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Abstract. We study the complexity of multiplication in noncommuta-
tive group algebras which is closely related to the complexity of matrix
multiplication. We characterize such semisimple group algebras of the
minimal bilinear complexity and show nontrivial lower bounds for the
rest of the group algebras. These lower bounds are built on the top of
Bläser’s results for semisimple algebras and algebras with large radical
and the lower bound for arbitrary associative algebras due to Alder and
Strassen. We also show subquadratic upper bounds for all group algebras
turning into “almost linear” provided the exponent of matrix multipli-
cation equals 2.

1 Introduction

We study noncommutative group algebras and the problem of computing the
product of two elements of an algebra. We restrict ourselves on the so-called
rank or bilinear complexity of multiplication, which, roughly speaking, counts
only the bilinear multiplications used by an algorithm, i.e. multiplications where
each of the operands depends on one of the input vectors. A quadratic (in terms
of dimension of an algebra) upper bound is straightforward, while all currently
known general lower bounds are linear.

This research is motivated by the recent group-theoretic approach for matrix
multiplication by Cohn and Umans [9] and following group-theoretic algorithms
for matrix multiplication [10]. It was shown that finite groups possessing some
special properties can be used to design effective matrix multiplication algo-
rithms. Our goal is to explore the structure of group algebras and investigate
structural and complexity relation between noncommutative group algebras and
the matrix algebra. We investigate this approach and put it into a different
light. In fact, we show that the group algebras for the most promising groups for
the group-theoretic approach have essentially the same complexity as the matrix
multiplication itself. On the other hand, for a wide class of group algebras a lower
bound holds which depends on the exponent of matrix multiplication (denoted in
literature by ω, see Sect. 3 for definition). If one finds a more effective algorithm
of multiplication in these group algebras, it would give a better upper bound for
ω (but without necessary proving ω = 2, which is the general conjecture [6]). We
also study general bilinear complexity of noncommutative group algebras and
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this paper extends the research in [22, 23, 7] where the problem for commutative
group algebras over arbitrary fields was solved entirely. Our results also improve
the Atkinson’s upper bound for the total complexity of multiplication in group
algebras [2].

Using Bläser’s theorem on classification of all algebras of the minimal rank
(see Sect. 5) we formulate a criterion for a semisimple group algebra to be an
algebra of the minimal bilinear complexity. For some special cases we also show
a 5

2 ·dimension-lower bounds for the rank of group algebras. For other special
cases we show an up to 3·dimension of an algebra lower bound. For one special
class of groups having not “too many” different irreducible representations we
show a lower bound which depends on the exponent of matrix multiplications
and turns to be superlinear if the exponent of matrix multiplication does not
equal to 2. This employs Schönhage’s τ -theorem (see Sect. 5). We show that this
class is not empty, for instance group algebras of symmetric groups of order n!
and general linear groups over finite fields have such a lower bound.

Another motivation for this work was the search for algebras of high bilinear
complexity. It is known, that over algebraically closed fields there exist families of
algebras of arbitrarily high dimensions with bilinear complexity of each algebra

from the family strictly greater than (dimension of the algebra)2

27 [6, Exercise 17.20].
However, no concrete examples are known. This is in some sense similar to the
situation in logical synthesis theory, where it is known that the circuit complexity
(in a full basis) of almost all boolean functions of n variables is asymptotically
c 2

n

n [21] where the constant c depends solely on the basis, e.g. for the classical
circuit basis {∨, &, ¬}, c = 1.1 But there is no explicit construction of a func-
tion of n variables with a superlinear lower bound on the number of gates in
a full finite functional basis. We show that a broad class of group algebras has
superlinear bilinear complexity if the exponent of matrix multiplication does not
equal to 2.

We then turn to upper bounds and show by a simple technique a general
upper bound for the total complexity of multiplication in group algebras that
depends on the total complexity of matrix multiplication. In fact, if the exponent
of matrix multiplication equals 2, then the total complexity of the multiplication
in group algebras is always “almost linear”. We indicate some special cases, when
this upper bound can be improved provided a maximal irreducible representation
of the group has not too high dimension.

For lower bounds we distinguish between the semisimple and the modular
case. If the characteristic of the ground field is either zero or does not divide
the order of the group then the group algebra is known to be semisimple. In the
other case, if the characteristic p divides the order of the group, then the algebra
has nontrivial radical. In some cases its structure inside the group algebra can be
described exactly. But in general this introduces additional significant difficulties.
If the radical has relatively small nilpotence index then it is possible to obtain

1 In fact, for a full circuit basis B = {f1, . . . , fn} where each fν is ofmν variables (with
no fictitious dependenies) and has weight wν , the constant c = min16ν6n

mν>2

wν
mν−1

.
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relatively high lower bounds for the bilinear complexity of multiplication in group
algebra.

Finally, we show direct relations between complexity of noncommutative
group algebras and complexity of matrix multiplication and pose several open
questions.

The paper is organized as follows: in Sect. 2 we bring all necessary definitions
and notions from algebra and representation theory. In Sect. 3 we introduce the
model of computation we will be working with and formulate related compu-
tational problems. We discuss briefly tight relation between different algebraic
notions and computational complexity. We introduce an important quantitative
measure estimate for complexity of multiplication in families of algebras of grow-
ing dimensions which generalizes the well-known notion of the exponent of matrix
multiplication. Classical structural results from the theory of finite-dimensional
algebras and representation theory will be presented in Sect. 4. Section 5 con-
tains all necessary results from the algebraic complexity theory to be employed
for obtaining lower and upper bounds for the complexity of multiplication in
group algebras. In Sect. 6 we prove the first part of our main result. We show,
that for any “complicated enough” group its corresponding group algebra is not
of the minimal rank. We also prove two different kinds of lower bounds for fami-
lies of group algebras depending on the representations of their groups. We also
show the general relation between the lower bound for the complexity of group
algebra multiplication and the complexity of matrix multiplication. We show,
that the bilinear complexity of multiplication in group algebras of symmetric
groups is superlinear in their dimension if the exponent of matrix multiplication
does not equal 2. In Sect. 7 we turn to effective algorithms for multiplication
in group algebras. We show the general upper bound for multiplication in any
group algebra depending on the exponent of matrix multiplication and some
improvements based on particular properties of the group.

2 Basic Definitions

In what follows we always use the term algebra for an associative algebra with
unity. For example, n × n-matrices over some field form an algebra, and so do
univariate polynomials over some field modulo some fixed polynomial or multi-
variate polynomials modulo some system of polynomials.

A basis of an algebra is any basis of the underlying vector space. The dimen-
sion (dimA) of an algebra A is the dimension of the underlying vector space.
The multiplication in an algebra is completely defined if it is defined for the
vectors of any of its bases: let A be an algebra over k, n = dimA, and e1, . . . , en
be some basis of A, then

ei · ej =

n∑
ν=1

ανijeν , 1 6 i, j 6 n,

where ανij are the structural constants from the field k. We call a basis {ei}ni=1

of A a group basis if the vectors ei form a multiplicative group with respect to
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the multiplication in algebra. In this case A is called a group algebra. On the
other hand, given a finite group G = {g1, . . . , gn} and a field k we can define
a group algebra k[G] as a n-dimensional vector space over k with basis {gi}ni=1

and multiplication in k[G] defined as(
n∑
i=1

αigi

)
·

 n∑
j=1

βjgj

 =

n∑
`=1

gigj=g`

αiβjg`.

We call the direct product of the algebras A and B over one and the same field
k the algebra A×B over k which consists of pairs of vectors (a, b), a ∈ A, b ∈ B
and all operations in A×B are performed component-wise:

(a1, b1) ◦ (a2, b2) = (a1 ◦ a2, b1 ◦ b2), ◦ ∈ {+, −, ·}

and λ · (a, b) = (λa, λb), where ai ∈ A, bi ∈ B, i = 1, 2, λ ∈ k.
We call B ⊆ A a subalgebra of A, if B is a linear subspace of A and the

product (in A) of any two vectors of B lies in B. A subalgebra I of A is called
left (right) ideal of A if for all a ∈ A, x ∈ I the product ax ∈ I (xa ∈ I resp.)
A left ideal that is at the same time a right ideal is called a two-sided ideal. A
(left, right, two-sided) ideal is called maximal if it is not contained in any other
proper (left, right, two-sided) ideal of the algebra. An ideal I is called nilpotent
if Im = {0} for some m > 0.2 The smallest m with this property is called the
nilpotence index of I. The sum of all nilpotent left ideals of an algebra A is called
the radical of A and is denoted by radA. The intersection of all the maximal
left ideals of the algebra A is called the Jacobson radical of A and is denoted by
J(A).

Proposition 1. Let A be an algebra over field k. Then radA = J(A).

Proof. This follows from the fact, that the descending chain condition for left
ideals in A implies radA = J(A), see [26]. It ensures that any family of left ideals
in A contains at least one minimal ideal, i.e. an ideal that does not contain any
other ideal of the family. In a finite-dimensional algebra this always holds since
we can map any family of ideals to the subset of integers in [0, dimA] mapping
each ideal to its dimension as a linear subspace. The resulting image will contain
the minimal element which will correspond to the set of ideals from the family
having the minimal dimension. Obviously, any of these is minimal. ut

The nilpotence index of radA will be denoted by N(A). The set of all
x ∈ radA such that x · radA = {0} is called the left annihilator of radA and is
denoted by LA. The right annihilator RA is introduced in the similar manner.

Algebra A is called a division algebra if every element of A has an inverse in A
with respect to the multiplication in A. A is called local if A/ radA is a division

2 For a set S with multiplication and a positive integer r Sr denotes the set of all
possible products of r elements of S: {s1 · · · sr : sρ ∈ S, 1 6 ρ 6 r}.

4



algebra, and A is called basic if A/ radA is a direct product of division algebras.
Following Bläser [5] we call A superbasic if A/ radA ∼= kt for some t > 1.

Algebra A is called semisimple if radA = 0 and simple if it does not contain
any proper twosided ideals except for the {0}. Structure of semisimple and simple
algebras is described in Wedderburn’s theorem which can be found in [26].

Theorem 1. Every finite dimensional semisimple algebra over some field k is
isomorphic to a finite direct product of simple algebras. Every finite dimensional
simple k-algebra A is isomorphic to an algebra Dn×n for an integer n > 1 and a
k-division algebra D. The integer n and the algebra D are uniquely determined
by A (the latter up to isomorphism).

3 Computational Model

Let k be a field and U, V, W be finite dimensional vector spaces over k. Let
ϕ : U × V →W be a bilinear map. A bilinear algorithm for ϕ is a sequence

(u1, v1, w1; . . . ; ur, vr, wr)

where uρ ∈ U∗, vρ ∈ V ∗, wρ ∈W such that for all x ∈ U, y ∈ V

ϕ(x, y) =

r∑
ρ=1

uρ(x)vρ(y)wρ.

r is called the length of the bilinear algorithm and the minimal length over all
bilinear algorithms for ϕ is called the rank or the bilinear complexity of ϕ and
is denoted by rkϕ.

A sequence
(u1, v1, w1, . . . , u`, v`, w`)

where uλ, vλ ∈ (U × V )∗, wλ ∈W such that for all x ∈ U, y ∈ V

ϕ(x, y) =
∑̀
λ=1

uλ(x, y)vλ(x, y)wλ

is called a quadratic algorithm for ϕ. ` is called the length of the quadratic
algorithm and the minimal length over all quadratic algorithms for ϕ is called the
multiplicative complexity of ϕ and is denoted by C(ϕ). Obviously C(ϕ) 6 rkϕ. A
straightforward argument implies also that rkϕ 6 2C(ϕ) and except for trivial
cases, rkϕ < 2C(ϕ) [15].

Multiplication in algebra A is a bilinear map. Rank and multiplicative com-
plexity of multiplication in A are called rank and multiplicative complexity of A
and are denoted by rkA and C(A) respectively.

Obviously, rkA×B 6 rkA+rkB (also C(A×B) 6 C(A)+C(B)). However,
it is not known if the converse also holds which is known as the famous Strassen’s
Direct Sum Conjecture [6, p. 360].
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Obviously, rank (and therefore, multiplicative complexity) of any algebra A
is at most (dimA)2.

Let A = {A1, A2, . . . } be a family of algebras over a field k. We define ωA,
the rank-exponent of multiplication in A as

ωA = inf{τ : rkAn = O((dimAn)τ ) for all n > 1}.

Obviously, 0 6 ωA 6 2. Note that this definition makes only sense if A contains
algebras of arbitrarily big dimensions. In this case ωA > 1 since multiplication
in algebra is always faithful. This notion is very similar to the well-known expo-
nent of matrix multiplication which will be denoted just by ω when the ground
field will be clear. The only technical difference is that the exponent of matrix
multiplication is defined relative to the square root of the respective algebra
dimension. In fact, it can be easily seen that the regular exponent of matrix
multiplication equals double the rank-exponent of matrix multiplication.

We acknowledge that the introduced rank-exponent provides quite a crude
estimate, since it even does not indicate the growth order of the bilinear com-
plexity as a function of algebra dimension. For example, if rkAn = O(dimAn),
then ωA = 1, but the opposite statement must not hold: if ωA = 1 then the
rank may potentially be superlinear, e.g. (dimAn) · polylog(dimAn). On the
other hand, there are no known general upper bounds that are tight enough for
the rank-exponent to be too rough. One of the most famous open problems in
computational linear algebra and algebraic complexity theory is matrix multi-
plication, for which its exponent (and twice the rank exponent) is only known
to be within 2 6 ω 6 2.376 [11].

4 Structure of Group Algebras

Here we introduce some basic concepts from the representation theory. For the
extensive treatment we refer to [27].

Let G be a finite group and k be a field. Then k[G] is semisimple if and only
if char k - ]G.

Let G be a finite group and k be an algebraically closed field either of char-
acteristic 0 or p - ]G. Then k[G] decomposes into a direct product of matrix
algebras:

k[G] ∼= kn1×n1 × · · · × knt×nt , (1)

where each matrix algebra is called irreducible representation of G over k, and

t∑
τ=1

n2τ = ]G.

The numbers n1, . . . , nt are called the character degrees of G in k.
If k is not algebraically closed but again of characteristic either 0 or p - ]G,

then
k[G] ∼= Dn1×n1

1 × · · · ×Dnt×nt
t , (2)
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where Dτ are all division algebras over k of dimensions dτ for 1 6 τ 6 t and

t∑
τ=1

n2τdτ = ]G.

Let k be a field of characteristic p and let G be a finite group of order nps,
p - n. Suppose that a Sylow p-subgroup P ⊆ G is normal. Then J(k[G]) is
generated by J(k[P ]) (under the natural inclusion k[P ] ⊆ k[G]) and

dim J(k[G]) = n(ps − 1).

According to the proposition 1, J(k[G]) = rad k[G] and k[G]/ rad k[G] is semisim-
ple (see [26]). This implies

k[G]/J(k[G]) ∼= Dn1×n1
1 × · · · ×Dnt×nt

t , (3)

where Dτ again are all division algebras over k of dimension dτ for 1 6 τ 6 t
and

t∑
τ=1

n2τdτ + dim J(k[G]) = ]G. (4)

In case when Sylow p-subgroups of G are not normal the situation becomes
more obscure. However, it is known that J(k[G]) contains all ideals generated
by J(k[H]) where H is any normal p-subgroup of G. In particular, this holds
when H is the intersection of all the p-Sylow subgroups of G.

5 Bounds for the Rank of Associative Algebras and
Complexity of Matrix Multiplication

One general lower bound for the multiplicative (and therefore the bilinear) com-
plexity of associative algebras is due to Alder and Strassen.

Theorem 2 ([1]). Let A and B be associative algebras over a field k and let
t(A) be the number of maximal twosided ideals of A. Then

C(A×B) > 2 dimA− t(A) + C(B), (5)

Algebras for which the Alder-Strassen bound is tight (put B = {0} in (5))
are called algebras of minimal rank. All such algebras over arbitrary fields were
characterized by Bläser.

Theorem 3 ([5]). An algebra A over an arbitrary field k is an algebra of min-
imal rank iff

A ∼= C1 × · · · × Cs × k2×2 × · · · × k2×2︸ ︷︷ ︸
u times

×B, (6)

where C1, . . . , Cs are local algebras of minimal rank with dim(Cσ/ radCσ) > 2,
i.e., Cσ ∼= k[X]/(pσ(X)dσ ) for some irreducible polynomial pσ with deg pσ > 2,
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dσ > 1, and ]k > 2 dimCσ − 2 and B is a superbasic algebra of minimal rank;
that is, there exist w1, . . . , wm ∈ radB with w2

i 6= 0 and wiwj = 0 for i 6= j such
that

radB = LB +Bw1B + · · ·+BwmB = RB +Bw1B + · · ·+BwmB

and ]k > 2N(B)− 2. Any of the integers s, u, or m may be zero, and the factor
B in (6) is optional.

The next two lower bounds are due to Bläser.

Theorem 4 ([3]). Let A be a finite dimensional algebra over a field k, let
A/ radA ∼= A1 × · · · ×At with Aτ = Dnτ×nτ

τ for all τ , where Dτ is a k-division
algebra. Assume that each factor Aτ is noncommutative, that is, nτ > 2 or Dτ

is noncommutative. Let n = n1 + · · ·+ nt. Then

rkA >
5

2
dimA− 3n.

We will show later how this can be combined with Theorem 2 for group
algebras to obtain high lower bounds in cases when some Aτ are commutative.
The next theorem gives a particularly good lower bound for algebras with big
radical and small nilpotence index.

Theorem 5 ([3]). Let k be a field and A be a finite dimensional k-algebra. For
all m, n > 1, the rank of A is bounded by

rkA > dimA− dim((radA)n+m−1) + dim((radA)m) + dim((radA)n). (7)

The following fact is a simplified version of Schönhage’s τ -theorem.

Theorem 6 ([24]). Let

A = kn1×n1 × · · · × knt×nt ,

where nτ > 1 for at least one τ and rkA 6 r. Let ω0 be a root of the equation

nx1 + · · ·+ nxt = r.

Then the exponent of matrix multiplication over k does not exceed ω0.

6 Lower Bounds

Let G = {G1, G2, . . . } be a family of finite groups of unbounded orders and let
k be a field. We will distinguish between two different cases:

1. char k = 0 or char k = p and for any i > 1 p - ]Gi and
2. char k = p and for some i > 1 p | ]Gi.

We will call G in the first case a semisimple (over k) family of groups and in
the second a modular family of groups. We will start with the semisimple case.
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6.1 Semisimple Case

We will start with the case of algebraically closed k since all simple algebras over
k are simply matrix algebras.

Lemma 1. Let n1, . . . , nt > 0 and δ > 1. Then

t∑
τ=1

nτ 6 t1−
1
δ

(
t∑

τ=1

nδτ

) 1
δ

. (8)

Proof. Let x1, . . . , xt, y1, . . . , yt be complex numbers and a, b > 1 be such that
1
a + 1

b = 1. Then, by Hölder’s inequality

t∑
τ=1

|xτ | |yτ | 6

(
t∑

τ=1

|xτ |a
) 1
a
(

t∑
τ=1

|yτ |b
) 1
b

.

Choosing xτ = nτ and yτ = 1 for all τ , a = δ, and 1
b = 1 − 1

δ completes the
proof. ut

Let G be a finite group and k be a field. We introduce following notation: let
ti(G) be the number of irreducible character degrees of G over k equal to i. Let
Ti(G) =

∑∞
j=i tj(G) be the number of irreducible character degrees of G over k

not less than i. Obviously,

Ti(G) > Tj(G), if i < j;

ti(G) = Ti(G)− Ti+1(G);

]G =

∞∑
i=1

i2ti(G);

ti(G) = 0, if i >
√
]G− 1.

The last follows from the fact, that every group has at least two different
irreducible representations. Note, that the number of maximal twosided ideals
of k[G] is exactly T1(G) = t, where t is the number of multiplicands in (1).

Theorem 7. Let G be a finite group and k be an algebraically closed field of
characteristic either 0 or p - ]G. Let t be as in (1).

1. If T3(G) = 0 then k[G] is of minimal rank and

rk k[G] = 2]G− t = t1(G) + 7t2(G).

2. If T3(G) > 0 then k[G] is not of minimal rank then

rk k[G] > 2]G− t+ max

(
5

2
T7(G), 1

)
.
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3. Let G = {G1, G2, . . .} be a family of finite groups, ]Gn < ]Gn+1 for all
n > 1. Assume that the number of irreducible character degrees of G ∈ G
over k is o(]G).3 Then the following lower bound holds:

rk k[G] >
5

2
]G− o(]G).

Proof. Consider the decomposition (1) for k[G]. Note, that the number t is
exactly the number of maximal twosided ideals of k[G]. Assume w.l.o.g. that
n1 6 · · · 6 nt and let A be the direct product of all the matrix algebras from (1)
of order 1 or 2 and let B be the remaining product: k[G] = A×B. Note, that

dimA = t1(G) + 4t2(G) = T1(G) + 3T2(G)− 4T3(G), (9)

rkA = t1(G) + 7t2(G) = 2 dimA− (t1(G) + t2(G)). (10)

(10) and the fact that A is of minimal rank follow from Theorem 3. The number
of maximal twosided ideals in A is t1(G) + t2(G).

1. Let k[G] = A. Then T3(G) = 0, t = t1(G) + t2(G) and theorem follows
from (10).

2. Let B be nonempty. By Theorem 3, k[G] is not of minimal rank, therefore
rk k[G] > 2]G− t+ 1. By (5) and the fact that A is of minimal rank

rk k[G] = rkA×B = 2 dimA− (T1(G)− T3(G)) + rkB.

The lower bound follows from (5) and the upper from the trivial inequality
rkA × B 6 rkA + rkB. Let B = B1 × B2 where B1 contains all matrix
algebras of (1) of order 6 6. The number of maximal twosided ideals in B1

is t3(G) + · · ·+ t6(G) = T3(G)− T7(G). Then, using (5) once again

rkB > 2 dimB1 − (T3(G)− T7(G)) + rkB2.

Assume that B2 is not empty. Recall, that n1 6 · · · 6 nt and therefore
nt−T7(G)+1 > 7. For B2 we can use Theorem 4:

rkB2 >
5

2

t∑
τ=t−T7(G)+1

n2τ − 3

t∑
τ=t−T7(G)+1

nτ

= 2 dimB2 +

t∑
τ=t−T7(G)+1

(
nτ

(nτ
2
− 3
))

> 2 dimB2 +
7

2
T7(G).

Gathering it all together, we get

rk k[G] > 2 dimA+ 2 dimB1 + 2 dimB2 − T1(G) +
5

2
T7(G)

= 2]G− t+
5

2
T7(G),

which proves the second statement of the theorem.

3 By using this notation we mean that for any constant c > 0 there exists such N > 0
that if G ∈ G and ]G > N then the number of irreducible character degrees of G
over k is smaller than c · ]G.
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3. Let t = o (]G). Let k[G] = kt1(G) × C, C is obviously not empty, and

dimC = n2t−T2(G)+1 + · · ·+ n2t .

By Alder-Strassen theorem

rk k[G] = rk kt1(G) + rkC > t1(G) +
5

2
dimC − 3

t∑
τ=t−T2(G)+1

nτ .

By using Lemma 1 for dimensions of factors of C and setting δ = 1
2 we

obtain
t∑

τ=t−T2(G)+1

nτ 6
√
T2(G) dimC 6

√
t]G = o(]G).

On the other hand, the number t1(G) of different irreducible representations
of G of dimension 1 does not exceed t and therefore is also o(]G), therefore,
dimC = ]G− t1(G) = ]G− o(]G). Therefore, rk k[G] > 5

2 ]G− o(]G). ut

Remark 1. The lower bound in case 2 can be improved further by employing
the lower bound due to Bläser rk kn×n > 2n2 + n − 2 for n > 3 [4]. However,
the best we can achieve by now is to employ Alder-Strassen lower bounds for all
multiplicands in (1) except for one (of the biggest dimension) and use 2n2+n−2
for the last: if n1 6 · · · 6 nt and nt > 3 then

rk kn1×n1 × · · · × knt×nt > 2]G+ nt − t− 1.

Corollary 1. Let k be an algebraically closed field of characteristic 0.

1. Let Sn be the symmetric group of order n!. Then

rk k[Sn] >
5

2
n!− o(n!).

2. Let GL(2, q) be the general linear group of nonsingular 2× 2-matrices over
GF (q). Then

rk k[GL(2, q)] >
5

2
]GL(2, q)− o(]GL(2, q)).

3. Let SL(2, q) be the special linear group of 2 × 2-matrices over GF (q) with
determinant 1. Then

rk k[SL(2, q)] >
5

2
]SL(2, q)− o(]SL(2, q)).

4. Let pn be the nth prime number. Let Fpn, pn−1 be a Frobenius group of order
pn(pn − 1) defined by {a, b : apn = bpn−1 = 1, b−1ab = au}, where u is an
element of order pn − 1 in Z∗pn [17]. Then

rk k[Fpn, pn−1] >
5

2
p2n − o(p2n).
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5. Let pn be the nth prime number and let Gn be a non-abelian pn-group with
an abelian subgroup of index pn. Then

rk k[Gn] >
5

2
]G− o(]G).

Proof. 1. The statement follows from the fact that the number of different
irreducible representations of Sn over k equals the number of partitions of

n [16] which asymptotically is e
π
√

2n
3

4n
√
3

= o(n!) [14], the latter can be observed

easily from the well-known asymptotic of factorial: n! ∼
√

2πn
(
n
e

)n
.

2. [17] The number of elements in GL(2, q) equals q4− q3− q2 + q > 3
8q

4, The
number of different irreducible representations of GL(2, q) is q2− 1 = o(q4).

3. [9] The number of elements in SL(2, q) equals q3− q > 3
4q

3. The number of
different irreducible representations of SL(2, q) is q− 4 if q is odd and q− 1
if q is a power of 2; both are o(q3).

4. [17] The number of different irreducible representations of Fpn, pn−1 is
pn = o(p2n).

5. [17] Let ]Gn = pmn . The number of different irreducible representations of

G is pm−1n + pm−2n − pm−3n = pmn

(
1
pn

+ 1
p2n
− 1

p3n

)
= o(pmn ). ut

Note, that if the Direct Sum Conjecture were true, then from (1) for the
rank of multiplication in the group algebra k[G] for algebraically closed k would
immediately follow

rk k[G] = rk kn1×n1 + · · ·+ rk knt×nt .

It turns out that an insignificantly weaker version of the corresponding lower
bound can be proved independently of the validity of the Direct Sum Conjecture.

Theorem 8. Let G = {G1, G2, . . .} be a family of finite groups and k be an
algebraically closed field whose characteristic does not divide any of the orders
of groups from G. Let f(N) be a function that for each G ∈ G the dimension of
the largest irreducible representation of G is at least f(]G). Then

rk k[G] > f(]G)ω,

where ω is the exponent of matrix multiplication over k. Let t(N) be a function
such that for each G ∈ G the number of different irreducible representations of
G does not exceed t(]G). Then

rk k[G] >
(]G)

ω
2

t(]G)
ω2

4 −
ω
2

Proof. The first statement trivially follows from the observation that for any
algebras A, B over one field rkA×B > max{rkA, rkB}.

Let k[G] have decomposition according to (1). Consider the following equa-
tion

nx1 + · · ·+ nxt = rk k[G].

12



Let ω0 be a root of this equation. Then by Schönhage’s τ -theorem ω 6 ω0. In
other words, using the fact that all nτ > 1

nω1 + · · ·+ nωt 6 rk k[G].

On the other hand, by employing Lemma 1

rk k[G] >
t∑

τ=1

nωτ =

t∑
τ=1

(n2τ )
ω
2 >

(
t1−

ω
2 ·

t∑
τ=1

n2τ

)ω
2

>
(]G)

ω
2

t(]G)
ω2

4 −
ω
2

.

which proves the theorem. ut

Corollary 2. 1. If the number of different irreducible representations of groups
in the family does not grow “too fast” then the exponent of matrix multiplica-
tion is at most twice the rank exponent of the corresponding family of group
algebras. More precisely, if t(N) = o(Nε) for any ε > 0 then ωk[G] >

ω
2 .

2. In the same setting, if ω > 2, then the rank of group algebras from the family
described above is superlinear on their dimensions.

3. If ω > 2 and f(N) � N
1
ω then the group algebras from the corresponding

family of groups have superlinear bilinear complexity. One promising family
of finite groups which could help to achieve ω = 2 in [9] has f(N) = N

1
2−ε for

some fixed ε > 0. It follows, that one should look for ε > 1
2 −

1
ω > 0.079 since

otherwise the lower bound depends on ω and is not superlinear iff ω = 2.
4. If t(N)� N

2
ω then the bilinear complexity of the corresponding group alge-

bras is superlinear provided ω > 2. In particular, this holds if t(N) 6 N0.841.

Corollary 3. Let k be an algebraically closed field of characteristic 0.

1. Let {Sn}n>1 be the family of symmetric groups, Sn to be of order n!. Then
ωk[Sn] = ω

2 .
2. Let {GL(n, q)}n>1, q fixed, be the family of general linear groups of nonsin-

gular n× n-matrices over GF (q). Then ωk[GL(n, q)] = ω
2 .

Proof. 1. For the proof refer to Corollary 1.
2. The order of GL(n, q) is

N =

n−1∏
i=1

(
qn − qi

)
= qn

2
n−1∏
i=1

(
1− 1

qi

)
︸ ︷︷ ︸

=:Q

.

Note that
(

1− 1
q

)n−1
6 Q 6 1. GL(n, q) has an analytical irreducible

representation of order

d =

n−1∏
i=1

(
qi − 1

)
=

n−1∏
i=1

qi
(

1− 1

qi

)
= q

n(n−1)
2 Q,

13



[13]. It follows, that at least one irreducible representation of has the same
order. Now the corresponding matrix algebra has dimension

d2 = qn
2−nQ2 = N

Q

qn
.

We will show now that qn

Q = o(Nε) for any ε > 0. This will complete the
proof since

rk k[GL(n, q)] > dω =
(
d2
)ω

2 > N (1−ε)ω2

for all groups of size N > N0 and ε > 0 where N0 depends on the choice of
ε.

qn

Q
6

qn(
1− 1

q

)n−1 6 q2n−1.

Nε > qεn
2

(
1− 1

q

)ε(n−1)
> qεn

2−εn.

So Nε > qn

Q if n > 2
ε + 1. ut

6.2 Modular Case

Let k be now an algebraically closed field of characteristic p and let G be a
finite group of order N = npd, where p - n. We will assume that G has the
normal Sylow p-subgroup H of order pd. In this case rad k[G] is generated by
the augmentation ideal4 of k[H] and dim rad k[G] = pd(n− 1).

We will further be concerned with the case of abelian H, which is then a
direct product of cyclic p-groups:

H = Zpt1 × · · · × Zpts , t1 > · · · > ts, d = t1 + · · ·+ ts. (11)

We will denote elements of H by hi1, ..., is , 0 6 iσ < ptσ for all 1 6 σ 6 s
assuming

hi1, ..., is · hj1, ..., js = h(i1+j1) mod pt1 , ..., (is+js) mod pts .

Let

r1 = h1, 0, 0, ..., 0 − h0, 0, 0, ..., 0,
r2 = h0, 1, 0, ..., 0 − h0, 0, 0, ..., 0,

. . .

rs = h0, 0, 0, ..., 1 − h0, 0, 0, ..., 0.

4 The augmentation ideal of a group algebra A with a group basis {e1, . . . , en} is the
ideal generated by all vectors

∑
xiei with

∑
xi = 0.

14



The augmentation ideal of k[H] (and R = rad k[G]) is generated by r1, . . . , rs.

It is easy to see that rp
tσ

σ = 0 and the system of vectors{
ri11 · · · riss | i1 + · · ·+ is > 1, 0 6 iσ < ptσ

}
is linearly independent. The system{

ri11 · · · rtss | i1 + · · ·+ is > m, 0 6 iσ < ptσ
}

is also linearly independent and generates Rm, so dimRm = n(pd−am−1) where

am−1 = ]
{

(i1, . . . , is) | i1 + · · ·+ is 6 m− 1, 0 6 iσ < ptσ
}
.

Let ξ be a discrete random variable. We denote by Eξ the expectation of ξ,
i.e. if ξ takes value ai ∈ R with probability pi > 0 for 1 6 i 6 n,

∑n
i=1 pi = 1,

then Eξ =
∑n
i=1 aipi. We also denote by Dξ = E(ξ − Eξ)2 the dispersion of ξ.

Theorem 9. Let G = {G1, G2, . . . } be a family of groups and k be a field of
characteristic p. Let G ∈ G and ]G = N = npd, where p - n. Assume that
P = Z(G)5 is the Sylow p-subgroup of G and the parameter d is unbounded
for groups in G. Let pT be the order of biggest cyclic factor of P and pt be the
smallest order, and let s be the total number of factors. Assume that for any
ε > 0 the difference T − t < 1

2 logp εs for all G ∈ G with ]G > N0 = N0(ε). Then

C(k[G]) >

(
2 +

1

n

)
]G− o(]G).

Proof. Following proof is based on ideas by Chokayev and generalizes similar
result proven in [7] for one special case of commutative group algebras.

We note, that since P is abelian, it is a finite product of cyclic p-groups:

P = Zpt1 × · · · × Zpts

where t1 6 · · · 6 ts and the exponent of P is pts . Since it is o(]P ), the parameter
s is unbounded among all groups from G.

According to (7)

C(k[G]) > ]G+ n(pd − am−1) + n(pd − am−1)− n(pd − a2m−1)

=

(
2 +

a2m−1 − 2am−1
npd

)
]G.

We will show now that we may choose m in such a way that a2m
pd
→ 1, am

pd
→ 0

when s → ∞. Consider indices {iσ}sσ=1 as independent random variables with
iσ taking value in [0, ptσ − 1] with probability 1

ptσ for 1 6 σ 6 s. Then

Eiσ =
ptσ − 1

2
, Diσ =

p2tσ − 1

12
,

5 Z(G) is the center of G, i.e. the set of elements of G that commute with all the
elements of G.
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and denoting ξs = i1 + · · ·+ is

Eξs =
1

2

s∑
σ=1

ptσ − s

2
, Dξs =

1

12

s∑
σ=1

p2tσ − s

12
,

while ξs takes each value in [0,
∑s
σ=1 p

tσ − s] with probability am−am−1

pd
. Now

let m = 2
3Eξs be a function of s. Then by Chebyshov’s inequality

am−1
pd

= P(ξs 6 m− 1) 6 P(|ξs − Eξs| > Eξs −m+ 1)

6
Dξs

(Eξs −m+ 1)2
6

3sp2T

4s2p2t
=

3p2T−2t

4s
−−−→
s→∞

0,

a2m−1
pd

= P(ξs 6 2m− 1) > P(|ξs − Eξs| 6 2m− 1− Eξs)

> 1− Dξs
(2m− 1− Eξs)2

> 1− 3p2T−2t

4s
−−−→
s→∞

1

which proves the theorem. ut

Corollary 4. For any field k of characteristic p and any family of finite groups
{G1, G2, . . . } of growing dimensions there exists a constant N such that the
generated family of group algebras {k[G1], k[G2], . . . } does not contain algebras
of minimal rank of dimensions greater than N if Sylow p-subgroups of Gi coincide
with their centers and contain growing number of cyclic factors of close order.

7 Upper Bounds

As (1) and (2) indicate, complexity of multiplication in group algebras is closely
related to complexity of matrix multiplication. In particular, provided an effec-
tive algorithm for multiplication of square matrices, we immediately obtain an
effective algorithm for multiplication in group algebras.

Proposition 2. Let n1, . . . , nt > 0 and alpha > 1. Then

t∑
τ=1

nατ 6

(
t∑

τ=1

nτ

)α
.

Proof. The statement follows from the fact that xα is convex for x > 0 and
α > 1.

For any pair of monotonically growing functions f(n) and g(n) we will write
f(n) / g(n) if for every δ > 1 f(n) 6 O

(
(g(n))δ

)
.

Let G be a finite group and k be an algebraically closed field whose char-
acteristic is either 0 or does not divide ]G. Now we are ready to introduce the
general upper bound for the rank of k[G].
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Theorem 10. Let G be a group and k be an algebraically closed field of char-
acteristic either 0 or coprime with ]G. Then

rk k[G] / (]G)
ω
2 , (12)

where ω is the exponent of matrix multiplication.

Proof. Consider decomposition (1) of k[G] into a direct product of matrix alge-
bras. It follows that

rk k[G] 6
t∑

τ=1

rk knτ×nτ .

By definition of the exponent of matrix multiplication

rk knτ×nτ 6 L(knτ×nτ ) / nωτ .

Thus by Proposition 2

rk k[G] /
t∑

τ=1

nωτ =

t∑
τ=1

(n2τ )
ω
2 6

(
t∑

τ=1

n2τ

)ω
2

= (]G)
ω
2

which completes the proof. ut

Lemma 2. Let G = {G1, G2, . . . } be a family of finite groups and k be an
algebraically closed field of characteristic either 0 or coprime with each ]Gi.
Let f(N) be a function which satisfies following property: for every G ∈ G all
character degrees of G over k are less or equal than f(]G). Then for any G ∈ G

rk k[G] / ]G · min
h(N)

(
h(]G)ω +

f(]G)ω

h(]G)2

)
, (13)

where ω is the exponent of matrix multiplication and the minimum is taken over
all functions h(N) such that at least one irreducible character degree of G is less
or equal than h(]G).

Proof. Let n1 > · · · > nt be the irreducible character degrees of G over k. Let
h(N) be as defined. Let j(N) be the number of nτ greater than h(N). Note that

]G =

t∑
τ=1

n2τ > j(]G)h(]G)2,

thus j(N) 6 N
h(N)2 . It follows that

rk k[G] /

j(]G)f(]G)ω +

t∑
τ=j(]G)+1

nωτ

 6 ]G
f(]G)ω

h(]G)2
+ ]Gh(]G)ω.

The last equation holds for any h(N) so it holds also for the one minimizing the
right side. ut
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Theorem 11. Let G = {G1, G2, . . . } be a family of finite groups and k be an
algebraically closed field of characteristic either 0 or coprime with order of each
Gi. Let f(N) be a function which satisfies following property: for each G ∈ G all
character degrees of G over k are less or equal than f(]G). Then for any G ∈ G

rk k[G] / ]Gf(]G)ω−2+
4

ω+2 6 ]Gf(]G)ω−1, (14)

where ω is the exponent of matrix multiplication.

Proof. It is a well-known fact that every group has at least one (trivial) one-
dimensional representation. So we can choose for h(N) in Lemma 2 any func-
tion which is less than f(N). The result of the theorem follows by choosing

h(N) = f(N)1−
2

ω+2 . ut

Corollary 5. 1. If f(N) = O(1) then rk k[Gi] = O(N).
2. If for any ε > 0 f(N) = o(Nε) then ωk[G] = 1.

Remark 2. 1. Note, that h(N) =
(
2
ω

) 1
ω+2 f(N)1−

ω
ω+2 minimizes the right side

of (13).
2. The upper bound given by (14) is better than the one given by (12) if

f(N) = o
(
N

1
2−

2
ω2

)
. According to the best known upper bound ω < 2.376

[11], currently (14) beats (12) if f(N) = o(N0.1457).

Let k now be an arbitrary field of characteristic 0 and G be a finite group.
By definition of prime field, Q ⊆ k is the prime subfield of k. Let K ⊇ k
be an algebraically closed extension of k. It is known (see [18, Theorem 11.4,
Chapter XVIII]) that every representation of G over K is definable over Q(ζm)
where m is exponent of G and ζm is a primitive m-th root of unity. Therefore,
it is definable over k(ζm) (if k does not already contain ζm). Now consider any
irreducible representation of G over k. It is a simple k[G]-module by Maschke’s
Theorem [18, Theorem 1.2, Chapter XVIII]. Therefore, it is isomorphic to Dn×n

where D is a k-division algebra. ζm is algebraic over D since it is algebraic
over k ⊆ D and D ∼= D′ ⊆ k(ζm). The latter holds since there are no simple
irreducible representations ofG over k(ζm) other than those isomorphic to matrix
algebras over k(ζm).

Thus, D is a subalgebra of k(ζm), or D ∼= k(ζ`) for some ` | m.

Theorem 12. Let G = {G1, G2, . . . } be a family of finite groups and k be an
arbitrary field of characteristic 0. Then for any G ∈ G

rk k[G] / (]G)
ω
2 ,

where ω is again the exponent of matrix multiplication.

Proof. Since k[G] is semisimple, (2) holds. As mentioned above, Dτ is actually
an extension field of k, thus for all τ rkDτ 6 2dτ−1 since it can be implemented
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via polynomial multiplication over k and k is infinite. We have

rk k[G] /
t∑

τ=1

nωτ (2dτ − 1) < 2

t∑
τ=1

nωτ dτ = 2

t∑
τ=1

(
n2τd

2
ω
τ

)ω
2

6 2

(
t∑

τ=1

n2τd
2
ω
τ

)ω
2

6 2

(
t∑

τ=1

n2τdτ

)ω
2

= 2(]G)
ω
2

since ω > 2. ut

Remark 3. Statement of theorem 12 remains true whenever the division algebras
appear inside simple irreducible representations of groups have linear rank. Thus,

1. Theorem 12 holds also when k is finite. It is known that any finite division
algebra is an extension field of k, by Wedderburn’s Little Theorem [19, The-
orem 2.55], therefore its rank is linear due to Chudnovskys’ algorithm, cf. [8]
or [25].

2. It also holds for real closed fields since all division algebras over such fields
have bounded dimension (in fact, it can be only 1, 2, 4, or 8) [12].

8 Conclusion

Noncommutative group algebras appear to be closely connected with the matrix
algebra. Studying the problem of complexity of multiplication in group algebras
may give us new algebraic insight into this classical problem of computer algebra
and algebraic complexity theory. There are numerous open problems related to
group algebras. We mention here only some of them.

1. It could be possible to obtain a general upper bound not depending on
the matrix representations for the rank of group algebras based on the
group structure that will be better than upper bounds given by Theo-
rems 10, 11, and 12. In this case it could improve the upper bound for
matrix multiplication.

2. We would like to extend Theorem 12 for fields of arbitrary characteristic that
does not divide any of the group orders from the family under consideration.

3. The radical of a group algebra in the modular case is tightly related to Sylow
p-groups. These groups are well-studied, although their structure may vary
very strongly. It is known that the rank of commutative group algebras with
nontrivial radical is still linear, so it does not affect the order of the com-
plexity. On the other hand, a commutative group algebra over algebraically
closed field of characteristic p is of minimal rank iff its Sylow p-group is
cyclic. An open question is if similar effects also hold for noncommutative
group algebras.
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