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Abstract. We study probabilistic complexity classes and questions of
derandomisation from a logical point of view. For each logic L we in-
troduce a new logic BPL, bounded error probabilistic L, which is defined
from L in a similar way as the complexity class BPP, bounded error
probabilistic polynomial time, is defined from P.

Our main focus lies on questions of derandomisation, and we prove that
there is a query which is definable in BPFO, the probabilistic version
of first-order logic, but not in C

ω

∞ω
, finite variable infinitary logic with

counting. This implies that many of the standard logics of finite model
theory, like transitive closure logic and fixed-point logic, both with and
without counting, cannot be derandomised. We prove similar results for
ordered structures and structures with an addition relation, showing that
certain uniform variants of AC

0 (bounded-depth polynomial sized cir-
cuits) cannot be derandomised. These results are in contrast to the gen-
eral belief that most standard complexity classes can be derandomised.

Finally, we note that BPIFP+C, the probabilistic version of fixed-point
logic with counting, captures the complexity class BPP, even on un-
ordered structures.

1 Introduction

The relation between different modes of computation — deterministic, nonde-
terministic, randomised — is a central topic of computational complexity theory.
The P vs. NP problem falls under this topic, and so does a second very important
problem, the relation between randomised and deterministic polynomial time.
In technical terms, this is the question of whether P = BPP, where BPP is the
class of all problems that can be solved by a randomised polynomial time algo-
rithm with two-sided errors and bounded error probability. This question differs
from the question of whether P = NP in that most complexity theorists seem
to believe that the classes P and BPP are indeed equal. This belief is supported
by deep results due to Nisan and Wigderson [1] and Impagliazzo and Wigder-
son [2], which link the derandomisation question to the existence of one-way
functions and to circuit lower bounds. Similar derandomisation questions are
studied for other complexity classes such as logarithmic space, and it is believed
that derandomisation is possible for these classes as well.
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Descriptive complexity theory gives logical descriptions of complexity classes
and thus enables us to translate complexity theoretic questions into the realm
of logic. While logical descriptions are known for most natural deterministic
and nondeterministic time and space complexity classes, probabilistic classes
such as BPP have received very little attention in descriptive complexity theory
yet. In this paper, we study probabilistic complexity classes and questions of
derandomisation from a logical point of view. For each logic L we introduce a
new logic BPL, bounded error probabilistic L, which is defined from L in a similar
way as BPP is defined from P. The randomness is introduced to the logic by
letting formulas of vocabulary τ speak about random expansions of τ -structures
to a richer vocabulary τ ∪ρ. We also introduce variants RL, co-RL with one-sided
bounded error and PL with unbounded error, corresponding to other well known
complexity classes, but focus on BPL in this conference paper.

Our main technical results are concerned with questions of derandomisation.
We prove that there is a query that is definable in BPFO, the probabilistic
version of first-order logic, but not in C

ω
∞ω, finite variable infinitary logic with

counting. This implies that many of the standard logics of finite model theory,
like transitive closure logic and fixed-point logic, both with and without counting,
cannot be derandomised. Note that these results are in sharp contrast to the
general belief that most standard complexity classes can be derandomised.

We then investigate whether BPFO can be derandomised on classes of struc-
tures with built-in relations, such as ordered structures. Behle and Lange [3]
showed that the expressive power of FO on classes of ordered structures with
certain predefined relation symbols corresponds to uniform subclasses of AC

0,
the class of circuit families of bounded depth, unbounded fan-in and polynomial
size. In fact, for a set R of relation symbols whose interpretation is prescribed
(such as linear orders, addition and multiplication relations) they show that
FO[R] captures FO[R]-uniform AC

0. We show that on additive structures, BPFO

can not be derandomised, and on ordered structures it is not even contained in
MSO.

Arguably the most intensively studied uniformity condition on AC
0 is dlogtime-

uniform AC
0, which corresponds to FO[+,×] by Barrington et al. [4]. The ques-

tion of whether dlogtime-uniform BPAC
0 can be derandomised is still open, but

there is a conditional derandomisation by Viola [5]. There are less uniform vari-
ants of BPAC

0 that can be proved to be derandomisable by standard arguments
in the style of Adleman [6]. We prove the more uniform FO[+]-uniform AC

0 to
be non-derandomisable. This raises the question of how weak uniformity must
be for derandomisation to be possible.

In the last section of this paper, we turn to more standard questions of de-
scriptive complexity theory. We prove that BPIFP+C, the probabilistic version
of fixed-point logic with counting, captures the complexity class BPP, even on
unordered structures. For ordered structures, this result is a direct consequence
of the Immerman-Vardi Theorem [7, 8], and for arbitrary structures it follows
from the observation that we can define a random order with high probability
in BPIFP+C. Still, the result is surprising at first sight because of its similarity
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with the open question of whether there is a logic capturing P, and because it is
believed that P = BPP. The caveat is that the logic BPIFP+C does not have an
effective syntax and thus is not a “logic” according to Gurevich’s [9] definition
underlying the question for a logic that captures P. Nevertheless, we believe that
BPIFP+C gives a completely adequate description of the complexity class BPP,
because the definition of BPP is inherently ineffective as well (as opposed to
the definition of P in terms of the decidable set of polynomially clocked Tur-
ing machines). We obtain similar descriptions of other probabilistic complexity
classes. For example, randomised logspace is captured by the randomised version
of deterministic transitive closure logic with counting.

Related work

As mentioned earlier, probabilistic complexity classes such as BPP have received
very little attention in descriptive complexity theory. There is an unpublished
paper due to Kaye [10] that gives a logical characterisation of BPP on ordered
structures. Müller [11] and Montoya (unpublished) study a logical BP-operator in
the context of parameterised complexity theory. What comes closest to our work
“in spirit” and also in some technical aspects is Hella, Kolaitis, and Luosto’s work
on almost everywhere equivalence [12], which may be viewed as a logical account
of average case complexity in a similar sense that our work gives a logical account
of randomised complexity. There is a another logical approach to computational
complexity, known as implicit computational complexity, which is quite different
from descriptive complexity theory. Mitchell, Mitchell, and Scedrov [13] give a
logical characterisation of BPP by a higher-order typed programming language
in this context.

Outside of descriptive complexity theory and finite model theory, probabilis-
tic logics have received wide attention in mathematical logic and computer sci-
ence, particularly in artificial intelligence and also in database theory. However,
all this work has little in common with ours, both on a conceptual and technical
level. A few pointers to the literature are [14–17].

Let us emphasise that the main purpose of this paper is not the definition
of new probabilistic logics, but an investigation of these logics in a complexity
theoretic context.

2 Preliminaries

2.1 Structures and queries

A vocabulary is a finite set τ of relation symbols of fixed arities. A τ -structure A
consists of a set V (A), the universe of the structure, and, for all R ∈ τ , a relation
R(A) on A whose arity matches that of R. Thus we only consider finite and
relational structures. Let σ, τ be vocabularies with σ ⊆ τ . Then the σ-restriction
of a τ -structure B is the σ-structure B|σ with universe V (B|σ) := V (B) and
relations R(B|σ) := R(B) for all R ∈ σ. A τ -expansion of a σ-structure A is a τ -
structure B such that B|σ = A. For every class C of structures, C[τ ] denotes the
class of all τ -structures in C. A renaming of a vocabulary τ is a bijective mapping
r from τ to a vocabulary τ ′ such that for all R ∈ τ the relation symbol r(R) ∈ τ ′
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has the same arity as R. If r : τ → τ ′ is a renaming and A is a τ -structure then
Ar is the τ ′-structure with V (Ar) := V (A) and r(R)(Ar) := R(A) for all R ∈ τ .

We let 6, + and × be distinguished relation symbols of arity two, three and
three. Whenever any of these relations symbols appear in a vocabulary τ , we
demand that they be interpreted by a linear order and ternary addition and
multiplication relations, respectively, in all τ -structures. To be precise, let [n] be
the set {0, 1, . . . , n} for n ≥ 0, and denote by Nn the {6,+,×}-structure with

V (Nn) = [n], 6(Nn) = {(a, b) | a 6 b} and

+(Nn) = {(a, b, c) | a + b = c}, ×(Nn) = {(a, b, c) | a · b = c},

and demand A|{6,+,×}∩τ
∼= (N|A|−1)|{6,+,×}∩τ for all τ -structures A. We call

structures whose vocabulary contains any of these relation symbols ordered, ad-
ditive and multiplicative, respectively.

A k-ary τ -global relation is a mapping R that associates a k-ary relation R(A)
with each τ -structure A. A 0-ary τ -global relation is usually called a Boolean τ -
global relation. We identify the two 0-ary relations ∅ and {()}, where () denotes
the empty tuple, with the truth values false and true, respectively, and we identify
the Boolean τ -global relation R with the class of all τ -structures A with R(A) =
true. A k-ary τ -query is a k-ary τ -global relation Q preserved under isomorphism,
that is, if f is an isomorphism from a τ -structure A to a τ -structure B then for
all a ∈ V (A)k it holds that a ∈ Q(A) ⇐⇒ f(a) ∈ Q(B).

2.2 Logics

A logic L has a syntax that assigns a set L[τ ] of L-formulas of vocabulary τ with

each vocabulary τ and a semantics that associates a τ -global relation QL[τ ]
ϕ with

every formula ϕ ∈ L[τ ] such that for all vocabularies σ, τ, τ ′ the following three
conditions are satisfied:

(i) For all ϕ ∈ L[τ ] the global relation QL[τ ]
ϕ is a τ -query.

(ii) If σ ⊆ τ then L[σ] ⊆ L[τ ], and for all formulas ϕ ∈ L[σ] and all τ -structures

A it holds that QL[σ]
ϕ (A|σ) = QL[τ ]

ϕ (A).

(iii) If r : τ → τ ′ is a renaming, then for every formula ϕ ∈ L[τ ] there is a

formula ϕr ∈ L[τ ′] such that for all τ -structures A it holds that QL[τ ]
ϕ (A) =

QL[τ ′]
ϕr (Ar).

Condition (ii) justifies dropping the vocabulary τ in the notation for the queries
and just write QL

ϕ. For a τ -structure A and a tuple a whose length matches the

arity of Qϕ, we usually write A |=L ϕ[a] instead of a ∈ QL

ϕ(A). If QL

ϕ is a k-ary

query, then we call ϕ a k-ary formula, and if QL

ϕ is Boolean, then we call ϕ a
sentence. Instead of A |=L ϕ[()] we just write A |=L ϕ and say that A satisfies
ϕ. We omit the index L if L is clear from the context.

A query Q is definable in a logic L if there is an L-formula ϕ such that
Q = Qϕ. Two formulas ϕ1, ϕ2 ∈ L[τ ] are equivalent (we write ϕ1 ≡ ϕ2) if they
define the same query. We say that a logic L1 is weaker than a logic L2 (we write
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L1 ≦ L2) if every query definable in L1 is also definable in L2. Similarly, we define
it for L1 and L2 to be equivalent (we write L1 ≡ L2) and for L1 to be strictly
weaker than L2 (we write L1 © L2). The logics L1 and L2 are incomparable if
neither L1 ≦ L2 nor L2 ≦ L1.

Remark 1. Our notion of logic is very minimalistic, usually logics are required to
meet additional conditions (see [18] for a thorough discussion). In particular, we
do not require the syntax of a logic to be effective. Indeed, the main logics studied
in this paper have an undecidable syntax. Our definition is in the tradition of
abstract model theory (cf. [19]); proof theorists tend to have a different view on
what constitutes a logic.

We assume that the reader has heard of the standard logics studied in fi-
nite model theory, specifically first-order logic FO, second-order logic SO and its
fragments Σ1

k, monadic second-order logic MSO, transitive closure logic TC and
its deterministic variant DTC, least, inflationary, and partial fixed-point logic
LFP, IFP, and PFP, and finite variable infinitary logic L

ω
∞ω. For all these logics

except LFP there are also counting versions, which we denote by FO+C, TC+C,
. . ., PFP+C and C

ω
∞ω, respectively. Only familiarity with first-order logic is re-

quired to follow most of the technical arguments in this paper. The other logics
are more or less treated as “black boxes”. We will say a bit more about some
of them when they occur later. The following diagram shows how the logics
compare in expressive power:

FO © DTC © TC © LFP ≡ IFP © PFP © L
ω
∞ω

© © © © © ©
FO+C © DTC+C © TC+C © IFP+C © PFP+C © C

ω
∞ω.

(1)

Furthermore, MSO is strictly stronger than FO and incomparable with all other
logics displayed in (1).

2.3 Complexity theory

We assume that the reader is familiar with the basics of computational com-
plexity theory and in particular the standard complexity classes such as P and
NP. Let us briefly review the class BPP, bounded error probabilistic polynomial
time, and other probabilistic complexity classes: A language L ⊆ Σ∗ is in BPP if
there is a polynomial time algorithm M , expecting as input a string x ∈ Σ∗ and
a string r ∈ {0, 1}∗ of “random bits”, and a polynomial p such that for every
x ∈ Σ∗ the following two conditions are satisfied:

(i) If x ∈ L, then Prr∈{0,1}p(|x|)

(

M accepts (x, r)
)

≥ 2
3 .

(ii) If x 6∈ L, then Prr∈{0,1}p(|x|)

(

M accepts (x, r)
)

≤ 1
3 .

In both conditions, the probabilities range over strings r ∈ {0, 1}p(|x|) chosen
uniformly at random. The choice of the error bounds 1/3 and 2/3 in (i) and
(ii) is somewhat arbitrary, they can be replaced by any constants α, β with
0 < α < β < 1 without changing the complexity class. (To reduce the error
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probability of an algorithm we simply repeat it several times with independently
chosen random bits r.)

Hence BPP is the class of all problems that can be solved by a randomised
polynomial time algorithm with bounded error probabilities. RP is the class of
all problems that can be solved by a randomised polynomial time algorithm
with bounded one-sided error on the positive side (the bound 1/3 in (ii) is
replaced by 0), and co-RP is the class of all problems that can be solved by
a randomised polynomial time algorithm with bounded one-sided error on the
negative side (the bound 2/3 in (i) is replaced by 1). Finally, PP is the class
we obtain if we replace the lower bound ≥ 2/3 in (i) by > 1/2 and the upper
bound ≤ 1/3 in (ii) by ≤ 1/2. Note that PP is not a realistic model of “efficient
randomised computation”, because there is no easy way of deciding whether an
algorithm accepts or rejects its input. Indeed, by Toda’s Theorem [20], the class
P

PP contains the full polynomial hierarchy. By the Sipser-Gács Theorem (see
[21]), BPP is contained in the second level of the polynomial hierarchy. More
precisely, BPP ⊆ Σp

2∩Πp
2 . It is an open question whether BPP ⊆ NP. However, as

pointed out in the introduction, there are good reasons to believe that BPP = P.

2.4 Descriptive complexity

It is common in descriptive complexity theory to view complexity classes as
classes of Boolean queries, rather than classes of formal languages. This allows
it to compare logics with complexity classes. The translation between queries
and languages is carried out as follows: Let τ be a vocabulary, and assume that
6 6∈ τ . With each ordered (τ ∪{6})-structure B we can associate a binary string
s(B) ∈ {0, 1}∗ in a canonical way. Then with each class C ⊆ O[τ∪{6}] of ordered
τ structures we associate the language L(C) := {s(B) | B ∈ C} ⊆ {0, 1}∗. For
a Boolean τ -query Q, let Q6 :=

{

B ∈ O[τ ∪ 6]
∣

∣ B|τ ∈ Q
}

be the class of all
ordered (τ ∪{6})-expansions of structures in Q. We say that Q is decidable in a
complexity class K if the language L(Q6) is contained in K. We say that a logic
L captures K if for all Boolean queries Q it holds that Q is definable in L if and
only if Q is decidable in K. We say that L is contained in K if all Boolean queries
definable in L are decidable in K.

Remark 2. Just like our notion of “logic”, our notion of a logic “capturing” a
complexity class is very minimalistic, but completely sufficient for our purposes.
For a deeper discussion of logics capturing complexity classes we refer the reader
to one of the textbooks [22–25].

3 Randomised logics

Throughout this section, let τ and ρ be disjoint vocabularies. Relations over ρ
will be “random”, and we will reserve the letter R for relation symbols from
ρ. We are interested in random (τ ∪ ρ)-expansions of τ -structures. For a τ -
structure A, by X (A, ρ) we denote the class of all (τ ∪ ρ)-expansions of A. We
view X (A, ρ) as a probability space with the uniform distribution. Note that we
can “construct” a random X ∈ X (A, ρ) by deciding independently for all k-ary
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R ∈ ρ and all tuples a ∈ V (A)k with probability 1/2 whether a ∈ R(X). We are
mainly interested in the probabilities

Pr
X∈X (A,ρ)

(X |= ϕ)

that a random (τ ∪ ρ)-expansion of a τ -structure A satisfies a sentence ϕ of
vocabulary τ ∪ ρ of some logic.

Definition 1. Let L be a logic and 0 ≤ α ≤ β ≤ 1.

1. A formula ϕ ∈ L[τ ∪ ρ] that defines a k-ary query has an (α, β]-gap if for all
τ -structures A and all a ∈ V (A)k it holds that

Pr
X∈X (A,ρ)

(X |= ϕ[a]) ≤ α or Pr
X∈X (A,ρ)

(X |= ϕ[a]) > β.

2. The logic P(α,β]L is defined as follows: For each vocabulary τ ,

P(α,β]L[τ ] :=
⋃

ρ

{

ϕ ∈ L[τ ∪ ρ]
∣

∣ ϕ has an (α, β]-gap
}

,

where the union ranges over all vocabularies ρ disjoint from τ . To define the
semantics, let ϕ ∈ P(α,β]L[τ ]. Let k, ρ such that ϕ ∈ L[τ ∪ ρ] and ϕ is k-ary.
Then for all τ -structures A,

QP(α,β)L

ϕ (A) :=
{

a ∈ V (A)k
∣

∣ Pr
X∈X (A,ρ)

(X |=L ϕ[a]) > β
}

.

It is easy to see that for every logic L and all α, β with 0 ≤ α ≤ β ≤ 1 the
logic P(α,β]L satisfies conditions (i)–(iii) from Subsection 2.2 and hence is indeed
a well-defined logic. We let

PL := P(1/2,1/2]L and RL := P(0,2/3]L and BPL := P(1/3,2/3]L.

We can also define a logic P[α,β)L and let co-RL := P[1/3,1)L. The following lemma
shows that for reasonable L the strength of the logic P(α,β]L does not depend on
the exact choice of the parameters α, β. This justifies the arbitrary choice of the
constants 1/3, 2/3 in the definitions of RL and BPL.

Lemma 1. Let L be a logic that is closed under conjunctions and disjunctions.
Then for all α, β with 0 < α < β < 1 it holds that P(0,β]L ≡ RL and P(α,β]L ≡
BPL.

We omit the straightforward proof.

Remark 3. For the rest of this conference paper, we focus entirely on logics BPL

with two-sided bounded error. Many of our results have a version for logics RL

with one-sided error as well. The logics PL are considerably more expressive and
behave quite differently. For example, PFO contains the existential fragment Σ1

1

of second-order logic. on all structures with at least one definable element (like
the minimal element of a linear order). More results about the logics RL and PL

will appear in the full version of this paper.

7



Remark 4. As we mentioned several times, our motivation for this work is to
study complexity theoretic questions related to randomisation (and derandomi-
sation) in a logical context. Thus we designed our logics to be faithful images
of probabilistic complexity classes. Furthermore, we focus on “complexity theo-
retic” questions, ignoring natural “logical” questions such as which closure prop-
erties our logics have. This is not meant to say that these questions are not
worthwhile to be studied.

From a logical point of view, it may seem more natural to work with prob-
abilistic quantifiers, but we believe that this leads to somewhat different ques-
tions than those we are interested in here. Our logics seem to be very well-suited
to study probabilistc complexity classes, questions of derandomisation, pseudo-
random generators, and other topics arising in this context. We believe that our
results, in particular those stating that strongly uniform variants of AC

0 cannot
be randomised, fully justify our descriptive theoretic approach to these topics.

3.1 First observations

We start by observing that the syntax of BPFO and thus of most other logics
BPL is undecidable. This follows easily from Trakhtenbrot’s Theorem (see [22]
for similar undecidability proofs):

Observation 1. For all α, β with 0 ≤ α < β < 1 and all vocabularies τ con-
taining at least one at least binary relation symbol, the set BP(α,β]FO[τ ] is un-
decidable.

For each n, let Sn be the ∅-structure with universe V (Sn) := {1, . . . , n}.
Recall the 0-1-law for first order logic [26, 27]. In our terminology, it says that
for each vocabulary ρ and each sentence ϕ ∈ FO[ρ] it holds that

lim
n→∞

Pr
X∈X (Sn,ρ)

(X |= ϕ) ∈ {0, 1}

(in particular, this limit exists). There is also an appropriate asymptotic law
for formulas with free variables. This implies that on structures with empty
vocabulary, BPFO has the same expressive power as FO. As there is also a 0-1-
law for the logic L

ω
∞ω [28], we actually get the following stronger statement:

Observation 2. Every formula ϕ ∈ BPL
ω
∞ω[∅] is equivalent to a formula ϕ′ ∈

FO[∅].

As FO+C is strictly stronger than FO even on structures of empty vocabulary,
this observation implies that there are queries definable in FO+C, but not in
BPL

ω
∞ω.

Finally, we note that the Sipser-Gács theorem [21] that BPP ⊆ Σp
2 ∩Πp

2 , the
fact that the fragment Σ1

2 of second-order logic captures Σp
2 [29, 30], and the

observation that BPFO ≦ BPP imply the following:

Observation 3. BPFO ≦ Σ1
2 .
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4 Separation results for BPFO

In this section we study the expressive power of the randomised logic BPFO. Our
main results are the following:

– BPFO is not contained in C
ω
∞ω

– BPFO is not contained in MSO on ordered structures
– BPFO is stronger than FO on additive structures

It turns out that we need three rather different queries to get these separation
results. For the first two queries this is immediate by the fact that any query
on ordered structures is axiomatisable in C

ω
∞ω. The third query (on additive

structures) is readily seen to be axiomatisable in MSO.
In fact, any BPFO-axiomatisable query on additive structures can be axioma-

tised in MSO. To see this, we first use Nisan’s pseudorandom generator for con-
stant depth circuits [31] to reduce the number of random bits to m := polylog(n),
where n is the size of the input structure. We then use an expander random walk
to generate

√
n many blocks of m pseudorandom bits each, using a seed of only

s := m + O(
√

n) bits, see [32]. Taking a majority vote over the
√

n many trials,
for large enough n, the error drops down to below 2−s/3, and we use an argument
similar to that by Goldreich and Zuckerman [33]. Note that these pseudorandom
generators are expressible in MSO on additive structures, essentially because we
can quantify over binary relations on the first

√
n numbers of the structure.

Details of this proof will appear in the full version of this paper.

4.1 BPFO is not contained in C
ω
∞ω

Formulas of the logic C
ω
∞ω may contain arbitrary (not necessarily finite) conjunc-

tions and disjunctions, but only finitely many variables, and counting quantifiers
of the form ∃≥nx ϕ (“there exists at least n x such that ϕ”). For example, the
class of finite structures of even cardinality can be axiomatised in this logic by
the sentence

∨

k≥0

(

∃≥2kx.x=̇x
)

∧ ¬
(

∃≥2k+1x.x=̇x
)

.

Theorem 1. There is a class T CFI of structures that is definable in BPFO,
but not in C

ω
∞ω.

Recall that by Observation 2 there also is a class of structures definable in
FO+C ≤ C

ω
∞ω, but not in BPFO.

Our proof of Theorem 1 is based on a well-known construction due to Cai,
Fürer, and Immerman [34], who gave an example of a Boolean query in P that
is not definable in C

ω
∞ω. We modify their construction in a way reminiscent to

proofs by Dawar, Hella, and Kolaitis [35] for results on implicit definability in
first-order logic, and obtain a query T CFI definable in BPFO, but not in C

ω
∞ω.

Just like in Cai, Fürer and Immerman’s original proof, the reason why C
ω
∞ω can

not axiomatise our query T CFI is its inability to choose one out of a pair of
two elements. Using a random binary relation this can – with high probability
– be done in FO. For details we refer to Appendix A.
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4.2 BPFO on ordered structures is not contained in MSO

In the presence of a linear order, any query becomes axiomatisable in L
ω
∞ω, and

the query T CFI becomes axiomatisable even in FO. However, randomisation
adds expressive power to FO also on ordered structures:

Theorem 2. There is a class B of ordered structures that is definable in BPFO,
but not in MSO.

Remember that monadic second-order logic MSO is the the fragment of
second-order logic that allows quantification over individual elements and sets
of elements.

Let σEP≤ := {≤, E, P}, with binary relations ≤ and E, and a unary predicate
P . We define two classes B′, B of σEP≤-structures:
B′ is the class of all σEP≤-structures A for which

1. E defines a perfect matching on the set M := P (A)
2. the set N := V (A) \ P (A) forms a Boolean algebra with the relation E and
3. no x ∈ N and y ∈ M are E-related
4. ≤ defines a linear order on the whole structure, which puts the M before the

N and orders M in such a way that matched elements are always successive.

It is easy to see that the class B′ is definable in FO. B is the subclass of B′ whose
elements satisfy the additional condition

2|M | ≥ |N |2 . (2)

We will prove that B is definable in BPFO, but not in MSO. To prove that B is
definable in BPFO, we will the following lemma:

Lemma 2 (Birthday Paradoxon). Let m,n ≥ 1 and let F : [n] → [m] be a
random function drawn uniformly from the set of all such functions.

1. For any ǫ1 > 0 and c > 2 ln 1
ǫ1

there is an nc ≥ 1 such that if n > nc and

m ≤ n2

c we have
Pr(F is injective) ≤ ǫ1

2. For any ǫ2 > 0, if m ≥ n2

2ǫ2
, then

Pr(F is injective) ≥ 1 − ǫ2

Proof. For the first part, we note that

Pr(F injective) =

n−1
∏

i=0

(

1 − i

m

)

≤
n−1
∏

i=0

exp

(

− i

m

)

= exp

(

−n(n − 1)

2m

)

.

For the second part, note that

Pr(F not injective) = Pr
(

⋃

1≤i<j≤n
{F (i) = F (j)}

)

≤
∑

i<j

1

m
≤ n2

2m
.

⊓⊔
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Proof (Theorem 2). To see that B is not definable in MSO, we use two simple
and well-known facts about MSO. The first is that for every q ≥ 0 there are
natural numbers p,m such that for all k ≥ 0, a plain linear order of length m
is indistinguishable from the linear order of length m + k · p by MSO-sentences
of quantifier rank at most q. The same fact also holds for linear orders with a
perfect matching on successive elements, because such a matching is definable
in MSO anyway. The second fact we use is a version of the Feferman-Vaught
Theorem. Suppose that we have a linearly ordered structure of the form A ∪B,
and the two parts A,B are disjoint and not related except by the linear order,
which puts A completely before B. Let q ≥ 0 and A′ another linearly ordered
structure that is indistinguishable from A by all MSO-sentences of quantifier
rank at most q. Then the structure A′∪B is indistinguishable from A∪B by all
MSO-sentences of quantifier rank at most q. If we put these two facts together,
we see that for every q ≥ 0 there are p,m such that for all k, n the structure
A ∈ K with parts M,N of sizes m, n, respectively, is indistinguishable from the
structure A′ with parts of sizes m+k ·p and n. We can easily choose k, n in such
a way that A 6∈ K′ and A′ ∈ K′.

It remains to prove that K′ is definable in BPFO. Consider the sentence

ϕinj := ∀x∀y
(

Px ∨ Py ∨ ∃z
(

Pz ∧ ¬(Rxz ↔ Ryz)
)

)

,

which states that the random binary relation R, considered as a function

f : N → Pow(M), x 7→ {y ∈ M | Rxy}

from N to subsets of M , is injective. By the definition of R, the function f is
drawn uniformly from the set of all such functions. If we fix |N |, the probability
for f to be injective increases monotonically with |M |. Furthermore, for every
structure in K, the size of N and M are a power of two and an even number,
respectively. Thus either

2|M | ≤ 1

4
|N |2 or 2|M | ≥ |N |2 ,

and this factor of 4 translates into a probability gap for ϕinj in all sufficiently
large structures in K, by lemma 2 with ǫ1 = 0.2, ǫ2 = 0.5 and c = 4. The
remaining finitely many structures in K can be dealt with separately. ⊓⊔

4.3 BPFO is stronger than FO on additive structures

Recall that an additive structure is one whose vocabulary contains a ternary
relation +, such that A|+ is isomorphic to ([|A| − 1], {(a, b, c) | a + b = c}).

Theorem 3. There is a class A of additive structures that is definable in BPFO,
but not in FO.

Our proof uses the following result:

11



Theorem 4 (Lynch [36]). For every k ∈ N there is an infinite set Ak ⊆ N and
a dk ∈ N such that for all finite Q0, Q1 ⊆ Ak with |Q0| = |Q1| or |Q0| , |Q1| > dk

the structures (N,+, Q0) and (N,+, Q1) satisfy exactly the same FO-sentences
of quantifier rank at most k.

Here (N,+, Qi) denotes a {+, P}-structure with ternary + and unary P ,
where + is interpreted as above and P is interpreted by Qi. For a finite set M ⊆ N
we denote by max M the maximum element of M . By relativising quantifiers to
the maximum element satisfying P , we immediately get the following corollary:

Corollary 1. Let k, Ak, dk, Q0 and Q1 be as above. Then the (finite) structures
([max Q0],+, Q0) and ([max Q1],+, Q1) satisfy exactly the same FO-sentences of
quantifier rank at most k.

We call a set Q ⊂ N sparse if |Q ∩ {n, . . . , 3n}| ≤ 1 for all n ≥ 0. Note that
if Q is sparse and finite, then |Q| ≤ log3(max Q) + 1. It is easy to see that there
is an FO[{+, P}]-sentence ϕsparse such that

([max Q],+, Q) |= ϕsparse ⇔ Q is sparse

for all finite Q ⊆ N.

Proof (Proof of Theorem 3). We define the following class of additive {+, P}-
structures:

A = {([max Q],+, Q) | Q is finite, sparse and |Q| is even},

with + defined as usual. It follows immediately from Corollary 1 that A is not
definable in FO.

It remains to prove that A is definable in BPFO. We consider a binary random
relation R on Q = ([max Q],+, Q) for some finite Q ⊆ N.

Each element a ∈ [max Q] defines a subset of Q, namely the set of b ∈ Q for
which (a, b) ∈ R(Q) holds. If Q is a sparse set, it has

2|Q| ≤ 2log3(max Q)+1 ≤ max Q

2 ln(max Q)

many subsets, and by standard estimates on the coupon collector’s problem (see,
e.g., [37]; or use a union-bound argument), if maxQ is large enough, every subset
of Q is defined by some element of [max Q]. Thus we may quantify over subsets
of Q. Since we can define a linear order on the structure Q from the addition,
we can now easily express evenness of Q in FO. ⊓⊔

5 A logic capturing BPP

In this section, we prove that the logic BPIFP+C captures the complexity class
BPP. Technically, the results of this section are closely related to results in [12].

Counting logics like FO+C and IFP+C are usually defined via two-sorted
structures, which are equipped with an initial segment of the natural numbers

12



of appropriate length. The expressive power of the resulting logic turns out to be
rather robust under changes in the exact definition, see [38] for a detailed survey
of this. However, we will only need the limited counting ability provided by the
Rescher quantifier, which goes back to a unary majority quantifier defined in
[39], see [38].

We let FO(J ) be the logic obtained from first-order logic by adjoining a
generalised quantifier J , the Rescher quantifier. For any two formulas ϕ1(x)
and ϕ2(x), where x is a k-tuple of variables, we form a new formula

Jx.ϕ1(x)ϕ2(x).

Its semantics is defined by

A |= Jx.ϕ1(x)ϕ2(x) iff
∣

∣{a ∈ V (A)k | A |= ϕ1[a]}
∣

∣ ≤
∣

∣{a ∈ V (A)k | A |= ϕ2[a]}
∣

∣ . (3)

The logic IFP(J ) is defined similarly.

Lemma 3. Let R be a 6-ary relation symbol. There is a formula ϕ≤(x, y) ∈
FO(J )[{R}] such that

lim
n→∞

Pr
A∈X(Sn,{R})

(

{(a, b)
∣

∣ A |= ϕ≤[a, b]
}

is a linear order of V (A)
)

= 1.

(Recall that Sn is the ∅-structure with universe {1, . . . , n}. Thus X(Sn, {R}) just
denotes the set of all {R}-structures with universe {1, . . . , n}.)
A proof of this lemma can be found in Appendix B.

Theorem 5. The logic BPIFP(J ) captures BPP.

Proof. BPIFP(J ) is contained in BPP, because a randomised polynomial time
algorithm can interpret the random relations by using its random bits.

For the other direction, let Q be a Boolean query in BPP. This means that
there is a randomised polynomial time algorithm M that decides the query Q≤

of ordered expansions of structures in Q. We may view the (polynomially many)
random bits used by M as part of the input. Then it follows from the Immerman-
Vardi Theorem that there is a BPIFP-sentence ψM defining Q≤. Note that, by the
definition of Q≤, this sentence is order-invariant. We replace every occurrence
of ≤ in ψM by the formula ϕ≤(x, y) of Lemma 3, which with high probability
defines a linear order on the universe. ⊓⊔

It is easy to see that BPIFP+C is also contained in BPP and that IFP(J ) ≦

IFP+C. Thus we get the following corollary.

Corollary 2. BPIFP+C = BPIFP(J ), and both capture BPP.

Remark 5. By similar arguments, we obtain logical characterisations of other
randomised complexity classes. For example, BPL = BPDTC(J ) = BPDTC+C.
(Here L does not denote a generic logic, but the complexity class logspace.)

Furthermore, it also follows from Lemma 3 that BPL
ω
∞ω(J ) = BPC

ω
∞ω. Ac-

tually, it follows that all queries are definable in BPL
ω
∞ω(J ).
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A The query T CFI
We first review the construction of [34] and then show how to modify it to suit
our needs. Given a graph G = (V,E), Cai et al. construct a new graph G′,
replacing all vertices and edges of G with certain gadgets. We shall call graphs
G′ resulting in this fashion CFI-graphs, and will from now on restrict ourselves
to connected 3-regular graphs G and CFI-graphs resulting from these.

vertex
a1 b1

a b

a b

a b

edge

a2 b2 a3 b3

12 13
23

a b

twisted

normal
∅

Fig. 1. The gadgets for CFI-graphs. Dashed ellipses indicate groups of equivalent ver-
tices. Vertex labels are not part of the actual structure.

The construction is as follows: For each vertex in G, we place a copy of the
gadget shown on the left of Figure 1 in G′. It has a group of four nodes (hence-
forth called centre nodes) plus three pairs of nodes, which are to be thought of
as ends of the three edges incident with that node. For the time being, we think
of the pairs as ordered from 1 to 3 and distinguish between the two nodes in each
pair, say one of them is the a-node, the other one being the b node. Each of the
four centre nodes is connected to one node from each pair, and each of them to
an even number of a’s. To illustrate this, the centre nodes are labelled with the
even subsets of {1, 2, 3}. Permuting the pairs of nodes results in a permutation
of the four centre nodes, so we get isomorphic graphs regardless of which way we
order the pairs. We also introduce an equivalence relation (or colouring, if you
like) of nodes as shown in Figure 1, so any isomorphism of the gadget necessarily
permutes the centre nodes and the nodes in each pair.

For each edge in G, we connect the a- and b-nodes in the corresponding pairs
as shown on the right of Figure 1. We say an edge is “twisted” if the a-node of
one pair is connected to the b-node of the other and vice versa. This completes
our construction of G′. For definiteness, when we speak of an edge group we
mean an equivalence class of size two, and by a centre group we mean one of
size four. An edget is a pair of edge groups which form an edge gadget as on the
right of Figure 1.

Without the a- and b-labels, we cannot decide which of the edges have been
twisted. In fact there are only two isomorphism classes of graphs, namely those
with an even number of edges twisted and those with an odd number (we call
the latter ones twisted CFI-graphs). This relies on the fact that isomorphisms of
the gadget on the left of Figure 1 are exactly those permutations swapping an
even number of a’s and b’s. Since we assume G to be connected, we can twist
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edges along a path between two nodes adjacent to twisted edges, reducing the
number of twisted edges by two.

Now, for every C
ω
∞ω-sentence ϕ, if the original graph G is complicated enough,

the two isomorphism classes can not be told apart by ϕ [34]. In P, on the other
hand, twisted CFI-graphs can easily be recognised: Choose exactly one node
from each edge group and label this one a and the other one b. A centre node
is connected to an even number of a’s if and only if all four nodes in its centre
group are. In this case we call the centre group even, otherwise we call it odd.
Then a CFI-graph is twisted if and only if

(no. of odd centre groups + no. of twisted edgets) is odd.

We aim for a BPFO-sentence which defines exactly the twisted connected
3-regular CFI-graphs. In view of the above P-algorithm, we are done if we can

– express connectedness of the graph,
– count modulo two and
– choose one representative from each centre group, edge group and edget.

For counting modulo two and to get representatives for centre groups and
edgets, we augment the structures with a Boolean algebra in the following way:1

Let τ be the vocabulary {E,∼, <,⊑, P,O}, with unary P and O, and binary E,
∼, < and ⊑. Let CFI be the class of structures A such that

– E defines a 3-regular, connected CFI-graph on V (A) \ P (A),
– (P (A),⊑) is a Boolean algebra B, and O is true exactly for its members of

even cardinality
– < defines a linear order on the set of atoms of B (and no other element of

A is <-related to any other).
– ∼ defines an equivalence relation, where each equivalence class contains one

atom and the nodes of one edget or one centre group, or consists of a single
non-atom of B.

Theorem 6. The class CFI is definable in FO. The subclass T CFI of twisted
CFI-graphs is definable in BPFO but not in C

ω
∞ω.

Proof. That CFI is definable is easy to establish, the only subtlety being that
B allows us to quantify over sets of centre groups, which makes connectedness
expressible.

The proof that T CFI is not definable in C
ω
∞ω is the same as in [34]; it is

unaffected by the additional structure. Note that because the atoms are ordered,
the Boolean algebra is rigid, i.e., it has no non-trivial automorphism, therefore
the isomorphism group of a CFI-graph is not changed by adding the Boolean
algebra.

It remains to show that twistedness can be defined in BPFO. We pick one
vertex from each edge group by viewing a random binary relation R as assigning

1 It has been pointed out to us that a somewhat similar construction appears in [35],
but there the starting point is a linear order rather than a CFI-graph.
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an m-bit number to each vertex, where m is the number of atoms in the Boolean
algebra. From each pair, we choose the vertex with the smaller number, expressed
by

ξ(x) := ∃y
(

x ∼ y ∧ ∃z
(

α(z) ∧ ¬Rxz ∧ Ryz ∧ ∀w(w < z → (Rxw ↔ Ryw))
)

)

,

where α(x) is an FO-formula satisfied exactly by the atoms of the Boolean al-
gebra. It is easy to see that if the random relation R assigns a different set of
atoms to the two vertices in each edge group, then ξ succeeds in picking ex-
actly one vertex from each edge group, and twistedness can then be checked by
looking at the O-predicate of the element of B which contains exactly the atoms
equivalent to twisted centre groups or twisted edgets. To prove that the resulting
formula has a large probability gap, we need to establish a high probability of
success only for structures in the class CFI, because this class is FO-definable.
But in such structures, the probability that the two nodes of an edge group are
assigned the same number is 2−m, so by a union bound the probability that we
successfully pick one node from each group is close to one. ⊓⊔
B Proof of lemma 3

Proof (of lemma 3). We let

ϕ≤(x, y) := J x1 . . . x5.Rxx1 . . . x5 Ryx1 . . . x5.

To see that ϕ≤(x, y) defines an order with high probability, let A be a structure
with universe V (A) = {1, . . . , n}. For each a ∈ V (A), let

Xa :=
∣

∣{a ∈ V (A)5 | A |= Raa.}
∣

∣

Then
A |= ϕ≤(a, b) iff Xa ≤ Xb,

and ϕ≤ linearly orders A iff the Xa are pairwise distinct. But for a 6= b ∈
V (A), the random variables Xa and Xb are independent and each is binomially
distributed with parameters p = 1/2 and m = n5, and thus

Pr(Xa = Xb) =

m
∑

k=0

(

1

2m

(

m

k

))2

=
1

22m

∑

(

m

k

)2

=
1

22m

∑

(

m

k

)(

m

m − k

)

=
1

22m

(

2m

m

)

= Θ

(

1√
m

)

,

where the final approximation can be found, for example, in [40]. The second
part now follows by a union bound over the

(

n
2

)

= Θ(m2/5) pairs a 6= b. ⊓⊔
Remark 6. While using a 6-ary relation makes the above analysis of the success
probability particularly simple, in IFP it is also possible to define an order with
high probability using a binary random relation and Rescher quantifier [41] or a
binary random relation and an even quantifier [12].
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