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Abstract

In this paper, we consider the problem of approximately solving a system of homogeneous
linear equations over reals, where each equation contains at most three variables.

Since the all-zero assignment always satisfies all the equations exactly, we restrict the
assignments to be “non-trivial”. Here is an informal statement of our result: assuming
the Unique Games Conjecture, it is NP-hard to distinguish whether there is a non-trivial
assignment that satisfies 1− δ fraction of the equations or every non-trivial assignment fails
to satisfy a constant fraction of the equations with a “margin” of Ω(

√
δ).

We develop linearity and dictatorship testing procedures for functions f : Rn 7→ R over
a Gaussian space, which could be of independent interest.

Our research is motivated by a possible approach to proving the Unique Games Conjec-
ture.

1 Introduction

In this paper, we study the following natural question: given a homogeneous system of linear
equations over reals, each equation containing at most three variables (call it 3Lin(R)), we
seek a non-trivial approximate solution to the system. In the authors’ opinion, the question is
poorly understood whereas the corresponding question over a finite field, say GF (2), is fairly
well understood [H̊as01, HK04]. Over a finite field, an equation is either satisfied or not satisfied,
whereas over reals, an equation may be approximately satisfied up to a certain margin and we
may be interested in the margin.

The main motivation for this research is a possible approach to proving the Unique Games
Conjecture. More details appear in Section 1.4. We first describe our result and techniques and
compare it with known results.

1.1 Our Result

Fix a parameter b0 ≥ 1. Call a 3Lin(R) system b0-regular if every variable appears in the same
number of equations, and the absolute values of the coefficients in all the equations are in the
range [ 1

b0
, b0]. Let X denote the set of variables so that an assignment is a map A : X 7→ R.

For an equation eq : r1x1 + r2x2 + r3x3 = 0, and an assignment A, the margin of the equation
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(w.r.t. A) is Margin(A, eq) .= |r1A(x1) + r2A(x2) + r3A(x3)|. The all-zeroes assignment, ∀x ∈
X, A(x) = 0, satisfies all the equations exactly, i.e. with a zero margin. Therefore, we will be
interested only in the “non-trivial” assignments. For now, think of a non-trivial assignment as
one where the distribution of its values {A(x)|x ∈ X} is “well-spread”. Specifically, we may
consider the “Gaussian distributed assignments”, for which the set of values {A(x)|x ∈ X} is
distributed (essentially) according to a standard Gaussian. Here is an informal statement of our
result:

Theorem 1. (Informal) Assume the Unique Games Conjecture. Then there exist universal
constants b0, c (b0 = 2 works) such that for every δ > 0, given a b0-regular 3Lin(R) system, it
is NP-hard to distinguish between:

• (YES Case): There is a Gaussian distributed assignment that satisfies 1 − δ fraction of
the equations.

• (NO Case): For every Gaussian distributed assignment, for at least a fraction c of the
equations, the margin is at least c

√
δ.

A few remarks are in order. Since the 3Lin(R) instance is finite, we cannot expect the set
of values {A(x)|x ∈ X} to be exactly Gaussian distributed. The proof of our result proceeds
by constructing a probabilistically checkable proof (PCP) over a continuous high-dimensional
Gaussian space and then this “idealized” instance is discretized to obtain a finite instance.
Theorem 1 holds in the idealized setting. The discretization step introduces, in the YES Case,
a margin of at most γ in each equation, but γ can be made arbitrarily small relative to δ and
hence this issue may be safely ignored. The distribution of values is still “close” to a standard
Gaussian. We also set all variables with values larger than O(log(1/δ)) to zero. This applies
to only poly(δ) fraction of the variables and hence does not have any significant effect on the
result. Thus our assignment, in the YES Case, satisfies in particular:

∀x ∈ X, |A(x)| ≤ b = O(log(1/δ)), E
x∈X

[
A(x)2

]
= 1. (1)

In the NO Case, our analysis extends to every assignment that satisfies (1), and the conclusion
is appropriately modified (which is necessary since an assignment that satisfies (1) could still
have a very skewed distribution of its values). A formal statement of the result appears as
Theorem 6 in Section 2.

1.2 Optimality of Our Result, Squared-`2 versus `1 Error, and Homogeneity

Optimality: The result of Theorem 1 is qualitatively almost optimal as can be seen from a
natural semi-definite programming relaxation and a rounding algorithm. Suppose there are N
variables X = {x1, . . . , xN}, m equations and jth equation in the system is

rj1xj1 + rj2xj2 + rj3xj3 = 0.

Consider the following SDP relaxation where for every variable xi, we have a vector vi and
b = O(log(1/δ)):

Minimize Ej∈[m]

[‖rj1vj1 + rj2vj2 + rj3vj3‖2
]
,

Such that
∀xi ∈ X, ‖vi‖ ≤ b,

Exi∈X

[‖vi‖2
]

= 1.
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Suppose that in the YES Case, there is an assignment A that satisfies (1) and satisfies 1− δ
fraction of the equations exactly. Then letting vi = A(xi)v0 for some fixed unit vector v0 gives
a feasible solution to the SDP with the objective O(δ log2(1/δ)). Hence the SDP finds a feasible
vector solution with the same upper bound on the objective. Suppose the SDP vectors lie
in d-dimensional Euclidean space. Consider a rounding that picks a standard d-dimensional
Gaussian vector r and defines an assignment A(xi) = 〈vi, r〉. It is easily seen that after a
suitable scaling, with constant probability over the rounding scheme, we have:

E
xi∈X

[
A(xi)2

]
= 1, E

j∈[m]

[|rj1A(xj1) + rj2A(xj2) + rj3A(xj3)|2
] ≤ O(δ log2(1/δ)).

Thus the margin |rj1A(xj1) + rj2A(xj2) + rj3A(xj3)| is at most O(
√

δ log(1/δ)) for almost all,
say 99%, of the equations. Moreover, since ∀xi ∈ X, ‖vi‖ ≤ b, after rounding all but poly(δ)
fraction of the variables get values bounded by O(log2(1/δ)), and these variables can be set to
zero without affecting the solution significantly.

The Squared-`2 versus `1 Error: The SDP algorithm described above finds an assignment
that minimizes the expected squared margin, i.e. Ej∈[m]

[
Margin(A, j)2

]
. Thus the problem of

minimizing the squared-`2 error is a computationally easy problem. However, Theorem 1 implies
that modulo the UGC, minimizing the `1 error (i.e. Ej∈[m] [Margin(A, j)]), even approximately,
is computationally hard. In the YES Case therein, all but δ fraction of the equations are exactly
satisfied, and the variables are bounded by O(log(1/δ)). Hence the `1 error is O(δ log(1/δ)).1

In the NO Case, for any Gaussian distributed assignment, for at least a constant fraction of the
equations, the margin is at least Ω(

√
δ), and hence the `1 error is Ω(

√
δ). Thus approximating

the `1 error within a quadratic factor is computationally hard (modulo UGC); this is optimal
since the squared-`2 minimization implies an `1 approximation within a quadratic factor.

Homogeneity: Theorem 1 holds for a system of linear equations that is homogeneous and it
is necessary therein (in the NO Case) to restrict the distribution of values of an assignment.
When the system of equations is non-homogeneous, one might hope to drop the restriction on
the distribution of values. However, then a simple LP can directly minimize the `1 error and
hence one cannot hope for a theorem analogous to Theorem 1.

1.3 Techniques

Similar to most of the UGC-based hardness results, our result proceeds by developing an appro-
priate “dictatorship test”. However, unlike most previous applications that use a dictatorship
test over an n-dimensional boolean hypercube (or k-ary hypercube in some cases), we develop a
dictatorship test over Rn with the standard Gaussian measure. The test is quite natural, but its
analysis turns out to be rather delicate. We think that the test itself is of independent interest
and provide its high level overview here.

Let N n denote the n-dimensional Gaussian distribution with n independent mean 0 and
variance 1 coordinates. Let L2(Rn,N n) be the space of all measurable real functions f : Rn → R
with ‖f‖2

2 = Ex∼Nn

[
f(x)2

]
< ∞. This is an inner product space with the inner product

〈f, g〉 .= Ex∼Nn [f(x)g(x)].
A dictatorship is a function f(x) = xi0 for some fixed coordinate i0 ∈ [n]. Given oracle access

to a function f ∈ L2(Rn,N n), we desire a probabilistic homogeneous linear test that accesses
1A closer examination of the proof of Theorem 1 shows that the upper bound is actually O(δ); for the equations

that are not satisfied, the margin itself is distributed according to a standard Gaussian.
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at most three values of f . The tests, over all choices of randomness, can be written down as a
system of homogeneous linear equations over the values of f . We assume that the function f
is non-trivial, i.e. ‖f‖2

2 = 1, and anti-symmetric, i.e. f(−x) = −f(x) ∀x ∈ Rn. In particular,
E [f ] = 0. We desire a test such that a dictatorship function is a “good” solution to the system
of linear equations, whereas a function that is far from a dictatorship, is a “bad” solution to
the system. The test we propose is a combination of a linearity test and a coordinate-wise
perturbation test. A dictatorship function satisfies all the equations of the linearity test and
1 − δ fraction of the equations of the coordinate-wise perturbation test. A function that is far
from a dictatorship, either fails “miserably” on the linearity test, or a constant fraction of the
equations have a margin Ω(

√
δ) on the coordinate-wise perturbation test. This directly translates

to the hardness gap of Theorem 1 via a UGC-based reduction (the reduction is standard, but
does involve some subtle points in our context).

One starts out by observing that a dictatorship function is linear. Thus, for any λ, µ ∈ R
such that λ2 + µ2 = 1, say λ = µ = 1√

2
, one can test whether

f(λx + µy) = λx + µy,

where x, y ∼ N n are picked independently. Clearly, a dictatorship function satisfies each such
equation exactly. The condition λ2 + µ2 = 1 ensures that the query point λx + µy is also
distributed according to N n. Note that we assume ‖f‖2

2 = 1 and E [f ] = 0. Functions in
L2(Rn,N n) have the Hermite representation; in particular, f can be decomposed into the linear
and non-linear parts:

f = f=1 + e, f=1 =
n∑

i=1

aixi,
〈
f=1, e

〉
= 0.

Note that 1 = ‖f‖2
2 = ‖f=1‖2

2 + ‖e‖2
2. A simple Fourier analytic argument shows that unless

‖e‖2
2 ≤ 0.01, the linearity test fails with “large” average squared margin (and the analysis of

the test is over). Therefore we may assume that ‖e‖2
2 ≤ 0.01.

Assume for now, that e ≡ 0 and hence the function is linear: f = f=1 =
∑n

i=1 aixi and∑n
i=1 a2

i = 1. We introduce the coordinate-wise perturbation test to ensure that the coefficients
{ai}n

i=1 are concentrated on a bounded set. This makes sense because for a dictatorship function,
there is exactly one non-zero coefficient. The test picks a random point x ∈ N n and for a ran-
domly chosen δ fraction of the coordinates, each chosen coordinate is re-sampled independently
from a standard Gaussian. If x̃ is the new point, then one tests whether

f(x̃)− f(x) = 0.

Note that for a dictatorship function, the above equation is satisfied with probability 1 − δ,
whereas with probability δ, the margin is distributed as a mean-0 variance-

√
2 Gaussian. On

the other hand, if f =
∑n

i=1 aixi is far from a dictatorship, then coefficients {ai}n
i=1 are “spread-

out”, and with a constant probability, the margin is Ω(
√

δ). This is intuitively the idea behind
the test; however the presence of the non-linear part e complicates matters considerably. Even
though ‖e‖2

2 ≤ 0.01, we are dealing with margins of the order of
√

δ, and the non-linear part
e could potentially interfere with the above simplistic argument. We therefore need a more
refined argument. We observe that since f = f=1 + e,

f(x̃)− f(x) = (f=1(x̃)− f=1(x)) + (e(x̃)− e(x)).
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When f=1 =
∑n

i=1 aixi is “spread-out”, the first term in the above equation, namely f=1(x̃)−
f=1(x), is Ω(

√
δ) with a constant probability as we observed above. The same can be concluded

about the left hand side of the equation, namely f(x̃) − f(x), unless the second term e(x̃) −
e(x) “interferes” in a very correlated manner. If this happens, then the function e must be
“sensitive” to noise along a random set of δn coordinates. We add a test ensuring that e is
“insensitive” to noise of comparable magnitude in a random direction. We then show that the
two behaviors are contradictory, using a Fourier analytic argument that relies, in addition, on
the cut-decomposition of line/`1 metrics.

1.4 Comparison with Known Results and Motivation for Studying 3LIN(R)

MinUncut: Given a graph G(V = [N ], E), the MinUncut problem seeks a cut in the graph
that minimizes the number of edges not cut. It can be thought of as an instance of 2Lin(R)
where one has variables {x1, . . . , xN}, and for every edge (i, j) ∈ E, a homogeneous equation:

xi + xj = 0,

and the goal is to find a boolean, i.e. {−1, 1}-valued assignment that minimizes the number of
unsatisfied equations. Khot et al [KKMO07] show that assuming the UGC, for sufficiently small
δ > 0, given an instance that has an assignment that satisfies all but δ fraction of the equations,
it is NP-hard to find an assignment that satisfies all but 2

π

√
δ fraction of the equations. This

result is qualitatively similar to Theorem 1, but note that the variables are restricted to be
boolean.

Balanced Partitioning: Given a graph G(V = [N ], E), the Balanced Partitioning problem
seeks a roughly balanced cut (i.e. each side has Ω(N) vertices) in the graph that minimizes
the number of edges cut. It can again be thought of as an instance of 2Lin(R) where one has
variables {x1, . . . , xN}, and for every edge (i, j) ∈ E, a homogeneous equation:

xi − xj = 0, (2)

and the goal is to find a {−1, 1}-valued and roughly balanced assignment that minimizes the
number of unsatisfied equations. Arora et al [AKK+08] show that assuming a certain variant
of the UGC, given an instance of Balanced Partitioning that has a balanced assignment that
satisfies all but δ fraction of the equations, it is NP-hard to find a roughly balanced assignment
that satisfies all but δc fraction of the equations. Here 1

2 < c < 1 is an arbitrary constant and
for every such c, the result holds for all sufficiently small δ > 0. The result is again qualitatively
similar to Theorem 1. In fact, the result holds even when the variables are allowed to be real
valued, say in the range [−1, 1], as long as the set of values is “well-separated”. Imagine picking
a random λ ∈ [−1, 1] and partitioning the variables (i.e. vertices of the graph) into two sets
depending on whether their value is less or greater than λ. The cut is roughly balanced if the
set of values is well-separated, and the probability that an edge (i, j) ∈ E is cut is |xi−xj |

2 . Thus
solving the 2Lin(R) instance w.r.t. `1 error is equivalent to solving the Balanced Partitioning
problem.

Motivation for Studying 3LIN(R): The hardness results for the MinUncut and the Balanced
Partitioning problem cited above are known only assuming the UGC. It would be a huge progress
to prove these results without relying on the UGC and could possibly lead to a proof of the UGC
itself. Due to the close connection of both the problems to the 2Lin(R) problem, it is natural to
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seek a hardness result for the 2Lin(R) problem w.r.t. the `1 error. This is the main motivation
behind the work in this paper. We propose that understanding the complexity of the 3Lin(R)
problem might help us make progress on the UGC: the plan would be to (1) prove Theorem 1,
or perhaps a weaker form of it, without relying on the UGC and then (2) give a gap-preserving
reduction from the 3Lin(R) to 2Lin(R). The first step might be doable since a hardness result
for 3Lin(R) amounts to constructing a 3-query PCP, and in general 3-query PCPs are quite
powerful. In particular, one is allowed to do a 3-query linearity test, which could be useful. On
the negative side, PCPs over reals seem to present new difficulties, e.g. in the Gaussian space,
the analogue of error correction for Hadamard Codes does not seem to work. On the positive
side, the authors, in a follow-up work, are able to prove a weak hardness result for the Lin(R)
problem (homogeneous system of linear equations with unbounded number of variables in each
equation) w.r.t. the `1 error. Regarding the second step, the authors currently have a candidate
reduction from 3Lin(R) to 2Lin(R) along with counterexamples showing that the reduction, as
is, does not work. The authors believe that there might be a way to fix the reduction.

Guruswami and Raghavendra’s Result: Our result is incomparable to that in [GR09].
Their result shows that given a system of non-homogeneous linear equations over integers (as
well as over reals), with three variables in each equation, it is NP-hard to distinguish 1 − δ
satisfiable instances from δ satisfiable instances. The instance produced by their reduction is
non-homogeneous, a good solution in the YES Case consists of large (unbounded) integer values,
the result is very much about exactly satisfying equations, and in particular does not give, if
any, a strong gap in terms of margins, especially relative to the magnitude of integers in a good
solution.

Comparison with Results over GF (2): We argue that, in order to make progress on Min-
Uncut, Balanced Partitioning and UGC, studying equations over reals may be the “right” thing
to do, as opposed to equations over GF (2). As we discussed before, the Balanced Partitioning
problem can be thought of as an instance of 2Lin(R) (as in Equation (2)) where one seeks to
minimize `1 error and the set of values is a well-separated set in [−1, 1]. Assuming a UGC vari-
ant, we know that (δ, δc)-gap is NP-hard for c > 1

2 , whereas Theorem 1 yields a similar gap for
3Lin(R), with a stronger conclusion that a constant fraction of equations have a margin at least
Ω(
√

δ). We pointed out that such a gap is also the best one may hope for. Thus the 3-variable
case seems qualitatively similar to the 2-variable case in terms of hardness gap that may be
expected. For equations over GF (2), the two cases are qualitatively very different. Suppose
one thinks of the Balanced Partitioning problem as an instance of 2Lin(GF (2)) where a cut is a
GF (2) valued balanced assignment, and one introduces an equation xi ⊕ xj = 0 for each edge
(i, j). Its generalization to homogeneous equations with three variables, namely 3Lin(GF (2)),
turns out to be qualitatively very different. Holmerin and Khot [HK04] show a hardness gap
(in terms of fraction of equations left unsatisfied by a balanced assignment) of (δ,≈ 1

2) which is
qualitatively very different from the (δ, δc) gap that may be expected for 2Lin(GF (2)).

1.5 Overview of the Paper

In Section 2, we formally state our main result (Theorem 6) and provide preliminaries on
Hermite representation of functions in L2(Rn,N n). In Section 3, we propose and analyze the
linearity test that is used as a sub-routine in the dictatorship test proposed and analyzed in
Section 4. The UGC-based reduction, proving our main result, is presented in Section 6. The
reduction is presented first in a continuous setting and then discretized in Section 6.3.
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2 Problem Definition, Our Result, and Preliminaries

We consider the problem of approximately solving a system of homogeneous linear equations
over the reals. Each equation depends on (at most) three variables. The system of equations is
given by a distribution over equations, meaning different equations receive different “weights”.

Definition 2 (Robust-3Lin(R) instance). Let b0 ≥ 1 be a parameter. A Robust-3Lin(R)
instance is given by a set of real variables X and a distribution E over equations on the variables.
Each equation is of the form:

r1x1 + r2x2 + r3x3 = 0,

where the coefficients satisfy |r1|, |r2|, |r3| ∈ [ 1
b0

, b0] and x1, x2, x3 ∈ X.

Definition 3 (Assignment to Robust-3Lin(R) instance). An assignment to the variables of a
Robust-3Lin(R) instance (X, E) is a function A : X → R. An equation r1x1 + r2x2 + r3x3 = 0
is exactly satisfied by A if

r1A(x1) + r2A(x2) + r3A(x3) = 0.

The equation is β-approximately satisfied for an approximation parameter β, if

|r1A(x1) + r2A(x2) + r3A(x3)| ≤ β.

Notation. The set of variables appearing in an equation eq : r1x1 +r2x2 +r3x3 = 0 is denoted
as Xeq = {x1, x2, x3}. The assignment A will usually be clear from the context. We use the
shorthand |eq| to denote the margin |r1A(x1) + r2A(x2) + r3A(x3)|.

An assignment that assigns 0 to all variables trivially exactly satisfies all equations. Hence,
we use a measure for how different the assignment is from the all-zero assignment, locally (per
equation) and globally (on average over all equations):

Definition 4 (Assignment norm). Let (X, E) be a Robust-3Lin(R) instance. Let A : X → R
be an assignment. Define the squared norm of A at equation eq to be:

‖Aeq‖2
2 = E

x∈Xeq

[
A(x)2

]
.

Define the squared norm of A to be:

‖A‖2
2 = E

eq∼E

[‖Aeq‖2
2

]
.

Remark 2.1. We will sometimes refer to a distribution on the set of variables X induced by
first picking an equation from the distribution E and then picking a variable at random from
that equation. If D denotes this distribution on variables, then clearly ‖A‖2

2 = Ex∈D
[
A(x)2

]
.

Legitimate assignments A are required to be normalized ‖A‖2
2 = 1 and bounded A : X →

[−b, b] for some parameter b. We seek to maximize:

valβ(X,E)(A) .= E
eq∼E

[
χ|eq|≤β · ‖Aeq‖2

2

]
, (3)

where χ|eq|≤β is indicator function of the event that |eq| ≤ β. In words, we seek to maximize2

the total squared norm of equations that are satisfied with margin of at most β.
2We recommend that the reader takes a pause and convinces himself/herself that this is a reasonable measure

of how good an assignment is. Since an assignment may be very skewed, assigning large values to a tiny subset
of variables and zero to the rest of the variables, simply maximizing the fraction of equations satisfied does not
make much sense.
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Definition 5 (Robust-3Lin(R) problem). Let b0 ≥ 1, b ≥ 0 and 0 < β < 1 be parameters.
Given a Robust-3Lin(R) instance where the coefficients are in [ 1

b0
, b0] in magnitude, the prob-

lem is to find an assignment A : X → [−b, b] of norm ‖A‖2
2 = 1 that maximizes valβ(X,E)(A).

We are now ready to formally state our result:

Theorem 6 (Hardness of Robust-3Lin(R)). Assume the Unique Games Conjecture. There
exist universal constants b0 = 2 and c, s > 0, such that for any γ, δ > 0, there is b = O(log(1/δ)),
such that given an instance (X, E) of Robust-3Lin(R) with the magnitude of the coefficients
in [ 1

b0
, b0], it is NP-hard to distinguish between the following two cases:

• Completeness: There is an assignment A : X → [−b, b] with ‖A‖2
2 = 1, such that

valγ(X,E)(A) ≥ 1− δ.

• Soundness: For any assignment A : X → [−b, b] with ‖A‖2
2 = 1, it holds that

valc
√

δ
(X,E)(A) ≤ 1− s.

We note three points: (1) The parameter γ is to be thought of as negligible compared to δ
and essentially equal to 0. Our reduction is best thought of as a continuous construction on a
Gaussian space, and the parameter γ arises as a negligible error involved in discretization of the
construction. (2) In the YES Case, we can say more about how the “good” assignment looks like.
Consider the distribution D induced on variables by first picking an equation eq ∈ E and then
picking one of the variables in the equation. The values taken by the good assignment, w.r.t. D,
are distributed (essentially) as a standard Gaussian, and can be truncated to b = O(log(1/δ))
in magnitude without affecting the result. (3) In the NO Case, if an assignment has either
values bounded in [−1, 1] or values distributed, w.r.t. D, (essentially) as a standard Gaussian,
it is indeed the case that a constant fraction of the equations fail with a margin of at least c

√
δ,

proving informal Theorem 1.

2.1 Fourier Analysis Over Gaussian Space

Gaussian Space. LetN n denote the n-dimensional Gaussian distribution with n independent
mean-0 and variance-1 coordinates. L2(Rn,N n) is the space of all real functions f : Rn → R
with Ex∼Nn

[
f(x)2

]
< ∞. This is an inner product space with inner product

〈f, g〉 .= E
x∼Nn

[f(x)g(x)].

Hermite Polynomials. For a natural number j, the j’th Hermite polynomial Hj : R→ R is

Hj(x) =
1√
j!
· (−1)jex2/2 dj

dxj
e−x2/2.

The first few Hermite polynomials are H0 ≡ 1, H1(x) = x, H2(x) = 1√
2
· (x2 − 1), H3 =

1√
6
· (x3 − 3x), H4(x) = 1

2
√

6
· (x4 − 6x2 + 3). The Hermite polynomials satisfy:

Claim 2.1 (Orthonormality). For every j, 〈Hj ,Hj〉 = 1. For every i 6= j, 〈Hi,Hj〉 = 0. In
particular, for every j ≥ 1, Ex∈N [Hj(x)] = 0.
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Claim 2.2 (Addition formula).

Hj

(
x + y√

2

)
=

1
2j/2

·
j∑

k=0

√(
j

k

)
Hk(x)Hj−k(y).

Fourier Analysis. The multi-dimensional Hermite polynomials defined as:

Hj1,...,jn(x1, . . . , xn) =
n∏

i=1

Hji(xi),

form an orthonormal basis for the space L2(Rn,N n). Every function f ∈ L2(Rn,N n) can be
written as

f(x) =
∑

S∈Nn

f̂(S) HS(x),

where S is multi-index, i.e. an n-tuple of natural numbers, and the f̂(S) ∈ R are the Fourier
coefficients of f . The size of a multi-index S = (S1, . . . , Sn) is defined as |S| =

∑n
i=1 Si. The

Fourier expansion of degree d is f≤d =
∑
|S|≤d f̂(S)HS(x), and it holds that

lim
d→∞

‖f − f≤d‖2
2 = 0.

The linear part of f is f=1 = f≤1 − f≤0. When f is anti-symmetric, i.e. ∀x ∈ Rn, f(−x) =
−f(x), we have f̂(~0) = E [f ] = 0 and f≤0 ≡ 0.

Influence. We denote the restriction of a Gaussian variable x ∼ N n to a set of coordinates
D ⊆ [n] by x|D. The influence of a set of coordinates D ⊆ [n] on a function f ∈ L2(Rn,N n) is

ID(f) .= E
x|D

[
Var
x|D

[f(x)]
]
.

The influence can also be expressed in terms of Fourier spectrum of f :

Proposition 2.3.
ID(f) =

∑

S∩D 6=φ

f̂(S)2,

where S ∩ D 6= φ denotes that there exists i ∈ D such that Si 6= 0. Note that S ∈ Nn is a
multi-index and D ⊆ [n] is a subset of coordinates.

Perturbation Operator. The perturbation operator (more commonly known as the Ornstein-
Uhlenbeck operator) Tρ takes a function f ∈ L2(Rn,N n) and produces a function Tρf ∈
L2(Rn,N n) that averages the value of f over local neighborhoods:

Tρf(x) = E
y∈Nn

[
f(ρx +

√
1− ρ2y)

]
.

The Fourier spectrum of Tρf can be obtained from the Fourier spectrum of f as follows:

Proposition 2.4.
Tρf =

∑

S

ρ|S|f̂(S) HS .
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2.2 The Unique Games Conjecture

We prove a hardness result for Robust-3Lin(R) under the Unique Games Conjecture of
Khot [Kho02], i.e., assuming the hardness of approximating the Unique-Game problem:

Definition 7 (Unique-Game). The input to the problem is a regular graph G = (V, E), a
number k, and permutations on the edges πe : [k] → [k]. A labeling for the graph is a function
ϕ : V → [k]. An edge e = (u, v) ∈ E is satisfied by labeling ϕ if πe(ϕ(u)) = ϕ(v). The task is
to find a labeling ϕ : V → [k] that satisfies as many of the edges as possible.

Conjecture 2.1 (Unique Games Conjecture [Kho02]). For any constants 0 < η, ε < 1 there
exists k = k(η, ε), such that given a Unique-Game instance on k labels, it is NP-hard to
distinguish between the case that 1− η fraction of the edges can be satisfied and the case where
only fraction ε of the edges can be satisfied.

3 Linearity Testing

We show how to perform linearity testing for functions in L2(Rn,N n) using linear equations
on three variables each. Linear functions always exactly satisfy the linear equations. Functions
with a large non-linear part give rise to heavy margins in the equations.

The linearity test we show resembles linearity testing in finite fields (see, e.g., [BLR93,
BCH+96]). We change it slightly so as to guarantee that all the queries to the function are
distributed according to the Gaussian distribution.

Linearity Test:

Given oracle access to a function f ∈ L2(Rn,N n), f anti-symmetric, i.e., f(−x) = −f(x) for
every x ∈ Rn. Pick x, y ∼ N n and test:

f(x) + f(y) +
√

2 · f
(
−x + y√

2

)
= 0.

Note that a linear function always exactly satisfies the test’s equation. The following lemma
shows that if the test’s equations are approximately satisfied, then the weight of f ’s non-linear
part is small:

Lemma 3.1 (Linearity testing). Let f ∈ L2(Rn,N n), f anti-symmetric, i.e., f(−x) = −f(x)
for every x ∈ Rn. Then

‖f − f=1‖2
2 ≤ E

x,y∼Nn

[∣∣∣∣f(x) + f(y) +
√

2 · f
(
−x + y√

2

)∣∣∣∣
2
]
.

Proof. Since x and y are independent, the variables x, y and −x+y√
2

are all distributed according
to N n. Also f is anti-symmetric. Hence,

E
x,y∼Nn

[∣∣∣∣f(x) + f(y) +
√

2 · f
(
−x + y√

2

)∣∣∣∣
2
]

= 4‖f‖2
2 − 4 ·

√
2 · E

x,y

[
f(x)f

(
x + y√

2

)]
. (4)
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Writing in terms of the Fourier representation:

E
x,y

[
f(x)f

(
x + y√

2

)]
= E

x,y


 ∑

S,T∈Nn

f̂(S)f̂(T )HS(x)HT

(
x + y√

2

)


=
∑

S,T

f̂(S)f̂(T )E
x,y

[
n∏

i=1

HSi(xi)HTi

(
xi + yi√

2

)]

=
∑

S,T

f̂(S)f̂(T )
n∏

i=1

E
x,y

[
HSi(xi)HTi

(
xi + yi√

2

)]
.

By Claim 2.2,

HTi

(
xi + yi√

2

)
=

1
2Ti/2

Ti∑

l=0

√(
Ti

l

)
Hl(xi)HTi−l(yi).

Hence,

E
x,y

[
f(x)f

(
x + y√

2

)]
=

∑

S,T

f̂(S)f̂(T )
n∏

i=1

1
2Ti/2

Ti∑

l=0

√(
Ti

l

)
E
x

[HSi(xi)Hl(xi)]E
y

[HTi−l(yi)].

By Claim 2.1, Ey [HTi−l(yi)] = 0, unless l = Ti, and Ex [HSi(xi)Hl(xi)] = 0, unless l = Si.
Thus,

E
x,y

[
f(x)f

(
x + y√

2

)]
=

∑

S

f̂(S)2 ·
(

1√
2

)|S|

≤ 1√
2
· ‖f=1‖2

2 +
(

1√
2

)2

· ‖f − f=1‖2
2, (5)

where we used f̂(~0) = 0 that follows from anti-symmetry. By combining equality (4) and
inequality (5),

E
x,y∼Nn

[∣∣∣∣f(x) + f(y) +
√

2 · f
(
−x + y√

2

)∣∣∣∣
2
]

≥ 4‖f‖2
2 − 4‖f=1‖2

2 −
4√
2
‖f − f=1‖2

2

= (4− 2
√

2)‖f − f=1‖2
2

≥ ‖f − f=1‖2
2.

4 Dictator Testing

In this section we devise a dictator test, i.e., a test that checks whether an anti-symmetric real
function in L2(Rn,N n) is a dictator (that is, of the form f(x) = xi for some i ∈ [n]) or far from
a dictator. We consider a function to be close to a dictator if it satisfies the following definition:

Definition 8 ((J, s)-Approximate linear junta). An anti-symmetric function f ∈ L2(Rn,N n)
with linear part f=1 =

∑n
i=1 aixi, is called a (J, s)-approximate-linear-junta, if:

11



• ‖f=1‖2
2 =

∑n
i=1 a2

i ≥ (1− s)‖f‖2
2.

• ∑
i:a2

i≤ 1
J
‖f‖22 a2

i ≤ Γ · ‖f‖2
2, where Γ = 0.05 is an absolute constant.

An approximate linear junta has almost all the Fourier mass on its linear part, and this linear
part is concentrated on at most J coordinates: Let I =

{
i | a2

i ≥ 1
J ‖f‖2

2

}
. Then |I| ≤ J , and

‖f −∑
i∈I aixi‖2

2 ≤ (s + Γ)‖f‖2
2.

Our test will produce equations that dictators almost always satisfy exactly. On the other
hand, functions that are not even approximate linear juntas fail with large margin.

Theorem 9 (Dictator testing). There are universal constants s, c > 0 such that the following
holds. For every sufficiently small δ > 0, there is a dictator test given by a distribution E over
equations, where each equation depends on the value of f on at most three points in Rn. The
test satisfies the following properties:

1. Uniformity: The distribution over Rn obtained from picking at random an equation and x
such that f(x) is queried by the equation, is Gaussian N n.

2. Bound on coefficients: All the coefficients in the equations are in [ 1
b0

, b0] in magnitude
where b0 is a universal constant (b0 = 2 works).

3. Completeness: If f(x) = xi for some i ∈ [n], then

E
eq∼E

[
χ|eq|>0 · ‖feq‖2

2

] ≤ δ.

4. Soundness: For any anti-symmetric function f ∈ L2(Rn,N n), ‖f‖2
2 = 1, if f is not a

( 10
Γδ2 , s)-approximate linear junta, then

E
eq∼E

[
χ|eq|>c

√
δ · ‖feq‖2

2

]
≥ s

100
.

Remark 4.1. Note that it follows from the soundness guarantee that for an anti-symmetric
function f ∈ L2(Rn,N n) with arbitrary non-zero norm, if f is not a ( 10

Γδ2 , s)-approximate linear
junta, then

E
eq∼E

[
χ|eq|>c

√
δ·‖f‖2 · ‖feq‖2

2

]
≥ s

100
· ‖f‖2

2.

This is obtained by applying the theorem with the normalized version of f , i.e., f
‖f‖2 .

The test will consist of three steps: (i) Linearity test that rules out functions that are not
well-approximated by their linear parts. (ii) Coordinatewise perturbation test that checks that
the function does not change by re-sampling a small fraction of the coordinates. (iii) Random
perturbation test that guarantees that the function does not change much if perturbing the
input slightly in a random direction. We achieve the effect of this test by instead doing two
correlated linearity tests, in order to keep the coefficients in the range [12 , 2] in magnitude.

Dictator Test:

Given oracle access to a function f ∈ L2(Rn,N n), f anti-symmetric. With equal probability,
perform one of these three tests:

12



1. Linearity test on f , as in Section 3.

2. Coordinatewise perturbation test:

(a) Pick x, y ∼ N n. Pick x̃ ∼ N n as follows: for i = 1, 2, . . . , n, independently, with
probability 1− δ, set x̃i = xi, and with probability δ, set x̃i = yi.

(b) Test:
f(x)− f(x̃) = 0.

3. Random perturbation test (in disguise):

(a) Pick y, z ∼ N n. Let x = y+z√
2

, w = y−z√
2

, and

x̃ = (1− δ)x +
√

2δ − δ2w

=

(
1− δ√

2
+
√

2δ − δ2

√
2

)
y +

(
1− δ√

2
−
√

2δ − δ2

√
2

)
z

= λ1y + λ2z (say).

(b) Note that λ1, λ2 are very close to 1√
2
. Test with equal probability:

f(x)− 1√
2
f(y)− 1√

2
f(z) = 0.

f(x̃)− λ1f(y)− λ2f(z) = 0.

Note that in the random perturbation test, x̃ = (1− δ)x +
√

2δ − δ2w and x is independent
of w. Thus x̃ can indeed be thought of as a perturbation of x in a random direction. The
uniformity property, as well as the bound on the coefficients, hold by the definition of the tests.
Denote the distribution on all equations by E , and the three sub-distributions by: El (linearity
tests), Ec (coordinatewise perturbation tests), Er (random perturbation tests).

Completeness: A dictator function f , being a linear function, always exactly satisfies the
linearity test and the random perturbation test. As for the coordinatewise perturbation test,
Eeq∼Ec

[
χ|eq|>0 · ‖feq‖2

2

] ≤ δ‖f‖2
2 = δ.

Soundness: In the following, O(·) and Ω(·) notations will hide universal constants. We will
pick s and c to be universal constants eventually, but throughout the proof, retain the depen-
dence on them. Assume for now that 2c ≤ s ≤ 0.01. The parameter δ is thought of as tending
to zero.

Let f ∈ L2(Rn,N n) be an anti-symmetric function, ‖f‖2
2 = 1, f is not a (J = 10

Γδ2 , s)-
approximate linear junta. Assume, for the sake of a contradiction, that

E
eq∼E

[
χ|eq|≤c

√
δ · ‖feq‖2

2

]
≥ 1− s

100
.

Denote the non-linear part of f by e = f − f=1 (since f is anti-symmetric, f≤0 ≡ 0). We
handle the cases that ‖e‖2

2 ≤ s and ‖e‖2
2 > s separately.
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Case ‖e‖2
2 > s: By Lemma 3.1, Eeq∼El

[
|eq|2

]
≥ ‖e‖2

2 > s. By Cauchy-Schwarz inequality, for

every equation,3 we have |eq|2 ≤ 12‖feq‖2
2, so

s < E
eq∼El

[
|eq|2

]
≤ E

eq∼El

[
χ|eq|>c

√
δ · 12‖feq‖2

2

]
+ c2δ ≤ 12 E

eq∼El

[
χ|eq|>c

√
δ · ‖feq‖2

2

]
+

s

3
.

Since the distribution E is average of distributions El, Ec, and Er, we get

E
eq∼E

[
χ|eq|>c

√
δ · ‖feq‖2

2

]
≥ 1

3
· E

eq∼El

[
χ|eq|>c

√
δ · ‖feq‖2

2

]
>

s

100
.

This contradicts our assumption that Eeq∼E
[
χ|eq|≤c

√
δ · ‖feq‖2

2

]
≥ 1− s

100 .

Case ‖e‖2
2 ≤ s: We first show that in this case, almost every equation is satisfied with margin

at most c
√

δ.

Lemma 4.1. The probability that a dictator test equation chosen at random is c
√

δ-approximately
satisfied is at least 1− 7 3

√
s.

Proof. We begin by showing that for x ∼ N n, |f(x)| ≥ 3√s
4 except with probability at most 6 3

√
s.

When x ∼ N n, except with probability at most 4 3
√

s, we have that |e(x)|2 ≤ 1
4 3√s

‖e‖2
2 ≤ s2/3

4 .
Write f=1(x) =

∑n
i=1 aixi. When x ∼ N n, we have that f=1(x) is normal with mean 0

and variance
∑n

i=1 a2
i = 1 − ‖e‖2

2 ≥ 0.99. Thus, except with probability at most 2 3
√

s, we
have that

∣∣f=1(x)
∣∣ ≥ √

0.99 3
√

s. Overall, except with probability at most 6 3
√

s, we have that

|f(x)| ≥ ∣∣f=1(x)
∣∣− |e(x)| ≥ √

0.99 3
√

s− 3√s
2 ≥ 3√s

4 .
Assume, for the sake of a contradiction, that with probability at least 7 3

√
s, a dictator test

equation has margin at least c
√

δ. An equation has at most three variables, and each of these
is distributed as N n. With probability at least 7 3

√
s − 6 3

√
s = 3

√
s, it also holds that the

first variable, say f(x), in the equation has magnitude |f(x)| ≥ 3√s
4 . For such an equation,

‖feq‖2
2 ≥ 1

3f(x)2 ≥ s2/3

48 . Hence,

E
eq∼E

[
χ|eq|>c

√
δ · ‖feq‖2

2

]
≥ 3
√

s
s2/3

48
>

s

100
.

This contradicts our assumption, and the claim follows.

In the sequel we inspect the change in e as we perturb the input. We show that our assump-
tions on f (made towards a contradiction) imply that e may change somewhat as a result of a
perturbation in a random direction, yet changes noticeably more as a result of a coordinatewise
perturbation. We will later show that these two behaviors are contradictory.

Lemma 4.2 (e is noise-stable for random perturbation). (Under the assumptions we made
towards a contradiction) Let x, x̃ be picked as in the random perturbation test. Then, with
probability at least 1−O( 3

√
s),

|e(x)− e(x̃)| ≤ O( 3
√

s)
√

δ.

3The linearity testing equation is of the form f(x) + f(y)−√2f(z) = 0. Here |eq| = |f(x) + f(y)−√2f(z)|
and ‖feq‖22 = f(x)2+f(y)2+f(z)2

3
.
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Proof. Since the random perturbation test is performed with probability 1
3 , from Lemma 4.1,

with probability at least 1−O( 3
√

s), we have
∣∣∣∣f(x)− 1√

2
f(y)− 1√

2
f(z)

∣∣∣∣ ≤ c
√

δ,

|f(x̃)− λ1f(y)− λ2f(z)| ≤ c
√

δ.

Since f = f=1 + e, and f=1 is linear, the above inequalities are really inequalities for e:
∣∣∣∣e(x)− 1√

2
e(y)− 1√

2
e(z)

∣∣∣∣ ≤ c
√

δ,

|e(x̃)− λ1e(y)− λ2e(z)| ≤ c
√

δ.

Combining the two inequalities and substituting for λ1 and λ2, we get:

|e(x)− e(x̃)| ≤ 2c
√

δ + O(
√

δ)(|e(y)|+ |e(z)|).

By Markov inequality, except with probability at most 3
√

s, it holds that |e(y)|2 ≤ ‖e‖2
2/

3
√

s ≤
s2/3. The same applies to e(z). Therefore, with probability at least 1−O( 3

√
s),

|e(x)− e(x̃)| ≤ 2c
√

δ + O( 3
√

s ·
√

δ) = O( 3
√

s)
√

δ.

Lemma 4.3 (e is noise-sensitive coordinatewise). (Under the assumptions we made towards a
contradiction) Let x, x̃ ∼ N n be picked as in the coordinatewise perturbation test. Then, with
probability at least Ω(1), we have

|e(x)− e(x̃)| ≥ Ω(
√

δ).

Proof. Write f=1 =
∑n

i=1 aixi. Since f = f=1 + e, we have

|e(x)− e(x̃)| ≥ ∣∣f=1(x)− f=1(x̃)
∣∣− |f(x)− f(x̃)|

=

∣∣∣∣∣
n∑

i=1

ai(xi − x̃i)

∣∣∣∣∣− |f(x)− f(x̃)| .

From Lemma 4.1, we know that except with probability O( 3
√

s), the second term |f(x)− f(x̃)|
is at most c

√
δ. Thus it suffices to show that with probability Ω(1), the first term is at least

Ω(
√

δ) (and to choose c and s sufficiently small).
Recall that the test picks the pair (x, x̃) as follows: First pick a set D ⊆ [n] by including in it

every i ∈ [n] independently with probability δ. Pick x, y ∼ N n independently. For every i 6∈ D,
set x̃i = xi, and for every i ∈ D, set x̃i = yi. Thus for a fixed D,

n∑

i=1

ai(xi − x̃i) =
∑

i∈D

ai(xi − yi),

which is a normal variable with mean 0 and variance 2
∑

i∈D a2
i . We will show that the variance

is at least Γδ with probability 0.9 over the choice of D. Whenever this happens, the random
variable exceeds Ω(

√
δ) in magnitude with probability Ω(1) and we are done.
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Let I =
{

i ∈ [n] | a2
i ≤ 1

J

}
be the “non-influential” coordinates. Since f is not a (J, s)-

approximate linear junta, and ‖e‖2
2 ≤ s, we must have

∑
i∈I a2

i ≥ Γ. A standard Hoeffding
bound now shows that for a random choice of set D, the sum

∑
i∈I∩D a2

i is at least half its
expected value with probability at least 0.9 and the expected value is δ

∑
i∈I a2

i which is at least
Γδ.

Pr
D

[∣∣∣∣∣
∑

i∈I∩D

a2
i − δ

∑

i∈I

a2
i

∣∣∣∣∣ ≥
δ

2

∑

i∈I

a2
i

]
≤ 2 · exp

(
−2( δ

2

∑
i∈I a2

i )
2

∑
i∈I a4

i

)
≤ 2 · exp

(
−J

2
· Γδ2

)
≤ 0.1,

where we noted that
∑

i∈I a4
i ≤ 1

J

∑
i∈I a2

i and J = 10
Γδ2 .

The rest of the proof is devoted to showing that Lemma 4.2 and Lemma 4.3 cannot both
hold, i.e., a function cannot be noise stable for random perturbation, yet noise sensitive for
coordinatewise perturbation. Towards this end, we will construct from e a new function e′ (that
happens to be {0, 1}-valued) for which the expected squared change as a result of coordinate-
wise perturbation is much larger than the expected squared change as a result of random
perturbation:

Lemma 4.4. (Under the assumptions we made towards a contradiction, and in particular,
assuming Lemma 4.2 and Lemma 4.3) There is a function e′ such that:

1. E(x,x̃)∼R

[
|e′(x)− e′(x̃)|2

]
≤ O( 3

√
s),

2. E(x,x̃)∼C

[
|e′(x)− e′(x̃)|2

]
≥ Ω(1),

where R is the distribution over pairs in the random perturbation test, and C is the distribution
over pairs in the coordinatewise perturbation test.

The proof of Lemma 4.4 appears in Section 5. For sufficiently small s, Lemma 4.4 leads to a
contradiction by the following claim:

Claim 4.5. For any function h ∈ L2(Rn,N n),

E
(x,x̃)∼R

[
|h(x)− h(x̃)|2

]
≥ E

(x,x̃)∼C

[
|h(x)− h(x̃)|2

]
,

where R is the distribution over pairs in the random perturbation test, and C is the distribution
over pairs in the coordinatewise perturbation test.

Proof. The expectation E(x,x̃)∼C

[
|h(x)− h(x̃)|2

]
is given by the following expression:

E
D

[
E

x|D

[
E

x|D,x̃|D

[
|h(x)− h(x̃)|2

]]]
,

where the set of coordinates D ⊆ [n] is chosen by including each i ∈ [n] in D independently
with probability δ. Using Varx [F (x)] = 1

2Ex,x′
[
(F (x)− F (x′))2

]
and the notion of influence

as discussed in the preliminaries, the above expression can be re-written as:

E
D

[
E

x|D

[
2Var

x|D
[h(x)]

]]
= 2E

D
[ID(h)] = 2E

D


 ∑

S∩D 6=φ

ĥ(S)2


 = 2

∑

S

ĥ(S)2Pr
D

[S ∩D 6= φ].
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For every multi-index S ∈ Nn, we have: PrD [S ∩D 6= φ] = 1 − (1 − δ)#S ≤ 1 − (1 − δ)|S|.
Here |S| =

∑n
i=1 Si and #S denotes the number of Si that are non-zero, and hence we have

#S ≤ |S|. Therefore, the expectation is at most

2
∑

S

ĥ(S)2 · (1− (1− δ)|S|).

On the other hand, the expectation E(x,x̃)∼R

[
|h(x)− h(x̃)|2

]
is given by the following ex-

pression, for ρ = 1− δ:

2E
x

[
h(x)2

]− 2 E
x,w

[
h(x)h(ρx +

√
1− ρ2w)

]
.

We have Ex,w

[
h(x)h(ρx +

√
1− ρ2w)

]
= 〈h, Tρh〉 =

∑
S ĥ(S)2ρ|S| and Ex

[
h(x)2

]
=

∑
S ĥ(S)2,

so the expectation is
2

∑

S

ĥ(S)2(1− (1− δ)|S|).

This concludes the proof of Theorem 9 assuming Lemma 4.4.

5 Proof of Lemma 4.4

In this section we prove Lemma 4.4. Assume that a function e ∈ L2(Rn,N n) with ‖e‖2
2 ≤ s

satisfies:

• With probability at least 1−O( 3
√

s) over (x, x̃) ∼ R, it holds that

|e(x)− e(x̃)| ≤ dR = O( 3
√

s)
√

δ. (6)

• With probability at least Ω(1) over (x, x̃) ∼ C, it holds that

|e(x)− e(x̃)| ≥ dC = Ω(
√

δ). (7)

We show how to obtain a function e′ ∈ L2(Rn,N n) (in fact {0, 1}-valued) that satisfies:

• E(x,x̃)∼R

[
|e′(x)− e′(x̃)|2

]
≤ O( 3

√
s).

• E(x,x̃)∼C

[
|e′(x)− e′(x̃)|2

]
≥ Ω(1).

To this end, we construct two graphs on Rn, GR = (Rn, ER) and GC = (Rn, EC), representing
the function e under random perturbation and under coordinatewise perturbation, respectively.
The graphs are infinite, and we will be abusing notation in the following, but all the arguments
can be made precise by replacing sums by integrals wherever appropriate.
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Perturbation Graphs. The graphs GR and GC have labels on their vertices and weights on
their edges. The label of a vertex x ∈ Rn is e(x).

The graph GR has edges between pairs (x, x̃) such that: (i) The labels on the endpoints
are bounded, |e(x)| , |e(x̃)| ≤ 1. (ii) |e(x)− e(x̃)| ≤ dR. The weight of the edge wR(x, x̃) is
the probability that (x, x̃) is chosen in the random perturbation test. The total edge weight
is wR(ER) ≥ 1 − O( 3

√
s) from Hypothesis (6) and the observation that ‖e‖2

2 ≤ s and thus for
x ∈ N n, |e(x)| ≤ 1 except with probability

√
s.

The graph GC has edges between pairs (x, x̃) such that: (i) The labels on the endpoints are
bounded, |e(x)| , |e(x̃)| ≤ 1. (ii) |e(x)− e(x̃)| ≥ dC . The weight of the edge wC(x, x̃) is the
probability that (x, x̃) is chosen in the coordinate-wise perturbation test. The total edge weight
is wC(EC) ≥ Ω(1) from Hypothesis (7) and since ‖e‖2

2 ≤ s.

Cuts in Perturbation Graphs. We will construct a cut C : Rn → {0, 1}, and this will be
our function e′ ≡ C. Denote by wR(C) and wC(C), the weight of the edges in the graphs GR

and GC respectively that are cut by C. The cut C will satisfy:

1. (Small ER weight is cut:) wR(C) ≤ O( 3
√

s).

2. (Large EC weight is cut) wC(C) ≥ Ω(1).

Let us first check that this proves Lemma 4.4: When choosing (x, x̃) as in the random pertur-
bation test, the probability that the pair (x, x̃) is separated is at most wR(C)+ (1−wR(ER)) ≤
O( 3
√

s). When choosing (x, x̃) as in the coordinatewise perturbation test, the probability the
pair (x, x̃) is separated is at least wC(C) ≥ Ω(1).

Lemma 5.1. There is a distribution over cuts such that:

• Every edge (x, x̃) ∈ ER is cut with probability at most pR,0 ≤ O( 3
√

s)
√

δ.

• Every edge (x, x̃) ∈ EC is cut with probability at least pC,0 ≥
√

δ.

Proof. The distribution over cuts is defined by picking at random λ ∈ [−1, 1]. For every x ∈ Rn

we define C′(x) = 1 if e(x) ≥ λ, and C′(x) = 0 otherwise. A pair (x, x̃) is cut if and only if
λ falls between e(x) and e(x̃). If e(x), e(x̃) ∈ [−1, 1], this happens with probability |e(x)−e(x̃)|

2 .
The lemma follows from the construction of the graph.

We construct the cut C in a randomized way as follows: Let M = d1/pC,0e.
1. For i = 1, . . . , M , draw a cut Ci from the distribution in Lemma 5.1.

2. Let I ⊆ [M ] be chosen by including every i ∈ [M ] in I independently with probability 1
2 .

3. Let C(x) =
⊕

i∈I Ci(x).

Lemma 5.2. The following hold:

• For every edge (x, x̃) ∈ ER, the probability that (x, x̃) is cut by C, is at most pR ≤ O( 3
√

s).

• For every edge (x, x̃) ∈ EC , the probability that (x, x̃) is cut by C, is at least pC ≥ Ω(1).
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Proof. Note that an edge is cut by C if and only if it is cut by an odd number of cuts Ci, i ∈ I.
If (x, x̃) ∈ ER, then by Lemma 5.1, it is cut by any specific Ci with probability at most pR,0.

Hence the probability that it is cut by C is at most M · pR,0 ≤ O( 3
√

s).
If (x, x̃) ∈ EC , then by Lemma 5.1 and the choice of M , with constant probability, the edge is

cut by at least one Ci, i ∈ [M ]. Since I is a random subset of [M ] of half the size, with constant
probability, the edge is cut by an odd number of Ci, i ∈ I, and hence by C.

The above Lemma 5.2 shows that

E [wR(C)] ≤ pR · wR(ER) ≤ pR, and

E [wC(C)] ≥ pC · wC(EC) ≥ Ω(1) · Ω(1) = Ω(1) = p∗.

It follows that there must exist a cut C such that both these hold simultaneously:

wR(C) ≤ 4 · pR

p∗
= O( 3

√
s) and wC(C) ≥ p∗

2
= Ω(1).

Indeed, by an averaging argument, the first condition holds with probability at least 1 − p∗
4

and the second condition holds with probability at least p∗
2 , and hence both conditions hold

simultaneously with probability at least p∗
4 . This completes the proof of Lemma 4.4.

6 Hardness of Robust-3LIN(R)

Armed with the dictator test from Section 4, we are ready to show the UGC-hardness of
Robust-3Lin(R) and prove Theorem 6. For that, we show a reduction from Unique-Game to
Robust-3Lin(R). Let s0 (slightly redefined) and c0 be the constants for the dictator testing
theorem, Theorem 9, so for any anti-symmetric function f ∈ L2(Rn,N n),

E
eq

[
χ|eq|≤c0

√
δ‖f‖2‖feq‖2

2

]
≥ (1− s0)‖f‖2

2 ⇒ f is
(

10
Γδ2

, 100s0

)
-approximate linear junta.

Note that Theorem 9 remains correct if the parameters s0 and c0 are made smaller, so w.l.o.g.
we can assume that these parameters can be made sufficiently small if needed. The constants s
and c for the Robust-3Lin(R) hardness theorem, Theorem 6, depend appropriately on s0 and
c0. In fact, setting s

.= s0
50 and c

.= c0
10 works. Let δ be the completeness parameter from the

statement of the Robust-3Lin(R) hardness theorem, Theorem 6, and b = O(log(1/δ)). We use
the Unique Games Conjecture with completeness 1 − η and soundness ε for sufficiently small
η, ε > 0 and and let k = k(η, ε) be the corresponding number of labels. Given a Unique-Game
instance (G = (V, E), k, {πe}), we reduce to a Robust-3Lin(R) instance (X, E). For conve-
nience, we first describe a non-discretized construction (having variables for every real point in
Rk), and then explain how to discretize the construction and obtain an efficient reduction. The
non-discretized construction is as follows:

• Variables: There is a variable for every vertex v ∈ V and every x ∈ Rk. We denote the
assignment to the variables associated with v by Av : Rk → R. We assume, by folding4,
that Av is anti-symmetric, i.e. ∀x ∈ Rk, Av(−x) = −Av(x). Supposedly, Av(x) = xi

where i ∈ [k] is a label to v.
4Folding means that we have just one variable for every pair x,−x ∈ Rk, and we define Av(−x) = −Av(x).
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• Equations: The distribution over equations: pick a random edge e = (u, v) ∈ E. Sample
an equation according to the following distribution Ee: With equal probability,

– Eu: Perform dictator testing on Au as in Theorem 9 with parameter δ.

– Ev: Perform dictator testing on Av as in Theorem 9 with parameter δ.

– Ee: pick x ∼ N k and produce the equation:

Au(πe(x))−Av(x) = 0,

where πe(x) .= (xπe(1), . . . , xπe(k)).

Note that the coefficients of the equations are in [12 , 2] in magnitude. Note also that every query
is distributed uniformly over v ∈ V , and then for a fixed v, Gaussian distributed over Rk.

6.1 Completeness

Assume that there is a labeling ϕ : V → [k] that satisfies 1 − η fraction of the edges in the
Unique-Game instance (G = (V, E), k, {πe}). We construct from it an assignment A : X → R
for the Robust-3Lin(R) instance (X, E). For every vertex v ∈ V , we let Av(x) = xφ(v).

Note that G is a regular graph and the values of the variables are distributed according to a
standard Gaussian, and hence ‖A‖2

2 = 1. Pick a random edge e = (u, v) ∈ E. The probability
that e is not satisfied by the labeling is at most η and the equations incident on unsatisfied
edges contribute at most O(η) towards the overall norm on the equations. Let us therefore
concentrate on the case that e is satisfied by ϕ. By Theorem 9,

E
eq∼Eu

[
χ|eq|>0 · ‖Aeq‖2

2

] ≤ δ.

E
eq∼Ev

[
χ|eq|>0 · ‖Aeq‖2

2

] ≤ δ.

For every x ∈ Rk, we have Au(πe(x)) = xπe(ϕ(u)) = xϕ(v) = Av(x). Thus

E
eq∼Ee

[
χ|eq|>0 · ‖Aeq‖2

2

]
= 0.

Overall, we have val0(X,E) ≥ 1 − δ − O(η) ≥ 1 − 2δ by choosing η small enough. Finally, we
can truncate all the variables whose magnitude exceeds b = O(log(1/δ)) to zero. The norm on
equations involving these variables is at most, say δ4, and this does not affect the result.

6.2 Soundness

Assume that any assignment to the Unique Game instance (G, k, {πe}) satisfies at most ε fraction
of the edges. Fix an assignment A : X → [−b, b], ‖A‖2

2 = 1. We will show that

E
eq∼E

[
χ|eq|>c

√
δ‖Aeq‖2

2

]
≥ s

.=
s0

50
.

Rewrite the above inequality as:

E
e∈E

[
E

eq∼Ee

[
χ|eq|>c

√
δ‖Aeq‖2

2

]]
≥ s0

50
. (8)
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Define ‖Ae‖2
2

.= 1
2

(‖Au‖2
2 + ‖Av‖2

2

)
. By uniformity, Ee∈E

[‖Ae‖2
2

]
= 1. Also, since the as-

signment is bounded by [−b, b], ‖Ae‖2
2 ≤ b2. We will partition the set of edges into three sets

E = E1 ∪ E2 ∪ E3 where:

• E1
.= {e | ‖Ae‖2 ≤ 2c/c0}.

• E3 has at most O(ε/δ4) fraction of the edges.

It suffices to show that the contribution of every edge towards (8) is lower bounded as:

E
eq∼Ee

[
χ|eq|>c

√
δ‖Aeq‖2

2

]
≥ s0

24
‖Ae‖2

2 − χe∈E1 ·
s0

24
(2c/c0)2 − χe∈E3 · b2, (9)

where χe∈Ei is a {0, 1}-valued indicator variable for e ∈ Ei. Indeed, taking expectation of both
the sides over all edges e ∈ E, we see that

E
e∈E

[
E

eq∼Ee

[
χ|eq|>c

√
δ‖Aeq‖2

2

]]
≥ s0

24
− s0

96
− b2 · Pr [e ∈ E3] ≥ s0

48
−O(ε/δ4)b2 ≥ s0

50
,

since ε can be chosen to be sufficiently small, and 2c/c0 ≤ 1
2 .

Now we show that (9) holds for every edge. For e ∈ E1 ∪E3, this holds trivially as the right
hand side is non-positive. It remains to show that (9) holds for every e ∈ E2 ⊆ E1 and to
define the appropriate partition E1 = E2 ∪ E3. Towards this end, fix an edge e ∈ E2 so that
‖Ae‖2 ≥ 2c/c0. We need to show (9), that is:

E
eq∼Ee

[
χ|eq|>c

√
δ‖Aeq‖2

2

]
≥ s0

24
‖Ae‖2

2.

Case (‖Au‖2 − ‖Av‖2)2 ≥ s0‖Ae‖2
2: By Cauchy-Schwarz inequality,

E
eq∈Ee

[
|eq|2

]
= E

x∈N k

[
(Au(πe(x))−Av(x))2

]

≥ ‖Au‖2
2 − 2‖Au‖2‖Av‖2 + ‖Av‖2

2

= (‖Au‖2 − ‖Av‖2)
2

≥ s0‖Ae‖2
2. (10)

We have5 |eq|2 ≤ 2‖Aeq‖2
2 and thus:

E
eq∈Ee

[
|eq|2

]
≤ E

eq∈Ee

[
χ|eq|>c

√
δ · 2‖Aeq‖2

2

]
+ c2δ.

So,

E
eq∈Ee

[
χ|eq|>c

√
δ‖Aeq‖2

2

]
≥ s0

2
· ‖Ae‖2

2 −
1
2
c2δ ≥ s0

8
· ‖Ae‖2

2.

Since the distribution over equations Ee is an average of Ee, Eu and Ev, we get the following
lower bound as desired:

E
eq∈Ee

[
χ|eq|>c

√
δ‖Aeq‖2

2

]
≥ s0

24
· ‖Ae‖2

2. (11)

5For an equation of the form eq : A(y)−A(x) = 0, we have |eq|2 = |A(y)−A(x)|2 ≤ (A(y)2+A(x)2) = 2‖Aeq‖22.
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Case (‖Au‖2 − ‖Av‖2)2 ≤ s0‖Ae‖2
2: Since ‖Ae‖2

2 = 1
2

(‖Au‖2
2 + ‖Av‖2

2

)
, for s0 small enough,

it holds that ‖Au‖2
2, ‖Av‖2

2 ≥ 1
4‖Ae‖2

2.

Sub-case Au is not a ( 10
Γδ2 , 100s0))-approximate linear junta. In this sub-case, by the

analysis of the dictatorship test,

E
eq∈Eu

[
χ|eq|>c0

√
δ‖Au‖2‖Aeq‖2

2

]
≥ s0‖Au‖2

2.

Since ‖Au‖2 ≥ 1
2‖Ae‖2 ≥ c

c0
, the above inequality implies:

E
eq∈Eu

[
χ|eq|>c

√
δ‖Aeq‖2

2

]
≥ s0

4
‖Ae‖2

2.

Since the distribution over equations Ee is an average of Ee, Eu and Ev, we get the following
lower bound as desired:

E
eq∈Ee

[
χ|eq|>c

√
δ‖Aeq‖2

2

]
≥ s0

12
· ‖Ae‖2

2.

Sub-case Av is not a ( 10
Γδ2 , 100s0)-approximate linear junta. This sub-case is handled

similarly as above.

Thus we are left with the case where both Au and Av are ( 10
Γδ2 , 100s0)-approximate linear

juntas and moreover ‖Au‖2, ‖Av‖2 ≥ 1
2‖Ae‖2 ≥ c

c0
. In particular, there exist linear forms

lu(x) =
∑

i∈Iu
aixi and lv(x) =

∑
i∈Iv

bixi such that |Iu|, |Iv| ≤ J and,

• ‖lu −Au‖2
2 ≤ (Γ + 100s0)‖Au‖2

2.

• ‖lv −Av‖2
2 ≤ (Γ + 100s0)‖Av‖2

2.

Sub-case πe(Iu) ∩ Iv = φ. In this sub-case,

E
eq∈Ee

[
|eq|2

]
= E

x∈Nk

[
(Au(πe(x))−Av(x))2

]

= ‖Au‖2
2 + ‖Av‖2

2 − 2 E
x∈N k

[Au(πe(x))Av(x)]

= 2‖Ae‖2
2 − 2 E

x∈N k
[Au(πe(x))Av(x)]

≥ ‖Ae‖2
2,

provided we bound the second term by ‖Ae‖2
2. This inequality is similar to (in fact stronger

than) Equation (10) and thus enough to get the desired inequality as in Equation (11). It
remains to upper bound:

E
x∈Nk

[Au(πe(x))Av(x)] = E
x∈N k

[(lu(πe(x)) + (Au(πe(x))− lu(πe(x)))) · (lv(x) + (Av(x)− lv(x)))].

(12)

Note that since πe(Iu) ∩ Iv = φ, we have Ex∈N k [lu(πe(x))lv(x)] = 0. Using Cauchy-Schwarz
inequality, we bound

E
x∈Nk

[lu(πe(x))(Av(x)− lv(x))] ≤
√

Γ + 100s0 · ‖Au‖2‖Av‖2 ≤
√

Γ + 100s0‖Ae‖2
2,

and the remaining term is bounded similarly. Thus we get an overall bound of 2
√

Γ + 100s0‖Ae‖2
2

on (12) which is good enough since Γ = 0.05 and s0 can be chosen to be sufficiently small.
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Sub-case remaining: It remains to consider edges e = (u, v) ∈ E where both Au and Av are
( 10
Γδ2 , 100s0)-approximate linear juntas with πe(Iu) ∩ Iv 6= φ. The fraction of such edges is at

most O(ε/δ4), since assigning a label i ∈ Iu, j ∈ Iv at random satisfies the edge with probability
Ω(δ4) and the soundness of the Unique Game instance is at most ε. These edges are classified
as being in E3, completing the proof.

6.3 Discretization

Let us briefly explain how the construction can be discretized. Define L
.= kb, α = γδ/3b. To

obtain a discrete construction, for every vertex v ∈ V , replace Rk with a tiling of [−L, L)k by
the cube [0, α)k. The new variables correspond to representatives of the shifted cube [0, α)k.
In every equation, replace each occurrence of a variable with the appropriate representative.
Replace each equation that depends on a variable outside of [−L,L)k by an equation 0 = 0.
Note that the probability that a Gaussian x ∼ N k falls outside of the cube [−L,L)k is at most

2√
2πb

e−k2b2/2 ≤ δ/4b2.
Since k, b, γ and δ are constants, the construction is of polynomial size. Completeness and

soundness follow from the completeness and soundness of the non-discrete construction: In the
completeness case, by assigning the representatives their dictator values, the values effectively
substituted to the other variables may shift by α compared to their original dictator values. This
may cause equations that were exactly satisfied to become only 3α-approximately satisfied. It
may also change the squared norm (on each equation, and on average over all equations), by
an additive O(αb) ≤ O(γδ). Additionally, we may lose the norm on the equations that were
replaced with 0 = 0, but this norm is at most O(δ). Using appropriate normalization of the
dictators, we attain valγ(X,E) ≥ 1−O(δ).

In the soundness case, an assignment to the discretized construction induces an assignment
to the non-discretized construction, and one can apply the soundness analysis we have. One
needs to account for the norm on equations that were replaced by 0 = 0, but again this norm
is at most O(δ). This concludes the proof of Theorem 6.
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