) \right] \geq \frac{1 + \alpha}{2}.$$

By a standard application of the Chernoff bound,
$$\text{Pr}_{\overline{v}}[\text{overline{v} is not good}] \leq 2^{-\Omega(\alpha^2 K)} = \epsilon.$$

We now prove that if \overline{v} is good the algorithm outputs the correct answer. Denote $ag_k = \text{Ag}(w|_{\ell_{v_k,u_j}}, C(\lambda)|_{\ell_{v_k,u_j}})$. Then,
- For every k, $\text{weight}_k(\lambda_j) \geq \text{Ag}(w|_{\ell_{v_k,u_j}}, C(\lambda)|_{\ell_{v_k,u_j}}) \geq ag_k$ and so $\text{weight}(\lambda_j) \geq \mathbb{E}_k[ag_k] \geq \frac{1 + \alpha}{2}$,
- Fix any $\sigma \neq \lambda_j$ and $k \in [K]$. Let $z \in C|_{\ell_{v_k,u_j}}$ be such that $D_{v_k,j}(z) = \sigma$. Then, by the triangle inequality,
$$\delta \leq \Delta(z, C(\lambda)|_{\ell_{v_k,u_j}}) \leq \Delta(C(\lambda)|_{\ell_{v_k,u_j}}, w|_{\ell_{v_k,u_j}}) + \Delta(w|_{\ell_{v_k,u_j}}, z).$$

Thus, $\Delta(w|_{\ell_{v_k,u_j}}, z) \geq \delta + ag_k - 1$, and $\text{weight}_k(\sigma) \leq 1 - ag_k + 1 - \delta$. In particular,
$$\text{weight}(\sigma) \leq 1 - \delta + \mathbb{E}_k[1 - ag_k] \leq \frac{1}{2} + 1 - \frac{\alpha}{2} = \frac{1}{2}.$$

9
Thus, whenever \(\tau \) is good the algorithm outputs \(\lambda_j \).

We are now ready to prove Theorem 1.

Proof of Theorem 1: The code \(\mathcal{C} \) has distance at least \(\delta = 1 - O\left(\frac{k}{m^{1/r}}\right) \) and the code length is

\[
\exp(\exp(O(\frac{k}{\log n}\log(\log n)^{k-1}))).
\]

We take \(m \) to be a product of \(m \) almost equal primes. From Theorem 9, for every \(\alpha \geq 2(1-\delta) = O\left(\frac{k}{m^{1/r}}\right) \), the code is \((\frac{1}{2} + \alpha, q, \epsilon) \) locally decodable with \(q = \Theta\left(\frac{\log(\frac{1}{\epsilon})}{\alpha^2} \cdot m\right) \) queries. We think of \(k \) as a constant, and \(m \) as depending on \(\alpha \), growing to accommodate the required error rate. Thus \(\alpha = 2(1-\delta) \approx \frac{2k}{m^{1/r}}, \) or equivalently, \(m \approx (\frac{2k}{\alpha})^k \). Thus, the number of queries is \(\Theta\left(\frac{m\log(\frac{1}{\epsilon})}{\alpha^2}\right) = \Theta(k^k \cdot \alpha^{-(k+2)} \cdot \log(\frac{1}{\epsilon})) \). For \(k = 2 \) the number of queries is \(\Theta(\alpha^{-4} \cdot \log(\frac{1}{\epsilon})) \).

6 Local list decoding with probabilistic advice

We first remind the reader of the setting. A probabilistic algorithm \(A \) has to produce \(L \) probabilistic circuits \(M_1, \ldots, M_L \) that \((\alpha, L, q, \epsilon) \) local list-decode \(\mathcal{C} \). \(A \) uses its internal random coins to sample a random subset \(\Lambda \subseteq G \) of cardinality \(\Theta\left(\frac{\log n}{\alpha} \right) \). The list size \(L \) is \(|\mathbb{F}^\Lambda| \) and corresponds to all possible values a codeword may take on \(\Lambda \). We identify an index of a machine \(i \in [L] \) with a function \(\text{ad} : \Lambda \mapsto \mathbb{F} \) of values of a codeword on the set \(\Lambda \). The machine \(M_{\text{ad}} \) locally outputs a message \(\lambda \) such that \(C(\lambda) \) has \(\alpha \) agreement with \(w \) and \(\text{ad} = C(\lambda)|\Lambda \).

Given a corrupted word \(w \in \mathbb{F}^G \) and a value \(j \in [n] \), \(M_{\text{ad}} \)'s goal is to find (the hopefully unique) codeword \(c \in C \) that is \(\alpha \) close to \(w \), and that is consistent with the given advice \(\text{ad} \in \mathbb{F}^\Lambda \). To do so, \(M_{\text{ad}} \) does the following: \(M_{\text{ad}} \) picks \(K \) (and \(K \) will turn out to be constant) random lines in direction \(u_j \) that pass through some point in \(\Lambda \). For each such line, \(M_{\text{ad}} \) queries \(w \) on the line, and finds all the restricted codewords that are close to the \(w \) (on the line). We say that a line is good if among all those codewords, exactly one matches the value \(\text{ad} \) gives on the point from \(\Lambda \). For each good line, \(M_{\text{ad}} \) extracts from this unique codeword the value \(\lambda_j \) and adds it to the candidates list. The output of \(M_{\text{ad}} \) is the most common value in the candidates list. More formally, the algorithm \(M_{\text{ad}} \) is defined as follows.

A’s random coins: A random subset \(\Lambda \) of of cardinality \(\Theta\left(\frac{\log \frac{1}{\epsilon}}{\alpha^2}\right) \).

Advice: Values of some codeword \(c \) on \(\Lambda \).

Input: \(w \in \mathbb{F}^G, j \in [n] \).

M’s randomness: A random subset \(\{s_1, \ldots, s_K\} \) of \(\Lambda \) of cardinality \(K = \Theta\left(\frac{\log(\frac{1}{\epsilon})}{\alpha}\right) \).

Queries: For each \(k \in [K], M \) queries the values of \(w \) on the \(K \) lines \(\ell_{s_k, u_j} \).

Algorithm: For every \(k \), the algorithm goes over all codewords of \(\mathcal{C}' = \mathcal{C}|\ell_{s_k, u_j} \). For every such \(k \), if there exists exactly one codeword \(z \) of \(\mathcal{C}' \) with:

- \(\text{Ag}(z, w|\ell_{s_k, u_j}) \geq \frac{\alpha}{2}, \) and,
• \(z(s_k) = \text{ad}(s_k) \)

then the algorithm adds the value \(D_{v,j}(z) \) to the candidates list.

Output: The most common value in the candidates list.

Theorem 10. For any \(\alpha \geq 8\sqrt{1-\delta} \), \(\epsilon > 0 \) and \(L = |\mathbb{F}^\Lambda| = q^{O\left(\frac{\log \frac{1}{\alpha}}{\alpha} \right)} \), \(q = Km = O\left(\frac{m \log \left(\frac{1}{\alpha} \right)}{\alpha} \right) = O\left(\log \left(\frac{1}{\epsilon} \right) \right) \). The above algorithm is a probabilistic polynomial-time \((\alpha, L, q, \epsilon)\) local list-decoding algorithm.

Theorem 2 follows immediately from Theorem 10.

Proof of Theorem 2: We take \(m \) a product of \(k \) distinct almost equal primes. From Theorem 10 we know that for any \(\alpha > 8\sqrt{1-\delta} = O\left(\frac{\sqrt{k}}{\sqrt{m}} \right) \) the code is \((\alpha, L, q, \epsilon)\) local list-decodable with \(q = O\left(\frac{m \log \left(\frac{1}{\alpha} \right)}{\alpha} \right) \). Therefore, \(m = O\left(\frac{k^2}{\alpha} \right) \) and \(q = O\left(k^{k} \cdot \alpha^{-2k+1} \cdot \log \left(\frac{1}{\epsilon} \right) \right) \) with a codeword length:

\[
\exp\left(\exp\left(O\left(k^{k} \log n \log \log n^{k-1} \right) \right) \right)
\]

We are left to prove Theorem 10.

6.1 Proof of correctness

We need to show that for every received word \(w \), with high provability over the choice of the set \(\Lambda \), for every codeword \(c = C(\lambda) \) that has \(\alpha \) agreement with \(w \), when the advice is \(\text{ad} = c|_\Lambda \), it holds that for every \(j \in [n] \), \(\Pr[M_{ad}^w(j) = \lambda_j] \geq 1 - \epsilon \), where the probability is over the randomness of \(M \).

Fix \(w \in \mathbb{F}^G \), a codeword \(c = C(\lambda) \) and \(j \in [n] \). For \(v \in G \) the machine \(M_{ad} \) considers the set

\[
U_j(v) = \left\{ z \in C|_{\ell_{v,u_j}} : (\text{Ag}(z, w|_{\ell_{v,u_j}}) \geq \alpha/2) \land (z(v) = \text{ad}(v)) \right\}.
\]

In the \(k \)th iteration, \(M_{ad} \) adds \(\lambda_j \) to the candidates list if \(U_j(s_k) = \left\{ c|_{\ell_{v,u_j}} \right\} \).

We say that \(v \) is **useful** if \(c|_{\ell_{v,u_j}} \in U_j(b) \). Notice that \(c|_{\ell_{v,u_j}}(v) = \text{ad}(v) \), hence for \(v \) to be useful we only need a high agreement between \(v \) and \(w \) on the line \(\ell_{v,u_j} \). We say that \(v \) **filters** if \(U_j(v) \subseteq \left\{ c|_{\ell_{v,u_j}} \right\} \), i.e., for any codeword in the restricted code \(z \in C|_{\ell_{v,u_j}} \) such that \(z \neq c \) it holds that \(z \notin U_j(v) \).

Lemma 11. For any \(\alpha \geq 8\sqrt{1-\delta} \) it holds that

- \(\Pr_{v \sim G}[v \text{ is useful}] \geq \frac{\alpha}{2} \)
- \(\Pr_{v \sim G}[v \text{ does not filter}] \leq \frac{4 \alpha}{\alpha} \cdot (1 - \delta) \leq \frac{\alpha}{16} \).
Proof: Since $E_v[Ag(w|_{\ell_v,u_j}, c|_{\ell_v,u_j})] = \alpha$, an averaging argument implies that the probability $v \in G$ is useful is at least $\alpha/2$.

We turn to the second item. A point v does not filter if there is a restricted codeword $z \in C|_{\ell_v,u_j}$ such that $z \not= c|_{\ell_v,u_j}$ and $z \in U_j(v)$. A restricted codeword z is in $U_j(v)$ if it is in the list $L(w|_{\ell_v,u_j}, \alpha/2)$ and $z(v) = c(v)$. One way to choose v uniformly from G is by first choosing a random line ℓ in direction u_j, and then choosing a random point v on the line. For any line ℓ in direction u_j, $C' = C|_{\ell}$ has distance δ. Therefore, for any $z \not= c$ the probability that $z(v) = c(v)$ is at most $1 - \delta$. By the Johnson bound (see Fact 4), the number of codewords with $\alpha/2$ agreement with $w|_{\ell}$ satisfies

$$|L(w|_{\ell_v,u_j}, \alpha/2)| \leq \frac{\alpha/2 - (1-\delta)}{\alpha^2/4 - (1-\delta)} \leq \frac{4}{\alpha},$$

when $\alpha \geq 2\sqrt{2(1-\delta)}$. The probability that such a codeword z agrees with c at v is at most $1 - \delta$. The lemma follows from the union bound.

\begin{definition}
For $w \in \mathbb{F}^G$, a set $\Lambda \subseteq G$ is good for w, if for every $c \in L(w, \alpha/2)$ and every $j \in [n]$,

\begin{itemize}
 \item $Pr_{v \in \Lambda}[v \text{ is useful and filters for } (w, c, j)] \geq \frac{\alpha}{7}$.
 \item $Pr_{v \in \Lambda}[v \text{ does not filter } (w, c, j)] \leq \frac{\alpha}{8}$.
\end{itemize}
\end{definition}

\begin{lemma}
Fix $w \in \mathbb{F}^G$. Pick a set Λ uniformly at random from G. The probability Λ is not good for w is at most $\frac{\alpha}{n} \cdot 2^{-\Omega(\alpha|\Lambda|)}$.
\end{lemma}

Proof: For any w, j and $c \in L(w, \alpha)$, the probability a single v is useful and filters, by Lemma 11, is at least $\frac{\alpha}{7}$. By the Chernoff bound, the probability we do not have $\frac{\alpha}{7}$ fraction of good vectors in the sample Λ is at most $2^{-\Omega(\alpha|\Lambda|)}$.

Similarly, by Lemma 11, for any w, j and $c \in L(w, \alpha)$, the probability a single v does not filter (w, c, j), is at most $\frac{\alpha}{8}$. By the Chernoff bound, the probability we have more than $\frac{\alpha}{8}$ fraction of vectors that do not filter (w, c, j) in the sample Λ is at most $2^{-\Omega(\alpha|\Lambda|)}$.

The lemma follows from a union bound over j and $c \in L(w, \alpha)$.

Assume Λ is good for w. The probability that at the ith iteration, M_{ad} adds the correct value λ_j to the candidates list is at least the probability that v is useful and filters. By Definition 11 this probability is at least $\frac{\alpha}{7}$. The probability that M_{ad} adds a wrong value to the candidates list is bounded by the probability that v does not filter, which is at most $\frac{\alpha}{8}$. Therefore, by the Chernoff bound, it follows that after $\Theta(\frac{\log(\frac{1}{\alpha})}{\alpha})$ iterations the probability that λ_j is the most common value in the candidates list is at least $1 - \epsilon$. Theorem 10 follows from the above lemma, since for every w, Λ is good for w with probability at least ϵ (by the choice of the cardinality of Λ).

Remark 13. If Λ is chosen to be a random subset G of size $K = \Theta(\frac{\log(\frac{1}{\alpha})}{\alpha})$ (which is constant) then M_{ad} becomes deterministic. In this case, the above lemma shows the for any fixed j, the machine M_{ad} outputs the correct answer with probability at least $1 - \epsilon$. However, the definition requires that M_{ad} outputs the correct answer for every j.

12
References

