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Abstract

It is a trivial observation that every decidable set has strings of lengtfth
Kolmogorov complexityog n+O(1) if it has any strings of length at all. Things
become much more interesting when one asks whether a similar property holds
when one considengsource-bounde&olmogorov complexity. This is the ques-
tion considered here: Can a feasible 4etvoid accepting strings of low resource-
bounded Kolmogorov complexity, while still accepting some (or many) strings of
lengthn?

More specifically, this paper deals with two notions of resource-bounded Kol-
mogorov complexity: Kt and KNt. The measure Kt was defined by Levin more
than three decades ago and has been studied extensively since then. The measure
KNt is a nondeterministic analog of Kt. For all stringsKt(x) > KNt(x); the
two measures are polynomially related if and only if NEXFEXP/poly [5].

Many longstanding open questions in complexity theory boil down to the ques-
tion of whether there are sets in P that avoid all strings of low Kt complexity. For
example, the EXP vs ZPP question is equivalent to (one version of) the question of
whether avoiding simple strings is difficult: (EX2 ZPP if and only if there exist
e > 0 and a “dense” set in P having no stringsvith Kt(z) < |z| [4]).

Surprisingly, we are able to shawnconditionallythat avoiding simple strings
(in the sense of KNt complexity) is difficult. Every dense set inMNBo-NP con-
tains infinitely many strings such that KNfz) < |z|° for somee. The proof does
not relativize. As an application, we are able to show that# BE, then accept-
ing paths for nondeterministic exponential time machines can be found somewhat
more quickly than the brute-force upper bound, if there are many accepting paths.
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1 Introduction

It has been observed before that many popular conjectures in complexity theory can
be restated equivalently in terms of questions about the resource-bounded Kolmogorov
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complexity of feasible sets, and that this restatement can serve to highlight some of the
tension among these conjectures. For instance, it is common to conjecture that

1. The containment NTin{e(n)) C DTime(2°((")) is nearly optimal, and that
2. Cryptographically-secure one-way functions exist.

The first of these two conjectures implies that there are polynomial time-bounded Tur-
ing machines that, for infinitely many inputs accept some strings 8", but none
having Kt-complexity less than (say)/5 [2], where Kt is a time-bounded version of
Kolmogorov complexity defined by Levin [15]. (Definitions will be provided in Sec-
tion 2.) In contrast, the second conjecture implies that secure pseudorandom generators
exist [12], which in turn implies that any polynomial time-bounded machmstac-

cept some strings iR™ with Kt-complexity much less thag/n if the machine accepts

at least half of the strings iR” [1]. Thus, if the popular conjectures are true, sets in P
canavoid accepting strings with low Kt-complexity, bonly if they don’t accept many
strings of any given length. If a set in P contains a lot of strings of a given input length,
then itcannotavoid accepting some simple strings, according to the popular belief.

This paper deals with the question of how difficult it is to avoid simple strings
(i.e., strings of low resource-bounded Kolmogorov complexity) while still accepting a
large number of strings. The main contribution of the paper is to present one setting in
which we can replace popular conjecture and vague belief with unconditional theorems,
showing that easy-to-compute setsistcontain simple strings if they contain many
strings. We also present an application of this new insight to the question of whether
accepting computation paths of nondeterministic exponential time machines are easy
to find, assuming “only” E= NE.

Let us introduce some notation, to help us gauge how successfully a set is avoiding
simple strings. For any set C ¥*, define Kty (n) to be mi{Kt(z) : x € A="},
whereA=" = A n X". (For a definition of Levin’s measure Kt), see Section 2.)

If A=" = (), then Ki4(n) is undefined. Note that the rate of growth of %) is

a measure of how successfully avoids strings of low Kt complexity. The rate of
growth of Kt4(n) for setsA in P and P/poly is especially of interest, as can be seen
from the following theorem. (We give a more precise definition of “dense” in Section
3, but for now it is sufficient to consider a set to be “dense” if it contains at gt
strings of each length. An “NE search problem” is the task of mapping an inpub

an accepting computation @f on inputz, if one exists, wheré/ is an NE machine.)

Theorem1 e There is arNE search problem that is not solvable in ti& ™ if
and only if there is a sefl € P and ane > 0 such thatkt4(n) # O(n°) [2,
Theorem 6].

e There is anNE search problem that is not solvable in tid8(™ if and only if
there is a setd € P such that 4(n) # O(logn) [2, Theorem 6].

e EXP ¢ P/polyif and only if for every dense set € P/polyand everye > 0,
Kta(n) = O(n°) [3, Theorem 12].



e Thereis aseB3 € Eand ane > 0 such that, for all large:, there is no circuit of
size2<" acceptingB=" if and only if for every dense sét € P/poly, Kt 4(n) =
O(logn) [3, Theorem 13].

e EXP #£ ZPPif and only if for every dense sdt € Pand every > 0, Kt4(n) =
O(nf) [4].

A nondeterministic analog of Levin’s Kt measure, denoted KNt, was introduced
recently [5]. For any se#i, let KNt4(n) be min{KNt(z) : z € A="}. The rate of
growth of KNt4 (n) is similarly related to open questions in complexity theory:

Theorem 2 [5, Theorem 44] There is a sé& € NE/lin such that for all largen, there
is no nondeterministic circuit of sizZ=™ acceptingB=" if and only if for every dense
setA in NP/polyn coNP/poly KNt 4(n) = O(logn).

Theorem 2 presents a condition regarding KMt) for dense setsl in a nonuni-
formclass, and Theorem 1 contains analogous conditions regarding dense sets in both
uniformandnonuniform classes. It is natural to wonder if Theorem 2 can be extended,
to say something about the corresponding uniform class, and the experience of Theo-
rems 1 and 2 could lead one to expect that such an extension would consist of showing
that a statement about the KNt-complexity of dense sets imNB-NP is equivalent
to some longstanding open question in complexity theory.

Thus it is of interest that our main theorem shawsonditionallythat KNt4 (n)
grows slowly for all dense sets in NPco-NP (and even for all of those dense sets
lying in (NP N co-NP)/n°(M).

The rest of the paper is organized as follows. Definitions and preliminaries are
presented in Section 2. The main results are presented in Section 3. An application
to NE search problems is presented in Section 4. And finally, some musings about
possible improvements to the main result are presented in Section 5.

2 Preliminaries

We assume that the reader is familiar with complexity classes suclZ&PNP, AM,
and PSPACE; for background consult a standard text such as [6]. We use the following
notation for deterministic and nondeterministic exponential-time complexity classes:
E = DTime(2°(™), NE = NTime(20(), EXP = DTime(2""""), and NEXP=
NTime(Q”O(l)). PNPI is the class of languages accepted by polynomial-time oracle
Turing machines with an oracle from NP, where the oracle machine makes atmost
oracle queries on inputs of length

For any complexity clas§, and functioni(n) : IN — IN, letC/h(n) denote the
class of sets3 such that, for some “advice function{n) : IN — X" and some
setA € C, z € Bifand only if (z,a(|z])) € A. Clpoly denoteg ), C/n* + k; Cllin
denoted J, C/kn. The class P/poly has an equivalent characterization as the class
of problems solvable by families of polynomial-size circuits. Note in particular that
(NP N co-NP)/poly is quite possibly a proper subset of NP/polgoNP/poly.



Levin defined Kfx) to be mif|d| + logt : U(d) = =z intime ¢} [15], whereU
is some fixed universal Turing machine. (It is important to note that Levin’s definition
is independentf any run-timet; the “t” that appears in the definition is a quantity
that participates in the minimization expression.) Later, it was observed tha} kt
polynomially related to the oracle circuit size that is required to compute the function
that hasr as its truth table [5], where the oracle is a complete set for E. In order to
obtain a time-bounded notion of Kolmogorov complexity in the spirit of Levin's Kt
function that is related to circuit complexity for more general oracles (including the
empty oracle), a new measure, called KT, was defined [4]:

Definition 1 LetU be a universal Turing machine and |IBtbe an oracle. Define the
measureT? () to be

KT?(z) =min{ |d| +t : UP describes: in timet, (meaning that
Vb € {0,1,%} Vi < |z| + 1,UB(i,b) accepts irt steps iffz; = b)}.

(The notation UB-4(i, b)” indicates that the machin& has random access (or “ora-
cle access”) to both the string and the oracleB. This allows the running time to be
less thanjd|.) We omit the superscrigh if B = 0.

It is known that one can pick a complete é&for E such that Levin’s definition of
Kt(z) is linearly-related to K (z) [4].

A nondeterministic analog of Kt called KNt was recently investigated [5], and it
was shown that KNt:) is linearly related to K (z) for a setD that is complete for
NE. Thus, for this paper, we will let Ki) and KNt{z) denote KT () and KT (z)
for this E-complete sef’ and NE-complete sdb, respectively.

For a given set4, and oracleB, we define KT (n) to be equal to mifKT4 () :

x € A="}. Thus Kty (n) = KT (n), and KNty (n) = KT% (n).

We assume that the reader is familiar with polynomial-time Turing reducibility,
denoted<”.. We also need to make use of reductions computed by polynomial-size
circuits, instead of polynomial-timenachines A P/poly-Turing reduction of a set
to a setB is a family of polynomial-size circuits computing, where the circuits have
oracle gatedor B, in addition to the usual AD and Qr gates. (An oracle gate for
B outputs 1 if the string; that is presented to it as input is an elementof If a
P/poly-Turing reduction has the property that there is no path in the circuit from one

oracle gate to another, then it is called a P/poly-truth-table reduction, deﬂﬁf@&ly.

3 Main Result

The main theorem applies only to languages that have “sufficiently many” strings; we
call such sets “dense”. The following definition makes precise exactly what sort of
“density” is required:

Definition 2 A setA C {0,1}* is densdf there is ak such that for every, there is
somem,n < m < nk + k suchthat AN {0,1}™| > 2™ /m*.



Theorem 3 Let A be a dense set ifNP N co-NP)/a(n) for somea(n) = n°(). Then
for everye > 0 there are infinitely many € A such thakKNt(z) < |z|°.

Proof: Most of the work has already been done in an earlier paper, in which it was
shown thatRkn¢ (the set of “KNt-random strings”, i.e., the set of stringsuch that
KNt(x) > |z]) is not in NPN co-NP [5]. It was noticed only shortly after that paper
was submitted for publication that the lower bound applied not onli®gg;, but in

fact toeverydense setl such that, for some > 0, KNt4(n) # Q(n°). We need to
recall some of the main theorems of earlier work on this topic.

One of the main insights obtained in earlier work is that for “large” complexity
classes, dense sets having only strings of high Kolmogorov complexity are hard under
P/poly reductions. The following definition captures the property that a “large” class
needs to have, in order for the proof to go through:

Definition 3 A setB is PSPACErobust ifP? = PSPACE.

The notion of PSPACE-robustness was defined by Babai et al [8], who observed
that every set that is complete for EXP undé}. reductions is PSPACE-robust. Later,
it was shown that NEXP also has this property [5].

Theorem 4 [4, Theorem 31] LetB be anyPSPACErobust set. Letd be a set such
that for some: > 0 andk, for everyn there is somen such that

e n<m<nkF+k,
o [AN{0,1}™| > 2™ /m*
o KTE(m) > me.
ThenB is reducible to4 via <5/°" reductions.

(This is a slight modification of the statement of the theorem as given in [4]. There,
it was assumed that contains many strings @verylength, and containgo strings
of low KT? complexity. However, the<E/*°"Y reduction that is given in [4] has the
property that, on inputs of length all queries to the oracld have the same length,
and the reduction works properly as long as, for the given lengtd contains many
strings and no strings of low K& complexity. Thus, by simply encoding the length
into the nonuniform advice of thgft/p"ly reduction, the proof given in [4] suffices to
establish Theorem 4.) We remark also that the proof given in [4] proceeds by showing
that A can be used as a test to distinguish truly random strings from pseudorandom
strings produced by a pseudorandom generator constructedBromhus, the same
argument shows tha is reducible to4 even if A contains only dewstrings with low
KT® complexity. Consequently, it is possible to improve the statement of Theorem 3
to say that every dense set(ldP N co-NP) /a(n) hasmanystrings of KNt complexity
< n¢, for infinitely manyn. We do not pursue that generalization here.

Since we are using the definition of KNt as KTor some seiD that is complete
for NE, and since every set that is complete for NE is PSPACE-robust, Theorem 4
immediately yields the following corollary:



Corollary 5 Let A be any dense set such théit 4 (n) = Q(n°) for some: > 0. Then
A is hard forNEXP undergfl/p‘)ly reductions.

We also need to use the fact that afiyhat satisfies the hypothesis of Corollary 5
is also hard for PSPACE under probabilistic reductions:

Theorem 6 [4, Theorem 33 and Lemma 35] Ldt be any set of polynomial density,
such thatt 4 (n) = Q(n¢) for somee > 0. ThenPSPACEC ZPP".

Note that the term “polynomial density” as used in [4] is slightly more restrictive
than the term “dense” as defined in this paper, since a set has “polynomial density” if
it contains many strings a@verylength.

Corollary 7 Let A be any dense set ifNP N co-NP/a(n) such thatKNt 4(n) =
Q(n¢) for somee > 0. ThenPSPACEC | J, (NP N co-NP)/2a(n*) + O(log n).

Proof: Note that Kiy(n) > KNty (n) = Q(n¢). Thus we would like to modify the
proof of Theorem 6 to (nearly) obtain that PSPACEZPP*.

The proof of Theorem 6 given in [4] presents a ZPP reduction with the property that,
on inputs of lengtm, there are lengths,; andms such that all queries to the oracle
have length eithem, or mo. (Queries to lengthn, are used to obtain a string of high
complexity, which is then used in conjunction with the Impagliazzo-Wigderson con-
struction [14] to derandomize a BPReduction, which only makes queries of length
ms.) The lengthmy can be replaced by any, such thatms, < m} < mQO(l),
as long as the reduction is given suitable advice, saying which lengthas suf-
ficiently many strings, and the length; can be replaced by any} at most poly-
nomially larger thann’, again if the reduction is given advice, saying which length
m/ is suitable. Thus the ZPP reduction running in timfe can be simulated by a

(zPPNP N CO-NP /94 (1) 4+ O(log n) computation, where depends ort and on the
density parameters of. The corollary follows by observing that ZP¥F 1 CO-NP _
NP N co-NP. oo

We now proceed with the proof of Theorem 3. The proof is by contradiction:
Assume that4 is a dense set itNP N co-NP)/a(n) for somea(n) = n°(!) such that,
for all largex € A, we have KNtz) > |z|¢. Thatis, KNty (n) = Q(n€).

By Corollaries 5 and 7 we have PSPAGE (NP N co-NP)/n°(") and NEXP C
P4 /poly C p(NP N co-NBy/a(n) ) /poly = (NP N co-NP) /poly.

It is known that if NEXPC (NP N co-NP)/poly then NEXP= AM [5, Theorem
29]. Thus under our assumptions we have

NEXP = AM = PSPACEC (NP co-NP)/n°M)

This is a contradiction, sinc@P N co-NP)/n° ¢ PNPI /5, and it was shown by
Buhrman, Fortnow, and Santhanam [10] that NEXP is not containddfP/n. 00

It would be nice to know if a better upper bound on the KNt-complexity of dense
sets in NPN co-NP (or in P) can be proved.



3.1 Does This Relativize?

The proof of Theorem 3 does not relativize, since it relies on Theorem 6 (which in
turn relies on the characterization of PSPACE in terms of interactive proofs [16, 17])
and also Theorem 28 of [5] (which relies on the characterization of NEXP in terms
of interactive proofs [7]). However, we do not know if the statement of Theorem 3
actually fails relative to some oracle.

Spakowski [18] has pointed out that an oracle construction of Buhrman, Fortnow,

and Laplante [9] might be relevant. They present asatch that CNB‘/m () >

|z|/4 for all z € A, where cNB"" is a notion of 2V"-time-bounded nondetermin-
istic distinguishing complexity”. It is known that CND-complexity is related to KNt
complexity [5], and one can easily show that, for their4et P*, there is some > 0

such that KNf' (z) > |z|¢ for all z € A, where KNt!(z) is the measure that results
when one defines KNt complexity using a universal Turing machine that can access
the oracled. Spakowski suggests that a slight modification of their construction yields
a setA satisfying the same conditions, that contains many strings of lendibr in-
finitely manyn. Thus this comes close to being an oracle relative to which Theorem 3
fails.

4 An Application to Search Problems

One of the aspects of the theory of NP-completeness that makes it so widely applicable,
is the fact that, for NP-complete problersearchis equivalent talecision That s, the
problem ofdecidingmembership in an NP-complete set is polynomially-equivalent to
the problem ofindinga proof of membership. Hartmanis, Immerman, and Sewelson
observed that the proof of equivalence that works for NP-complete problems breaks
down for exponential-time computations, and they asked whether search and decision
are also equivalent for NE-complete problems [11]. A partial answer was provided by
Impagliazzo and Tardos [13], who presented an oracle relative to whiehNE but
relative to which there exists a nondeterministic exponential-time madHisech that

there is no function computable in exponential time that maps each inpatepted

by M to an accepting computation 8f on inputz. An alternative oracle construction

was subsequently given by Buhrman, Fortnow, and Laplante [9].

The trivial brute-force deterministic algorithm for finding accepting computations
of NE machines takes doubly exponential tigte . No significantly better upper
bound is known, even for the special case of finding accepting computations of proba-
bilistic NE machines, that havaanyaccepting computation paths if they have any at
all. This has been the case, even under the assumption thal £

As a consequence of the results of Section 3, we can now say something nontrivial
about an upper bound on the complexity of finding accepting computations of NE ma-
chines if E= NE — at least for certain classes of NE machines. (Actually, it suffices to
use the weaker assumption that NEXFEXP/poly.) Let ZPE be the exponential-time
analog of the complexity class ZPP. Thatlisis in ZPE if there are two nondetermin-
istic Turing machined/, andM; running for time2<" for somec, whereM, accepts
B andM, accepts3, with the property that if: € B, then for at least half of the strings



r of length2¢™, M; acceptse along the computation path given byand ifz ¢ B,
then for at least half of the stringsM, acceptsr along the computation path given
by r. Thus, for every string;, either half of the strings of length2¢/*| are accepting
computations of\/y, or half of the strings are accepting computations dfy. A ZPE
search problentdefined by the maching®, andM;) is the task of taking: as input,
and producing a string as output, that causes eithel, or M, to accept.

Theorem 8 If NEXP C EXP/poly, then for everyZPE search problem, there is a
deterministic algorithm\/ solving it with the property that, for eveey> 0, M runs

in time 22" for infinitely manyz.

Proof: Consider a ZPE search problem defined by machidgand M. Let N be
an NE machine running in tim2" that, on inputz, guesses a string of length2¢™

and accepts if causes eitheM, or M; to accept on input. (Note thatV accepts
everystringz.)

Letd : IN — {0,1}* be a standard bijection (e.gl() is the stringz such that the
binary representation af+ 1 is 1z). Let Wy be the sefr : |r| = n°t! and (some
prefix of) r causesV to accept the string(n)}. Note that, sinced(n)| = O(logn),

Wy isin P, andA is dense (since it contains at least half of the strings of each length
of the formnc+1).

By Theorem 3, for every > 0 there are infinitely many € Wy such that
KNt(x) < |r|°. Since we are assuming that NEXP EXP/poly, it follows that Kt
and KNt are polynomially related [5], and thus we have that for every0 there are
infinitely manyr € Wy such that K¢r) < |r|c. Let C be the E-complete set such that
Kt(z) = KT ().

Consider the following algorithm/: On inputz, computer so thatd(n) = x. For
k = 1 ton¢, for all descriptions! of lengthk, see ifU“¢ describes a string of length
nintimek. If so, and ifr causesV to accept on input, then halt and output

It is straightforward to verify that the algorithd has the properties claimed for it
in the statement of the theorem. m]m|

The conclusion of Theorem 8 holds for a great many more NE search problems
than merely those in ZPE. It holds for any NE machiviéor which the languag@/n
constructed in the proof of Theorem 8 is dense. (This corresponds to those problemsin
NE that are accepted by NE machines that have many accepting computation paths for
at least one string of every length (or, more generally, at least one string out of every
O(1) consecutive lengths).) Rather than creating a new definition to capture this class,
we simply state the following corollary:

Corollary 9 If NEXP C EXP/poly, then for evenyNE search problem defined by an
NE machineN such that the setV is dense, there is a deterministic algorithih
solving it with the property that, for every> 0, M runs in time22"*'" for infinitely
manyz.

It is natural to wonder if E= NE implies faster algorithms faall instances of
ZPE, instead of merely for infinitely many inputs This is essentially a question
of whether polynomial-time computations can accept many strings while avoiding all
simple strings forsomeinput lengths, but not for others. This topic is discussed at
greater length in the next section.



5 Are X" and X™ Fundamentally Different, for n £ m?

In this section, we discuss the KNt complexity of dense sets in P. Theorem 3 says that,
for every dense set € P, there exist infinitely many lengthssuch that4 contains
a string of lengthn having KNt complexity less thane¢. In this section, we observe
that we can essentially swap the quantifiers. There are long segments of consecutive
inputlengthsS = [i,7+ 1, ... ,i¢] such that, for everyn € S, everymachine running
in time m* must accept strings iE™ with KNt complexity at mosin¢ if it accepts
many strings of lengtin. There may be long “deserts” of input lengths where, for all
we know, polynomial-time machines can behave badly by avoiding all of the simple
strings while still accepting many strings. However, we are guaranteed that there are
infinitely many large “oases” in the desert, where machines behave as expected (i.e.,
by accepting some strings with low KNt complexity, if they accept many strings).
Consider the standard universal set for DTinfe: A; = {(i,x) : M, acceptsr
in |z|* stepg, where we assume an enumeration of machines suciifhatcepts:*
in linear time. Leta(n) be defined to be the indeéx< n of the machine\; such that,
among all of the machines/; with j < n that run in timen* on inputs of length
and accept at leagt' /n* strings of lengthn, KNt,(5;,)(n) is maximized. Note that
a(n) is always defined, by our choice 8f. The setS, = {z : My(,)(z) = 1} isin
P/logn and contains at lea8t' /n* strings of each length, and has KNt complexity
asymptotically as high as any dense set in DTinf@.
Define thek-oasisto be the se{n : KNtg, (n) < n'/F}. Itis immediate that the
(k + 1)-oasis is a subset of tHeoasis, for everyt. Also note that, for every > 1,
and everyk, the k-oasis contains infinitely many sequences of consecutive numbers
n,n + 1,...,n¢ since otherwise the s&t, would be a dense set in/Bgn that

would be hard for NEXP under’/?°" reductions (by Theorem 4) and would also
be hard for PSPACE under ZPB(log n) reductions (by Corollary 5), and one would
obtain a contradiction exactly as in the proof of Theorem 3.

That is, thek-oases for largé contain superpolynomially-long sequences of con-
secutive input lengths where all DTifa¢') machines “behave well”, and theoases
for smaller values ok are even larger.

Since there is not a recursive enumeration of pairs of machines that define sets in
NP N co-NP, the strategy that was used in definikgoases” for DTimén*) must be
modified, in order to define an analogous notiok-afasis for the classes NTirpé") N
coNTimgn*). It suffices to make use of @onrecursiveenumeration of pairs of ma-
chines; details will appear in the full version of this paper.

It seems reasonable to conjecture that éachasis is actuallyN (or at least, that
it contains all large natural numbers). Otherwise, for infinitely many lengththere
are circuits of sizen* that accept a large fraction of the strings of lengthbut accept
nothing of small KNt complexity, while this is impossible for other lengths This
would seem to indicate that™ has some structural property that small circuits are
able to exploit, whereas™  has no such structure. HowevEr" seemalevoidof any
useful structure that is not shared B§" for m’ # m.



6 Closing Comments

For sufficiently “powerful” forms of resource-bounded Kolmogorov complexity (such
as KT” whereE is complete for EXPSPACE), the lexicographically first element of
A=" will always have logarithmic complexity, for ang € P [5]. Conceivably, one
could define a version of resource-bounded Kolmogorov complexity related to a low
level of the exponential-time hierarchy (with just a few alternations — and therefore
conceptually “closer” to KNt than K¥) where this same technique could be applied.

It seems unlikely that KNt is powerful enough to always give the lexicographically
least element oA=" logarithmic complexity, for every sed in P, although we know

of no unlikely consequences, if that were to be the case.
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