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Abstract

We study the problem of monotonicity testing over the hypercube. As previously observed in
several works, a positive answer to a natural question about routing properties of the hypercube
network would imply the existence of efficient monotonicity testers. In particular, if any ` disjoint
source-sink pairs on the directed hypercube can be connected with edge-disjoint paths, then
monotonicity of functions f : {0, 1}n → R can be tested with O(n) queries, for any totally
ordered range R. More generally, if at least an α(n) fraction of the pairs can always be connected
with edge-disjoint paths then the query-complexity is O(n/α(n)).

We construct a family of instances of ` = Ω(2n) pairs in n-dimensional hypercubes such that
no more than roughly a 1√

n
fraction of the pairs can be simultaneously connected with edge-

disjoint paths. This answers an open question of Lehman and Ron [LR01], and suggests that the
aforementioned appealing combinatorial approach for deriving query-complexity upper bounds
from routing properties cannot yield, by itself, query-complexity bounds better than ≈ n3/2.
Additionally, our construction can also be used to obtain a strong counterexample to Szymanski’s
conjecture on routing in the hypercube. In particular, we show that for any δ > 0, the n-
dimensional hypercube is not n

1
2−δ-realizable with shortest paths, while previously it was only

known that hypercubes are not 1-realizable with shortest paths.
We also prove a lower bound of Ω(n/ε) queries for one-sided non-adaptive testing of mono-

tonicity over the n-dimensional hypercube, as well as additional bounds for specific classes of
functions and testers.
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1 Background

Testing monotonicity of functions [DGL+99, GGL+00, EKK+00, FLN+02, Fis04, AC06, Bha08,
HK08] is one of the oldest and most studied problems in Property Testing. The problem is defined
as follows. Let D be a partially ordered set (poset) and let R ⊆ Z. A function f : D → R is
monotone if for every (comparable) pair x, y ∈ D, x ≤ y implies f(x) ≤ f(y). A function f is ε-far
from monotone if it has to be changed on at least an ε-fraction of the domain D to become monotone.
A (q, ε)-monotonicity tester for domain D and range R is a probabilistic algorithm that, given oracle
access to a function f : D → R, satisfies the following: (a) it makes at most q queries to f ; (b) it
accepts with probability at least 2/3 if f is monotone; (c) it rejects with probability at least 2/3 if
f is ε-far from monotone.

The simplest monotonicity testers are those that specify all their queries in advance (non-
adaptively) and reject if and only if they reveal a violation, i.e. if f(x) > f(y) for some comparable
pair x ≤ y of points queried from D. These non-adaptive testers with one-sided error are the only
ones considered in this paper, unless explicitly stated otherwise. We note that nearly all known
monotonicity testers are non-adaptive and have one-sided error. Furthermore, it is also known that
if D is totally ordered then non-adaptive testers with one-sided error are as powerful (in terms of
query complexity) as general ones [Fis04].

For general domains D, Fischer et al. [FLN+02] proved that testing monotonicity is equivalent
to several natural problems, including testing certain graph properties and testing assignments for
Boolean formulae. Domains of the form {0, 1, . . . ,m}n, however, received most of the attention
[DGL+99, EKK+00, GGL+00, Fis04, Bha08, BGJ+09]. Here a function f : {0, . . . , m}n → R is
monotone if for every x, y ∈ {0, . . . ,m}n such that xi ≤ yi for all i ∈ [n], f(x) ≤ f(y) holds. In this
paper we focus on a well-studied special subcase of the above, where m = 1 and R ⊆ Z.

1.1 Preliminaries

Every x ∈ {0, 1}n is identified with the subset support(x) = {i ∈ [n] : xi = 1} as usual. With a
slight abuse of notation, we interpret binary strings as sets (and vice-versa). E.g., we write x ⊆ y

(or x ≤ y) for two strings x, y ∈ {0, 1}n such that support(x) ⊆ support(y).
The directed n-dimensional hypercube (or simply n-cube) is a directed graph Hn = (Vn, En) with

Vn = {0, 1}n and En = {(x, y) : x ⊆ y and |y| = |x|+ 1}. The h-th layer (or level) of Hn contains all
x ∈ Vn with |x| = h.

Definition 1.1 A set P ⊆ Vn × Vn of ` pairs {(si, ti)}`
i=1 is called a source-sink pairing (of size `),

with sources s1, . . . , s` and sinks t1, . . . , t`, if

• si ⊂ ti for all i ∈ [`] and

• si 6= sj, si 6= tj and ti 6= tj for all i, j ∈ [`], i 6= j.

P is aligned if in addition |si| = |sj | and |ti| = |tj | for all i, j ∈ [`].

Notice that P is a source-sink pairing if and only if it forms a (partial) matching in the transitive
closure of Hn. Throughout this paper we denote by P only sets of pairs that form a source-sink
pairing, even when it is not explicitly mentioned.

A (directed) path in Hn is called a P-path if it connects some source si from P to its sink ti. A
subset C ⊆ En is called a P-cut if every P-path in Hn uses at least one edge from C. Similarly, a
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subset S ⊆ Vn is called a P-vertex-cut if every P-path uses at least one vertex from S. We write
maxflow(P) for the maximal number of edge-disjoint P-paths, mincut(P) for the size of the smallest
P-cut and minvertexcut(P) for the size of the smallest P-vertex-cut. Clearly mincut(P) is an upper
bound on both minvertexcut(P) and maxflow(P).1

We define the terms sparsity and meagerness as in [RL05, ABY08, AHJ+06]. The sparsity of P is
the ratio mincut(P)/|P|, and the vertex-sparsity of P is the ratio minvertexcut(P)/|P|. The sparsity
and the vertex-sparsity of Hn are defined as minP{mincut(P)/|P|} and minP{minvertexcut(P)/|P|},
respectively. The definitions of meagerness and vertex-meagerness are similar, except for the stronger
requirement that the corresponding cuts disconnect all sources si from all sinks tj .

Observe that (1) sparsity ≥ vertex-sparsity; (2) meagerness ≥ vertex-meagerness; (3) meagerness
≥ sparsity and (4) vertex-meagerness ≥ vertex-sparsity.

Given R ⊆ Z and a function f : {0, 1}n → R, we say that a pair (x, y) ∈ Vn ×Vn is violated by f

if x ≤ y and f(x) > f(y). If in addition (x, y) ∈ En, we call it a violated edge. We denote by Viol(f)
the set of all pairs (x, y) violated by f , and by EdgeViol(f) the set of all edges violated by f . Thus,
f is monotone if and only if Viol(f) = EdgeViol(f) = ∅.

We denote by εM (f) ∈ [0, 1] the relative distance of f from being monotone, i.e. the minimum
of Prx[f(x) 6= g(x)] taken over all monotone functions g : {0, 1}n → R. By δM (f) ∈ [0, 1] we denote
the fraction |EdgeViol(f)|/|En| = |EdgeViol(f)|/(n2n−1) of edges violated by f .

2 Our results and related work

2.1 Monotonicity testers via sparsity lower bounds

One of the earliest upper bounds on the query-complexity of monotonicity testing on the hyper-
cube used an approach based on the concepts of meagerness and sparsity [GGLR98]. In particular,
[GGLR98] observed that if the meagerness of Hn is at least 1, then monotonicity of Boolean functions
can be tested with O(n/ε) queries. Then they proved that vertex-meagerness (and hence meagerness
too) is at least 1 if the possible pairings P are restricted to aligned sets, satisfying |si| = |sj | and
|ti| = |tj | for all i, j (see also [LR01] for a detailed proof). This sufficed to derive an upper-bound of
O(n2) queries for any constant ε > 0.

While a lower bound on meagerness implies query-complexity upper bounds for Boolean functions,
a lower bound on sparsity implies query-complexity upper bounds for functions with general range
(see Section 3.1 for details). In particular, if the sparsity of Hn is at least µ = µ(n), then monotonicity
of functions with any linearly ordered range can be tested with O(n/(εµ)) queries. In [LR01] the
authors ask whether the sparsity of any P (or even just of the aligned ones) is at least 1, noting that
this would imply efficient monotonicity testing as well as progress on some long-standing questions
regarding routing in the hypercube network. We prove that the answer to these questions is no.

Theorem 2.1 The sparsity of Hn is at most n− 1
2
+o(1). Furthermore, this upper bound on the sparsity

can be demonstrated with both aligned sets and Ω(2n)-sized sets:

• for any δ > 0 and large enough n there is an aligned set P in Hn with sparsity at most n− 1
2
+δ;

• for any δ > 0 there is ε > 0, such that for large enough n there is a set P in Hn of size
|P| ≥ ε2n with sparsity at most n− 1

2
+δ.

1The quantities mincut(P) and maxflow(P) are duals of each other, when written in linear integer programming

formulations [SM90]. Unlike the case with a single pair in P, there is a gap between the integer and real-valued

solutions, and these two quantities need not coincide.
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Theorem 2.1 is proved in Section 3.2. In Appendix A we also show that the vertex-sparsity of Hn is
O(1/n).

2.2 Routing in the hypercube and Szymanski’s conjecture

The hypercube is a natural and well-studied architecture for multi-processor systems and networks.
The ability to route arbitrary permutations on it models flow of information in a network of proces-
sors. In this context, a doubly-directed version of Hn is usually considered, where each edge in En is
replaced with a pair of anti-parallel edges. Let us denote the doubly-directed version of Hn by H

↑↓
n .

A permutation π of Vn is 1-realizable if there exist pairwise edge-disjoint paths in H
↑↓
n that connect

every v with π(v). A permutation π is k-realizable if there exist paths connecting every v with π(v)
such that each edge is used by at most k paths. Szymanski [Szy89] conjectured that any permutation
π of Vn is 1-realizable with shortest paths. It was proved that the conjecture holds up to dimension
3, but later Lubiw [Lub90] provided a counterexample in dimension 5 that is not 1-realizable using
shortest paths. While it is still unknown whether or not every permutation is 1-realizable without
requiring shortest paths2, the fact that any permutation is 2-realizable follows from the classical work
of Beneš [Ben65] (see [Lub90] for details). In contrast, we prove that if we insist on the shortest-path
condition, there are permutations that are not k-realizable for any k significantly smaller than

√
n.

Specifically, the construction in Theorem 2.1 can be used (see Section 3.3) to prove the following.

Theorem 2.2 For any δ > 0 and large enough n, there are permutations on Vn that cannot be
n

1
2
−δ-realized in H

↑↓
n with shortest paths.

Remark 2.3 Any upper bound µ(n) on the sparsity of Hn can be used to show that H
↑↓
n is not 1/µ(n)-

realizable with shortest paths. However, the opposite is not true. In particular, the counterexample
from [Lub90] does not imply that the sparsity of H5 is less than 1.

2.3 New bounds on testing monotonicity

Currently the best known query-complexity bounds for testing monotonicity (non-adaptively with
one-sided error) of functions f : {0, 1}n → R are:

• an upper bound of O(n
ε log |R|) for any range R [DGL+99];

• a lower bound of Ω(
√

n/ε) for Boolean ranges (and hence larger ranges too) [FLN+02].

The tester used in the upper bound of [DGL+99] is perhaps the most natural one: it picks an
edge (x, y) ∈ En uniformly at random, and rejects if f(x) > f(y). Let us call this test an edge-test.
[DGL+99] prove that the probability that a single execution of an edge-test rejects is Ω( εM (f)

n log |R|), by
relating the distance of a function from monotone to the number of edges that it violates.

It is an interesting open question whether the general upper bound of [DGL+99] can be improved
into one that is independent of |R| (or at least has a better dependence on it). Since we can
assume without loss of generality that |R| ≤ 2n, any upper bound of o(n2/ε) queries would be an
improvement. We make a small step in this direction. Call a function f : {0, 1}n → R dist-k
monotone if f(y) ≥ f(x) for every y > x with |y| > |x| + k. In this terminology dist-0 monotone is
simply monotone. In Section 3.4 we prove that given a dist-3 monotone function f , we can test if f

is monotone with O(n3/2/ε) queries. We actually prove the following stronger claim:
2Since the original conjecture was shown to be false, the weaker version that does not require shortest paths is now

called Szymanski’s conjecture.
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Theorem 2.4 Let ε > 0, R ⊆ Z and let f : {0, 1}n → R be a dist-3 monotone function. If f is
ε-far from being monotone then |EdgeViol(f)| ≥ Ω( 2n

ε
√

n
).

The upper bound on the query complexity follows using the edge-tests described above.
We remark that the case dist-3 is considered here because it is the first non-trivial one (it is easy

to see that both dist-1 and dist-2 monotone functions can be tested in O(n/ε) queries).
In Section 3.5 we also extend the lower bound of Ω(

√
n/ε) of [FLN+02] to Ω(n/ε), for large enough

|R|. Using the “Range-Reduction Lemma” of [DGL+99], the new bound implies an improved lower
bound of Ω(n/(ε log n)) for the Boolean range, in the special case of pair-tests (tests that pick a
set of comparable pairs (x, y) according to some distribution, and reject if and only if one of them
forms a violation). We note that pair-tests are not overly restricted: essentially all known query-
complexity upper bounds for monotonicity-testing use (or can be easily converted into ones that use)
pair-tests. Furthermore, the new lower-bound almost matches the aforementioned upper-bound of
O(n/ε) achieved by the edge-test (a special case of pair-tests).

3 Proofs

3.1 From sparsity to monotonicity testers

The basic combinatorial interpretation of εM (f) is given in the following lemma:

Lemma 3.1 [DGL+99, FLN+02, GGL+00] Let f : {0, 1}n → R be a function, and define the
violation graph of f as the undirected graph G = ({0, 1}n, E), where {x, y} ∈ E if either (x, y) or
(y, x) is in Viol(f). Then εM (f)2n is exactly the size of a minimum vertex cover of G. Consequently,
there is a matching in G of size at least εM (f)2n−1.

An important observation is that since G is a subgraph of the transitive closure of Hn, the matching
of violated pairs in Lemma 3.1 forms a source-sink pairing P (see Definition 1.1) of size εM (f)2n−1.

As we mentioned earlier, the best known upper bounds for testing monotonicity over hypercubes
are obtained by a simple edge-tester, which picks a set of edges from Hn uniformly at random, queries
f on their endpoints, and rejects if one of them is violated. Recall that δM (f) denotes the fraction
of edges in Hn that are violated by f ; thus the success probability of the edge-tester is determined
by δM (f). Goldreich et al prove the following:

Theorem 3.2 [GGLR98, GGL+00] For any f : {0, 1}n → {0, 1}, δM (f) ≥ εM (f)
n .

More generally, [DGL+99] use their range-reduction lemma to conclude that for any f : {0, 1}n →
R, δM (f) ≥ εM (f)

n log |R| . Since without loss of generality |R| ≤ 2n, this gives an upper bound of O(n2/ε)
queries for testing monotonicity of all functions f : {0, 1}n → R.

Clearly, obtaining better lower bounds on δM (f) is sufficient for improving the upper bounds on
the query complexity of testing monotonicity. (It may even be the case that Theorem 3.2 holds for
any R). The next lemma states that this can also be done by proving lower bounds on the sparsity
of Hn.

Lemma 3.3 Let µ(n) denote the sparsity of Hn. For any ε > 0 and R ⊆ Z, monotonicity of
functions f : {0, 1}n → R can be tested with O( n

εµ(n)) queries.
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Proof: Let ε > 0 and let f : {0, 1}n → R be ε-far from monotone. Let P be the set of εM (f)2n−1 ≥
ε2n−1 vertex-disjoint violated pairs promised to exist by Lemma 3.1. By definition, P is a source-sink
pairing. Notice that since every (si, ti) ∈ P is violated, we have that every path from si to ti must
contain at least one violated edge. That is, every P-path contains at least one violated edge. It
follows that the set EdgeViol(f) is a P-cut and that we have |EdgeViol(f)|/|P| ≥ µ(n). Hence, we
can lower bound δM (f) by δM (f) = |EdgeViol(f)|

|En| ≥ εµ(n)
2n . We can thus conclude that O

(
n

εµ(n)

)
edge

queries suffice to find an edge-violation with constant probability.

3.2 Proof of Theorem 2.1

We use a number of properties of the parity-check matrix of Hamming codes, which we now describe.
For an integer k ≥ 1, let the strings y ∈ {0, 1}k\{0} represent the indices of bit positions of binary
strings of length n = 2k − 1. The Hamming code consists of the n-bit strings x ∈ {0, 1}n that, for
every i ∈ [k], have an even number of positions y for which yi = 1 and xy = 1. The columns of
its k × n parity check matrix p are all possible non-zero k-bit vectors y; this matrix represents a
linear map p : {0, 1}n → {0, 1}k, with arithmetic done modulo 2. Therefore, for any unit vector
ey (i.e., the vector having 1 at position y and 0 elsewhere), p(ey) = y. In addition, for all x, y,
p(x ⊕ ey) = p(x) ⊕ y.

Codewords of the Hamming code correspond to strings satisfying p(x) = 0 (here and in what
follows we use 0 to denote the all-zero vector of the appropriate size). The k bit positions of the
form 2i (i.e., 1, 2, 4, . . . , (n + 1)/2) can be viewed as the parity bits of the code; in a codeword they
are determined by the remaining n − k bits.

3.2.1 Warm-up

To showcase the main ideas in the construction, we first show that the sparsity of the hypercube is
at most O( 1

n1/3 ); better bounds are derived in Section 3.2.2.

Proposition 3.4 Let k > 0 be a multiple of three, and n = 2k − 1. There is a pairing P ⊆ Vn × Vn

in Hn of size |P| = Ω(2n) having a P-cut C ⊆ En of size |C| = O(2n/n1/3).

Proof: For a ∈ {0, 1}n, consider the k parity bits p(a) and divide them into three groups of size k/3
each, denoted x(a), y(a) and z(a). For convenience, we write (v1, v2, v3) to denote the concatenation
of three vectors v1, v2, v3 ∈ {0, 1}k/3, and whenever no confusion may arise, we interpret every
v ∈ {0, 1}k as an element of {0} ∪ [n]. With this convention, we have p(a) = (x(a), y(a), z(a)), and
if one of v1, v2 or v3 is non-zero, then (v1, v2, v3) ∈ [n].

The following set S is the set of sources of P:

S =
{

s ∈ {0, 1}n :
(
x(s) 6= 0∧y(s) 6= 0∧z(s) 6= 0

)
∧

(
s(x(s),y(s),0) = s(x(s),0,z(s)) = s(0,y(s),z(s)) = 0

)}
.

For each source s ∈ S, we define the sink t = s ∪ {(x(s), y(s), 0), (x(s), 0, z(s)), (0, y(s), z(s))}. That
is, the three directions leading from s to t are (x(s), y(s), 0), (x(s), 0, z(s)) and (x(s), 0, z(s)). The
first three conditions on a member s of S ensure that all three directions are (1) distinct; (2) proper
(i.e. non-zero); and (3) have a k-bit binary representation with Hamming weight greater than one.
The last condition ensures that the relevant bits of s are set to zero.

The pairing P will be given by all pairs (s, t) defined in this way. Clearly s ⊆ t and |t − s| = 3.
It is also easy to verify that |S| =

(
2k/3 − 1

)3
2n−k−3 = Ω(2n), since none of the directions used

corresponds to a parity bit, namely, none of them is a power of 2.
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To prove that P is a pairing, it remains to show that all sources are distinct, and that no source
is also a sink. Because of the properties of map p, after flipping e.g. bit (x, y, 0) from a source s with
parity (x, y, z), we reach a vertex with parity (0, 0, z). If we continue the computation, we see that
the parities of the eight vertices in the cube from s to t are:

• Level 3 (sink): (x, y, z).

• Level 2: (x, 0, 0), (0, y, 0), (0, 0, z).

• Level 1: (0, 0, z), (0, y, 0), (x, 0, 0).

• Level 0 (source): (x, y, z).

Notice that the parities at level 1 are distinct, as are the parities at level 2.
Since the three directions from s to t are determined by p(s) = (x, y, z) = p(t), it follows

immediately that the set of sinks is disjoint from the set of sources (these bits already belong to t, so
t /∈ S). Likewise, if two different sources s1 and s2 were associated with the same sink t, we would
get p(s1) = p(t) = p(s2), so the three directions from s1 to t are the same as from s2 to t, implying
s1 = s2. Hence P is indeed a pairing.

Let Q ⊆ Vn be the set of vertices that are at level 1 or 2 for some pair (s, t) ∈ P (that is, they
lie on a path from s to t, and are neither s nor t). All vertices in Q have parities of one of the forms
(0, 0, z), (0, y, 0), (x, 0, 0), hence |Q| = O(2n/n2/3). Now take the set C ⊆ En of all edges of Hn with
both endpoints in Q; it is clearly a P-cut. Furthermore, each vertex of Q is incident with at most
3 · 2k/3 = O(n1/3) edges from C. This follows from the fact that every v ∈ Q with parity vector, say,
(x, 0, 0), can be incident only with those edges in C that have directions corresponding to vectors of
the form (x, y, 0), (x, 0, z) or (x′, 0, 0), for various y, z, x′ ∈ {0, 1}k/3. Therefore, |C| = O(2n/n1/3),
concluding the proof.

3.2.2 Improved bounds

In the main construction, we divide the length-k strings into m equally-sized parts, we let d be the
distance between pairs in the pairing and w be the number of non-zero length-(k/m) parts of the
parity strings of the direction vectors. The main tool is the following lemma about certain sets of
vectors used to generalize the proof in the warm-up. The reader should keep in mind that an example
of such a set of vectors for m = 3, d = 3, w = 2, is V = {110, 101, 011}, and was used implicitly in
the previous proof.

For our purposes, all parameters involved except k and n should be thought of as constants,
although the constants hidden in the Big-O notation are absolute.

Lemma 3.5 Suppose V ⊆ {0, 1}m, d = |V |, and w ∈ N are such that:

1. 2 ≤ |v| ≤ w for all v ∈ V ,

2.
⊕

v∈V v = 0, and

3. For all W ⊆ V of size |W | = bd/2c, |
⊕

v∈W v| ≥ dm/2e

Let k be a non-zero multiple of m and n = 2k − 1. Then there is a pairing P ⊆ Vn × Vn of vertices
of Hn of size |P| = Ω(2n−d) that has a P-cut C ⊆ En of size |C| = O

(
2n
√

n
nw/m d2d

)
and with the

additional property that each source in P is at distance exactly d from its sink.
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Proof: Divide [k] into m disjoint subsets G1, . . . , Gm ⊆ [k] of size k/m; e.g. Gi = {(i − 1)k/m +
1, . . . , ik/m}. For a ∈ {0, 1}n, consider the k parity bits p(a) ∈ {0, 1}k of a, and split them
into m blocks according to G1, . . . , Gm

3; let us call each of the corresponding k/m-bit substrings
x1(a), . . . , xm(a). Thus, p(a) is the concatenation of x1(a), x2(a), . . . , xm(a).

For a subset v ⊆ [m], let Zv =
∪

i∈A Gi. Given v ⊆ [m] and p ⊆ [k], define the projection of p

on v to be Πv(p) = p ∩ Zv, (remember that p and Πv(x) can be interpreted as strings in {0, 1}k as
well). For example, in the preceding subsection, Π110((x, y, z)) = (x, y, 0). Consider the set

S = {a ∈ {0, 1}n : ∀i∈[m] xi(a) 6= 0 and ∀v∈V aΠv(p(a)) = 0}.

This will be set of sources in P. Note that the expression aΠv(p(a)), referring to bit number
Πv(p(a)) of a, is well-defined, because the condition ∀i xi(a) 6= 0, along with v 6= 0, implies Πv(p(a)) 6=
0.

The set of d directions between a source s and the corresponding sink t will be determined by
the parity of s alone, in the following way: for p ∈ {0, 1}k, let D(p) =

∪
v∈V {Πv(p)}. Condition 1 of

the hypothesis of the lemma implies that if s ∈ S, |D(p)| = |V | = d, and all elements of D(p) have
weight at least 2.

For each source s ∈ S, we define the sink t = s ∪ D(p(s)); by construction s ⊆ t, and t − s =
|D(p(s))| = d. P will be defined as the union of all such ordered pairs (s, t): P = ∪s∈S{(s, s ∪
D(p(s)))}. Observe that |P| = |S| =

(
2k/m − 1

)m
2n−k−d = Ω(2n−d).

We prove now that P forms a pairing: the set of sinks is disjoint from the set of sources, and no
two different sources have the same sink. Because of the aforementioned properties of the parity check
p, for any source-sink pair (s, t) we have p(t) = p(s) ⊕

⊕
v∈V Πv(p(s)) = p(s) ⊕ ΠL

V v(p(s)) = p(s)
(where we used the second property of V and simple properties of the projection operator). Since
for every d ∈ D(p), d /∈ s but d ∈ t, it follows that no sink is a source too. Likewise, if two sinks t1
and t2 (corresponding to sources s1 and s2) were the same (t1 = t2), we would have p(s1) = p(s2),
which implies D(p(s1)) = D(p(s2)) and therefore s1 = s2.

To conclude, we only need to bound the size of a smallest P-cut. Consider the set of vertices
halfway between a source and a sink:

Q = {x ∈ {0, 1}n : there exists (s, t) ∈ P such that s ⊆ x ⊆ t and |x − s| = bd/2c}

(notice the slightly different definition of Q, compared to the one in 3.2.1).
Due to the third property of V and the definition of D(p(s)), it follows that b ∈ Q implies that at

least half of x1(b), . . . , xm(b) are zero. So the set {p(b) : b ∈ Q} has size at most
(

d
d/2

)
(2k/m − 1)m/2,

and does not contain unit vectors; therefore |Q| ≤ 2n

n+1

(
d

d/2

)
(2k/m − 1)m/2 = O( 2n

√
n

2d
√

d
).

An edge cut is given by C = {(b, c) ∈ En : b ∈ Q ∧ c − b ∈ D(p(S))}, where D(p(S)) =∪
s∈S{D(p(s))}. Thus, |C| ≤ |Q||D(p(S))|. The claim follows since |D(p(S))| ≤ d(2k/m − 1)w.

Proof of Theorem 2.1: We prove a strengthening of the second part of the theorem that implies
the first as well. To be precise, we show that, for every 1 > δ > 0, there exist ε > 0 and d such that,
for all large enough n, there is a pairing P in Hn of size |P| ≥ ε2n, sparsity at most n−1/2+δ and
with the additional property that all pairs in P have distance exactly d. By partitioning the pairs
in P according the level modulo d of their source, and applying a simple averaging argument, we
conclude that there must exist an aligned pairing in Hn with sparsity at most n−1/2+δ.

3Strictly speaking, in order to do this we first impose an arbitrary ordering on the elements of each Gi.
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First note that, whatever our choice of m,w, d, we can assume without loss of generality that m

divides n. Otherwise, if n > m take the largest multiple n′(n,m) of m that is at most n, find the
set P guaranteed by the lemma and notice that Hn′ can be embedded into Hn. This only affects the
relevant ratios by at most a constant. This can be counteracted by choosing any smaller δ′ < δ and
a large enough n to start with, and then taking the set P for Hn′(n,m). Similarly, we can assume n

is of the form n = 2k − 1.
Let w = d1/δe, m = w2, d = 2w. It only remains to show that sets with parameters m, d, w, as

in the hypotheses of Lemma 3.5, exist.
Arrange the w2 elements of [m] into a square matrix A ∈ {0, 1}w×w. Associate one vector with

each row and each column of A (2w vectors in total). The i-th row is associated with the subset (or
vector in {0, 1}w) Ri = {r ∈ [m] : (i− 1)w < r ≤ iw}; the j-th column will correspond to the subset
Cj = {r ∈ [m] : (r − 1) mod w = j − 1}. Let V =

∪
i∈[w]{Ri, Si}. Clearly, |V | = 2w and for all

v ∈ V , we have |v| = w > 1. It is also apparent that ⊕v∈V v = 0, because any k ∈ [m] belongs to
exactly two vectors in V , namely Ri and Cj , where k = (i − 1)w + j with i, j ∈ [w].

Finally, we show that, for any W ⊆ V with |V | = d/2 = w, | ⊕v∈W v| ≥ m
2 = w2

2 . Suppose W

contains a row elements Ri and w − a column elements Cj ; then it is easy to see that | ⊕v∈W v| =
a2 + (w − a)2 ≥ w2

2 by the quadratic mean-arithmetic mean inequality.

3.3 Proof of Theorem 2.2

Let P and C be the pairing and the cut constructed in the proof of Theorem 2.1. Let π be any
permutation on Vn that maps each source in P to its sink. Notice that any shortest path in H

↑↓
n that

connects a source of P to its sink must also be a directed path in Hn. Hence, any realization of P
with shortest paths must use some edge in C at least |P|/|C| = Ω(n1/2−δ) times.

3.4 Proof of Theorem 2.4

Let ε > 0, R ⊆ Z and let f : {0, 1}n → R be a dist-3 monotone function. If f is ε-far from being
monotone, then by Lemma 3.1 there is a set P of ε2n−1 vertex disjoint pairs in Hn that are violated
by f . Furthermore, since f is dist-3 monotone, for every (si, ti) ∈ P we have |ti| ≤ |si|+ 3. To prove
Theorem 2.4 we show that the sparsity of such P must be Ω(1/

√
n).

Let C be a smallest P-cut, and let us prove that |C|/|P| ≥ Ω(1/
√

n). First we note that it is
possible to assume that C has no edges that are incident with any source si or sink tj from P (and
in particular, this will mean that no pair in P has distance 1 or 2): Let p > 0 be the number of
edges in C that are incident to some source or sink of a pair in P. If p ≥ |P|/4 then we are done,
since clearly |C| ≥ p. Otherwise, removing these p edges from C and the corresponding pairs from
P leaves a set C ′ of size |C| − p that cuts a subset P ′ ⊆ P of at least |P| − 2p pairs. This is due to
the fact that the pairs in P are disjoint, and hence each edge can be incident with at most two pairs.
Since p ≤ |P|/4, we have |C|−p

|P|−2p ≤ 2 C
|P| , so it is enough to prove the claim for C , C ′ and P , P ′.

For 0 ≤ h ≤ n − 3, let Ph ⊆ P be the set of pairs (si, ti) ∈ P with |si| = h (and |ti| = h + 3).
Clearly C is a Ph-cut for every h. Let Ch ⊆ C denote the set of edges in C that lie on some Ph-path.
Since Ch has no edges incident to any si or tj , in order to cut Ph we must use exactly those edges
between levels h + 1 and h + 2 that lie on some Ph-path. So the sets Ch, 0 ≤ h ≤ n − 3, are in fact
disjoint. Therefore it is sufficient to prove that Ch/|Ph| ≥ Ω(1/

√
n) for all h.

Fix h, and for clarity let us redefine P , Ph and C , Ch. Each pair (si, ti) ∈ P defines a sub-
cube of dimension 3, which we will denote by H i

3, that contains all vertices and edges that belong to
one of the six possible paths from si to ti.
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Observation 3.6 For any two pairs (si, ti), (sj , tj) ∈ P, |E(H i
3) ∩ E(Hj

3)| ≤ 1.

Proof: Assume that |E(H i
3) ∩ E(Hj

3)| ≥ 2 for some i 6= j, and let e = (a, b) and e′ = (a′, b′) be two
edges in E(H i

3) ∩ E(Hj
3). Since the pairs (si, ti) and (sj , tj) are disjoint, both e and e′ should lie

between layers h + 1 and h + 2. Therefore, a = a′ = si ∪ sj and b = b′ = ti ∩ tj , contradicting the
assumption that e 6= e′.

Consider the directed graph G = (V, E) with V =
∪

(si,ti)∈P V (H i
3) and E =

∪
(si,ti)∈P E(H i

3).
Since every si has out-degree 3 in G (and in-degree 0), the number of edges between layers h and
h + 1 of Hn that belong to G is exactly 3|P|. Let A = a1, . . . , ak be the vertices in layer h + 1 of Hn

that belong to G, let α1, . . . , αk denote their in-degrees and let β1, . . . , βk denote their out-degrees
in G. We have that

∑
i∈[k] αi = 3|P|, and our goal is to prove that |C| ≡

∑
i∈[k] βi = Ω(|P|/

√
n).

Consider vertex ai. For every pair (sj , tj) ∈ P such that ai ∈ V (Hj
3) there are two edges in Hj

3

going out of ai. Since for any two pairs (sj , tj), (sj′ , tj
′
) ∈ P we have |E(Hj

3)∩E(Hj′

3 )| ≤ 1, it follows
that

(
βi
2

)
≥ αi. So βi >

√
αi for all i and hence |C| =

∑
i∈[k] βi >

∑
i∈[k]

√
αi =

∑
i∈[k]

αi√
αi

≥ 3|P|√
n

, as
αi ≤ n.

3.5 An Ω(n/ε) lower bound for general functions

Theorem 3.7 Let R ⊆ Z, |R| = Ω(
√

n). Testing monotonicity of functions f{0, 1}n → R (non-
adaptively with one-sided error) requires Ω(n/ε) queries.

Proof: A non-adaptive q-query monotonicity tester with one-sided error queries f on a set Q of at
most q vertices and rejects if and only if one of the comparable pairs in Q is violated. Hence, it is
sufficient to show a family Fn of functions f : {0, 1}n → R that are ε-far from monotone (for a fixed
ε > 0 and all n) and such that, for any fixed set Q ⊆ {0, 1}n of size o(n), a random f ∼U Fn induces
a violated pair in Q with probability less than 1/3.

For every n, we will define a family Fn = {f1, . . . , fn} of n functions fi : {0, 1}n → R with the
following properties:

• every fi is ε-far from monotone, for some absolute constant ε > 0;

• for any set Q ⊆ {0, 1}n, Pri∼U [n][(Q × Q) ∩ Viol(fi) 6= ∅] ≤ |Q|−1
n .

This will imply that any tester making fewer than 2n
3 queries will fail with probability at least 1/3.

Similarly to [FLN+02], each fi ∈ Fn will violate some pairs that differ in the i’th coordinate.
But here we will make sure that only the actual edges of Hn are violated, making it more difficult to
catch violated pairs.

We now formally define Fn. Let R = {0, 1, . . . , 2
√

n}, and let h(x) , |x| − n/2 +
√

n for all
x ∈ {0, 1}n. For each i ∈ [n] we define fi : {0, 1}n → R as follows:

fi(x) =


0, h(x) < 0
2
√

n, h(x) > 2
√

n

h(x), h(x) ∈ R and xi 6= h(x) mod 2
h(x) + (−1)xi , h(x) ∈ R and xi = h(x) mod 2

Notice that for every i ∈ [n], Viol(fi) = EdgeViol(fi), and the edges in EdgeViol(fi) are vertex
disjoint. So by Lemma 3.1, the functions fi ∈ Fn are ε-far from monotone (for some fixed ε > 0)
if |EdgeViol(fi)| ≥ ε2n. Indeed, |EdgeViol(fi)| equals the number of points x ∈ {0, 1}n such that:
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h(x) ∈ R, h(x) = 0 (mod 2) and xi = 0. Notice that for n > 10, these constitute roughly a quarter
of all points y ∈ {0, 1}n with h(y) ∈ R. On the other hand, it follows from Chernoff bounds that for
some constant ρ > 0 and for all n > 10, the number of points y ∈ {0, 1}n with h(y) ∈ R is at least
ρ2n. Setting ε = ρ/5, we conclude that all functions fi ∈ Fn are ε-far from monotone.

Now we prove that Pri∼U [n][(Q × Q) ∩ Viol(fi) 6= ∅] ≤ |Q|−1
n . Fix Q and consider the undirected

graph G = (V, E), where V = Q and E = {{x, y} ∈ Q × Q : (x, y) ∈ En}. In other words, G is
the undirected skeleton of the subgraph of Hn induced on Q. For x, y ∈ {0, 1}n we write x = y(j)

if x equals y in all coordinates except j. Let T ⊆ [n] be a set of directions spanned by E, namely,
T = {j : there exists {x, y} ∈ E such that x = y(j)}. Clearly, the success probability of the test is
bounded by |T |/n. To finish the proof, we show that |T | ≤ |Q| − 1.

Consider a minimal subgraph G′ of G that spans all directions in T . Clearly, |E(G′)| = |T |.
Therefore G′ is acyclic, since any cycle in the undirected skeleton of Hn must travel in every direction
even number of times. So |T | = |E(G′)| ≤ |V (G′)| − 1 = |Q| − 1.

Remark 3.8 We proved a lower bound of Ω(n) queries for some constant ε > 0. To get a lower bound
of Ω(n/ε) for any ε = ε(n) we need to compose our lower bound with a simple “hiding” procedure.
Namely, we define a distribution F ′

n that fools any deterministic tester with o(n/ε) queries as follows:
first, partition Hn into disjoint subcubes, each of size ε2n (for simplicity we assume that 1/ε is a power
of 2); then pick a random subcube C in this partition, and value it with a random fi ∈ Fn−log 1/ε;
value the other subcubes so that there are no violations outside C. Now for any fixed set Q of o(n/ε)
queries, the expected number of queries that hit C is o(n), and we know that with o(n) queries it is
impossible to find a violation in a random fi.

Notice that the range R of the functions fi is of size O(
√

n) - much smaller than the 2n different
values a function on the hypercube may have. Therefore, applying the range-reduction lemma4

of [DGL+99] we get that the query complexity of testing monotonicity of Boolean functions with
pair-testers is Ω(n/(ε log n)), which is tight up to the log n factor.

4 Concluding remarks

We suggest three open problems related to this line of work:
First, is it true that the best testers for monotonicity over Hn are in fact pair-testers? The

question is of interest even just for Boolean-range functions, since a positive answer coupled with
our Ω( n

ε log n) lower bound for pair testers would give an almost-tight lower bound.
Another challenge is to find better upper bounds for the special case of testing monotonicity of

dist-k monotone functions, for some k ≥ 3. As we saw in Section 3.2.1, non-trivial sparsity upper
bounds can be found even if we restrict ourselves to pairings in which all pairs are at distance 3.
This seems to indicate, in our opinion, that a better understanding of the small-distance situations
will yield new insights that may be applicable in the general case.

Finally, recall from Section 3.4 that for k ≤ 3, dist-k monotonicity can be tested with O(n3/2)
queries; on the other hand, the construction in Section 3.2.1 shows that sparsity considerations alone
will never yield upper bounds better than this. In view of these results, it is natural to ask whether
these two measures need to coincide for larger k; that is, whether the complexity of edge-testers may
be better than the values derived from sparsity upper-bounds.

4The range-reduction lemma of [DGL+99] says roughly that if T is a pair-tester (i.e. T picks pairs of comparable

vertices according to some distribution and rejects if one of them is violated) that rejects any ε-far Boolean function

with probability p, then T rejects any ε-far f : {0, 1}n → R with probability at least p log−1 |R|.
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A Better bound on the vertex-sparsity of Hn

Theorem A.1 The vertex-sparsity of Hn is O(1/n).

Proof: Let n ≥ 8 be a multiple of 4. We construct an aligned source-sink pairing P ⊆ Vn × Vn of
2n/2(n/4− 1) disjoint pairs (si, ti), such that for all i, j, |tj | = |si|+ 2. Then we show a P-vertex-cut
M of size 2n/2.

Consider the following set of pairs: P0 = {(0001, 1011), (1000, 1101), (0010, 0111), (0100, 1110)}.
Any P0-path (of length 2) goes through one of the following vertices: M0 = {1001, 0011, 1100, 0110}.

Using this small example, we construct the large one recursively. For i ≥ 1, we set Pi =
{(01a, 01b) : (a, b) ∈ Pi−1}∪{(10a, 10b) : (a, b) ∈ Pi−1}∪{(00a, 11a) : a ∈ Mi−1}. Let Mi denote the
set of all internal vertices that lie on some Pi-path. Notice that Mi = {01a : a ∈ Mi−1} ∪ {10a : a ∈
Mi−1}. So, we have:

• |Pi| = 2|Pi−1| + |Mi−1|;

• |Mi| = 2|Mi−1|.

Solving these recurrence equations we get |Mi| = 2i|M0| and |Pi| = 2i|P0| + i2i−1|M0|. Let P ,
P(n−4)/2 and M , M(n−4)/2. Since M is a P-vertex-cut by definition, we only need to show that
the sizes of M and P are as advertised. Indeed, |M | = 2(n−4)/2|M0| = 2n/2 and |P| = 2(n−4)/2|P0|+
2(n−4)/2−1

(
n−4

2

)
|M0| = 2n/2(n/4 − 1).
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