
Avoiding Simplicity is Complex∗

Eric Allender
Department of Computer Science

Rutgers University
Piscataway, NJ 08855, USA

allender@cs.rutgers.edu

Holger Spakowski
Department of Mathematics & Applied Mathematics

University of Cape Town
Rondebosch 7701, South Africa
Holger.Spakowski@uct.ac.za

October 29, 2010

Abstract

It is a trivial observation that every decidable set has strings of lengthn with
Kolmogorov complexitylog n+O(1) if it has any strings of lengthn at all. Things
become much more interesting when one asks whether a similar property holds
when one considersresource-boundedKolmogorov complexity. This is the ques-
tion considered here: Can a feasible setA avoid accepting strings of low resource-
bounded Kolmogorov complexity, while still accepting some (or many) strings of
lengthn?

More specifically, this paper deals with two notions of resource-bounded Kol-
mogorov complexity: Kt and KNt. The measure Kt was defined by Levin more
than three decades ago and has been studied extensively since then. The measure
KNt is a nondeterministic analog of Kt. For all stringsx, Kt(x) ≥ KNt(x); the
two measures are polynomially related if and only if NEXP⊆ EXP/poly [6].

Many longstanding open questions in complexity theory boil down to the ques-
tion of whether there are sets in P that avoid all strings of low Kt complexity. For
example, the EXP vs ZPP question is equivalent to (one version of) the question of
whether avoiding simple strings is difficult: (EXP= ZPP if and only if there exist
ε > 0 and a “dense” set in P having no stringsx with Kt(x) ≤ |x|ε [5]).

Surprisingly, we are able to showunconditionallythat avoiding simple strings
(in the sense of KNt complexity) is difficult. Every dense set in NP∩ coNP con-
tains infinitely many stringsx such that KNt(x) ≤ |x|ε for every ε > 0. The
proof does not relativize. As an application, we are able to show that if E= NE,
then accepting paths for nondeterministic exponential time machines can be found

∗A preliminary version of this work appeared in Proc. Computability in Europe (CiE) 2010 [4].

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 55 (2010)

somewhat more quickly than the brute-force upper bound, if there are many ac-
cepting paths.

Key Words: Hitting Sets, Kolmogorov Complexity, Complexity Theory

1 Introduction

It has been observed before that many popular conjectures in complexity theory can
be restated equivalently in terms of questions about the resource-bounded Kolmogorov
complexity of feasible sets, and that this restatement can serve to highlight some of the
tension among these conjectures. For instance, it is common to conjecture that

1. The containment NTime(t(n)) ⊆ DTime(2O(t(n))) is nearly optimal, and that

2. Cryptographically-secure one-way functions exist.

The first of these two conjectures implies that there are polynomial time-bounded Tur-
ing machines that, for infinitely many input lengthsn, accept some strings inΣn, but
none having Kt-complexity less than (say)n/5 [2], where Kt is a time-bounded ver-
sion of Kolmogorov complexity defined by Levin [18]. (Definitions will be provided in
Section 2.) In contrast, the second conjecture implies that secure pseudorandom gener-
ators exist [14], which in turn implies that any polynomial time-bounded machinemust
accept some strings inΣn with Kt-complexity much less than

√
n if the machine ac-

cepts at least half of the strings inΣn [1]. Thus, if the popular conjectures are true, sets
in P canavoid accepting strings with low Kt-complexity, butonly if they don’t accept
many strings of any given length. If a set in P contains a lot of strings of a given input
length, then itcannotavoid accepting some simple strings, according to the popular
belief.

This paper deals with the question of how difficult it is to avoid simple strings
(i.e., strings of low resource-bounded Kolmogorov complexity) while still accepting a
large number of strings. The main contribution of the paper is to present one setting in
which we can replace popular conjecture and vague belief with unconditional theorems,
showing that easy-to-compute setsmustcontain simple strings if they contain many
strings. We also present an application of this new insight to the question of whether
accepting computation paths of nondeterministic exponential time machines are easy
to find, assuming “only” E= NE.

Let us introduce some notation, to help us gauge how successfully a set is avoiding
simple strings. For any setA ⊆ Σ∗, define KtA(n) to be min{Kt(x) : x ∈ A=n},
whereA=n = A ∩ Σn. (For a definition of Levin’s measure Kt(x), see Section 2.)
If A=n = ∅, then KtA(n) is undefined. Note that the rate of growth of KtA(n) is
a measure of how successfullyA avoids strings of low Kt complexity. The rate of
growth of KtA(n) for setsA in P and P/poly is especially of interest, as can be seen
from the following theorem. (We give a more precise definition of “dense” in Section
3, but for now it is sufficient to consider a set to be “dense” if it contains at least2n/n
strings of each lengthn. An “NE search problem” is the task of mapping an inputx to
an accepting computation ofM on inputx, if one exists, whereM is an NE machine.)

2

Theorem 1 1. There is anNE search problem that is not solvable in time22o(n)
if

and only if there is a setA ∈ P and anε > 0 such thatKtA(n) 6= O(nε) [2,
Theorem 6]. (The setA need not be dense.)

2. There is anNE search problem that is not solvable in time2O(n) if and only if
there is a setA ∈ P such thatKtA(n) 6= O(log n) [2, Theorem 6]. (The setA
need not be dense.)

3. EXP 6⊆ P/poly if and only if for every dense setA ∈ P/poly and everyε > 0,
KtA(n) = O(nε) [3, Theorem 12].

4. There is a setB ∈ E and anε > 0 such that, for all largen, there is no circuit of
size2εn acceptingB=n if and only if for every dense setA ∈ P/poly, KtA(n) =
O(log n) [3, Theorem 13].

5. EXP 6= ZPPif and only if for every setA ∈ P of polynomial density1 and every
ε > 0, KtA(n) = O(nε) [5].

A nondeterministic analog of Levin’s Kt measure, denoted KNt, was introduced
recently [6]. For any setA, let KNtA(n) be min{KNt(x) : x ∈ A=n}. The rate of
growth of KNtA(n) is similarly related to open questions in complexity theory:

Theorem 2 [6, Theorem 44] There is a setB ∈ NE/lin such that for all largen, there
is no nondeterministic circuit of size2εn acceptingB=n if and only if for every dense
setA in NP/poly∩ coNP/poly, KNtA(n) = O(log n).

Theorem 2 presents a condition regarding KNtA(n) for dense setsA in a nonuni-
form class, and Theorem 1 contains analogous conditions regarding dense sets in both
uniformandnonuniform classes. It is natural to wonder if Theorem 2 can be extended,
to say something about the corresponding uniform class, and the experience of Theo-
rems 1 and 2 could lead one to expect that such an extension would consist of showing
that a statement about the KNt-complexity of dense sets in NP∩ coNP is equivalent to
some longstanding open question in complexity theory.

Thus it is of interest that our main theorem showsunconditionallythat KNtA(n)
grows slowly for all dense sets in NP∩ coNP.

The rest of the paper is organized as follows. Definitions and preliminaries are
presented in Section 2. The main results are presented in Section 3. An application to
NE search problems is presented in Section 4.

2 Preliminaries

We assume that the reader is familiar with complexity classes such as P, ZPP, NP, AM,
and PSPACE; for background consult a standard text such as [7]. We use the following

1As discussed in Section 3, there is a slight difference between a “dense set” and a “set of polynomial
density” which we prefer to ignore in this introduction. For the other parts of this theorem, the stated
equivalence holds both for “dense sets” and “sets of polynomial density”; however it is not known if “set of
polynomial density” can be replaced by “dense set” here.

3

notation for deterministic and nondeterministic exponential-time complexity classes:
E = DTime(2O(n)), NE = NTime(2O(n)), EXP = DTime(2nO(1)

), and NEXP=
NTime(2nO(1)

). PNP[n] is the class of languages accepted by polynomial-time oracle
Turing machines with an oracle from NP, where the oracle machine makes at mostn
oracle queries on inputs of lengthn.

For any complexity classC, and functionh(n) : IN → IN, let C/h(n) denote the
class of setsB such that, for some “advice function”a(n) : IN → Σh(n), and some
setA ∈ C, x ∈ B if and only if (x, a(|x|)) ∈ A. C/poly denotes

⋃
k C/nk + k; C/lin

denotes
⋃

k C/kn. The class P/poly has an equivalent characterization as the class
of problems solvable by families of polynomial-size circuits. Note in particular that
(NP∩ coNP)/poly is quite possibly a proper subset of NP/poly∩ coNP/poly.

Levin defined Kt(x) to be min{|d| + log t : U(d) = x in time t} [18], whereU
is some fixed universal Turing machine. (It is important to note that Levin’s definition
is independentof any run-timet; the “t” that appears in the definition is a quantity
that participates in the minimization expression.) Later, it was observed that Kt(x) is
polynomially related to the oracle circuit size that is required to compute the function
that hasx as its truth table [6], where the oracle is a complete set for E. In order to
obtain a time-bounded notion of Kolmogorov complexity in the spirit of Levin’s Kt
function that is related to circuit complexity for more general oracles (including the
empty oracle), a new measure, called KT, was defined [5]:

Definition 1 Let U be a universal Turing machine and letB be an oracle. Define the
measureKTB(x) to be

KTB(x) = min{ |d|+ t : UB,d describesx in timet, (meaning that

∀b ∈ {0, 1, ∗} ∀i ≤ |x|+ 1, UB,d(i, b) accepts int steps iffxi = b)}.
(The notation “UB,d(i, b)” indicates that the machineU has random access (or “ora-
cle access”) to both the stringd and the oracleB. This allows the running time to be
less than|d|.) We omit the superscriptB if B = ∅.

It is known that one can pick a complete setC for E such that Levin’s definition of
Kt(x) is linearly-related to KTC(x) [5].

A nondeterministic analog of Kt called KNt was recently investigated [6], and it
was shown that KNt(x) is linearly related to KTD(x) for a setD that is complete for
NE. Thus, for this paper, we will let Kt(x) and KNt(x) denote KTC(x) and KTD(x)
for this E-complete setC and NE-complete setD, respectively.

For a given setA, and oracleB, we define KTBA(n) to be equal to min{KTB(x) :
x ∈ A=n}. Thus KtA(n) = KTC

A(n), and KNtA(n) = KTD
A (n).

We assume that the reader is familiar with polynomial-time Turing reducibility,
denoted≤p

T . We also need to make use of reductions computed by polynomial-size
circuits, instead of polynomial-timemachines. A P/poly-Turing reduction of a setA
to a setB is a family of polynomial-size circuits computingA, where the circuits have
oracle gatesfor B, in addition to the usual AND and OR gates. (An oracle gate for
B outputs 1 if the stringy that is presented to it as input is an element ofB.) If a
P/poly-Turing reduction has the property that there is no path in the circuit from one
oracle gate to another, then it is called a P/poly-truth-table reduction, denoted≤P/poly

tt .

4

3 Main Result

The main theorem applies only to languages that have “sufficiently many” strings; we
call such sets “dense”. The following definition makes precise exactly what sort of
“density” is required:

Definition 2 A setA ⊆ {0, 1}∗ is denseif there is ak such that for everyn there is
somem with n ≤ m ≤ nk + k such that|A ∩ {0, 1}m| ≥ 2m/mk.

Theorem 3 Let A be a dense set inNP∩ coNP. Then for everyε > 0 there are
infinitely manyx ∈ A such thatKNt(x) < |x|ε.
Proof: Most of the work has already been done in an earlier paper, in which it was
shown thatRKNt (the set of “KNt-random strings”, i.e., the set of stringsx such that
KNt(x) ≥ |x|) is not in NP∩ coNP [6]. It was noticed only shortly after that paper
was submitted for publication that the lower bound applied not only toRKNt, but in
fact toeverydense setA such that, for someε > 0, KNtA(n) = Ω(nε). We need to
recall some of the main theorems of earlier work on this topic.

One of the main insights obtained in earlier work is that for “large” complexity
classes, dense sets having only strings of high Kolmogorov complexity are hard under
P/poly reductions. The following definition captures the property that a “large” class
needs to have, in order for the proof to go through:

Definition 3 A setB is PSPACE-robust ifPB = PSPACEB.

The notion of PSPACE-robustness was defined by Babai et al. [9], who observed
that every set that is complete for EXP under≤p

T reductions is PSPACE-robust. Later,
it was shown that NEXP also has this property [6].

Theorem 4 [5, Theorem 31] LetB be anyPSPACE-robust set. LetA be a set such
that for someε > 0 andk, for everyn there is somem such that

• n ≤ m ≤ nk + k,

• |A ∩ {0, 1}m| ≥ 2m/mk

• KTB
A(m) ≥ mε.

ThenB is reducible toA via≤P/poly
tt reductions.

(This is a slight modification of the statement of the theorem as given in [5]. There,
it was assumed thatA contains many strings ofeverylength, and containsno strings
of low KTB complexity. However, the≤P/poly

tt reduction that is given in [5] has the
property that, on inputs of lengthn, all queries to the oracleA have the same lengthm,
and the reduction works properly as long as, for the given lengthm, A contains many
strings and no strings of low KTB complexity. Thus, by simply encoding the lengthm

into the nonuniform advice of the≤P/poly
tt reduction, the proof given in [5] suffices to

establish Theorem 4.)
Since we are using the definition of KNt as KTD for some setD that is complete

for NE, and since every set that is complete for NE is PSPACE-robust, Theorem 4
immediately yields the following corollary:

5

Corollary 5 LetA be any dense set such thatKNtA(n) = Ω(nε) for someε > 0. Then

A is hard forNEXPunder≤P/poly
tt reductions.

We also need to use the result that anyA that satisfies the hypothesis of Corollary
5 is also hard for PSPACE under probabilistic reductions:

Theorem 6 [5, Theorem 33 and Lemma 35] LetA be any set of polynomial density,
such thatKtA(n) = Ω(nε) for someε > 0. ThenPSPACE⊆ ZPPA.

Note that the term “polynomial density” as used in [5] is slightly more restrictive
than the term “dense” as defined in this paper, since a set has “polynomial density” if
it contains many strings ofeverylength.

Corollary 7 Let A be any dense set inNP∩ coNPsuch thatKNtA(n) = Ω(nε) for
someε > 0. ThenPSPACE⊆ (NP∩ coNP)/O(log n).

Proof: Note that KtA(n) ≥ KNtA(n) = Ω(nε). Thus we would like to modify the
proof of Theorem 6 to (nearly) obtain that PSPACE⊆ ZPPA.

The difficulty is that in Corollary 7, we have a weaker notion of density than in
Theorem 6. The proof of Theorem 6 given in [5] presents a ZPP reduction with the
property that, on inputs of lengthn, there are lengthsm1 andm2 such that all queries
to the oracle have length eitherm1 or m2. (Queries to lengthm1 are used to obtain
a string of high complexity, which is then used in conjunction with the Impagliazzo-
Wigderson construction [17] to derandomize a BPPA reduction, which only makes
queries of lengthm2.) The lengthm2 can be replaced by anym′

2 such thatm2 ≤
m′

2 ≤ m
O(1)
2 , as long as the reduction is given suitable advice, saying which length

m′
2 has sufficiently many strings, and the lengthm1 can be replaced by anym′

1 at
most polynomially larger thanm′

2. Thus the ZPP reduction running in timenk can be

simulated by a(ZPPNP∩ coNP)/c log n computation, wherec depends onk and on

the density parameter ofA. The corollary follows by observing that ZPPNP∩ coNP=
NP∩ coNP.

Although the informal presentation given in the preceding paragraph is essentially
correct, one does need to be a bit careful, in order to make sure that one gives an
algorithim that can be implemented in NP∩ coNP, which works correctly if given
the correct advice, instead of merely giving an NP/poly∩ coNP/poly algorithm (i.e.,
an algorithm that exhibits NP∩ coNP-like behavioronly if given the proper advice).
Thus we present a few more details.

Our NP∩ coNP algorithm takes a tuple(x, m2) as input, and first guesses a possi-
ble value form1 (among polynomially-many possibilities, chosen to be sufficiently
large in relation tom2) and guesses a stringz in A of length m2. BecauseA is
dense, there will always be (several) computations that succeed in finding a string
z ∈ A; any computation path that fails to find such a string will simply reject. Be-
cause KNtA(n) = Ω(nε), the stringz can be viewed as the truth table of a function
that requires exponentially-large oracle circuits, for any oracle from NE [6]. Thus, in
particular, it requires exponentially large oracle circuits when the oracle isA, and hence
it can be used as the “hard function” in applying the Impagliazzo-Wigderson genera-
tor [17], to derandomize a BPPA computation (as in the proof of Theorem 6 given in

6

[5]). It is important to note thateverystring inA has high complexity, and thus every
computation that carries out a derandomized simulation of the BPPA computation will
agree on whether to accept or reject.2 This part of the computation is completely de-
terministic, except for querying the oracleA. SinceA is in NP∩ coNP, the answers
to each query can be verified (and any computation path that fails to verify a query
answer can simply reject). Our NP (coNP) algorithm will simply accept (reject) if this
deterministic part of the simulation accepts. This shows that we have an algorithm in
NP∩ coNP; this algorithm can be trusted to give the correct answer about inputx if it
is given the proper lengthm2 as advice, giving a length whereA contains many strings.
2

We now proceed with the proof of Theorem 3. The proof is by contradiction:
Assume thatA is a dense set in NP∩ coNP such that, for all largex ∈ A, we have
KNt(x) ≥ |x|ε. That is, KNtA(n) = Ω(nε).

By Corollaries 7 and 5 we have PSPACE⊆ (NP∩ coNP)/O(log n) and NEXP⊆
PA/poly ⊆ P(NP∩ coNP)/O(log n)/poly = (NP∩ coNP)/poly.

It is known that if NEXP⊆ (NP∩ coNP)/poly then NEXP= AM [6, Theorem
29]. Thus under our assumptions we have

NEXP = AM = PSPACE⊆ (NP∩ coNP)/O(log n).

This is a contradiction, since(NP∩ coNP)/O(log n) ⊆ PNP[n]/n, and it was shown

by Buhrman, Fortnow, and Santhanam [11] that NEXP is not contained in PNP[n]/n.
2

It would be nice to know if a better upper bound on the KNt-complexity of dense
sets in NP∩ coNP (or in P) can be proved.

3.1 Does This Relativize?

The proof of Theorem 3 does not relativize, since it relies on Theorem 6 (which in
turn relies on the characterization of PSPACE in terms of interactive proofs [19, 21])
and also Theorem 28 of [6] (which relies on the characterization of NEXP in terms
of interactive proofs [8]). However, we do not know if the statement of Theorem 3
actually fails relative to some oracle.

In this section, we present an oracle relative to which there is a setA ∈ P such that
(a) for infinitely many lengthsn, A contains at least half of the strings of lengthn, and
(b) A contains no strings of KNt complexity less thannε (even forε very close to 1).
The setA fails to be “dense”, because ifA contains any strings of lengthn, then for all
m such thatn < m ≤ 2nε

, A=m = ∅. Thus this fails to be an oracle relative to which
the claim of Theorem 3 fails.

We find it convenient to formulate our proof in terms of nondeterministicdistin-
guishingcomplexity, various versions of which have been studied in different contexts
(see, e.g. [10, 6]). The following definition is from [6].

2An earlier version of this paper [4] claimed that the conclusion of Theorem 3 holds for every dense set
in (NP∩ coNP)/no(1), but the proof fails, because the condition thatz have high KNt-complexity seems
hard to guarantee in that setting.

7

Definition 4 Let U be a nondeterministic Turing machine. DefineKNDtU (x) to be
min{|d|+ log t : ∀y ∈ Σ|x| Ud(y) runs in timet and accepts iffx = y}.

As usual, we select a fixed fast universal nondeterministic machineU , and define
KNDt(x) to beKNDtU (x). Via standard arguments it follows that for allU ′, we have
KNDt(x) ≤ KNDtU ′(x) + c for some constantc.

Theorem 8 For eachε < 1, there exists a setA such that

• for infinitely manyn, |A=n| ≥ 2n−1, and

• for all x ∈ A, KNDtA(x) ≥ |x|ε.

Proof: This proof is based on proofs of results in [12] and [10].
We createA in stages. We start withA := ∅.

Stage s.We pick a largen such that adding strings of lengthn to A does not influence
the construction in previous stages. LetP = Σ≤nε

(the set of “nondeterministic pro-
grams” of length≤ nε). We construct a setB ⊆ Σn with |B| ≥ 2n−1 such that for
eachd ∈ P , one of the following is true:

• UA∪B,d accepts no string inB, or

• UA∪B,d accepts at least two different strings of lengthn.

This will ensure that for anyx ∈ B, KNDtA∪B(x) ≥ nε. (We will clock all these
computations such that they will reject if they take time more than2nε

.)

Construction, phase 1

1. H := Σn

2. ∆ := ∅.

3. while there existp ∈ P−∆ andR ⊆ Σn such that|R| ≤ 25nε

and∀X ⊆ H−R,
X ∩ L(UA∪X,p) = ∅ do

4. H := H −R

5. ∆ := ∆ ∪ {p}
6. end while

Observations about phase 1

After phase 1, the following are true:

• For everyp ∈ ∆, we have

∀X ⊆ H, X ∩ L(UA∪X,p) = ∅.

Throughout stages, B will always be a subset ofH . Hence we only need to
take care of the programsp ∈ P −∆, i.e., we only have to ensure that for every
p ∈ P −∆, UA∪B,p accepts at least two different strings of lengthn.

8

• If B is any subset ofH such that|H −B| ≤ 25nε

, then for eachp ∈ P −∆, we
have:

∃X ⊆ H, ∃y ∈ X s.t.UA∪X,p acceptsy.

and in particular, forB = H :

∃X ⊆ B,∃y ∈ X s.t.UA∪X,p acceptsy.

(This holds because otherwise thewhile loop would have continued, by adding
p to ∆.)

• In phase 1, we start withH := Σn and then remove no more than|P | · 25nε

strings fromH . Thus after phase 1,

|H | ≥ 2n − |P |25nε ≥ 2n − 2nε+1 · 25nε

= 2n − 26nε+1.

Construction, phase 2

EnumerateP −∆ by p1, p2, . . . , p` and letv = 3 · 2nε · |P |.

1. B := H

2. for i := 1 to ` do

3. for j := 1 to v do

4. Pick a minimalX ⊆ B s.t. UA∪X,pi accepts somey ∈ X . Let ρ be an
accepting path for such a stringy.

5. Qpi,j := {α ∈ Σn | α is queried onρ} ∪ {y}.

6. Q+
pi,j

:= Qpi,j ∩X .

7. Q−
pi,j

:= Qpi,j −X .

8. ypi,j := y.

9. B := B −Qpi,j .

10. end for

11. end for

Observations about phase 2

• In phase 2, we remove no more than

|P |v2nε

= |P | · 3 · 2nε · |P | · 2nε

strings fromB (note that2nε

is the bound for the length ofρ), which is smaller
than25nε

for largen. By an observation made after phase 1, this implies that in
line 4 it is always possible to pick the setX .

9

• As we remove no more than25nε

strings fromB in phase 2, we have|H |−|B| ≤
25nε

, and therefore,|B| ≥ 2n − 26nε+1 − 25nε ≥ 2n−1 for large enoughn. In
the remainder of stages, we will only add strings toB. Hence the final setB
will also have at least2n−1 strings.

• The setsQ+
pi,j

are all disjoint.

• The stringsypi,j are all distinct.

• B is disjoint with each of the setsQpi,j, and the setsQ+
pi,j

, andQ−
pi,j

partition
Qpi,j .

Construction, phase 3 (selection phase)

In this phase, we use the information obtained in phase 2 to finally getB such that for
everyp ∈ P −∆, UA∪B,p accepts at least two different strings of lengthn. It is easy
to see thatUA∪Y,pi(ypi,j) accepts for anyY with Q+

pi,j
⊆ Y andQ−

pi,j
∩ Y = ∅.

We will find for eachpi an index setPi ⊆ {1, 2, . . . , v} with |Pi| ≥ 2 such that
the following is satisfied:

For all i, i′ ∈ {1, 2, . . . , `} and allj ∈ Pi andj′ ∈ Pi′ ,

Q+
pi,j

∩Q−
pi′ ,j′ = ∅. (1)

Now we define our final setB as

B := B ∪
⋃

i∈{1,... ,`},j∈Pi

Q+
pi,j

.

It is easy to see that for eachi ∈ {1, . . . , `}, UA∪B,pi(ypi,j) accepts for eachj ∈ Pi.
Thus for eachi ∈ {1, . . . , `}, UA∪B,pi accepts at least two different strings of length
n.

We setA := A ∪B, and go to stages + 1.
It remains to describe how to find the index setsPi.

1. For eachi ∈ {1, . . . , `} andj ∈ {1, . . . v}, set pair(pi, j) unmarked.

2. for i := ` to 1 do twice

3. Pick the largestj such that(pi, j) is unmarked.

4. Mark(pi, j).

5. Mark all(pi′ , j
′) with i′ < i or (i′ = i andj′ < j) satisfyingQ+

pi′ ,j′ ∩Q−
pi,j

6=
∅.

6. end for

7. For eachi ∈ {1, . . . , `}, let Pi := {j | (pi, j) is not marked}.

Observations about phase 3

10

• The setsQ+
pi,j

are all disjoint and all setsQ−
pi,j

are of size at most2nε

(because of
the bound for the computation time). Hence in each run of thefor loop, each of
the twoQ−

pi,j
can intersect with at most2nε

different setsQ+
pi′ ,j′ , which means

that in each run of thefor loop, we mark no more than2(2nε

+ 1) pairs. Thus
altogether, in phase 3 we mark no more than|P | · 2(2nε

+ 1) pairs, which is
smaller thanv−2 for largen. However, for eachi ∈ {1, . . . , `}, we started with
v different unmarked pairs(pi, ∗). Hence there is always an unmarked(pi, j) in
line 3, and for eachi ∈ {1, . . . , `}, at least two unmarked pairs(pi, ∗) remain at
the end. Thus for eachi ∈ {1, . . . , `}, |Pi| ≥ 2.

• Let i, i′ ∈ {1, . . . , `} andj, j′ ∈ {1, . . . , v} be arbitrary withi′ < i or (i′ = i
andj′ < j). The construction in phase 2 already ensured that

Q−
pi′ ,j′ ∩Q+

pi,j
= ∅.

Phase 3 additionally ensures that for unmarked pairs, i.e., for allj ∈ Pi and
j′ ∈ Pi′ ,

Q+
pi′ ,j′ ∩Q−

pi,j
= ∅.

This shows that the constructed index setsPi satisfy (1).

2

Corollary 9 For eachε < 1, there exists a setA such that

• for infinitely manyn, |A=n| ≥ 2n−1, and

• for all x ∈ A, KNDtA(x) ≥ |x|ε.

Proof: Follows easily since it is shown in [6, Thm. 58] that KNDt(x) = KNt(x) +
Θ(log |x|), and the proof relativizes.2

4 An Application to Search Problems

One of the aspects of the theory of NP-completeness that makes it so widely applicable,
is the fact that, for NP-complete problems,searchis equivalent todecision. That is, the
problem ofdecidingmembership in an NP-complete set is polynomially-equivalent to
the problem offindinga proof of membership. Hartmanis, Immerman, and Sewelson
observed that the proof of equivalence that works for NP-complete problems breaks
down for exponential-time computations, and they asked whether search and decision
are also equivalent for NE-complete problems [13]. A partial answer was provided by
Impagliazzo and Tardos [16], who presented an oracle relative to which E= NE but
relative to which there exists a nondeterministic exponential-time machineM such that
there is no function computable in exponential time that maps each inputx accepted
by M to an accepting computation ofM on inputx. An alternative oracle construction
was subsequently given by Buhrman, Fortnow, and Laplante [10].

11

The trivial brute-force deterministic algorithm for finding accepting computations
of NE machines takes doubly exponential time22O(n)

. No significantly better upper
bound is known, even for the special case of finding accepting computations of proba-
bilistic NE machines, that havemanyaccepting computation paths if they have any at
all. This has been the case, even under the assumption that E= NE.

As a consequence of the results of Section 3, we can now say something nontrivial
about an upper bound on the complexity of finding accepting computations of NE ma-
chines if E= NE – at least for certain classes of NE machines. (Actually, it suffices to
use the weaker assumption that NEXP⊆ EXP/poly.) Let ZPE be the exponential-time
analog of the complexity class ZPP. That is,B is in ZPE if there are two nondetermin-
istic Turing machinesM0 andM1 running for time2cn for somec, whereM0 accepts
B andM1 acceptsB, with the property that ifx ∈ B, then for at least half of the strings
r of length2cn, M1 acceptsx along the computation path given byr, and if x 6∈ B,
then for at least half of the stringsr M0 acceptsx along the computation path given
by r. Thus, for every stringx, either half of the stringsr of length2c|x| are accepting
computations ofM1, or half of the stringsr are accepting computations ofM0. A ZPE
search problem(defined by the machinesM0 andM1) is the task of takingx as input,
and producing a stringr as output, that causes eitherM0 or M1 to accept.

Theorem 10 If NEXP ⊆ EXP/poly, then for everyZPE search problem, there is a
deterministic algorithmM solving it with the property that, for everyε > 0, M runs
in time22ε|x|

for infinitely manyx.

Proof: Consider a ZPE search problem defined by machinesM0 andM1. Let N be
an NE machine running in time2cn that, on inputx, guesses a stringr of length2cn

and accepts ifr causes eitherM0 or M1 to accept on inputx. (Note thatN accepts
everystringx.)

Let d : IN → {0, 1}∗ be a standard bijection (e.g.,d(i) is the stringx such that the
binary representation ofi + 1 is 1x). Let

WN = {r : (some prefix of)r causesN

to accept the stringd(n), wherenc+1 = |r|}.
Note that, since|d(n)| = O(log n), WN is in P, andWN is dense (since it contains at
least half of the strings of each length of the formnc+1).

By Theorem 3, for everyε > 0 there are infinitely manyr ∈ WN such that
KNt(r) < |r|ε. Since we are assuming that NEXP⊆ EXP/poly, it follows that Kt
and KNt are polynomially related [6], and thus we have that for everyε > 0 there are
infinitely manyr ∈ WN such that Kt(r) < |r|ε. Let C be the E-complete set such that
Kt(x) = KTC(x).

Consider the following algorithmM : On inputx, computen so thatd(n) = x. For
k = 1 to nc, for all descriptionsd of lengthk, see ifUC,d describes a stringr of length
nc in timek. If so, and ifr causesN to accept on inputx, then halt and outputr.

It is straightforward to verify that the algorithmM has the properties claimed for it
in the statement of the theorem.2

The conclusion of Theorem 10 holds for a great many more NE search problems
than merely those in ZPE. It holds for any NE machineN for which the languageWN

12

constructed in the proof of Theorem 10 is dense. (This corresponds to those problems
in NE that are accepted by NE machines that have many accepting computation paths
for at least one string of every length (or, more generally, at least one string out of every
O(1) consecutive lengths).) Rather than creating a new definition to capture this class,
we simply state the following corollary:

Corollary 11 If NEXP⊆ EXP/poly, then for everyNE search problem defined by an
NE machineN such that the setWN is dense, there is a deterministic algorithmM
solving it with the property that, for everyε > 0, M runs in time22ε|x|

for infinitely
manyx.

As stated, Theorem 10 is actually quite a bit weaker than a result presented by
Impagliazzo, Kabanets and Wigderson [15] where a stronger conclusion is shown
to follow from a weaker hypothesis. (It does not appear that Corollary 11 is sub-
sumed by [15].) More specifically, Impagliazzo, Kabanets, and Wigderson show that
if EXP 6= ZPP, then ZPE search problems can be solved not merely in time22ε|x|

for
infinitely manyx, but forall x of lengthn for infinitely manyn [15, Theorem 47]. (The
statement of their Theorem 47 does not explicitly give a running time for ZPE search
problems, and instead is stated in terms of an upper bound for recognizinglanguages
in ZPE, but their proof actually shows how to solve ZPE search problems.) Their con-
clusion is obviously stronger than the conclusion of Theorem 10; in order to see that
the hypothesis of Theorem 10 is stronger, we need to show why NEXP⊆ EXP/poly
implies ZPP 6= EXP. If NEXP ⊆ EXP/poly and ZPP= EXP, then EXP⊆ P/poly,
and thus NEXP⊆ P/poly, which implies NEXP= MA [15, Theorem 23]. Thus
NEXP = EXP = ZPP, which contradicts the nondeterministic time hierarchy theorem
[20].

It is possible to give a more direct proof of this result of Impagliazzo, Kabanets,
and Wigderson, by making use of part 5 of Theorem 1 (which was not available to
them):

Theorem 12 ([15, Theorem 47]) IfEXP 6= ZPP, then, for everyε > 0, ZPE search
problems can be solved in time22ε|x|

for all x of lengthn, for infinitely manyn.

Proof: By Theorem 1, we know that if EXP6= ZPP, then for every setA ∈ P of
polynomial density, for everyε > 0, KtA(n) = O(nε).

As in the proof of Theorem 10, consider a ZPE search problem defined by machines
M0 andM1, and letN be an NE machine running in time2cn that, on inputx, guesses
a stringr of length2cn and accepts ifr causes eitherM0 or M1 to accept on inputx.

Instead of the setWN that is defined in the proof of Theorem 10, consider the set
W ′

N : {r : 2m2cm ≤ |r| < 2m+12c(m+1), wherer = r1r2 . . . r2mz for some stringz,
and for eachi ≤ 2m, ri is a string of length2cm encoding an accepting computation of
N on theith string of lengthm}. (A similar construction is employed by Impagliazzo,
Kabanets, and Wigderson.) Note thatW ′

N is in P, and has polynomial density (since
it contains at least half of the strings of each lengthn). Thus by our assumption,
KtW ′

N
(n) = O(nε).

13

Now consider the following modification to the algorithmM from the proof of
Theorem 10: On inputx of lengthm, letx be theith string of lengthm in lexicograph-
ical order. Fork = 1 to nc, for all descriptionsd of lengthk, see ifUC,d describes
a stringr of length between2m2cm and2m+12c(m+1) in time k. If so, then letri be
the substring of length2cm starting at position(i− 1)2cm. If ri causesN to accept on
inputx, then halt and outputri.

Note that for allε > 0, for infinitely manym we are guaranteed to find a description
d of length at mostk = (2m)ε such thatUC,d describes a stringr ∈ W ′

N , which means
thateverysubstringri of r causesN to accept theith string of lengthm. 2

5 Closing Comments

For sufficiently “powerful” forms of resource-bounded Kolmogorov complexity (such
as KTE whereE is complete for EXPSPACE), the lexicographically first element of
A=n will always have logarithmic complexity, for anyA ∈ P [6]. Conceivably, one
could define a version of resource-bounded Kolmogorov complexity related to a low
level of the exponential-time hierarchy (with just a few alternations – and therefore
conceptually “closer” to KNt than KTE) where this same technique could be applied.
It seems unlikely that KNt is powerful enough to always give logarithmic complexity
to the lexicographically least element ofA=n, for every setA in P, although we know
of no unlikely consequences, if that were to be the case.

Acknowledgments

The research of the first author is supported in part by NSF Grants DMS-0652582,
CCF-0830133, and CCF-0832787. Some of this work was performed while the author
was a visiting scholar at the University of Cape Town and at the University of South
Africa. We acknowledge helpful discussions with Chris Umans and Ronen Shaltiel.
We especially thank Ryan Williams for encouraging us to look again at [15].

References

[1] E. Allender. Some consequences of the existence of pseudorandom generators.
Journal of Computer and System Sciences, 39:101–124, 1989.

[2] E. Allender. Applications of time-bounded Kolmogorov complexity in complex-
ity theory. In O. Watanabe (Ed.), Kolmogorov Complexity and Computational
Complexity, pages 4–22. Springer, 1992.

[3] E. Allender. When worlds collide: Derandomization, lower bounds, and Kol-
mogorov complexity. InProc. Conf. on Found. of Software Technology and Theo.
Comp. Sci. (FST&TCS), volume 2245 ofLecture Notes in Computer Science,
pages 1–15, 2001.

14

[4] E. Allender. Avoiding simplicity is complex. InPrograms, Proofs, Processes,
Proc. 6th Conference of Computability in Europe, (CiE 2010), volume 6158 of
Lecture Notes in Computer Science, pages 1–10, 2010.

[5] E. Allender, H. Buhrman, M. Kouck´y, D. van Melkebeek, and D. Ronneburger.
Power from random strings.SIAM Journal on Computing, 35:1467–1493, 2006.

[6] E. Allender, M. Koucký, D. Ronneburger, and S. Roy. The pervasive reach of
resource-bounded Kolmogorov complexity in computational complexity theory.
Journal of Computer and System Sciences. To appear.

[7] Sanjeev Arora and Boaz Barak.Computational Complexity, a modern approach.
Cambridge University Press, 2009.

[8] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-
prover interactive protocols.Computational Complexity, 1:3–40, 1991.

[9] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs.Computational Complex-
ity, 3:307–318, 1993.

[10] H. Buhrman, L. Fortnow, and S. Laplante. Resource-bounded Kolmogorov com-
plexity revisited.SIAM Journal on Computing, 31(3):887–905, 2002.

[11] Harry Buhrman, Lance Fortnow, and Rahul Santhanam. Unconditional lower
bounds against advice. InProc. of International Conference on Automata, Lan-
guages, and Programming (ICALP), volume 5555 ofLecture Notes in Computer
Science, pages 195–209, 2009.

[12] J. Goldsmith, L. A. Hemachandra, and K. Kunen. Polynomial-time compression.
Computational Complexity, 2:18–39, 1992.

[13] Juris Hartmanis, Neil Immerman, and Vivian Sewelson. Sparse sets in NP-P: EX-
PTIME versus NEXPTIME.Information and Control, 65(2/3):158–181, 1985.

[14] J. Håstad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator
from any one-way function.SIAM Journal on Computing, 28:1364–1396, 1999.

[15] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: Ex-
ponential time vs. probabilistic polynomial time.J. Comput. Syst. Sci., 65(4):672–
694, 2002.

[16] R. Impagliazzo and G. Tardos. Decision versus search problems in super-
polynomial time. InProc. IEEE Symp. on Found. of Comp. Sci. (FOCS), pages
222–227, 1989.

[17] R. Impagliazzo and A. Wigderson.P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. InProc. ACM Symp. on Theory of Computing
(STOC) ’97, pages 220–229, 1997.

15

[18] L. A. Levin. Randomness conservation inequalities; information and indepen-
dence in mathematical theories.Information and Control, 61:15–37, 1984.

[19] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive
proof systems.Journal of the ACM, 39:859–868, 1992.

[20] J. Seiferas, M. Fischer, and A. Meyer. Separating nondeterministic time complex-
ity classes.Journal of the ACM, 25:146–167, 1978.

[21] A. Shamir. IP = PSPACE.Journal of the ACM, 39:869–877, 1992.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

