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Abstract

It is a trivial observation that every decidable set has strings of lengtith
Kolmogorov complexityog n+O(1) if it has any strings of length at all. Things
become much more interesting when one asks whether a similar property holds
when one considengsource-bounde&olmogorov complexity. This is the ques-
tion considered here: Can a feasible 4etvoid accepting strings of low resource-
bounded Kolmogorov complexity, while still accepting some (or many) strings of
lengthn?

More specifically, this paper deals with two notions of resource-bounded Kol-
mogorov complexity: Kt and KNt. The measure Kt was defined by Levin more
than three decades ago and has been studied extensively since then. The measure
KNt is a nondeterministic analog of Kt. For all stringsKt(x) > KNt(x); the
two measures are polynomially related if and only if NEXFEXP/poly [6].

Many longstanding open questions in complexity theory boil down to the ques-
tion of whether there are sets in P that avoid all strings of low Kt complexity. For
example, the EXP vs ZPP question is equivalent to (one version of) the question of
whether avoiding simple strings is difficult: (EX2 ZPP if and only if there exist
e > 0 and a “dense” set in P having no stringsvith Kt(z) < |z| [5]).

Surprisingly, we are able to shawnconditionallythat avoiding simple strings
(in the sense of KNt complexity) is difficult. Every dense set inMNEBoNP con-
tains infinitely many strings: such that KNfz) < |x|° for everye > 0. The
proof does not relativize. As an application, we are able to show thatf EE,
then accepting paths for nondeterministic exponential time machines can be found

*A preliminary version of this work appeared in Proc. Computability in Europe (CiE) 2010 [4].
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somewhat more quickly than the brute-force upper bound, if there are many ac-
cepting paths.
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1 Introduction

It has been observed before that many popular conjectures in complexity theory can
be restated equivalently in terms of questions about the resource-bounded Kolmogorov
complexity of feasible sets, and that this restatement can serve to highlight some of the
tension among these conjectures. For instance, it is common to conjecture that

1. The containment NTin{e(n)) C DTime(2°((")) is nearly optimal, and that
2. Cryptographically-secure one-way functions exist.

The first of these two conjectures implies that there are polynomial time-bounded Tur-
ing machines that, for infinitely many input lengthsaccept some strings 4™, but

none having Kt-complexity less than (say)5 [2], where Kt is a time-bounded ver-
sion of Kolmogorov complexity defined by Levin [18]. (Definitions will be provided in
Section 2.) In contrast, the second conjecture implies that secure pseudorandom gener-
ators exist [14], which in turn implies that any polynomial time-bounded maahunst
accept some strings A" with Kt-complexity much less thag/n if the machine ac-
cepts at least half of the stringsiit [1]. Thus, if the popular conjectures are true, sets

in P canavoid accepting strings with low Kt-complexity, boly if they don’t accept
many strings of any given length. If a set in P contains a lot of strings of a given input
length, then itcannotavoid accepting some simple strings, according to the popular
belief.

This paper deals with the question of how difficult it is to avoid simple strings
(i.e., strings of low resource-bounded Kolmogorov complexity) while still accepting a
large number of strings. The main contribution of the paper is to present one setting in
which we can replace popular conjecture and vague belief with unconditional theorems,
showing that easy-to-compute setsistcontain simple strings if they contain many
strings. We also present an application of this new insight to the question of whether
accepting computation paths of nondeterministic exponential time machines are easy
to find, assuming “only” E= NE.

Let us introduce some notation, to help us gauge how successfully a set is avoiding
simple strings. For any set C ¥*, define Kty (n) to be mi{Kt(z) : x € A="},
whereA=" = A n X". (For a definition of Levin’s measure Kt), see Section 2.)

If A=™ = {, then Kty(n) is undefined. Note that the rate of growth of &) is

a measure of how successfully avoids strings of low Kt complexity. The rate of
growth of Kt4(n) for setsA in P and P/poly is especially of interest, as can be seen
from the following theorem. (We give a more precise definition of “dense” in Section
3, but for now it is sufficient to consider a set to be “dense” if it contains at gt
strings of each length. An “NE search problem” is the task of mapping an inpub

an accepting computation @f on inputz, if one exists, wheré/ is an NE machine.)



Theorem1 1. There is arNE search problem that is not solvable in tid& " if
and only if there is a sefl € P and ane > 0 such thatkt4(n) # O(n°) [2,
Theorem 6]. (The set need not be dense.)

2. There is arNE search problem that is not solvable in tir?8 ™) if and only if
there is a setd € P such thatkt4(n) # O(logn) [2, Theorem 6]. (The sett
need not be dense.)

3. EXP ¢ P/polyif and only if for every dense set € P/polyand everye > 0,
Kta(n) = O(n°) [3, Theorem 12].

4. Thereis a seB € Eand ane > 0 such that, for all large:, there is no circuit of
size2<™ acceptingB=" if and only if for every dense sét € P/poly, Kt 4(n) =
O(logn) [3, Theorem 13].

5. EXP # ZPPif and only if for every setl € P of polynomial density and every
e > 0,Kta(n) = O(n) [5].

A nondeterministic analog of Levin's Kt measure, denoted KNt, was introduced
recently [6]. For any se#i, let KNt4(n) be min{KNt(z) : z € A="}. The rate of
growth of KNt4 (n) is similarly related to open questions in complexity theory:

Theorem 2 [6, Theorem 44] There is a sé& € NE/lin such that for all largen, there
is no nondeterministic circuit of sizZ=™ acceptingB=" if and only if for every dense
setA in NP/polyn coNP/poly KNt 4(n) = O(log n).

Theorem 2 presents a condition regarding KMt) for dense setsl in a nonuni-
formclass, and Theorem 1 contains analogous conditions regarding dense sets in both
uniformandnonuniform classes. It is natural to wonder if Theorem 2 can be extended,
to say something about the corresponding uniform class, and the experience of Theo-
rems 1 and 2 could lead one to expect that such an extension would consist of showing
that a statement about the KNt-complexity of dense sets imRBNP is equivalent to
some longstanding open question in complexity theory.

Thus it is of interest that our main theorem shawsonditionallythat KNt (n)
grows slowly for all dense sets in NFPcoNP.

The rest of the paper is organized as follows. Definitions and preliminaries are
presented in Section 2. The main results are presented in Section 3. An application to
NE search problems is presented in Section 4.

2 Preliminaries

We assume that the reader is familiar with complexity classes suctZ&PNP, AM,
and PSPACE; for background consult a standard text such as [7]. We use the following

1As discussed in Section 3, there is a slight difference between a “dense set” and a “set of polynomial
density” which we prefer to ignore in this introduction. For the other parts of this theorem, the stated
equivalence holds both for “dense sets” and “sets of polynomial density”; however it is not known if “set of
polynomial density” can be replaced by “dense set” here.



notation for deterministic and nondeterministic exponential-time complexity classes:
E = DTime(2°(), NE = NTime(20(), EXP = DTime(2""), and NEXP =
NTime(Q”O(”). PYPI"] s the class of languages accepted by polynomial-time oracle
Turing machines with an oracle from NP, where the oracle machine makes at most
oracle queries on inputs of length

For any complexity clas§, and functioni(n) : IN — IN, let C/h(n) denote the
class of sets3 such that, for some “advice functioa({n) : IN — X" and some
setA € C, z € Bifand only if (z,a(|z])) € A. Clpoly denoteg J, C/n* + k; Cllin
denoted J, C/kn. The class P/poly has an equivalent characterization as the class
of problems solvable by families of polynomial-size circuits. Note in particular that
(NP N coNP/poly is quite possibly a proper subset of NP/polgoNP/poly.

Levin defined K{z) to be mix{|d| + logt : U(d) = z intime ¢t} [18], whereU
is some fixed universal Turing machine. (It is important to note that Levin’s definition
is independenbf any run-timet; the “t” that appears in the definition is a quantity
that participates in the minimization expression.) Later, it was observed tha} it
polynomially related to the oracle circuit size that is required to compute the function
that hase as its truth table [6], where the oracle is a complete set for E. In order to
obtain a time-bounded notion of Kolmogorov complexity in the spirit of Levin's Kt
function that is related to circuit complexity for more general oracles (including the
empty oracle), a new measure, called KT, was defined [5]:

Definition 1 LetU be a universal Turing machine and |IBtbe an oracle. Define the
measureT? () to be

KT?(z) =min{ |d| +t : UB describes: in timet, (meaning that
Vb € {0,1,%} Vi < |z| + 1,UB(i,b) accepts irt steps iffz; = b)}.

(The notation ‘U5-%(i, b)” indicates that the machin& has random access (or “ora-
cle access”) to both the string and the oracleB. This allows the running time to be
less thanjd|.) We omit the superscrigh if B = 0.

It is known that one can pick a complete é&for E such that Levin's definition of
Kt(z) is linearly-related to K (z) [5].

A nondeterministic analog of Kt called KNt was recently investigated [6], and it
was shown that KNt:) is linearly related to K (z) for a setD that is complete for
NE. Thus, for this paper, we will let Ki) and KNt{z) denote KT () and KT (z)
for this E-complete sef’ and NE-complete sdb, respectively.

For a given setd, and oracleB, we define KT (n) to be equal to mifKT? (z) :

x € A="}. Thus Kty (n) = KT (n), and KNty (n) = KT% (n).

We assume that the reader is familiar with polynomial-time Turing reducibility,
denoted<”.. We also need to make use of reductions computed by polynomial-size
circuits, instead of polynomial-timenachines A P/poly-Turing reduction of a set
to a setB is a family of polynomial-size circuits computing, where the circuits have
oracle gatedor B, in addition to the usual AD and Qr gates. (An oracle gate for
B outputs 1 if the stringy that is presented to it as input is an elemenfzof If a
P/poly-Turing reduction has the property that there is no path in the circuit from one

oracle gate to another, then it is called a P/poly-truth-table reduction, deﬂﬁf@&ly.



3 Main Result

The main theorem applies only to languages that have “sufficiently many” strings; we
call such sets “dense”. The following definition makes precise exactly what sort of
“density” is required:

Definition 2 A setA C {0, 1}* is densef there is ak such that for every. there is
somem withn < m < n* + k such thatA n {0,1}™| > 2™ /m*.

Theorem 3 Let A be a dense set iNPN coNP. Then for everye > 0 there are
infinitely manyx € A such thakkNt(z) < |z|°.

Proof: Most of the work has already been done in an earlier paper, in which it was
shown thatRkn (the set of “KNt-random strings”, i.e., the set of stringsuch that
KNt(z) > |z|) is notin NPN coNP [6]. It was noticed only shortly after that paper
was submitted for publication that the lower bound applied not onlRgg;, but in

fact toeverydense setl such that, for some > 0, KNt4(n) = Q(n€). We need to
recall some of the main theorems of earlier work on this topic.

One of the main insights obtained in earlier work is that for “large” complexity
classes, dense sets having only strings of high Kolmogorov complexity are hard under
P/poly reductions. The following definition captures the property that a “large” class
needs to have, in order for the proof to go through:

Definition 3 A setB is PSPACErobust ifP? = PSPACE.

The notion of PSPACE-robustness was defined by Babai et al. [9], who observed
that every set that is complete for EXP ungé}. reductions is PSPACE-robust. Later,
it was shown that NEXP also has this property [6].

Theorem 4 [5, Theorem 31] LetB be anyPSPACErobust set. Letd be a set such
that for some: > 0 andk, for everyn there is somen such that

e n<m<nF+Ek,
o |AN{0,1}"| > 27 /m*
e KTE(m) > m¢.
ThenB is reducible to4 via <5/°" reductions.

(This is a slight modification of the statement of the theorem as given in [5]. There,
it was assumed that contains many strings @&verylength, and containso strings
of low KT? complexity. However, the<E/P°"Y reduction that is given in [5] has the
property that, on inputs of length all queries to the oraclg have the same length,
and the reduction works properly as long as, for the given lengtl contains many
strings and no strings of low K& complexity. Thus, by simply encoding the length
into the nonuniform advice of thgft/p"ly reduction, the proof given in [5] suffices to
establish Theorem 4.)

Since we are using the definition of KNt as KTor some setD that is complete
for NE, and since every set that is complete for NE is PSPACE-robust, Theorem 4
immediately yields the following corollary:



Corollary 5 Let A be any dense set such théit 4 (n) = Q(n°) for some: > 0. Then
A is hard forNEXP undergfl/poly reductions.

We also need to use the result that ahyhat satisfies the hypothesis of Corollary
5is also hard for PSPACE under probabilistic reductions:

Theorem 6 [5, Theorem 33 and Lemma 35] Ldt be any set of polynomial density,
such thatt 4 (n) = Q(n¢) for somee > 0. ThenPSPACEC ZPP".

Note that the term “polynomial density” as used in [5] is slightly more restrictive
than the term “dense” as defined in this paper, since a set has “polynomial density” if
it contains many strings averylength.

Corollary 7 Let A be any dense set INP N coNPsuch thatkKNt 4(n) = Q(n€) for
somee > 0. ThenPSPACEC (NP N coNP)/O(logn).

Proof: Note that Kiy(n) > KNt4(n) = Q(n¢). Thus we would like to modify the
proof of Theorem 6 to (nearly) obtain that PSPACEZPP*.

The difficulty is that in Corollary 7, we have a weaker notion of density than in
Theorem 6. The proof of Theorem 6 given in [5] presents a ZPP reduction with the
property that, on inputs of length, there are lengths:; andms such that all queries
to the oracle have length either; or msy. (Queries to lengthn, are used to obtain
a string of high complexity, which is then used in conjunction with the Impagliazzo-
Wigderson construction [17] to derandomize a BPfduction, which only makes
queries of lengthn,.) The lengthmy can be replaced by any), such thatms, <
mh < m§<1>, as long as the reduction is given suitable advice, saying which length
mf has sufficiently many strings, and the length can be replaced by any] at
most polynomially larger tham/,. Thus the ZPP reduction running in timé can be

simulated by gzPPVP 1 €ONP) /1001 computation, where depends otk and on

the density parameter af. The corollary follows by observing that zPB N coNP_
NP N coNP.

Although the informal presentation given in the preceding paragraph is essentially
correct, one does need to be a bit careful, in order to make sure that one gives an
algorithim that can be implemented in NFcoNP, which works correctly if given
the correct advice, instead of merely giving an NP/polgoNP/poly algorithm (i.e.,
an algorithm that exhibits NP coNP-like behavioonly if given the proper advice).
Thus we present a few more details.

Our NPN coNP algorithm takes a tuple;, m2) as input, and first guesses a possi-
ble value form; (among polynomially-many possibilities, chosen to be sufficiently
large in relation toms) and guesses a stringin A of lengthm,. BecauseA is
dense, there will always be (several) computations that succeed in finding a string
z € A; any computation path that fails to find such a string will simply reject. Be-
cause KNt (n) = Q(n°), the stringz can be viewed as the truth table of a function
that requires exponentially-large oracle circuits, for any oracle from NE [6]. Thus, in
particular, it requires exponentially large oracle circuits when the oradeasd hence
it can be used as the “hard function” in applying the Impagliazzo-Wigderson genera-
tor [17], to derandomize a BPPcomputation (as in the proof of Theorem 6 given in



[5]). Itis important to note thagverystring in A has high complexity, and thus every
computation that carries out a derandomized simulation of the'R®putation will
agree on whether to accept or rejécthis part of the computation is completely de-
terministic, except for querying the oracle SinceA is in NPN coNP, the answers
to each query can be verified (and any computation path that fails to verify a query
answer can simply reject). Our NP (coNP) algorithm will simply accept (reject) if this
deterministic part of the simulation accepts. This shows that we have an algorithm in
NP N coNP; this algorithm can be trusted to give the correct answer aboutaripift
is given the proper lengthus as advice, giving a length wherecontains many strings.
O

We now proceed with the proof of Theorem 3. The proof is by contradiction:
Assume thatd is a dense set in NR coNP such that, for all large € A, we have
KNt(z) > |z|¢. Thatis, KNty (n) = Q(n°).

By Corollaries 7 and 5 we have PSPACE(NP N coNP)/O(logn) and NEXPC
P4 /poly C p(NP N CONH/O(log")/poly = (NP N coNP)/poly.

It is known that if NEXPC (NP N coNP)/poly then NEXP= AM [6, Theorem
29]. Thus under our assumptions we have

NEXP = AM = PSPACEC (NP N coNP)/O(logn).

This is a contradiction, sinc@P N coNP /O(logn) € PNP! /i, and it was shown
by Buhrman, Fortnow, and Santhanam [11] that NEXP is not containeb‘ﬁﬁ”@n.
O
It would be nice to know if a better upper bound on the KNt-complexity of dense
sets in NP0 coNP (or in P) can be proved.

3.1 Does This Relativize?

The proof of Theorem 3 does not relativize, since it relies on Theorem 6 (which in
turn relies on the characterization of PSPACE in terms of interactive proofs [19, 21])
and also Theorem 28 of [6] (which relies on the characterization of NEXP in terms
of interactive proofs [8]). However, we do not know if the statement of Theorem 3
actually fails relative to some oracle.

In this section, we present an oracle relative to which there is 4 seP such that
(a) for infinitely many lengths, A contains at least half of the strings of lengthand
(b) A contains no strings of KNt complexity less thah (even fore very close to 1).
The setA fails to be “dense”, becausedf contains any strings of length then for all
m such thath < m < 2", A=™ = (). Thus this fails to be an oracle relative to which
the claim of Theorem 3 fails.

We find it convenient to formulate our proof in terms of nondeterminidigtin-
guishingcomplexity, various versions of which have been studied in different contexts
(see, e.g. [10, 6]). The following definition is from [6].

2An earlier version of this paper [4] claimed that the conclusion of Theorem 3 holds for every dense set
in (NP coNP)/n°(), but the proof fails, because the condition thatave high KNt-complexity seems
hard to guarantee in that setting.



Definition 4 Let U be a nondeterministic Turing machine. DefidBDty () to be
min{|d| + logt : Vy € Il U4(y) runs in timet and accepts if = y/}.

As usual, we select a fixed fast universal nondeterministic machjred define
KNDt(x) to beKNDt (x). Via standard arguments it follows that for d@l’, we have
KNDt(z) < KNDty(x) + ¢ for some constant

Theorem 8 For eache < 1, there exists a set such that
e for infinitely manyn, |A="| > 27—, and
e forall z € A, KNDt*(z) > |z|c.

Proof: This proof is based on proofs of results in [12] and [10].
We created in stages. We start witd := (.

Stage s.We pick a large: such that adding strings of lengthto A does not influence
the construction in previous stages. [Rt= ©=" (the set of “nondeterministic pro-
grams” of length< n¢). We construct a seB C X" with |B| > 2! such that for
eachd € P, one of the following is true:

e UAYB:d gccepts no string i3, or

e UAYB.d gccepts at least two different strings of length
This will ensure that for any: € B, KNDt4“Z(2) > ne. (We will clock all these
computations such that they will reject if they take time more tkian)
Construction, phase 1

1. H:=%"

2. A:=0.

3. while there exisp € P—A andR C X" such thatR| < 2°" andvX C H—R,
X NLUAYXr) = do

4. H:=H-R
5 A:=AU{p}
6. end while

Observations about phase 1
After phase 1, the following are true:

e Foreveryp € A, we have
VX C H, X N LUAYXP) = .

Throughout stage, B will always be a subset off. Hence we only need to
take care of the programsc P — A, i.e., we only have to ensure that for every
p € P — A, UAYEP accepts at least two different strings of length



e If Bisany subset off such thatH — B| < 2°, then for eaclp € P — A, we
have:

3X C H,3y € X s.t. UMYX P accepts).
and in particular, foB = H:
3X C B, 3y € X s.t. UAYXP accepty).

(This holds because otherwise thaile loop would have continued, by adding
ptoA))

e In phase 1, we start witiif := X" and then remove no more thaR| - 2°"°
strings fromH . Thus after phase 1,

|H| 2 on _ |P|25’n‘ Z on _ 2n‘+1 . 2577," —9on _ 26n"+1.

Construction, phase 2

EnumerateP® — A by p1, po,... ,peand letv = 3- 2" - |P|.
1. B.=H
2. fori:=1tofdo
3. forj:=1tovdo

4, Pick a minimalX C B s.t. UAYX:Pi accepts somg € X. Letp be an
accepting path for such a string

5. Qp,.j = {a € 2" | ais queried orp} U {y}.
6. Q;J = Qp;; NX.

7. g = @pii — X

8. Ypij = Y-

9. B:=B—Qp, ;.

10. end for

11. end for

Observations about phase 2
¢ In phase 2, we remove no more than
|Plv2™ = |P|-3-2" -|P|- 2"

strings fromB (note that2”" is the bound for the length ¢f), which is smaller
than25"" for largen. By an observation made after phase 1, this implies that in
line 4 itis always possible to pick the s&t



e Aswe remove no more thai"" strings fromB in phase 2, we havél| — | B| <
257" and therefore|B| > 2" — 267 +1 _ 257" > 9n—1 for large enough. In
the remainder of stage we will only add strings taB. Hence the final seB
will also have at leas2”~! strings.

e The setx); ; are all disjoint.
e The stringgy,, ; are all distinct.

e B is disjoint with each of the setg,, ;, and the set§)

Qi’h NE

g0 @nd@ . partition

Construction, phase 3 (selection phase)

In this phase, we use the information obtained in phase 2 to finallipgeich that for
everyp € P — A, UAYBP accepts at least two different strings of lengthlt is easy
t0 see that/ALY:r: (yp,.;) accepts for any” with Q+ ; SYandQ, ;nY =0.

We will find for eachp; an index set?; C {1, 2 ., v} with |P| > 2 such that
the following is satisfied:

Foralli,i € {1,2,... ./} and allj € P, andj’ € Py,

Q;’jﬁQ;i,’j, = 0. Q)
Now we define our final se® as

B=Bu |J @,

i€{1,... £},jEP;

It is easy to see that for eaéte {1,...,¢}, UAYBPi(y,. .) accepts for each € P;.
Thus for each € {1,... ¢}, UAYB-Pi accepts at least two different strings of length
n.

We setd := AU B, and go to stage + 1.
It remains to describe how to find the index sBfs

. Foreach € {1,... ¢/} andj € {1,...v}, set pair(p;, 7) unmarked.

. for 7 := ¢ to 1 do twice

Mark (pia j)

Mark all (p;/, /) with ¢’ < i or (i’ = i andj’ < j) satlsfy|nng i NQy, 5 #
0.

6. end for
7. Foreach € {1,... ¢}, let P, := {j| (p:, ) is not marked.

1
2
3.  Pick the largest such tha{p;, 7) is unmarked.
4
5

Observations about phase 3

10



e The setifr are all disjointand all setg,,. ; are of size at mog™* (because of
the bound for the computation time). Hence in each run ofdhdoop, each of
the two@,, ; can intersect with at mogt*” different setsQ;i,J,, which means

that in each run of théor loop, we mark no more tha2(2"" + 1) pairs. Thus
altogether, in phase 3 we mark no more th&n- 2(2"° + 1) pairs, which is
smaller tharny — 2 for largen. However, for each € {1,... , ¢}, we started with
v different unmarked pairg;, *). Hence there is always an unmarkeg, j) in
line 3, and foreach € {1, ..., ¢}, at least two unmarked pai(s;, *) remain at
the end. Thus for eache {1,...,¢}, |P| > 2.

e Leti, i’ € {1,...,¢} andj,j’ € {1,...,v} be arbitrary withi’ < i or (i’ =+
andj’ < j). The construction in phase 2 already ensured that

Q5 N Q5 = 0.
Phase 3 additionally ensures that for unmarked pairs, i.e., fgr all P, and
j € Py,

Q; 2J! n Qpnj 0.

This shows that the constructed index setsatisfy (1).
a

Corollary 9 For eache < 1, there exists a set such that
o for infinitely manyn, |[A="| > 27—, and
e forall z € A, KNDt*(z) > |zl°.

Proof: Follows easily since it is shown in [6, Thm. 58] that KNB} = KNt(z) +
O(log |z|), and the proof relativizes]

4  An Application to Search Problems

One of the aspects of the theory of NP-completeness that makes it so widely applicable,
is the fact that, for NP-complete problersearchis equivalent talecision That s, the
problem ofdecidingmembership in an NP-complete set is polynomially-equivalent to
the problem ofiindinga proof of membership. Hartmanis, Immerman, and Sewelson
observed that the proof of equivalence that works for NP-complete problems breaks
down for exponential-time computations, and they asked whether search and decision
are also equivalent for NE-complete problems [13]. A partial answer was provided by
Impagliazzo and Tardos [16], who presented an oracle relative to whiehNE but
relative to which there exists a nondeterministic exponential-time madHisech that

there is no function computable in exponential time that maps each inpatepted

by M to an accepting computation 8f on inputz. An alternative oracle construction

was subsequently given by Buhrman, Fortnow, and Laplante [10].

11



The trivial brute-force deterministic algorithm for finding accepting computations
of NE machines takes doubly exponential tigie ™. No significantly better upper
bound is known, even for the special case of finding accepting computations of proba-
bilistic NE machines, that hawvaeanyaccepting computation paths if they have any at
all. This has been the case, even under the assumption thatE.

As a consequence of the results of Section 3, we can now say something nontrivial
about an upper bound on the complexity of finding accepting computations of NE ma-
chines if E= NE — at least for certain classes of NE machines. (Actually, it suffices to
use the weaker assumption that NEXFEXP/poly.) Let ZPE be the exponential-time
analog of the complexity class ZPP. Thatfisis in ZPE if there are two nondetermin-
istic Turing machined/, andM; running for time2<” for somec, whereM, accepts
B andM, accepts3, with the property that if: € B, then for at least half of the strings
r of length2¢*, M; acceptse along the computation path given byand ifz ¢ B,
then for at least half of the stringsM, acceptsr along the computation path given
by r. Thus, for every string;, either half of the strings of length2¢/*! are accepting
computations of\/y, or half of the strings are accepting computations dfy. A ZPE
search problentdefined by the maching®, andM;) is the task of taking: as input,
and producing a string as output, that causes eithef, or M to accept.

Theorem 10 If NEXP C EXP/poly, then for everyZPE search problem, there is a
deterministic algorithm\/ solving it with the property that, for eveey> 0, M runs
in time 22" for infinitely manyz.

Proof: Consider a ZPE search problem defined by machidgand M. Let N be
an NE machine running in timg*" that, on inputz, guesses a string of length2¢"
and accepts if- causes eitheM or M; to accept on input. (Note thatV accepts
everystringz.)

Letd : IN — {0,1}* be a standard bijection (e.gl(i) is the stringx such that the
binary representation of+ 1 is 1z). Let

Wy = {r:(some prefix ofy causesv
to accept the string(n), wheren“** = |r|}.

Note that, sincéd(n)| = O(logn), Wy is in P, andiVy is dense (since it contains at
least half of the strings of each length of the forfit!).

By Theorem 3, for every > 0 there are infinitely many € Wy such that
KNt(r) < |r|¢. Since we are assuming that NEXP EXP/poly, it follows that Kt
and KNt are polynomially related [6], and thus we have that for every0 there are
infinitely manyr € Wy such that K¢r) < |r|c. Let C be the E-complete set such that
Kt(z) = KT ().

Consider the following algorithm/: On inputz, computer so thatd(n) = x. For
k = 1 ton¢, for all descriptions! of lengthk, see ifU“¢ describes a string of length
n¢intimek. If so, and ifr causesV to accept on input, then halt and output

It is straightforward to verify that the algorithtd has the properties claimed for it
in the statement of the theorem.

The conclusion of Theorem 10 holds for a great many more NE search problems
than merely those in ZPE. It holds for any NE machiviéor which the languag®/n
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constructed in the proof of Theorem 10 is dense. (This corresponds to those problems
in NE that are accepted by NE machines that have many accepting computation paths
for at least one string of every length (or, more generally, at least one string out of every
O(1) consecutive lengths).) Rather than creating a new definition to capture this class,
we simply state the following corollary:

Corollary 11 If NEXP C EXP/poly, then for everyNE search problem defined by an
NE machineN such that the sell/y is dense, there is a deterministic algorithi
solving it with the property that, for every> 0, M runs in time22""' for infinitely
manyz.

As stated, Theorem 10 is actually quite a bit weaker than a result presented by
Impagliazzo, Kabanets and Wigderson [15] where a stronger conclusion is shown
to follow from a weaker hypothesis. (It does not appear that Corollary 11 is sub-
sumed by [15].) More specifically, Impagliazzo, Kabanets, and Wigderson show that
if EXP # ZPP, then ZPE search problems can be solved not merely irefime for
infinitely manyz, but forall  of lengthn for infinitely manyn [15, Theorem 47]. (The
statement of their Theorem 47 does not explicitly give a running time for ZPE search
problems, and instead is stated in terms of an upper bound for recoglanigages
in ZPE, but their proof actually shows how to solve ZPE search problems.) Their con-
clusion is obviously stronger than the conclusion of Theorem 10; in order to see that
the hypothesis of Theorem 10 is stronger, we need to show why NEXXP/poly
implies ZPP=#£ EXP. If NEXP C EXP/poly and ZPP= EXP, then EXPC P/poly,
and thus NEXPC P/poly, which implies NEXP= MA [15, Theorem 23]. Thus
NEXP = EXP = ZPP, which contradicts the nondeterministic time hierarchy theorem
[20].

It is possible to give a more direct proof of this result of Impagliazzo, Kabanets,
and Wigderson, by making use of part 5 of Theorem 1 (which was not available to
them):

Theorem 12 ([15, Theorem 47]) HFEXP # ZPP, then, for every > 0, ZPE search
problems can be solved in tiad""' for all = of lengthn, for infinitely manyn.

Proof: By Theorem 1, we know that if EXR4 ZPP, then for every set € P of
polynomial density, for every > 0, Kt 4(n) = O(n°®).
As in the proof of Theorem 10, consider a ZPE search problem defined by machines
My andM, and letN be an NE machine running in tings” that, on inputz, guesses
a stringr of length2¢™ and accepts if causes eithek{, or M; to accept on input.
Instead of the sélly that is defined in the proof of Theorem 10, consider the set
Wi {r:2m2em < |p| < 2m+12¢0m+1) "wherer = 717y ... ram 2 fOr some string,
and for each < 2™ r; is a string of lengtt2™ encoding an accepting computation of
N on theith string of lengthn }. (A similar construction is employed by Impagliazzo,
Kabanets, and Wigderson.) Note th&, is in P, and has polynomial density (since
it contains at least half of the strings of each leng)h Thus by our assumption,
Kty (n) = O(nc).
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Now consider the following modification to the algorithid from the proof of
Theorem 10: On input of lengthm, letx be theith string of lengthn in lexicograph-
ical order. Fork = 1 to n°, for all descriptions? of lengthk, see ifU“¢ describes
a stringr of length betweeR™2°™ and2”+12¢(m+1) in time k. If so, then letr; be
the substring of length“™ starting at positiorfi — 1)2™. If r; causesV to accept on
inputz, then halt and output;.

Note that for alk > 0, for infinitely manym we are guaranteed to find a description
d of length at most = (2)¢ such that/“"¢ describes a string € W, which means
thateverysubstring-; of » causesV to accept théth string of lengthn. O

5 Closing Comments

For sufficiently “powerful” forms of resource-bounded Kolmogorov complexity (such
as KT? whereE is complete for EXPSPACE), the lexicographically first element of
A=" will always have logarithmic complexity, for anyf € P [6]. Conceivably, one
could define a version of resource-bounded Kolmogorov complexity related to a low
level of the exponential-time hierarchy (with just a few alternations — and therefore
conceptually “closer” to KNt than K) where this same technique could be applied.

It seems unlikely that KNt is powerful enough to always give logarithmic complexity
to the lexicographically least element 4f", for every setd in P, although we know

of no unlikely consequences, if that were to be the case.
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