
Randomisation and Derandomisation in

Descriptive Complexity Theory

Kord Eickmeyer Martin Grohe

November 22, 2010

We study probabilistic complexity classes and questions of derandomisa-
tion from a logical point of view. For each logic L we introduce a new logic
BPL, bounded error probabilistic L, which is defined from L in a similar way
as the complexity class BPP, bounded error probabilistic polynomial time, is
defined from P.

Our main focus lies on questions of derandomisation, and we prove that
there is a query which is definable in BPFO, the probabilistic version of first-
order logic, but not in Cω

∞ω, finite variable infinitary logic with counting. This
implies that many of the standard logics of finite model theory, like transitive
closure logic and fixed-point logic, both with and without counting, cannot
be derandomised. We prove similar results for ordered structures and struc-
tures with an addition relation, showing that certain uniform variants of AC0

(bounded-depth polynomial sized circuits) cannot be derandomised. These
results are in contrast to the general belief that most standard complexity
classes can be derandomised.

Finally, we note that BPIFP+C, the probabilistic version of fixed-point
logic with counting, captures the complexity class BPP, even on unordered
structures.

1 Introduction

The relation between different modes of computation — deterministic, nondeterminis-
tic, randomised — is a central topic of computational complexity theory. The P vs.
NP problem falls under this topic, and so does a second very important problem, the
relation between randomised and deterministic polynomial time. In technical terms, this
is the question of whether P = BPP, where BPP is the class of all problems that can be
solved by a randomised polynomial time algorithm with two-sided errors and bounded
error probability. This question differs from the question of whether P = NP in that
most complexity theorists seem to believe that the classes P and BPP are indeed equal.
This belief is supported by deep results due to Nisan and Wigderson [32] and Impagli-
azzo and Wigderson [22], which link the derandomisation question to the existence of

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 56 (2010)

one-way functions and to circuit lower bounds. Similar derandomisation questions are
studied for other complexity classes such as logarithmic space, and it is believed that
derandomisation is possible for these classes as well.

Descriptive complexity theory gives logical descriptions of complexity classes and thus
enables us to translate complexity theoretic questions into the realm of logic. While
logical descriptions are known for most natural deterministic and nondeterministic time
and space complexity classes, probabilistic classes such as BPP have received very little
attention in descriptive complexity theory yet. In this paper, we study probabilistic
complexity classes and questions of derandomisation from a logical point of view. For
each logic L we introduce a new logic BPL, bounded error probabilistic L, which is defined
from L in a similar way as BPP is defined from P. The randomness is introduced to
the logic by letting formulas of vocabulary τ speak about random expansions of τ -
structures to a richer vocabulary τ ∪ ρ. We also introduce variants RL, co-RL with
one-sided bounded error and PL with unbounded error, corresponding to other well
known complexity classes, but focus on BPL in this conference paper.

Our main technical results are concerned with questions of derandomisation. By this
we mean upper bounds on the expressive power of randomised logics in terms of classi-
cal logics. Trivially, BPL is at least as expressive as L, and if the two logics are equally
expressive, then we say that BPL derandomisable. More generally, if L′ is a (determin-
istic) logic that is at least as expressive as BPL, then we say that BPL derandomisable
within L′. We prove that BPFO, bounded error probabilistic first-order logic, is not
derandomisable within Cω

∞ω, finite variable infinitary logic with counting. This implies
that many of the standard logics of finite model theory, like transitive closure logic and
fixed-point logic, both with and without counting, cannot be derandomised. Note that
these results are in contrast to the general belief that most standard complexity classes
can be derandomised.

We then investigate whether BPFO can be derandomised on classes of structures with
built-in relations, such as ordered structures and arithmetic structures. We prove that
BPFO cannot be derandomised within MSO, monadic second-order logic, on structures
with built-in order. Furthermore, BPFO cannot be derandomised on structures with
built-in order and addition. Interestingly and nontrivially, BPFO can be derandomised
within MSO on structures with built-in order and addition. Behle and Lange [6] showed
that the expressive power of FO on classes of ordered structures with certain predefined
relation symbols corresponds to uniform subclasses of AC0, the class of problems decid-
able by circuit families of bounded depth, unbounded fan-in and polynomial size. In
fact, for any set R of built-in relations they show that FO[R] captures FO[R]-uniform
AC0. Arguably the most intensively studied uniformity condition on AC0 is dlogtime-
uniform AC0, which corresponds to FO[+,×], first-order logic with built-in arithmetic
(Barrington et al. [4]). The question of whether dlogtime-uniform BPAC0 can be deran-
domised is still open, but there is a conditional derandomisation by Viola [40]. There
are less uniform variants of BPAC0 that can be proved to be derandomisable by standard
arguments in the style of Adleman [1]. We prove that the more uniform FO[+]-uniform
AC0 is not derandomisable. This raises the question of how weak uniformity must be for
derandomisation to be possible.

2

In the last section of this paper, we turn to more standard questions of descriptive
complexity theory. We prove that BPIFP+C, the probabilistic version of fixed-point logic
with counting, captures the complexity class BPP, even on unordered structures. For
ordered structures, this result is a direct consequence of the Immerman-Vardi Theorem
[20, 39], and for arbitrary structures it follows from the observation that we can define
a random order with high probability in BPIFP+C. Still, the result is surprising at first
sight because of its similarity with the open question of whether there is a logic capturing
P, and because it is believed that P = BPP. The caveat is that the logic BPIFP+C
does not have an effective syntax and thus is not a “logic” according to Gurevich’s
[18] definition underlying the question for a logic that captures P. Nevertheless, we
believe that BPIFP+C gives a completely adequate description of the complexity class
BPP, because the definition of BPP is inherently ineffective as well (as opposed to the
definition of P in terms of the decidable set of polynomially clocked Turing machines).
We obtain similar descriptions of other probabilistic complexity classes. For example,
randomised logspace is captured by the randomised version of deterministic transitive
closure logic with counting.

Related work

As mentioned earlier, probabilistic complexity classes such as BPP have received very
little attention in descriptive complexity theory. There is an unpublished paper due to
Kaye [23] that gives a logical characterisation of BPP on ordered structures. Müller [31]
and Montoya (unpublished) study a logical BP-operator in the context of parameterised
complexity theory. What comes closest to our work “in spirit” and also in some technical
aspects is Hella, Kolaitis, and Luosto’s work on almost everywhere equivalence [19], which
may be viewed as a logical account of average case complexity in a similar sense that
our work gives a logical account of randomised complexity. There is a another logical
approach to computational complexity, known as implicit computational complexity,
which is quite different from descriptive complexity theory. Mitchell, Mitchell, and
Scedrov [29] give a logical characterisation of BPP by a higher-order typed programming
language in this context.

Outside of descriptive complexity theory and finite model theory, probabilistic logics
have received wide attention in mathematical logic and computer science, particularly
in artificial intelligence and also in database theory. However, all this work has little in
common with ours, both on a conceptual and on a technical level. A few pointers to the
literature are [3, 8, 14, 24].

Let us emphasise that the main purpose of this paper is not the definition of new
probabilistic logics, but an investigation of these logics in a complexity theoretic context.

2 Preliminaries

2.1 Structures and queries

A vocabulary is a finite set τ of relation symbols of fixed arities. A τ -structure A consists
of a finite set V (A), the universe of the structure, and, for all R ∈ τ , a relation R(A) on
A whose arity matches that of R. Thus we only consider finite and relational structures.

3

Let σ, τ be vocabularies with σ ⊆ τ . Then the σ-restriction of a τ -structure B is the
σ-structure B|σ with universe V (B|σ) := V (B) and relations R(B|σ) := R(B) for all
R ∈ σ. A τ -expansion of a σ-structure A is a τ -structure B such that B|σ = A. For
every class C of structures, C[τ] denotes the class of all τ -structures in C. A renaming of
a vocabulary τ is a bijective mapping r from τ to a vocabulary τ ′ such that for all R ∈ τ
the relation symbol r(R) ∈ τ ′ has the same arity as R. If r : τ → τ ′ is a renaming and A
is a τ -structure then Ar is the τ ′-structure with V (Ar) := V (A) and r(R)(Ar) := R(A)
for all R ∈ τ .

We let 6, + and × be distinguished relation symbols of arity two, three and three,
respectively. Whenever any of these relations symbols appear in a vocabulary τ , we
demand that they be interpreted by a linear order and ternary addition and multipli-
cation relations, respectively, in all τ -structures. To be precise, let [a, b] be the set
{a, a + 1, . . . , b} for a ≤ b ∈ N, and denote by Nn the {6, +,×}-structure with

V (Nn) = [0, n − 1], 6(Nn) = {(a, b) | a 6 b} and

+(Nn) = {(a, b, c) | a + b = c}, ×(Nn) = {(a, b, c) | a · b = c}.

We demand A|{6,+,×}∩τ
∼= (N|A|)|{6,+,×}∩τ for all τ -structures A. We call structures

whose vocabulary contains any of these relation symbols ordered, additive and multiplica-
tive, respectively. We say that a formula ϕ(x) with exactly one free variable x defines an
element if in every structure it is satisfied by exactly one element. Since we may identify
the elements of an ordered structure uniquely with natural numbers it makes sense to
say, e.g., that “ϕ(x) defines a prime number” or “ϕ(x) defines a number ≤ logO(1) |A|”,
and we will sometimes do so.

A k-ary τ -global relation is a mapping R that associates a k-ary relation R(A) with
each τ -structure A. A 0-ary τ -global relation is usually called a Boolean τ -global relation.
We identify the two 0-ary relations ∅ and {()}, where () denotes the empty tuple, with
the truth values false and true, respectively, and we identify the Boolean τ -global relation
R with the class of all τ -structures A with R(A) = true. A k-ary τ -query is a k-ary
τ -global relation Q preserved under isomorphism, that is, if f is an isomorphism from
a τ -structure A to a τ -structure B then for all ~a ∈ V (A)k it holds that ~a ∈ Q(A) ⇐⇒
f(~a) ∈ Q(B).

2.2 Logics

A logic L has a syntax that assigns a set L[τ] of L-formulas of vocabulary τ with each

vocabulary τ and a semantics that associates a τ -global relation QL[τ]
ϕ with every formula

ϕ ∈ L[τ] such that for all vocabularies σ, τ, τ ′ the following three conditions are satisfied:

(i) For all ϕ ∈ L[τ] the global relation QL[τ]
ϕ is a τ -query.

(ii) If σ ⊆ τ then L[σ] ⊆ L[τ], and for all formulas ϕ ∈ L[σ] and all τ -structures A it

holds that QL[σ]
ϕ (A|σ) = QL[τ]

ϕ (A).

(iii) If r : τ → τ ′ is a renaming, then for every formula ϕ ∈ L[τ] there is a formula

ϕr ∈ L[τ ′] such that for all τ -structures A it holds that QL[τ]
ϕ (A) = QL[τ ′]

ϕr (Ar).

4

Condition (ii) justifies dropping the vocabulary τ in the notation for the queries and just
write QL

ϕ. For a τ -structure A and a tuple ~a whose length matches the arity of QL
ϕ, we

usually write A |=L ϕ[~a] instead of ~a ∈ QL
ϕ(A). If QL

ϕ is a k-ary query, then we call ϕ a

k-ary formula, and if QL
ϕ is Boolean, then we call ϕ a sentence. Instead of A |=L ϕ[()]

we just write A |=L ϕ and say that A satisfies ϕ. We omit the index L if L is clear from
the context.

A query Q is definable in a logic L if there is an L-formula ϕ such that Q = QL
ϕ.

Two formulas ϕ1, ϕ2 ∈ L[τ] are equivalent (we write ϕ1 ≡ ϕ2) if they define the same
query. We say that a logic L1 is weaker than a logic L2 (we write L1 ≦ L2) if every
query definable in L1 is also definable in L2. Similarly, we define it for L1 and L2 to be
equivalent (we write L1 ≡ L2) and for L1 to be strictly weaker than L2 (we write L1 © L2).
The logics L1 and L2 are incomparable if neither L1 ≦ L2 nor L2 ≦ L1.

Remark 1. Our notion of logic is very minimalistic, usually logics are required to meet
additional conditions (see [10] for a thorough discussion). In particular, we do not require
the syntax of a logic to be effective. Indeed, the main logics studied in this paper have
an undecidable syntax. Our definition is in the tradition of abstract model theory (cf.
[5]); proof theorists tend to have a different view on what constitutes a logic.

We assume that the reader has heard of the standard logics studied in finite model
theory, specifically first-order logic FO, second-order logic SO and its fragments Σ1

k,
monadic second-order logic MSO, transitive closure logic TC and its deterministic variant
DTC, least, inflationary, and partial fixed-point logic LFP, IFP, and PFP, and finite
variable infinitary logic Lω

∞ω. For all these logics except LFP there are also counting
versions, which we denote by FO+C, TC+C, . . ., PFP+C and Cω

∞ω, respectively. Only
familiarity with first-order logic is required to follow most of the technical arguments in
this paper. The other logics are more or less treated as “black boxes”. We will say a bit
more about some of them when they occur later. The following diagram shows how the
logics compare in expressive power:

FO © DTC © TC © LFP ≡ IFP © PFP © Lω
∞ω

© © © © © ©
FO+C © DTC+C © TC+C © IFP+C © PFP+C © Cω

∞ω.
(1)

Furthermore, MSO is strictly stronger than FO and incomparable with all other logics
displayed in (1).

2.3 Complexity theory

We assume that the reader is familiar with the basics of computational complexity
theory and in particular the standard complexity classes such as P and NP. Let us
briefly review the class BPP, bounded error probabilistic polynomial time, and other
probabilistic complexity classes: A language L ⊆ Σ∗ is in BPP if there is a polynomial
time algorithm M , expecting as input a string x ∈ Σ∗ and a string r ∈ {0, 1}∗ of “random
bits”, and a polynomial p such that for every x ∈ Σ∗ the following two conditions are
satisfied:

5

(i) If x ∈ L, then Prr∈{0,1}p(|x|)

(

M accepts (x, r)
)

≥ 2
3 .

(ii) If x 6∈ L, then Prr∈{0,1}p(|x|)

(

M accepts (x, r)
)

≤ 1
3 .

In both conditions, the probabilities range over strings r ∈ {0, 1}p(|x|) chosen uniformly
at random. The choice of the error bounds 1/3 and 2/3 in (i) and (ii) is somewhat
arbitrary, they can be replaced by any constants α, β with 0 < α < β < 1 without
changing the complexity class. (To reduce the error probability of an algorithm we
simply repeat it several times with independently chosen random bits r.)

Hence BPP is the class of all problems that can be solved by a randomised polynomial
time algorithm with bounded error probabilities. RP is the class of all problems that
can be solved by a randomised polynomial time algorithm with bounded one-sided error
on the positive side (the bound 1/3 in (ii) is replaced by 0), and co-RP is the class of all
problems that can be solved by a randomised polynomial time algorithm with bounded
one-sided error on the negative side (the bound 2/3 in (i) is replaced by 1). Finally,
PP is the class we obtain if we replace the lower bound ≥ 2/3 in (i) by > 1/2 and the
upper bound ≤ 1/3 in (ii) by ≤ 1/2. Note that PP is not a realistic model of “efficient
randomised computation”, because there is no easy way of deciding whether an algorithm
accepts or rejects its input. Indeed, by Toda’s Theorem [38], the class PPP contains the
full polynomial hierarchy. By the Sipser-Gács Theorem (see [26]), BPP is contained in
the second level of the polynomial hierarchy. More precisely, BPP ⊆ Σp

2 ∩ Πp
2. It is an

open question whether BPP ⊆ NP. However, as pointed out in the introduction, there
are good reasons to believe that BPP = P.

2.4 Descriptive complexity

It is common in descriptive complexity theory to view complexity classes as classes of
Boolean queries, rather than classes of formal languages. This allows it to compare
logics with complexity classes. The translation between queries and languages is carried
out as follows: Let τ be a vocabulary, and assume that 6 6∈ τ . With each ordered
(τ ∪ {6})-structure B we can associate a binary string s(B) ∈ {0, 1}∗ in a canonical
way. Then with each class C ⊆ O[τ ∪ {6}] of ordered τ structures we associate the
language L(C) := {s(B) | B ∈ C} ⊆ {0, 1}∗. For a Boolean τ -query Q, let Q6 :=

{

B ∈
O[τ ∪6]

∣

∣ B|τ ∈ Q
}

be the class of all ordered (τ ∪ {6})-expansions of structures in Q.
We say that Q is decidable in a complexity class K if the language L(Q6) is contained
in K. We say that a logic L captures K if for all Boolean queries Q it holds that Q is
definable in L if and only if Q is decidable in K. We say that L is contained in K if all
Boolean queries definable in L are decidable in K.

Remark 2. Just like our notion of “logic”, our notion of a logic “capturing” a complexity
class is very minimalistic, but completely sufficient for our purposes. For a deeper dis-
cussion of logics capturing complexity classes we refer the reader to one of the textbooks
[11, 17, 21, 27].

6

3 Randomised logics

Throughout this section, let τ and ρ be disjoint vocabularies. Relations over ρ will be
“random”, and we will reserve the letter R for relation symbols from ρ. We are interested
in random (τ ∪ρ)-expansions of τ -structures. For a τ -structure A, by X (A, ρ) we denote
the class of all (τ ∪ ρ)-expansions of A. We view X (A, ρ) as a probability space with the
uniform distribution. Note that we can “construct” a random X ∈ X (A, ρ) by deciding
independently for all k-ary R ∈ ρ and all tuples ~a ∈ V (A)k with probability 1/2 whether
~a ∈ R(X). Hence if ρ = {R1, . . . , Rk}, where Ri is ri-ary, then a random X ∈ X (A, ρ)
can be described by random bitstring of length

∑k
i=1 nri , where n := |V (A)|. We are

mainly interested in the probabilities

Pr
X∈X (A,ρ)

(X |= ϕ)

that a random (τ ∪ ρ)-expansion of a τ -structure A satisfies a sentence ϕ of vocabulary
τ ∪ ρ of some logic.

Definition 3. Let L be a logic and 0 ≤ α ≤ β ≤ 1.

1. A formula ϕ ∈ L[τ ∪ ρ] that defines a k-ary query has an (α, β]-gap if for all
τ -structures A and all ~a ∈ V (A)k it holds that

Pr
X∈X (A,ρ)

(X |= ϕ[~a]) ≤ α or Pr
X∈X (A,ρ)

(X |= ϕ[~a]) > β.

2. The logic P(α,β]L is defined as follows: For each vocabulary τ ,

P(α,β]L[τ] :=
⋃

ρ

{

ϕ ∈ L[τ ∪ ρ]
∣

∣ ϕ has an (α, β]-gap
}

,

where the union ranges over all vocabularies ρ disjoint from τ . To define the
semantics, let ϕ ∈ P(α,β]L[τ]. Let k, ρ such that ϕ ∈ L[τ ∪ ρ] and ϕ is k-ary. Then
for all τ -structures A,

QP(α,β]L

ϕ (A) :=
{

~a ∈ V (A)k
∣

∣ Pr
X∈X (A,ρ)

(X |=L ϕ[~a]) > β
}

.

It is easy to see that for every logic L and all α, β with 0 ≤ α ≤ β ≤ 1 the logic P(α,β]L
satisfies conditions (i)–(iii) from Subsection 2.2 and hence is indeed a well-defined logic.
We let

PL := P(1/2,1/2]L and RL := P(0,2/3]L and BPL := P(1/3,2/3]L.

We can also define a logic P[α,β)L and let co-RL := P[1/3,1)L. The following lemma shows
that for reasonable L the strength of the logic P(α,β]L does not depend on the exact choice
of the parameters α, β. This justifies the arbitrary choice of the constants 1/3, 2/3 in
the definitions of RL and BPL.

7

Lemma 4. Let L be a logic that is closed under conjunctions and disjunctions. Then
for all α, β with 0 < α < β < 1 it holds that P(0,β]L ≡ RL and P(α,β]L ≡ BPL.

Proof. Let τ an ρ = {R1, . . . , Rk} be disjoint relational vocabularies and let ϕ ∈ L[τ ∪ρ].
For any n ≥ 1 we define a new vocabulary

ρ(n) := {R(i)
j | 1 ≤ i ≤ n, 1 ≤ j ≤ k},

where the arity of R
(i)
j is that of Rj ∈ ρ. Using the renaming property with the renaming

r(i) : (τ ∪ ρ) → (τ ∪ ρ(n))

that leaves τ fixed and maps Rj ∈ ρ to R
(i)
j we get sentences ϕ(i), which are the sentence

ϕ with every occurence of Rj replaced by R
(i)
j . Since L is closed under conjunctions and

disjunctions, for every 0 < l ≤ n there is an L[τ ∪ ρ(n)]-sentence

ϕ(n,l) :=
∨

I⊆[n]
|I|=l

∧

i∈I

ϕ(i)

which is satisfied iff at least l of the ϕ(i) are satisfied. Notice that the ϕ(i) use distinct
random relations, so they are satisfied indepently of each other.

Clearly, if Pr(X |= ϕ) = 0 then also Pr(X |= ϕ(n,l)) = 0, because we assumed l ≥ 1.
On the other hand, if Pr(X |= ϕ) > β for some β ∈ (0, 1), then

Pr(X |= ϕ(n,1)) = 1 − (1 − Pr(X |= ϕ))n (2)

> 1 − (1 − β)n, (3)

and this bound can be made arbitrarily close to 1 by chosing n sufficiently large. This
proves the claim about RL.

For BPL, notice that if ϕ has an (α, β]-gap for some any 0 < α < β < 1, then for any
0 < α′ < β′ < 1 there is an n ∈ N such that

ϕ(n,⌈β−α

2
⌉)

has an (α′, β′]-gap. In fact, the Chernoff bound (see, e.g., [30]) gives very sharp estimates
on n in terms of α, β, α′ and β′, though we only need the mere existence of such an n
here.

3.1 First observations

We start by observing that the syntax of BPFO and thus of most other logics BPL
is undecidable. This follows easily from Trakhtenbrot’s Theorem (see [11] for similar
undecidability proofs):

Observation 5. For all α, β with 0 ≤ α < β < 1 and all vocabularies τ containing at
least one at least binary relation symbol, the set BP(α,β]FO[τ] is undecidable.

8

For each n, let Sn be the ∅-structure with universe V (Sn) := {1, . . . , n}. Recall the
0-1-law for first order logic [13, 16]. In our terminology, it says that for each vocabulary
ρ and each sentence ϕ ∈ FO[ρ] it holds that

lim
n→∞

Pr
X∈X (Sn,ρ)

(X |= ϕ) ∈ {0, 1}

(in particular, this limit exists). There is also an appropriate asymptotic law for formulas
with free variables. This implies that on structures with empty vocabulary, PFO (and
in particular BPFO) has the same expressive power as FO. As there is also a 0-1-law for
the logic Lω

∞ω [25], we actually get the following stronger statement:

Observation 6. Every formula ϕ ∈ PLω
∞ω[∅] is equivalent to a formula ϕ′ ∈ FO[∅].

As FO+C is strictly stronger than FO even on structures of empty vocabulary, this
observation implies that there are queries definable in FO+C, but not in (B)PLω

∞ω.
Furthermore, the Sipser-Gács Theorem [26] that BPP ⊆ Σp

2 ∩ Πp
2, the fact that the

fragment Σ1
2 of second-order logic captures Σp

2 [12, 37], and the observation that BPFO ≦

BPP imply the following:

Observation 7. BPFO ≦ Σ1
2.

We will use Lautemann’s proof of the Sipser-Gács Theorem in section 5 in the context
of monadic second-order logic.

We close this section by observing that randomised logics without probability gaps are
considerably more powerful than their non-randomised counterparts:

Observation 8. Let K be a class of finite structures such that there is a first-order
formula ϕc(x) defining a single element in each structure of K. Then every Σ1

1-query on
K can be axiomatised in PFO.

Proof. Let ϕ be a Σ1
1-query on K, i.e., ϕ is of the form ∃X1 · · · ∃Xkψ, where the Xi are

relation variables and ψ is first-order. We replace each of the Xi by a random relation
Ri of the same arity to get a new sentence ϕ′ and introduce an extra unary random
relation R0. Then ϕ is equivalent to the PFO-sentence

∃x(R0x ∧ ϕc(x)) ∨ ϕ′,

because the first part is satisfied with probability exactly 1/2.

Toda’s Theorem [38] that the polynomial hierarchy is contained in PPP suggests that,
in fact, every second-order query is definable in PFO. However, Toda’s proof does not
carry over easily to the PFO-case. Observation 6 suggests that some technical condition
such as defineability of an element of the structure is necessary to seperate PFO from FO
at all. One example of such a class K is the class of all ordered structures, with ϕc(x)
defining the minimum element.

9

4 Separation results for BPFO

In this section we study the expressive power of the randomised logics RFO, co-RFO,
and BPFO. Our main results are the following:

• RFO is not contained in Cω
∞ω

• BPFO is not contained in MSO on ordered structures

• RFO is stronger than FO on additive structures

A forteriori, the first and the third result also hold with BPFO instead of RFO, and the
constructions used in their proofs also admit co-RFO-axiomatisations.

It turns out that we need three rather different queries to get these separation results.
For the first two queries this is obvious, because every query on ordered structures is
axiomatisable in Cω

∞ω. The third query (on additive structures) is readily seen to be
axiomatisable in MSO. In fact, in Section 5 we show the following:

• Any BPFO-axiomatisable query on additive structures can be axiomatised in MSO.

4.1 RFO is not contained in Cω
∞ω

Formulas of the logic Cω
∞ω may contain arbitrary (not necessarily finite) conjunctions

and disjunctions, but only finitely many variables, and counting quantifiers of the form
∃≥nx ϕ (“there exists at least n x such that ϕ”). For example, the class of finite
structures of even cardinality can be axiomatised in this logic by the sentence

∨

k≥0

(

∃≥2kx x=̇x
)

∧ ¬
(

∃≥2k+1x x=̇x
)

.

Theorem 9. There is a class T CFI of structures that is definable in RFO and co-RFO,
but not in Cω

∞ω.

Recall that by Observation 6 there also is a class of structures definable in FO+C ≤
Cω
∞ω, but not in BPFO.
Our proof of Theorem 9 is based on a well-known construction due to Cai, Fürer, and

Immerman [7], who gave an example of a Boolean query in P that is not definable in
Cω
∞ω. We modify their construction in a way reminiscent to a proof by Dawar, Hella,

and Kolaitis [9] for results on implicit definability in first-order logic, and obtain a query
T CFI definable in (co-)RFO, but not in Cω

∞ω. Just like in Cai, Fürer and Immerman’s
original proof, the reason why Cω

∞ω can not axiomatise our query T CFI is its inability
to choose one out of a pair of two elements. Using a random binary relation this can –
with high probability – be done in FO.

We first review the construction of [7] and then show how to modify it to suit our
needs. Given a graph G = (V, E), Cai et al. construct a new graph G′, replacing all
vertices and edges of G with certain gadgets. We shall call graphs G′ resulting in this
fashion CFI-graphs, and will from now on restrict ourselves to connected 3-regular graphs
G and CFI-graphs resulting from these.

10

vertex

a1 b1

a b

a b

a b

edge

edge
group

centre
group

a2 b2 a3 b3

12 13

a b

twisted
∅

straight
23

Figure 1: The gadgets for CFI-graphs. Dashed ellipses indicate groups of equivalent
vertices. Vertex labels are not part of the actual structure.

The construction is as follows: For each vertex in G, we place a copy of the gadget
shown on the left of Figure 1 in G′. It has a group of four nodes (henceforth called centre
nodes) plus three pairs of nodes, which are to be thought of as ends of the three edges
incident with that node. For the time being, we think of the pairs as ordered from 1 to
3 and distinguish between the two nodes in each pair, say one of them is the a-node,
the other one being the b node. Each of the four centre nodes is connected to one node
from each pair, and each of them to an even number of a’s. To illustrate this, the centre
nodes are labelled with the even subsets of {1, 2, 3}.

For each edge in G, we connect the a- and b-nodes in the corresponding pairs as
shown on the right of Figure 1. We say an edge is “twisted” if the a-node of one pair
is connected to the b-node of the other and vice versa. This completes our construction
of G′. For definiteness, when we speak of an edge group we mean an equivalence class
of size two, and by a centre group we mean one of size four. An edget is a pair of edge
groups which form an edge gadget as on the right of Figure 1. Figure 2 shows the result
of applying this construction to a small subgraph (a vertex with its three neighbours).

Without the a- and b-labels, we cannot decide which of the edges have been twisted.
In fact there are only two isomorphism classes of CFI-graphs derived from G, namely
those with an even number of edges twisted and those with an odd number (we call the
latter ones twisted CFI-graphs). This relies on the fact that isomorphisms of the gadget
on the left of Figure 1 are exactly those permutations swapping an even number of a’s
and b’s. Since we assume G to be connected, we can twist edges along a path between
two nodes adjacent to twisted edges, reducing the number of twisted edges by two.

Now, for every Cω
∞ω-sentence ϕ, if the original graph G is complicated enough, the

two isomorphism classes can not be told apart by ϕ [7]. In P, on the other hand, twisted
CFI-graphs can easily be recognised: Choose exactly one node from each edge group
and label this one a and the other one b. A centre node is connected to an even number
of a’s if and only if all four nodes in its centre group are. In this case we call the centre
group even, otherwise we call it odd. Then a CFI-graph is twisted if and only if

(no. of odd centre groups + no. of twisted edgets) is odd.

11

3

1

1

2 3

2 3

2

1

2 3

1

a3

b3

a2

b2

b1a1

∅ 12 13 23

a3

b3

a2

b2

b1a1

∅ 12 13 23

a3

b3

b2

a2

b1a1

∅ 12 13 23

a3

b3

b2

a2

b1a1

∅ 12 13 23

edget
(straight)

edget
(twisted)

Figure 2: The CFI-graph construction for a part of a graph. Edge and nodes labels are
not part of the actual graph.

We aim for a (co-)RFO-sentence which defines exactly the twisted connected 3-regular
CFI-graphs. In view of the above P-algorithm, we are done if we can

• express connectedness of the graph,

• count modulo two and

• choose one representative from each centre group, edge group and edget.

For counting modulo two and to get representatives for centre groups and edgets,
we augment the structures with a Boolean algebra in the following way:Let τ be the
vocabulary {E,∼, <,⊑, P, O}, with unary P and O, and binary E, ∼, < and ⊑. Let
CFI be the class of structures A such that

• E defines a 3-regular, connected CFI-graph on V (A) \ P (A),

• (P (A),⊑) is a Boolean algebra B, and O is true exactly for its members of even
cardinality

• < defines a linear order on the set of atoms of B (and no other element of A is
<-related to any other).

• ∼ defines an equivalence relation, where each equivalence class

12

– either contains one atom and the nodes of one edget

– or consists of a single non-atom of B.

Theorem 10. The class CFI is definable in FO. The subclass T CFI of twisted CFI-
graphs is definable in BPFO but not in Cω

∞ω.

Proof. That CFI is definable is easy to establish, the only subtlety being that B allows
us to quantify over sets of centre groups, which makes connectedness expressible.

The proof that T CFI is not definable in Cω
∞ω is the same as in [7]; it is unaffected by

the additional structure. Note that because the atoms are ordered, the Boolean algebra
is rigid, i.e., it has no non-trivial automorphism, therefore the isomorphism group of a
CFI-graph is not changed by adding the Boolean algebra.

It remains to show that twistedness can be defined in BPFO. We pick one vertex from
each edge group by viewing a random binary relation R as assigning an m-bit number
to each vertex, where m is the number of atoms in the Boolean algebra. From each pair,
we choose the vertex with the smaller number, expressed by

ξ(x) := ∃y
(

x ∼ y ∧ ∃z
(

α(z) ∧ ¬Rxz ∧ Ryz ∧ ∀w(w < z → (Rxw ↔ Ryw))
)

)

,

where α(x) is an FO-formula satisfied exactly by the atoms of the Boolean algebra. It
is easy to see that if the random relation R assigns a different set of atoms to the two
vertices in each edge group, then ξ succeeds in picking exactly one vertex from each edge
group, and twistedness can then be checked by looking at the O-predicate of the element
of B which contains exactly the atoms equivalent to twisted centre groups or twisted
edgets.

To prove that the resulting formula has a large probability gap, we need to establish
a high probability of success only for structures in the class CFI, because this class
is FO-definable. But in such structures, the probability that the two nodes of an edge
group are assigned the same number is 2−m, so by a union bound the probability that we
successfully pick one node from each group is close to one. Furthermore, we can check in
FO whether there is an edge group whose members we can not distinguish, and choose
to invariably reject or accept in these cases, resulting in an RFO or co-RFO sentence,
respectively.

4.2 BPFO on ordered structures is not contained in MSO

In the presence of a linear order, any query becomes axiomatisable in Lω
∞ω, and the query

T CFI becomes axiomatisable even in FO. However, randomisation adds expressive
power to FO also on ordered structures:

Theorem 11. There is a class B of ordered structures that is definable in BPFO, but
not in MSO.

Remember that monadic second-order logic MSO is the the fragment of second-order
logic that allows quantification over individual elements and sets of elements.

Let σEP≤ := {≤, E, P}, with binary relations ≤ and E, and a unary predicate P . We
define two classes B′, B of σEP≤-structures (cf. Figure 4.2):
B′ is the class of all σEP≤-structures A for which

13

boolean algebra perfectly matched set

M = PA
N = A \ PA

· · ·

Figure 3: The structures in B contain a Boolean algebra and a perfectly matched set.

1. E defines a perfect matching on the set M := P (A)

2. the set N := V (A) \ P (A) forms a Boolean algebra with the relation E and

3. no x ∈ N and y ∈ M are E-related

4. ≤ defines a linear order on the whole structure, which puts the M before the N
and orders M in such a way that matched elements are always successive.

It is easy to see that the class B′ is definable in FO. B is the subclass of B′ whose elements
satisfy the additional condition

2|M | ≥ |N |2 . (4)

We will prove that B is definable in BPFO, but not in MSO. To prove that B is definable
in BPFO, we will use the following lemma:

Lemma 12 (Birthday Paradox). Let m, n ≥ 1 and let F : [n] → [m] be a random
function drawn uniformly from the set of all such functions.

1. For any ǫ1 > 0 and c > 2 ln 1
ǫ1

there is an nc ≥ 1 such that if n > nc and m ≤ n2

c
we have

Pr(F is injective) ≤ ǫ1

2. For any ǫ2 > 0, if m ≥ n2

2ǫ2
, then

Pr(F is injective) ≥ 1 − ǫ2

Proof. For the first part, we note that

Pr(F injective) =
n−1
∏

i=0

(

1 − i

m

)

≤
n−1
∏

i=0

exp

(

− i

m

)

= exp

(

−n(n − 1)

2m

)

.

For the second part, note that

Pr(F not injective) = Pr
(

F (i) = F (j) for all i < j
)

≤
∑

i<j

1

m
=

(

n

2

)

1

m
≤ n2

2m
.

14

m = n2

m = n2

4

p ≤ 0.2

p ≥ 0.5

m

nc

n

Figure 4: The Birthday Paradox with ǫ1 = 0.2, ǫ2 = 0.5 and c = 4. Here, p denotes
Pr(F injective).

Proof of Theorem 11. To see that B is not definable in MSO, we use two simple and
well-known facts about MSO. The first is that for every q ≥ 0 there are natural numbers
p, m such that for all k ≥ 0, a plain linear order of length m is indistinguishable from the
linear order of length m+k ·p by MSO-sentences of quantifier rank at most q. The same
fact also holds for linear orders with a perfect matching on successive elements, because
such a matching is definable in MSO anyway. The second fact we use is a version of the
Feferman-Vaught Theorem. Suppose that we have a linearly ordered structure of the
form A ∪ B, and the two parts A, B are disjoint and not related except by the linear
order, which puts A completely before B. Let q ≥ 0 and A′ another linearly ordered
structure that is indistinguishable from A by all MSO-sentences of quantifier rank at
most q. Then the structure A′∪B is indistinguishable from A∪B by all MSO-sentences
of quantifier rank at most q. If we put these two facts together, we see that for every
q ≥ 0 there are p, m such that for all k, n the structure A ∈ B with parts M, N of sizes
m, n, respectively, is indistinguishable from the structure A′ with parts of sizes m+k · p
and n. We can easily choose k, n in such a way that A 6∈ B and A′ ∈ B.

It remains to prove that B is definable in BPFO. Consider the sentence

ϕinj := ∀x∀y
(

x=̇y ∨ Px ∨ Py ∨ ∃z
(

Pz ∧ ¬(Rxz ↔ Ryz)
)

)

,

which states that the random binary relation R, considered as a function

f : N → Pow(M), x 7→ {y ∈ M | Rxy}

from N to subsets of M , is injective. By the definition of R, the function f is drawn
uniformly from the set of all such functions. If we fix |N |, the probability for f to be
injective increases monotonically with |M |. Furthermore, for every structure in B′, the
size of N and M are a power of two and an even number, respectively. Thus either

2|M | ≤ 1

4
|N |2 or 2|M | ≥ |N |2 ,

15

and this factor of 4 translates into a probability gap for ϕinj in all sufficiently large
structures in B′, by Lemma 12 with ǫ1 = 0.2, ǫ2 = 0.5 and c = 4. The remaining finitely
many structures in B′ can be dealt with separately.

4.3 RFO is stronger than FO on additive structures

Recall that an additive structure is one whose vocabulary contains a ternary relation +,
such that A|+ is isomorphic to ([0, |A| − 1], {(a, b, c) | a + b = c}).

Theorem 13. There is a class A of additive structures that is definable in RFO and
co-RFO, but not in FO.

Our proof uses the following result:

Theorem 14 (Lynch [28]). For every k ∈ N there is an infinite set Ak ⊆ N and a
dk ∈ N such that for all finite Q0, Q1 ⊆ Ak with |Q0| = |Q1| or |Q0| , |Q1| > dk the
structures (N, +, Q0) and (N, +, Q1) satisfy exactly the same FO-sentences of quantifier
rank at most k.

Here (N, +, Qi) denotes a {+, P}-structure with ternary + and unary P , where + is
interpreted as above and P is interpreted by Qi. For a finite set M ⊆ N we denote by
max M the maximum element of M . By relativising quantifiers to the maximum element
satisfying P , we immediately get the following corollary:

Corollary 15. Let k, Ak, dk, Q0 and Q1 be as above. Then the (finite) structures
([0, max Q0], +, Q0) and ([0, maxQ1], +, Q1) satisfy exactly the same FO-sentences of
quantifier rank at most k.

We call a set Q ⊆ N sparse if |Q ∩ {n, . . . , 3n}| ≤ 1 for all n ≥ 0. Note that if
Q is sparse and finite, then |Q| ≤ log3(max Q) + 1. It is easy to see that there is an
FO[{+, P}]-sentence ϕsparse such that

([0, max Q], +, Q) |= ϕsparse ⇔ Q is sparse

for all finite Q ⊆ N.

Proof of Theorem 13. We define the following class of additive {+, P}-structures:

A = {([0, max Q], +, Q) | Q is finite, sparse and |Q| is even},

with + defined as usual. It follows immediately from Corollary 15 that A is not definable
in FO.

It remains to prove that A is definable in (co-)RFO. We consider a binary random
relation R on Q = ([0, max Q], +, Q) for some finite Q ⊆ N.

Each element a ∈ [0, max Q] defines a subset of Q, namely the set of b ∈ Q for which
(a, b) ∈ R(Q) holds. If Q is a sparse set, it has

2|Q| ≤ 2log3(max Q)+1 ≤ max Q

2 ln(maxQ)

16

many subsets, and by standard estimates on the coupon collector’s problem (see, e.g.,
[30]; or use a union-bound argument), if maxQ is large enough, with high probability
every subset of Q is defined by some element of [0, max Q]. We may check in FO whether
this is actually the case. If so, we use the random relation R and the linear order induced
by + to check whether Q is even. Otherwise we reject (accept) to get an RFO- (co-RFO-
)sentence.

5 BPFO is contained in MSO on additive structures

In this section, we prove our first and only nontrivial derandomisation result. It com-
plements the result of Section 4.2 by saying that, on additive structures, every BPFO-
sentence is equivalent to an MSO-sentence.

Theorem 16. Let τ be a finite relational vocabulary containing a ternay relation + and
let ϕ be a BPFO[τ]-sentence. Then there exists an MSO-sentence ψ such that on additive
structures A

A |= ϕ ⇔ A |= ψ.

We first use Nisan’s pseudorandom generator for constant depth circuits [33] to reduce
the number of random bits to logO(1) n; throughout this section, n will denote the size of
the input structure. We then derandomise the resulting formula following Lautemann’s
argument in [26].

In MSO[+], one can define a multiplication relation (see [36, Lemma 5.4]) and thus
quantify over pairs of elements in [0,

√
n]. We only need the existence of such a pairing

function, a slightly weaker form of which is made precise in the following lemma:

Lemma 17 (Pairing Lemma). There are MSO[+]-formulas ϕp(x) and ϕ〈·,·,·〉(x, y, z, w)
such that on additive structures A

• ϕp(x) defines a number p satisfying
√

|A|
2

≤ p ≤
√

|A|.

Moreover, p is a prime number.

• For every b, c < p there is a unique m such that ϕ〈·,·,·〉(0, b, c, m) is satisfied.
Furthermore, for every m there is a unique tuple (a, b, c) ∈ [0, p − 1]3 such that
ϕ〈·,·,·〉(a, b, c, m) is satisfied. Henceforth we write m = 〈a, b, c〉 for this.

Proof. In MSO[+], we may define a formulas ϕX=〈x〉(X, x) and ϕdivides(x, y) stating that
X is the set of multiples of x and x divides y, respectively. We may thus check whether
x is a prime number. Furthermore, we may define the set of powers of a prime number
x: It is the largest set containing only numbers whose only prime divisor is x.

Then p is the largest prime number whose set of powers contains at least one element
other that 0 and itself. Any number m ∈ [0, p2 − 1] may be written as m = bp + c with
b, c ∈ [0, p − 1]. Both b and c are defineable in MSO[+]; notice that b is the largest
divisor of m − c smaller than p, or 0 if m < p. For m ≥ p2 we define m = 〈a, b, c〉 with
a ∈ {1, 2, 3} and m − ap2 = 〈0, b, c〉.

17

Whenever we write p in this section, we mean the p defined by the ϕp above. The
Pairing Lemma allows us to quantify over binary relations on [0, p−1] ∼= Fp. In particu-
lar, we may define addition and multiplication modulo p, i.e., there are MSO[+]-formulas
ϕ+(x, y, z) and ϕ×(x, y, z) such that for a, b, c ∈ Fp,

A |= ϕ+(a, b, c) ⇔ a + b ≡ c (mod p)

and
A |= ϕ×(a, b, c) ⇔ a · b ≡ c (mod p).

For the proof of Theorem 16 we may assume that the BPFO-sentence ϕ contains only
one random relation, say R of arity r. We first apply a result by Nisan [33] to reduce
the number of random bits:

Lemma 18. For every r, d ∈ N and ǫ > 0 there are MSO[+]-formulas ϕl(x) and
ϕprg(S, x1, . . . , xr), where S is a set variable, such that

• ϕl defines a number l ≤ logO(1) n and

• if ϕ is an FO[τ ∪ {R}]-sentence of quantifier rank ≤ d, where τ is some finite
relational vocabulary and R is of arity r, then

∣

∣

∣

∣

Pr
X∈X (A,{R})

(X |= ϕ) − Pr
S⊆[l]

(A |= ϕ′(S))

∣

∣

∣

∣

< ǫ,

where ϕ′ is the MSO[+]-formula obtained from ϕ by replacing every occurence of
R~x by ϕprg(S, ~x).

Proof. For any fixed structure A of size n we may construct a polynomial-sized circuit
Cϕ,A of depth ≤ d which describes the behaviour of ϕ on (τ ∪{R})-extensions of A. The
circuit has nr inputs indexed by the elements of V (A)r, and an input vector ~x denotes
the (τ ∪ {R})-extension B~x of A given by

~a ∈ R(B~x) iff x~a = 1.

Then Cϕ,A(~x) evaluates to 1 iff B~x |= ϕ.
Nisan [33] gave a pseudorandom generator for such circuits which hinges on the fol-

lowing lemma:

Lemma 19 (restated from [33, Lemma 2.2]). Let {Cn} be a family of circuits of depth
d and polynomial size, let m = m(n) = (log n)d+3, l = l(n) and suppose for each n the

sets A
(n)
1 , . . . , A

(n)
n ⊆ [l] satisfy

•
∣

∣

∣
A

(n)
i

∣

∣

∣
= m for all 1 ≤ i ≤ n and

•
∣

∣

∣
A

(n)
i ∩ A

(n)
j

∣

∣

∣
≤ log n for all 1 ≤ i 6= j ≤ n.

18

bit generator

constant depth
circuit

pseudo−random

C

y3y1 yly2

x1

⊕

i∈A1
yi

⊕

i∈A2
yi

⊕

i∈An

yi

1 m.

. . .

. . .

. . .

xn

Figure 5: Nisan’s pseudo-random bit generator. The sets Ai ⊆ {1, . . . , l} form a partial-
(log n, m)-design, i.e., they satisfy |Ai| = m and |Ai ∩ Aj | ≤ log n for all 1 ≤
i 6= j ≤ n.

Then

|Pr(Cn(~x) = 0) − Pr(Cn(⊕i∈A1yi, . . . ,⊕i∈An
yi) = 0)| ≤ 1

nc

for any c ∈ N and large enough n. Here, the first probability is taken uniformly over all
strings ~x ∈ {0, 1}n, whereas the second is taken uniformly over all strings ~y ∈ {0, 1}l.

The resulting pseudorandom generator is depicted in Figure 5. Families of sets A
(n)
i

satisfying the above conditions are called partial-(log n, m)-designs. Nisan gives a con-
struction with l = m2 = logO(1) n, which drastically reduces the size of the probability
space, i.e., the number of random bits needed. We now show how his construction can
be defined in MSO[+].

On [0, p − 1], we may define a formula ϕlog(x, y) which is satisfied iff x = ⌈log2 y⌉.
Using this and the fact that

2⌈log p⌉ − 1 ≤ ⌈log n⌉ ≤ 2⌈log p⌉ + 2,

we let ϕm(x) and ϕl(x) be two formulas defining natural numbers m and l such that

• m is a prime number between (r2⌈log n⌉)d+3 and 2(r2(⌈log n⌉ + 3)d+3

• l = m2

Using the pairing function ϕ〈·,·,·〉 we may assume that R is a 3r-ary relation which we
only need to define for elements in Fp. That is, we define ϕprg(S, x1, . . . , xr) by

∃z1 · · · ∃z3r x1 = 〈z1, z2, z3〉 ∧ . . . ∧ xr = 〈z3r−2, z3r−1, z3r〉 ∧ ϕ′
prg(S, z1, . . . , z3r)

The formula ϕ′
prg(S, ~z) takes the parity of a subset of S indexed by ~z:

ϕ′
prg(S, ~z) := “ |S ∩ ψ(A; ~z)| is even”,

19

where ψ(x, ~z) is an MSO[+]-formula and ψ(A; ~z) := {x | A |= ψ(x, ~z)}; evenness may be
expressed in MSO on ordered structures. By Lemma 19, we are done if we can define a
formula ψ(x, ~z) such that

(i) ψ(A; ~z) ⊆ [l] for all ~z ∈ F3r
p ,

(ii) |ψ(A; ~z)| = m for all ~z ∈ F3r
p , and

(iii) |ψ(A; ~z1) ∩ ψ(A; ~z2)| ≤ log n for all ~z1 6= ~z2 ∈ F3r
p ,

which means the sets ψ(A; ~z) form a partial-(log n, m)-design. We use the same construc-
tion as Nisan: We interpret the tuple ~z as a polynomial f~z ∈ Fm[ξ] of degree ≤ log n.
The set ψ(A; ~z) is then the graph of this polynomial, namely

ψ(A; ~z) = {(ξ, f~z(ξ)) | ξ ∈ Fm} ⊆ F2
m,

and we identify F2
m with [l]. We first encode the coeffiencts of f~z into a set variable X

as follows: Consider the binary representations

zi =
∑

j≥0

zi,j2
j with zi,j ∈ {0, 1}

of the zi. We can define an MSO[+]-sentence ϕpack(~z, X) which holds iff X, interpreted
as a binary relation over Fp, holds exactly for pairs (a, b) with

0 ≤ a ≤ ⌈log p⌉ and b =
∑

1≤i≤3r

zi,a2
i−1.

Thus for each 0 ≤ a ≤ ⌈log p⌉ there is exactly one b = b(a) with (a, b) ∈ X, and all
bs are between 0 and 23r, and thus in Fm if n is large enough. We may now define an
MSO[+]-sentence ϕeval(X, u, v) which, for these Xs, holds iff

v = f~y(u) =
∑

0≤a<⌈log p⌉

b(a)ua,

with addition and multiplication according to Fm. Putting these ingredients together,
we define

ψ(x, ~z) = ∃X∃u∃v “0 ≤ u, v < m” ∧ ϕpack(~z, X) ∧ ϕeval(X, u, v) ∧ “x = u · m + v”,

which is easily verified to satisfy conditions (i) to (iii) above.

So far we have reduced the number of random bits from nr to l = logO(1) n, and these
are conveniently packed into into the first l bits of a single set variable S. We may now
follow Lautemann’s proof [26] to derandomise this sentence.

20

Proof of Theorem 16. After applying Lemma 18 we are left with MSO[+]-sentences ϕl

and ϕ′ such that ϕl defines a number l ≤ logO(1) n and ϕ′ has a free set variable S. We
may assume that for all additive structures A,

either Pr
S⊆[l]

(A |= ϕ′(S)) <
1

l
or Pr

S⊆[l]
(A |= ϕ′(S)) > 1 − 1

l
, (5)

because otherwise we may use independent repetition and majority vote to obtain these
bounds. To be precise, let χ(S, i, j) be defined by

χ(S, i, j) := (0 ≤ i < l) ∧ (0 ≤ j < l) ∧ ∃z(z=̇i · l + j ∧ Sz).

That is, we divide the first l2 bits of S into l blocks of l bits each, and let χ(S, i, j) select
the i-th bit of the j-th block. We replace each occurence of Sx in ϕ′ by χ(S, i, x) to
obtain a formula ϕ̃′(S, i). Because l is of order logO(1) n, we may quantify over pairs of
elements of [0, l − 1], which allows us to express the formula

ϕ̄′(S) = “ϕ̃′(S, i) holds for at least half of the i ∈ [0, l − 1]”

in MSO[+], e.g., by stating that there exists a matching M on [0, l − 1] such that

• if {i, j} ∈ M , then exactly one of ϕ̃′(S, i) and ϕ̃′(S, j) holds and

• all i ∈ [0, l − 1] for which ϕ̃′(S, i) does not hold are matched by M .

Then ϕ̄′ uses l2 = logO(1) n many bits of S, and by the Chernoff bound on the tails of
the binomial distribution it satisfies (5), even with l replaced by l2 (details can be found
in [2, sec. 7.4]).

We identify subsets of [l] with vectors in Fl
2. Let M ⊆ Fl

2 be the set of vectors for
which A |= ϕ′(S) holds. Equation (5) translates into

|M | <

∣

∣Fl
2

∣

∣

l
or |M | >

(

1 − 1

l

)

∣

∣

∣
Fl

2

∣

∣

∣
.

For a vector ~y ∈ Fl
2 we define

~y ⊕ M := {~x ⊕ ~y | ~x ∈ M}

to be the set M translated by ~y. We claim the following:

(a) If |M | <
∣

∣Fl
2

∣

∣ /l, then for every choice of vectors ~y1, . . . , ~yl we have

⋃

1≤i≤l

(~yi ⊕ M) 6= Fl
2.

(b) If |M | > (1 − 1/l)
∣

∣Fl
2

∣

∣, then there are vectors ~y1, . . . , ~yl such that

⋃

1≤i≤l

(~yi ⊕ M) = Fl
2.

21

The first claim follows immediately from |~y ⊕ M | = |M |. For (b), assume that we
randomly choose the vectors ~yi independently and uniformly from Fl

2. For any vector
~x ∈ Fl

2 we have

Pr
(

~x 6∈
⋃

(~yi ⊕ M)
)

=
∏

i

Pr(~x 6∈ ~yi ⊕ M)

≤
(

1

l

)l

,

by the independence of the ~yi. But then the expected number of vectors not in
⋃

(~yi⊕M)
is

E

[∣

∣

∣
F

l
2 \

⋃

(~yi ⊕ M)
∣

∣

∣

]

=
∑

~x∈Fl
2

Pr
(

~x 6∈
⋃

(~yi ⊕ M)
)

≤
∣

∣Fl
2

∣

∣

ll
=

(

2

l

)l

< 1,

so there must be a choice of ~yis such that this number is zero, i.e.,
⋃

(~yi ⊕ M) = Fl
2.

Again using the formula χ(S, i, j), we can pack the vectors ~y1, . . . , ~yl into a single
existentially quantified set variable and check that

⋃

(~yi ⊕ M) = Fl
2 as follows:

ϕ′′ = ∃Y ∀X∃i ϕ′(X ⊕ χ(Y, i, ·)),

where ϕ′(X ⊕ χ(Y, i, ·)) is the formula ϕ′(S) with every occurence of Sx replaced by

(Xx ∧ χ(Y, i, x)) ∨ (¬Xx ∧ ¬χ(Y, i, x)).

Claims (a) and (b) imply that

A |= ϕ′′ ⇔ Pr(A |= ϕ′(S)) > 1 − 1

l
,

which completes the proof.

6 A logic capturing BPP

In this section, we prove that the logic BPIFP+C captures the complexity class BPP.
Technically, the results of this section are closely related to results in [19].

Counting logics like FO+C and IFP+C are usually defined via two-sorted structures,
which are equipped with an initial segment of the natural numbers of appropriate length.
The expressive power of the resulting logic turns out to be rather robust under changes
in the exact definition, see [34] for a detailed survey of this. However, we will only need
the limited counting ability provided by the Rescher quantifier, which goes back to a
unary majority quantifier defined in [35], see [34].

We let FO(J) be the logic obtained from first-order logic by adjoining a generalised
quantifier J , the Rescher quantifier. For any two formulas ϕ1(~x) and ϕ2(~x), where ~x is
a k-tuple of variables, we form a new formula

J ~x.ϕ1(~x)ϕ2(~x).

22

Its semantics is defined by

A |= J ~x.ϕ1(~x)ϕ2(~x) iff
∣

∣

∣
{~a ∈ V (A)k | A |= ϕ1[~a]}

∣

∣

∣
≤

∣

∣

∣
{~a ∈ V (A)k | A |= ϕ2[~a]}

∣

∣

∣
. (6)

The logic IFP(J) is defined similarly.

Lemma 20. Let R be a 6-ary relation symbol. There is a formula ϕ≤(x, y) ∈ FO(J)[{R}]
such that

lim
n→∞

Pr
A∈X(Sn,{R})

(

{(a, b)
∣

∣ A |= ϕ≤[a, b]
}

is a linear order of V (A)
)

= 1.

(Recall that Sn is the ∅-structure with universe {1, . . . , n}. Thus X(Sn, {R}) just denotes
the set of all {R}-structures with universe {1, . . . , n}.)

Proof. We let
ϕ≤(x, y) := J x1 . . . x5.Rxx1 . . . x5 Ryx1 . . . x5.

To see that ϕ≤(x, y) defines an order with high probability, let A be a structure with
universe V (A) = {1, . . . , n}. For each a ∈ V (A), let

Xa :=
∣

∣{~a ∈ V (A)5 | A |= Ra~a.}
∣

∣

Then A |= ϕ≤(a, b) iff Xa ≤ Xb, and ϕ≤ linearly orders A iff the Xa are pairwise distinct.
But for a 6= b ∈ V (A), the random variables Xa and Xb are independent and each is
binomially distributed with parameters p = 1/2 and m = n5, and thus

Pr(Xa = Xb) =

m
∑

k=0

(

1

2m

(

m

k

))2

=
1

22m

∑

(

m

k

)2

=
1

22m

∑

(

m

k

)(

m

m − k

)

=
1

22m

(

2m

m

)

= Θ

(

1√
m

)

,

where the final approximation can be found, for example, in [15]. The second part now
follows by a union bound over the

(

n
2

)

= Θ(m2/5) pairs a 6= b.

Theorem 21. The logic BPIFP(J) captures BPP.

Proof. BPIFP(J) is contained in BPP, because a randomised polynomial time algorithm
can interpret the random relations by using its random bits.

For the other direction, let Q be a Boolean query in BPP. This means that there
is a randomised polynomial time algorithm M that decides the query Q≤ of ordered
expansions of structures in Q. We may view the (polynomially many) random bits used
by M as part of the input. Then it follows from the Immerman-Vardi Theorem that there
is a BPIFP-sentence ψM defining Q≤. Note that, by the definition of Q≤, this sentence
is order-invariant. We replace every occurrence of ≤ in ψM by the formula ϕ≤(x, y) of
Lemma 20, which with high probability defines a linear order on the universe.

23

It is easy to see that BPIFP+C is also contained in BPP and that IFP(J) ≦ IFP+C.
Thus we get the following corollary.

Corollary 22. BPIFP+C = BPIFP(J), and both capture BPP.

Remark 23. By similar arguments, we obtain logical characterisations of other ran-
domised complexity classes. For example, BPL = BPDTC(J) = BPDTC+C. (Here L
does not denote a generic logic, but the complexity class logspace.)

Furthermore, it also follows from Lemma 20 that BPLω
∞ω(J) = BPCω

∞ω. Actually, it
follows that all queries are definable in BPLω

∞ω(J).

Acknowledgements

We would like to thank Nicole Schweikardt and Dieter van Melkebeek for helpful com-
ments on an earlier version of this paper.

References

[1] Leonard M. Adleman. Two theorems on random polynomial time. In FOCS, pages
75–83, 1978.

[2] Sanjeev Arora and Boaz Barak. Computational Complexity. Cambridge University
Press, 2009.

[3] F. Bacchus. Representing and Reasoning with Probabilistic Knowledge. MIT Press,
1990.

[4] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity
within NC1. J. Comput. Syst. Sci., 41(3):274–306, 1990.

[5] J. Barwise and S. Feferman, editors. Model Theoretic Logics. Perspectives in Math-
ematical Logic. Springer-Verlage, 1985.

[6] Christoph Behle and Klaus-Jörn Lange. FO[<]-uniformity. In IEEE Conference on
Computational Complexity, pages 183–189, 2006.

[7] J.-Y. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of
variables for graph identifications. Combinatorica, 12(4):389–410, 1992.

[8] N.N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt.
Commununications of the ACM, 52(7):86–94, 2009.

[9] Anuj Dawar, Lauri Hella, and Phokion G. Kolaitis. Implicit definability and infini-
tary logic in finite model theory. In ICALP, volume 944 of LNCS, pages 624–635.
Springer Verlag, 1995.

[10] H.-D. Ebbinghaus. Extended logics: The general framework. In J. Barwise and
S. Feferman, editors, Model–Theoretic Logics, pages 25–76. Springer-Verlag, 1985.

24

[11] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in Mathematical
Logic. Springer-Verlag, 2nd edition, 1999.

[12] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets.
In Richard M. Karp, editor, Complexity of Computation, volume 7 of SIAM-AMS
Proceedings, pages 43–73, 1974.

[13] R. Fagin. Probabilities on finite models. Journal of Symbolic Logic, 41:50–58, 1976.

[14] R. Fagin, J.Y. Halpern, and N. Megiddo. A logic for reasoning about probabilities.
Information and Computation, 87(1/2):78–128, 1990.

[15] W. Feller. An Introduction to Probability Theory and Its Aplications, volume I.
John Wiley & Sons, 1957.

[16] Y.V. Glebskĭı, D.I. Kogan, M.I. Liogon’kĭı, and V.A. Talanov. Range and degree of
realizability of formulas in the restricted predicate calculus. Kibernetika, 2:17–28,
1969. Englisch translation, Cybernetics 5:142–154,1969.

[17] E. Grädel, P.G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M.Y. Vardi, Y. Venema,
and S. Weinstein. Finite Model Theory and Its Applications. Texts in Theoretical
Computer Science. Springer-Verlag, 2007.

[18] Y. Gurevich. Logic and the challenge of computer science. In E. Börger, editor,
Current trends in theoretical computer science, pages 1–57. Computer Science Press,
1988.

[19] L. Hella, P.G. Kolaitis, and K. Luosto. Almost everywhere equivalence of logics in
finite model theory. The Bulletin of Symbolic Logic, 2(4):422–443, December 1996.

[20] N. Immerman. Relational queries computable in polynomial time. Information and
Control, 68:86–104, 1986.

[21] N. Immerman. Descriptive Complexity Theory. Graduate Texts in Computer Sci-
ence. Springer-Verlag, 1999.

[22] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the 29th ACM Symposium on
Theory of Computing, pages 220–229, 1997.

[23] P. Kaye. A logical characterisation of the computational complexity class BPP.
Technical report, University of Waterloo, 2002.

[24] H.J. Keisler. Probability quantifiers. In J. Barwise and S. Feferman, editors, Model–
Theoretic Logics, pages 509–556. Springer-Verlag, 1985.

[25] P. G. Kolaitis and M. Y. Vardi. Infinitary logics and 0-1 laws. Information and
Computation, 98:258–294, 1992.

25

[26] C. Lautemann. BPP and the polynomial hierarchy. Information Processing Letters,
17(4):215–217, 1983.

[27] L. Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science.
Spinger-Verlag, 2004.

[28] J.F. Lynch. On sets of relations definable by addition. Journal of Symbolic Logic,
47(3):659–668, 1982.

[29] J.C. Mitchell, M. Mitchell, and A. Scedrov. A linguistic characterization of bounded
oracle computation and probabilistic polynomial time. In Proceedings of the 39th
Annual IEEE Symposium on Foundations of Computer Science, pages 725–733,
1998.

[30] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[31] M. Müller. Valiant-vazirani lemmata for various logics. Electronic Colloquium on
Computational Complexity (ECCC), 15(063), 2008.

[32] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and
System Sciences, 49:149–167, 1994.

[33] Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica,
11(1):63–70, 1991.

[34] M. Otto. Bounded Variable Logics and Counting. Lecture Notes in Logic. Springer-
Verlag, 1996.

[35] N. Rescher. Plurality quantification. Journal of Symbolic Logic, 27(3):373–374,
1962.

[36] Nicole Schweikardt. On the expressive power of monadic least fixed point logic.
Theor. Comput. Sci., 350(2-3):325–344, 2006.

[37] L. Stockmeyer. The polynomial hierarchy. Theoretical Computer Science, 3:1–22,
1977.

[38] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Com-
puting, 20(5):865–877, 1991.

[39] M.Y. Vardi. The complexity of relational query languages. In Proceedings of the
14th ACM Symposium on Theory of Computing, pages 137–146, 1982.

[40] Emanuele Viola. The complexity of constructing pseudorandom generators from
hard functions. Computational Complexity, 13:147–188, 2004.

26

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

