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Abstract

We prove the following surprising result: given any quantum state ρ on n qubits, there exists
a local Hamiltonian H on poly (n) qubits (e.g., a sum of two-qubit interactions), such that any
ground state of H can be used to simulate ρ on all quantum circuits of fixed polynomial size.
In terms of complexity classes, this implies that BQP/qpoly ⊆ QMA/poly, which supersedes the
previous result of Aaronson that BQP/qpoly ⊆ PP/poly. Indeed, we can exactly characterize
quantum advice, as equivalent in power to untrusted quantum advice combined with trusted
classical advice.

Proving our main result requires combining a large number of previous tools—including a
result of Alon et al. on learning of real-valued concept classes, a result of Aaronson on the learn-
ability of quantum states, and a result of Aharonov and Regev on “QMA+ super-verifiers”—and
also creating some new ones. The main new tool is a so-called majority-certificates lemma,
which is closely related to boosting in machine learning, and which seems likely to find inde-
pendent applications. In its simplest version, this lemma says the following. Given any set
S of Boolean functions on n variables, any function f ∈ S can be expressed as the pointwise
majority of m = O (n) functions f1, . . . , fm ∈ S, such that each fi is the unique function in S
compatible with O (log |S|) input/output constraints.
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1 Introduction

How much classical information is needed to specify a quantum state of n qubits?

This question has inspired a rich and varied set of responses, in part because it can be interpreted
in many ways. If we want to specify a quantum state ρ exactly, then of course the answer is “an
infinite amount,” since amplitudes in quantum mechanics are continuous. A natural compromise is
to try to specify ρ approximately, i.e., to give a description which yields a state ρ̃ whose statistical
behavior is close to that of ρ under every measurement. (This statement is captured by the
requirement that ρ and ρ̃ are close under the so-called trace distance metric.) But it is not hard
to see that even for this task, we still need to use an exponential (in n) number of classical bits.

This fact can be viewed as a disappointment, but also as an opportunity, since it raises the
prospect that we might be able to encode massive amounts of information in physically compact
quantum states: for example, we might hope to store 2n classical bits in n qubits. But an obvious
practical requirement is that we be able to retrieve the information reliably, and this rules out the
hope of significant “quantum compression” of classical strings, as shown by a landmark result of
Holevo [21] from 1973. Consider a sender Alice and a recipient Bob, with a one-way quantum
channel between them. Then Holevo’s Theorem says that, if Alice wants to encode an n-bit
classical string x into an m-qubit quantum state ρx, in such a way that Bob can retrieve x (with
probability 2/3, say) by measuring ρx, then Alice must take m ≥ n−O (1) (or m ≥ n/2−O (1), if
Alice and Bob share entanglement). In other words, for this communication task, quantum states
offer essentially no advantage over classical strings. In 1999, Nayak [26], improving on Ambainis
et al. [12] (see [13]), generalized Holevo’s result as follows: even if Bob wants to learn only a single
bit xi of x = x1 . . . xn (for some i ∈ [n] unknown to Alice), and is willing to destroy the state ρx in
the process of learning that bit, Alice still needs to send m = Ω (n) qubits for Bob to succeed with
high probability.

These results say that the exponential descriptive complexity of quantum states cannot be
effectively harnessed for classical data storage, but they do not bound the number of practically
meaningful “degrees of freedom” in a quantum state used for purposes other than storing data.
For example, a quantum state could be useful for computation, or it could be a physical system
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worthy of study in its own right. The question then becomes, what useful information can we give
about an n-qubit state using a “reasonable” number (say, poly (n)) of classical bits?

One approach to this question is to identify special subclasses of quantum states for which a
faithful approximation can be specified using only poly (n) bits. This has been done, for example,
with matrix product states [31] and “tree states” [1]. A second approach is to try to describe an
arbitrary n-qubit state ρ concisely, in such a way that the state ρ̃ recovered from the description
is close to ρ with respect to some natural subclass of measurements. This has been done for
specific classes like the “pretty good measurements” of Hausladen and Wootters [20]. A more
ambitious goal in this vein, explored by Aaronson in two previous works [2, 5] and continued in
the present paper, is to give a description of an n-qubit state ρ which yields a state ρ̃ that behaves
approximately like ρ with respect to all (binary) measurements performable by quantum circuits
of “reasonable” size—say, of size at most nc, for some fixed c > 0. Then if c is taken large enough,
ρ̃ is arguably “just as good” as ρ for practical purposes.

Certainly we can achieve this goal using 2n
c+O(1)

bits: simply give approximations to the mea-
surement statistics for every size-nc circuit. However, the results of Holevo [21] and Ambainis et
al. [13] suggest that a much more succinct description might be possible. This hope was realized
by Aaronson [2], who gave a description scheme in which an n-qubit state can be specified using
poly (n) classical bits. There is a significant catch in Aaronson’s result, though: the encoder Alice
and decoder Bob both need to invest exponential amounts of computation.

In a subsequent paper [5], Aaronson gave a closely-related result which significantly reduces the
computational requirements: now Alice can generate her message in polynomial time (for fixed c).
Also, while Bob cannot necessarily construct the state ρ̃ efficiently on his own, if he is presented
with such a state (by an untrusted prover, say), Bob can verify the state in polynomial time.
The catch in this result is a weakened approximation guarantee: Bob cannot use ρ̃ to predict the
outcomes of all the measurements defined by size-nc circuits, but only most of them (with respect
to a samplable distribution used by Alice in the encoding process). Aaronson [2, 5] conjectured
that the tradeoff between this result and the previous one revealed an inherent limit to quantum
compression.

1.1 Our Quantum Information Result

The main result of this paper is that Aaronson’s conjecture was false: one really can get the best
of both worlds, and simulate an arbitrary quantum state ρ on all small circuits, using a different
state ρ̃ that is easy to recognize. Indeed, we can even take ρ̃ to be the ground state of a local
Hamiltonian: that is, a pure state ρ̃ = |ψ〉 〈ψ| on poly (n) qubits minimizing the disagreement with
poly (n) local constraints, each involving a constant number of qubits. In a sense, then, this paper
completes a “trilogy” of which [2, 5] were the first two installments.

Here is a formal statement of our result.

Theorem 1 Let c, ε > 0, and let ρ be any n-qubit quantum state. Then there exists a 2-local Hamil-
tonian H on poly

(
n, 1ε

)
qubits, and a transformation C −→ C ′ of quantum circuits, computable in

time poly (n, 1/ε) given H, such that the following holds: for any ground state |ψ〉 〈ψ| of H, and for
any measurement C definable by a quantum circuit of size nc, we have |C ′ (|ψ〉 〈ψ|)− C (ρ)| ≤ ε.
(Here C (ρ) is the probability that C accepts ρ.)

In other words, the ground states of local Hamiltonians are “universal quantum states” in a
very non-obvious sense. For example, suppose you own a quantum software store, which sells
quantum states ρ that can be fed as input to quantum computers. Then our result says that
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ground states of local Hamiltonians are the only kind of state you ever need to stock. What makes
this surprising is that being a good piece of quantum software might entail satisfying an exponential
number of constraints: for example, if ρ is supposed to help a customer’s quantum computer Q
evaluate some Boolean function f : {0, 1}n → {0, 1}, then Q (ρ, x) should output f (x) for every
input x ∈ {0, 1}n. By contrast, any k-local Hamiltonian H can be described as a set of at most(n
k

)
= O(nk) constraints.
One can also interpret Theorem 1 as a statement about communication over quantum channels.

Suppose Alice (who is computationally unbounded) has a classical description of an n-qubit state
ρ. She would like to describe ρ to Bob (who is computationally bounded), at least well enough
for Bob to be able to simulate ρ on all quantum circuits of some fixed polynomial size. However,
Alice cannot just send ρ to Bob, since her quantum communication channel is noisy and there is a
chance that ρ might get corrupted along the way. Nor can she send a faithful classical description
of |ψ〉, since that would require an exponential number of bits. Our result provides an alternative:
Alice can send a different quantum state σ, of poly(n) qubits, together with a poly(n)-bit classical
string x. Then, Bob can use x to verify that σ can be used to accurately simulate ρ on all small
measurements.

We believe Theorem 1 makes a significant contribution to the study of the effective information
content of quantum states. It does, however, leave open whether a quantum state of n qubits can
be efficiently encoded and decoded in polynomial time, in a way that is “good enough” to preserve
the measurement statistics of measurements defined by circuits of fixed polynomial size. This
remains an important problem for future work.

1.2 Impact on Quantum Complexity Theory

The questions addressed in this paper, and our results, are naturally phrased and proved in terms
of complexity classes. In recent years, researchers have defined quantum complexity classes as a
way to study the “useful information” embodied in quantum states. One approach is to study the
power of nonuniform quantum advice. The class BQP/qpoly, defined by Nishimura and Yamakami
[27], consists of all languages decidable in polynomial time by a quantum computer, with the help
of a poly (n)-qubit advice state that depends only on the input length n. This class is analogous
to the classical class P/poly. To understand the role of quantum information in determining the
power of BQP/qpoly, a useful benchmark of comparison is the class BQP/poly of decision problems
efficiently solvable by a quantum computer with poly (n) bits of classical advice. It is open whether
BQP/qpoly = BQP/poly.

A second approach studies the power of quantum proof systems, by analogy with the classical
class NP. Kitaev (unpublished, 1999) defined the complexity class now called QMA, for “Quantum
Merlin-Arthur.” This is the class of decision problems for which a “yes” answer can be proved
by exhibiting a quantum witness state (or quantum proof ) |ψ〉, on poly (n) qubits, which is then
checked by a skeptical polynomial-time quantum verifier. A useful benchmark class is QCMA (for
“Quantum Classical Merlin-Arthur”), defined by Aharonov and Naveh [8]. This is the class of
decision problems for which a “yes” answer can be checked by a quantum verifier who receives a
classical witness. Here the natural open question is whether QMA = QCMA.

In this paper we prove a new upper bound on BQP/qpoly:

Theorem 2 BQP/qpoly ⊆ QMA/poly.

Previously Aaronson showed in [2] that BQP/qpoly ⊆ PP/poly, and showed in [5] that BQP/qpoly
is contained in the “heuristic” class HeurQMA/poly; Theorem 2 supersedes both of these earlier
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results.
Theorem 2 says that one can always replace polynomial-size quantum advice by polynomial-

size classical advice, together with a polynomial-size quantum witness (or equivalently, untrusted
quantum advice). Indeed, we can characterize the class BQP/qpoly, as equal to the subclass of
QMA/poly in which the quantum witness state |ψn〉 can only depend on the input length n.1

Using Theorem 2, we also obtain several other results for quantum complexity theory:

(1) Without loss of generality, every quantum advice state can be taken to be the ground state
of some local Hamiltonian H. (This essentially follows by combining our BQP/qpoly ⊆
QMA/poly result with the result of Kitaev that Local Hamiltonians is QMA-complete.)

(2) It is open whether for every local Hamiltonian H on n qubits, there exists a quantum circuit of
size poly (n) that prepares a ground state of H. It is easy to show that an affirmative answer
would imply QMA = QCMA. As a consequence of Theorem 2, we can show that an affirmative
answer would also imply BQP/qpoly = BQP/poly—thereby establishing a previously-unknown
connection between quantum proofs and quantum advice.

(3) We generalize Theorem 2 to show that QCMA/qpoly ⊆ QMA/poly.

(4) We use our new characterization of BQP/qpoly to prove a quantum analogue of the Karp-
Lipton Theorem [24]. Recall that the Karp-Lipton Theorem says that if NP ⊂ P/poly,
then the polynomial hierarchy collapses to the second level. Our “Quantum Karp-Lipton
Theorem” says that if NP ⊂ BQP/qpoly (that is, NP-complete problems are efficiently solvable
with the help of quantum advice), then ΠP

2 ⊆ QMAPromiseQMA. As far as we know, this is
the first nontrivial result to derive unlikely consequences from a hypothesis about quantum
machines being able to solve NP-complete problems in polynomial time.

Finally, using our result, we are able to provide an illuminating perspective on a 2000 paper
of Watrous [33]. Watrous gave the simplest-known example of a problem in QMA that is not
obviously in QCMA—that is, for which quantum proofs actually seem to help.2 This problem is
called Group Non-Membership, and is defined as follows: Arthur is given a finite black-box group
G and a subgroup H ≤ G (specified by their generators), as well as an element x ∈ G. His task
is to verify that x /∈ H. It is known that, as a black-box problem, this problem is not in MA.
But Watrous showed that Group Non-Membership is in QMA, by a protocol in which Merlin is
“expected” to send the following quantum proof:

|H〉 = 1√
|H|

∑

h∈H
|h〉 .

Arthur’s verification procedure consists of two tests. In the first test, Arthur assumes that Merlin
sent |H〉, and then uses |H〉 to decide whether x ∈ H. The test is a simple, beautiful illustration
of the power of quantum algorithms. The second test in Watrous’s protocol confirms that Merlin
really sent |H〉 , or at least, a state which is “equivalent” for purposes of the first test. This second
test and its analysis are considerably more involved, and seem less “natural.”

Using our results, we see that a slightly weaker version of Watrous’s result can be derived in
an almost automatic way from his first test, as follows. If we assume that the black-box group

1We call this restricted class YQP/poly; in another notation it would be OQMA/poly ∩ coOQMA/poly (where the
O stands for “oblivious”).

2Aaronson and Kuperberg [6], however, give evidence that this problem might be in QCMA, under conjectures
related to the Classification of Finite Simple Groups.
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H = Hn is fixed for each input length, then Group Non-Membership is in BQP/qpoly, by letting
|Hn〉 as above be the trusted advice for length n and using Watrous’s first test as the BQP/qpoly
algorithm. Then Theorem 2 (which can be readily adapted to the black-box setting) tells us that
Group Non-Membership is in QMA/poly as well.

1.3 Proof Overview

We now give an overview of the proof Theorem 2, that BQP/qpoly ⊆ QMA/poly. As we will
explain, our proof rests on a new idea we call the “majority-certificates” technique, which is not
specifically quantum and which seems likely to find other applications.

We begin with a language L ∈ BQP/qpoly and, for n > 0, a poly(n)-size quantum circuit
Q (x, ξ) that computes L(x) with high probability when given the “correct” advice state ξ = ρn on
poly (n) qubits. The challenge, then, is to force Merlin to supply a witness state ρ′ that behaves
like ρn on every input x ∈ {0, 1}n.

Every potential advice state ξ defines a function fξ : {0, 1}n → [0, 1], by fξ(x) := Pr [Q (x, ξ) = 1].

For each such ξ, let f̂ξ(x) := [fξ(x) ≥ 1/2] be the Boolean function obtained by rounding fξ.
As a simplification, suppose that Merlin is restricted to sending an advice state ξ for which
fξ(x) /∈ (1/3, 2/3): that is, an advice state which renders a “clear opinion” about every input
x. (This simplification helps to explain the main ideas, but does not follow the actual proof.) Let
S be the set of all Boolean functions f : {0, 1}n → {0, 1} that are expressible as f̂ξ for some such
advice state ξ. Then S includes the “target function” f∗ := Ln (the restriction of L to inputs of
length n), as well as a potentially-large number of other functions. However, we claim S is not
too large: |S| ≤ 2poly(n). This bound on the “effective information content” of quantum states was
derived previously by Aaronson [2, 5], building on the work of Ambainis et al. [13].

One might initially hope that, just by virtue of the size bound on S, we could find some set of
poly(n) values

(x1, f
∗ (x1)) , . . . , (xk, f

∗ (xt))

which isolate f∗ in S—that is, which differentiate f∗ from all other members of S. In that case,
the trusted classical advice could simply specify those values, as “tests” for Arthur to perform on
the quantum state sent by Merlin. Alas, this hope is unfounded in general. For consider the case
where f∗ is the identically-zero function, and S consists of f∗ along with the “point function” fy
(which equals 1 on y and 0 elsewhere), for all y ∈ {0, 1}n. Then f∗ can only be isolated in S by
specifying its value at every point!

Luckily, this counterexample leads us to a key observation. Although f∗ is not isolatable in
S by a small number of values, each point function fy can be isolated (by its value at y), and
moreover, fy is quite “close” to f∗. In fact, if we choose any three distinct strings x, y, z, then
f∗ ≡ MAJ (fx, fy, fz). (Of course if f∗ were the identically-zero function, it could be easily specified
with classical advice! But f∗ could have been any function in this example.)

This suggests a new, more indirect approach to our general problem: we try to express f as the
pointwise majority vote

f∗ (x) ≡ MAJ (f1 (x) , . . . , fm (x)) ,

of a small number (m = O (n)) of other functions f1, . . . , fm in S, where each fi is isolatable in S
by specifying at most k = O (log |S|) of its values. Indeed, we will show this can always be done.
We call this key result the majority-certificates lemma; we will say more about its proof and its
relation to earlier work in Section 1.4.

With this lemma in hand, we can solve our (artificially simplified) problem: in the QMA/poly
protocol for L, we use certificates which isolate f1, . . . , fm ∈ S as above as the classical advice for
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Figure 1: Dependency structure of our proof that quantum advice states can be expressed as ground
states of local Hamiltonians.

Arthur. Arthur requests from Merlin each of the m states ξ1, . . . , ξm such that fi = fξi , and verifies
that he receives appropriate states by checking them against the certificates. This involves multiple
measurements of each ξi—and an immediate difficulty is that, since measurements are irreversible
in quantum mechanics, the process of verifying the witness state might also destroy it. However,
we get around this difficulty by appealing to a result of Aharonov and Regev [10]. This result
essentially says that a QMA protocol in which Arthur is granted the (physically unrealistic) ability
to perform “non-destructive measurements” on his witness state, can be efficiently simulated by an
ordinary QMA protocol.

To build intuition, we will begin (in Section 2) by proving the majority-certificates lemma
for Boolean functions, as described above. However, to remove the artificial simplification we
made and prove Theorem 2, we will need to generalize the lemma substantially, to a statement
about possibly-infinite sets of real-valued functions f : {0, 1}n → [0, 1]. In the general version, the
hypothesis that S is finite and not too large will be replaced by a more subtle assumption: namely,
an upper bound on the so-called fat-shattering dimension of S. To prove our generalization, we
use powerful results of Alon et al. [11] and Bartlett and Long [14] on the learnability of real-valued
functions. We then use a bound on the fat-shattering dimension of real-valued functions defined
by quantum states (from Aaronson [5], building on Ambainis et al. [13]). Figure 1 shows the overall
dependency structure of the proof.

1.4 Majority-Certificates Lemma in Context

The majority-certificates lemma is closely related to the seminal notion of boosting [29] from compu-
tational learning theory. Boosting is a broad topic with a vast literature, but a common “generic”
form of the boosting problem is as follows: we want to learn some target function f∗, given sam-
ple data of the form (x, f∗ (x)). We assume we have a weak learning algorithm Af∗,D, with the
property that, for any probability distribution D over inputs x, with high probability A finds a
hypothesis f ∈ F which predicts f∗ (x) “reasonably well” when x ∼ D. The task is to “boost” this
weak learner into a strong learner Bf∗

. The strong learner should output a collection of functions
f1, . . . , fm ∈ F , such that a (possibly-weighted) majority vote over f1 (x) , . . . , fm (x) predicts f∗ (x)
“extremely well.” It turns out [29, 19] that this goal can be achieved in a very general setting.

Our majority-certificates lemma has strengths and weaknesses compared to boosting. Our
assumptions are much milder than those of boosting: rather than needing a weak learner, we
assume only that the hypothesis class S is “not too large.” Also, we represent our target function
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f∗ exactly by MAJ (f1, . . . , fm), not just approximately. On the other hand, we do not give an
efficient algorithm to find our majority-representation. Also, the fi’s are not “explicitly given:” we
only give a way to recognize each fi, under the assumption that the function purporting to be fi is
in fact drawn from the original hypothesis class.

The proof of our lemma also has similarities to boosting. As an analogue of a “weak learner,”
we show that for every distribution D, there exists a function f ∈ S which agrees with the target
function f∗ on most x ∼ D, and which is isolatable in S by specifying O(log |S|) queries. Using
the Minimax Theorem, we then nonconstructively “boost” this fact into the desired majority-
representation of f∗. We note that Nisan used the Minimax Theorem for boosting in a similar
way, in his alternative proof of Impagliazzo’s “hard-core set theorem” (see [22]).

The majority-certificates lemma is also reminiscent of Bshouty et al.’s algorithm [16], for learning
small circuits in the complexity class ZPPNP. Our lemma lacks the algorithmic component of this
earlier work, but unlike Bshouty et al., we do not require the functions being learned to come with
any succinct labels (such as circuit descriptions).

1.5 Organization of the Paper

In Section 2, we prove the Boolean majority-certificates-lemma. In Section 3, we give our real-
valued generalization of this lemma, and in Section 4 we use it to prove Theorem 2, and state
some consequences for quantum complexity theory. Theorem 1 is proved in Section 4.3. Section 5
contains some further results for quantum complexity, and the Appendices provide some additional
applications of and perspectives on the majority-certificates lemma.

2 The Majority-Certificates Lemma

A Boolean concept class is a family of sets {Sn}n≥1, where each Sn consists of Boolean functions
f : {0, 1}n → {0, 1} on n variables. Abusing notation, we will often use S to refer directly to a set
of Boolean functions on n variables, with the quantification over n being understood.

By a certificate, we mean a partial Boolean function C : {0, 1}n → {0, 1, ∗}. The size of C,
denoted |C|, is the number of inputs x such that C (x) ∈ {0, 1}. A Boolean function f : {0, 1}n →
{0, 1} is consistent with C if f (x) = C (x) whenever C (x) ∈ {0, 1}. Given a set S of Boolean
functions and a certificate C, let S [C] be the set of all functions f ∈ S that are consistent with C.
Say that a function f ∈ S is isolated in S by the certificate C if S [C] = {f}.

We now prove a lemma that represents one of the main tools of this paper (although it will be
generalized, rather than used directly).

Lemma 3 (Majority-Certificates Lemma) Let S be a set of Boolean functions f : {0, 1}n →
{0, 1}, and let f∗ ∈ S. Then there exist m = O (n) certificates C1, . . . , Cm, each of size k =
O (log |S|), and functions f1, . . . , fm ∈ S, such that

(i) S [Ci] = {fi} all i ∈ [m];

(ii) MAJ (f1 (x) , . . . , fm (x)) = f∗ (x) for all x ∈ {0, 1}n.

Proof. Our proof of Lemma 3 relies on the following claim.

Claim 4 Let D be any distribution over inputs x ∈ {0, 1}n. Then there exists a function f ∈ S
such that
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(i) f is isolatable in S by a certificate C of size k = O (log |S|);

(ii) Prx∼D[f(x) -= f∗(x)] ≤ 1
10 .

Lemma 3 follows from Claim 4 by a boosting-type argument, as follows. Consider a two-player
game where:

• Alice chooses a certificate C of size k that isolates some f ∈ S, and

• Bob simultaneously chooses an input x ∈ {0, 1}n.

Alice wins the game if f (x) = f∗ (x). Claim 4 tells us that for every mixed strategy of Bob (i.e.,
distribution D over inputs), there exists a pure strategy of Alice that succeeds with probability at
least 0.9 against D. Then by the Minimax Theorem, there exists a mixed strategy for Alice—that
is, a probability distribution C over certificates—that allows her to win with probability at least
0.9 against every pure strategy of Bob.

Now suppose we draw C1, . . . , Cm independently from C, isolating functions f1, . . . , fm in S.
Fix an input x ∈ {0, 1}n; then by the success of Alice’s strategy against x, and applying a Chernoff
bound,

Pr
f1,...,fm∼π

[MAJ (f1 (x) , . . . , fm (x)) -= f∗(x)] <
1

2n
,

provided we choose m = O (n) suitably. But by the union bound, this means there must be a fixed
choice of C1, . . . , Cm such that MAJ (f1, . . . , fm) ≡ f∗, where each fi is isolated in S by Ci. This
proves Lemma 3, modulo the Claim.

Proof of Claim 4. By symmetry, we can assume without loss of generality that f∗ is the
identically-zero function. Given the mixed strategy D of Bob, we construct the certificate C
as follows. Initially C is empty: that is, C (x) = ∗ for all x ∈ {0, 1}n. In the first stage, we draw
t = O (log |S|) inputs x1, . . . , xt independently from D. For any f : {0, 1}n → {0, 1}, let

wf := Pr
x∼D

[f (x) = 1] .

Now suppose f is such that wf > 0.1. Then

Pr
x1,...,xt∼D

[f (x1) = 0 ∧ · · · ∧ f (xt) = 0] < 0.9t ≤ 1

|S| ,

provided t ≥ log10/9 |S|. So by the union bound, there must be a fixed choice of x1, . . . , xt that kills
off every f ∈ S such that wf > 0.1—that is, such that f (x1) = · · · = f (xt) = 0 implies wf ≤ 0.1.
Fix that x1, . . . , xt, and set C (xi) := 0 for all i ∈ [t].

In the second stage, our goal is just to isolate some particular function f ∈ S [C]. We do this
recursively as follows. If |S [C]| = 1 then we are done. Otherwise, there exists an input x such
that f (x) -= f ′ (x) for some pair f, f ′ ∈ S [C]. If setting C (x) := 0 decreases |S [C]| by at least
a factor of 2, then set C (x) := 0; otherwise set C (x) := 1. Since S [C] can halve in size at most
log2 |S| times, this procedure terminates after at most log2 |S| steps with |S [C]| = 1.

The end result is a certificate C of size O (log |S|), which isolates a function f in S for which
wf ≤ 1/10. We have therefore found a pure strategy for Alice that fails with probability at most
1/10 against D, as desired.

9



3 Extension to Real Functions

In this section, we extend the majority-certificates lemma from Boolean functions to real-valued
functions f : {0, 1}n → [0, 1]. We will need this extension for the application to quantum advice
in Section 4. In proving our extension we will have to confront several new difficulties. Firstly,
the concept classes S that we want to consider can now contain a continuum of functions—so
Lemma 3, which assumed that S was finite and constructed certificates of size O (log |S|), is not
going to work. In Section 3.1, we review notions from computational learning theory, including
fat-shattering dimension and ε-covers, which (combined with results of Alon et al. [11] and Bartlett
and Long [14]) can be used to get around this difficulty. Secondly, it is no longer enough to isolate
a function fi ∈ S that we are interested in; instead we will need to “safely” isolate fi, which roughly
speaking means that (i) fi is consistent with some certificate C, and (ii) any f ∈ S that is even
approximately consistent with C is close to fi. In Section 3.2, we prove a “safe winnowing lemma”
that can be used for this purpose. Finally, in Section 3.3, we put the pieces together to prove a
real-valued majority-certificates lemma.

3.1 Background from Learning Theory

A p-concept class S is a family of functions f : {0, 1}n → [0, 1] (as usual, quantification over all n
is understood). Given functions f, g : {0, 1}n → [0, 1] and a subset of inputs X ⊆ {0, 1}n, we will
be interested in three measures of the distance between f and g restricted to X:

∆∞ (f, g) [X] := max
x∈X

|f (x) − g (x)| ,

∆2 (f, g) [X] :=

√∑

x∈X
(f (x) − g (x))2,

∆1 (f, g) [X] :=
∑

x∈X
|f (x) − g (x)| .

For convenience, we define ∆∞ (f, g) := ∆∞ (f, g) [{0, 1}n], and similarly for ∆2 (f, g) and ∆1 (f, g).
Also, given a distribution D over {0, 1}n, define

∆1 (f, g) 〈D〉 := E
x∼D

[|f (x) − g (x)|] .

Finally, we will need the notions of coverability and fat-shattering dimension.

Definition 5 (Coverability) Let S be a p-concept class. The subset C ⊆ S is an ε-cover for S
if for all f ∈ S, there exists a g ∈ C such that ∆∞ (f, g) ≤ ε. We say S is coverable if for all
ε > 0, there exists an ε-cover for S of size 2poly(n,1/ε).

Definition 6 (Fat-Shattering Dimension) Let S be a p-concept class and ε > 0 be a real num-
ber. We say the set A ⊆ {0, 1}n is ε-shattered by S if there exists a function r : A → [0, 1] such
that for all 2|A| Boolean functions g : A → {0, 1}, there exists a p-concept f ∈ S such that for all
x ∈ A, we have f (x) ≤ r (x) − ε whenever g (x) = 0 and f (x) ≥ r (x) + ε whenever g (x) = 1.
Then the ε-fat-shattering dimension of S, or fatε (S), is the size of the largest set ε-shattered by S.
We say S is bounded-dimensional if fatε (S) ≤ poly (n, 1/ε) for all ε > 0.

The following central result was shown by Alon et al. [11] (see also [23]).
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Theorem 7 ([11]) Every p-concept class S has an ε-cover of size exp
[
O
(
(n+ log 1/ε) fatε/4 (S)

)]
.

So in particular, if S is bounded-dimensional then S is coverable.

Building on the work of Alon et al. [11], Bartlett and Long [14] then proved the following:

Theorem 8 ([14]) Let S be a p-concept class and D be a distribution over {0, 1}n. Fix an
f : {0, 1}n → [0, 1] (not necessarily in S) and an error parameter α > 0. Suppose we form a set
X ⊆ {0, 1}n by choosing m inputs independently with replacement from D. Then there exists a
positive constant K such that, with probability at least 1 − δ over X, any hypothesis h ∈ S that
minimizes ∆1 (h, f) [X] also satisfies

∆1 (h, f) 〈D〉 ≤ α+ inf
g∈S

∆1 (g, f) 〈D〉 ,

provided that

m ≥ K

α2

(
fatα/5 (S) log

2 1

α
+ log

1

δ

)
.

Theorem 8 has the following corollary, which is similar to Corollary 2.4 of Aaronson [5], but
more directly suited to our purposes here.3

Corollary 9 Let S be a p-concept class and D be a distribution over {0, 1}n. Fix an f ∈ S and an
error parameter ε > 0. Suppose we form a set X ⊆ {0, 1}n by choosing m inputs independently with
replacement from D. Then there exists a positive constant K such that, with probability at least
1−δ over X, any hypothesis h ∈ S that satisfies ∆∞ (h, f) [X] ≤ ε also satisfies ∆1 (h, f) 〈D〉 ≤ 11ε,
provided

m ≥ K

ε2

(
fatε (S) log

2 1

ε
+ log

1

δ

)
.

Proof. Let S∗ be the p-concept class consisting of all functions g : {0, 1}n → [0, 1] for which
there exists an f ∈ S such that ∆∞ (g, f) ≤ ε. Fix an f ∈ S and a distribution D, and let X
be chosen as in the statement of the corollary. Suppose we choose a hypothesis h ∈ S such that
∆∞ (h, f) [X] ≤ ε. Then there exists a function g ∈ S∗ such that g (x) = h (x) for all x ∈ X.
This g is simply obtained by setting g (x) := h (x) if x ∈ X and g (x) := f (x) otherwise. In
particular, note that ∆1 (h, g) [X] = 0, which means that h minimizes the functional ∆1 (h, g) [X]
over all hypotheses in S (and indeed in S∗). By Theorem 8, this implies that with probability at
least 1− δ over X,

∆1 (h, g) 〈D〉 ≤ α+ inf
u∈S∗

∆1 (u, g) 〈D〉 = α

for all α > 0, provided we take

m ≥ K

α2

(
fatα/5 (S

∗) log2
1

α
+ log

1

δ

)
.

Here we have used the fact that g ∈ S∗, and hence

inf
u∈S∗

∆1 (u, g) 〈D〉 = 0.

3It would also be possible to apply the bound from [5] “off-the-shelf,” but at the cost of a worse dependence on
1/ε.
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So by the triangle inequality,

∆1 (h, f) 〈D〉 ≤ ∆1 (h, g) 〈D〉 +∆1 (g, f) 〈D〉
≤ α+∆∞ (g, f)

≤ α+ ε.

Next, we claim that fatα/5 (S
∗) ≤ fatα/5−ε (S). The reason is simply that, if a given set β-fat-

shatters S∗, then it must also (β − ε)-fat-shatter S by the triangle inequality. Setting α := 10ε
now yields the desired statement.

3.2 The Safe Winnowing Lemma

The next step toward proving the real-valued majority-certificates lemma is to prove a so-called
“safe winnowing lemma.” This lemma says intuitively that, given any set S of real-valued functions
with a small ε-cover (or equivalently, with polynomially-bounded fat-shattering dimension), it is
possible to find a set of k = poly (n) constraints |f (x1)− a1| ≤ ε, . . . , |f (xk)− ak| ≤ ε that are
essentially compatible with one and only one function f ∈ S. Here “essentially” means that (i) any
function that satisfies the constraints is close to f in L∞-norm, and (ii) f itself not only satisfies
the constraints, but does so with a “margin to spare.”

Lemma 10 (Safe Winnowing Lemma) Let S be a set of functions f : {0, 1}n → [0, 1]. Fix a
function f∗ ∈ S and subset Y ⊆ {0, 1}n. For some parameter ε > 0, let C be a finite ε-cover for
S. Then there exists an f ∈ S, as well as a subset Z ⊆ {0, 1}n of size at most k = log2 |C|, such
that:

(i) Every g ∈ S that satisfies ∆∞ (f, g) [Y ∪ Z] ≤ ε
5k also satisfies ∆∞ (f, g) ≤ 3ε.

(ii) ∆∞ (f, f∗) [Y ] ≤ ε/5.

Proof. Let δ := ε
5k . We construct (f, Z) by an iterative procedure. Initially let S0 := S, let

f0 := f∗, and let Z0 := Y . We will form new sets S1, S2, . . . by repeatedly adding constraints of the
form f (x) ≤ α or f (x) ≥ α for various x,α, maintaining the invariant that ft ∈ St. At iteration
t, suppose there exists a function g ∈ St−1 such that ∆∞ (ft−1, g) [Y ∪ Zt−1] ≤ δ, but nevertheless
|ft−1 (zt) − g (zt)| > 3ε for some input zt. Then first set Zt := Zt−1 ∪ {zt} (i.e., add zt into our set
of inputs, if it is not already there). Let v := 1

2 [ft−1 (zt) + g (zt)], let A be the set of all functions
h ∈ St−1 such that h (zt) < v, and let B be the set of all h ∈ St−1 such that h (zt) ≥ v. Also, for

any given set M , let M♦ := M ∩ C. Then clearly min
{∣∣A♦∣∣ ,

∣∣B♦∣∣} ≤
∣∣∣S♦

t−1

∣∣∣ /2. If
∣∣A♦∣∣ <

∣∣B♦∣∣,
then set St := A; otherwise set St := B. Then set ft := ft−1 if ft−1 ∈ St and ft := g otherwise.

Since
∣∣∣S♦

t

∣∣∣ can halve at most k = log2 |C| times, it is clear that after T ≤ k iterations we have
∣∣∣S♦

T

∣∣∣ ≤ 1. Set f := fT and Z := ZT . Then by the triangle inequality,

∆∞ (f, f∗) [Y ] ≤ T δ ≤ ε

5
,

and also
|f (zt)− ft (zt)| ≤ (T − t) δ <

ε

5
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for all t ∈ [T ]. So suppose by contradiction that there still exists a function g ∈ ST such that
∆∞ (f, g) [Y ∪ Z] ≤ δ but |f (x)− g (x)| > 3ε for some x, and consider functions p, q ∈ C in the
cover such that ∆∞ (f, p) ≤ ε and ∆∞ (g, q) ≤ ε. Then p, q ∈ S♦

T but p -= q, which contradicts the

fact that
∣∣∣S♦

T

∣∣∣ ≤ 1. Also notice that for all g ∈ S, if ∆∞ (f, g) [Y ∪ Z] ≤ δ then g ∈ ST . Thus

∆∞ (f, g) [Y ∪ Z] ≤ δ implies ∆∞ (f, g) ≤ 3ε as desired.

Note that Lemma 10 is still interesting in the special case Y = ∅, in which case f∗ is irrelevant,
and the problem reduces to finding a Z such that every g ∈ S that satisfies ∆∞ (f, g) [Z] ≤ ε

5k
also satisfies ∆∞ (f, g) ≤ 3ε. In Appendix 10, we will develop the theory of “winnowability” of
p-concept classes for its own sake. We show there that the condition ∆∞ (f, g) [Z] = O (ε/k) can be
improved to ∆1 (f, g) [Z] = O (ε). On the other hand, the proof becomes more involved, and we no
longer know how to incorporate f∗ and Y . We also show that the condition ∆∞ (f, g) [Z] = O (ε/k)
cannot be improved to ∆∞ (f, g) [Z] = O (ε) or even ∆2 (f, g) [Z] = O (ε).

3.3 The Real-Valued Majority-Certificates Lemma

We are finally ready to generalize Lemma 3 to the case of real-valued functions.

Lemma 11 (Real Majority-Certificates) Let S be a p-concept class, let f∗ ∈ S, and let ε > 0.
Then for some m = O

(
n/ε2

)
, there exist functions f1, . . . , fm ∈ S, sets X1, . . . ,Xm ⊆ {0, 1}n each

of size k = O
((

n+ log2 1/ε
ε2

)
fatε/48 (S)

)
, and an α = Ω

(
ε

(n+log 1/ε) fatε/48(S)

)
for which the following

holds. All g1, . . . , gm ∈ S that satisfy ∆∞ (fi, gi) [Xi] ≤ α for i ∈ [m] also satisfy ∆∞ (f∗, g) ≤ ε,
where

g (x) :=
g1 (x) + · · ·+ gm (x)

m
.

Proof. Let

β :=
ε

48
,

t := C

(
n+ log

1

β

)
fatβ (S) ,

α :=
0.4β

t
,

where C is a suitably large constant. Also, let Sfin be a finite α-cover for S: that is, a finite subset
Sfin ⊆ S such that for all f ∈ S, there exists a g ∈ Sfin such that ∆∞ (f, g) ≤ α.4 Given f and X,
let S [f,X] be the set of all g ∈ S such that ∆∞ (f, g) [X] ≤ α.

Now consider a two-player game where Alice chooses a function f ∈ Sfin and a set X ⊆ {0, 1}n
of size k, and Bob simultaneously chooses an input x ∈ {0, 1}n. Alice’s penalty in this game (the
number she is trying to minimize) equals

sup
g∈S[f,X]

|f∗ (x)− g (x)| .

We claim that there exists a mixed strategy for Alice—that is, a probability distribution P over
(f,X) pairs—that gives her an expected penalty of at most ε/2 against every pure strategy of Bob.

4We will need Sfin for the technical reason that the basic Minimax Theorem only works with finite strategy spaces.
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Let us see why the lemma follows from this claim. Fix an input x ∈ {0, 1}n, and suppose Alice
draws (f1,X1) , . . . , (fm,Xm) independently from P. Then for all i ∈ [m],

E
(fi,Xi)∼P

[
sup

g∈S[f,X]
|f∗ (x)− g (x)|

]
≤ ε

2
.

Thus, letting z1, . . . , zm be independent random variables in [0, 1], each with expectation at most
ε/2, the expression

Pr
(f1,X1),...,(fm,Xm)∼P

[
∃g1 ∈ S [f1,X1] , . . . , gm ∈ S [fm,Xm] :

∣∣∣∣f
∗ (x) − g1 (x) + · · ·+ gm (x)

m

∣∣∣∣ > ε

]

is at most Pr [z1 + · · · zm > εm] using the triangle inequality. This, in turn, is less than

2 exp

(
−2 (εm/2)2

m

)
< 2−n

by Hoeffding’s inequality, provided we choose m = O
(
n/ε2

)
suitably. By the union bound, this

means that there must be a fixed choice of f1, . . . , fm and X1, . . . ,Xm such that
∣∣∣∣f

∗ (x)− g1 (x) + · · ·+ gm (x)

m

∣∣∣∣ ≤ ε

for all g1 ∈ S [f1,X1] , . . . , gm ∈ S [fm,Xm] and all inputs x ∈ {0, 1}n simultaneously, as desired.
We now prove the claim. By the Minimax Theorem, our task is equivalent to the following:

given any mixed strategy D of Bob, find a pure strategy of Alice that achieves a penalty of at most
ε/2 against D. In other words, given any distribution D over inputs x ∈ {0, 1}n, we want a fixed
function f ∈ Sfin, and a set X ⊆ {0, 1}n of size k, such that

E
x∼D

[

sup
g∈S[f,X]

|f∗ (x)− g (x)|
]

≤ ε

2
.

We construct this (f,X) pair as follows.
In the first stage, we let Y be a set, of size at most

M :=
K

β2

(
fatβ (S) log

2 1

β
+ log

1

δ

)
,

formed by choosing M inputs independently with replacement from D. Here β = ε/48 as defined
earlier, δ = 1/2, and K is the constant from Corollary 9. Then by Corollary 9, with probability
at least 1 − δ = 1/2 over the choice of Y , any g ∈ S that satisfies ∆∞ (f∗, g) [Y ] ≤ β also satisfies
∆1 (f∗, g) 〈D〉 ≤ 11β. So there must be a fixed choice of Y with that property. Fix that Y , and
let S′ be the set of all g ∈ S such that ∆∞ (f∗, g) [Y ] ≤ β.

In the second stage, our goal is just to winnow S′ down to a particular function f . More
precisely, we want to find an f ∈ S′ ∩Sfin, and a set X ⊆ {0, 1}n containing Y , such that any g ∈ S
that satisfies ∆∞ (f, g) [X] ≤ α also satisfies ∆∞ (f, g) ≤ 11β.

We find this (f,X) pair as follows. By Theorem 7, the class S′ has a 4β-cover of size

N = exp

[
O

((
n+ log

1

4β

)
fatβ

(
S′)

)]
≤ exp

[
O

((
n+ log

1

β

)
fatβ (S)

)]
.

Let t := log2 N . Then by Lemma 10, there exists a function u ∈ S′, as well as a subset Z ⊆ {0, 1}n
of size at most t, such that:
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(i) ∆∞ (u, f∗) [Y ] ≤ 0.8β.

(ii) Every g ∈ S′ that satisfies ∆∞ (u, g) [Y ∪ Z] ≤ 0.8β
t also satisfies ∆∞ (u, g) ≤ 12β.

Let X := Y ∪ Z, and observe that

|X| = O

(
1

β2
fatβ (S) log

2 1

β
+

(
n+ log

1

β

)
fatβ (S)

)

= O

((
n+

log2 1/ε

ε2

)
fatε/48 (S)

)

as desired. Now let f be a function in Sfin such that ∆∞ (f, u) ≤ α. Let us check that f has the
properties we want. First,

∆∞ (f∗, f) [Y ] ≤ ∆∞ (f∗, u) [Y ] +∆∞ (u, f) [Y ]

≤ 0.8β + α

< 0.9β,

hence f ∈ S′ as desired. Next, any g ∈ S that satisfies ∆∞ (f, g) [X] ≤ α also satisfies

∆∞ (f∗, g) [Y ] ≤ ∆∞ (f∗, f) [Y ] +∆∞ (f, g) [Y ]

≤ 0.9β + α

< β,

hence g ∈ S′, hence ∆1 (f∗, g) 〈D〉 ≤ 11β. So any g ∈ S that satisfies ∆∞ (f, g) [X] ≤ α satisfies

∆∞ (u, g) [Z] ≤ ∆∞ (u, f) [Z] +∆∞ (f, g) [Z]

≤ 2α

=
0.8β

t
,

hence ∆∞ (u, g) ≤ 12β (since such a g must belong to S′), hence

∆∞ (f, g) ≤ ∆∞ (f, u) +∆∞ (u, g)

≤ α+ 12β

≤ 13β.

To conclude,

E
x∼D

[

sup
g∈S[f,X]

|f∗ (x) − g (x)|
]

≤ ∆1 (f
∗, f) 〈D〉+ sup

g∈S[f,X]
∆∞ (f, g)

≤ 11β + 13β

=
ε

2

as desired. This proves the claim and hence the lemma.
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4 Application to Quantum Advice

In this section, we use the real-valued majority-certificates lemma to prove Theorems 1 and 2, as
well as several other results.

4.1 Bestiary of Quantum Complexity Classes

Given a language L ⊆ {0, 1}∗, let L : {0, 1}∗ → {0, 1} be the characteristic function of L. We now
give a formal definition of the class BQP/qpoly.

Definition 12 A language L is in BQP/qpoly if there exists a polynomial-time quantum algorithm
A and polynomial p such that for all n, there exists an advice state ρn on p (n) qubits such that
A (x, ρn) outputs L (x) with probability ≥ 2/3 for all x ∈ {0, 1}n.

Closely related to quantum advice are quantum proofs. We now recall the definition of QMA
(Quantum Merlin-Arthur), a quantum version of NP.

Definition 13 A language L is in QMA if there exists a polynomial-time quantum algorithm A
and polynomial p such that for all x ∈ {0, 1}n:

(i) If x ∈ L then there exists a witness ρx on p (n) qubits such that A (x, ρx) accepts with proba-
bility ≥ 2/3.

(ii) If x /∈ L then A (x, ρ) accepts with probability ≤ 1/3 for all ρ.

We will actually need a generalization of QMA, which was called QMA+ by Aharonov and Regev
[9].5

Definition 14 A language L is in QMA+ if there exists a polynomial-time algorithm A, which
takes x ∈ {0, 1}n as input and produces quantum circuits Cx,1, . . . , Cx,m and rational numbers
rx,1, . . . , rx,m as output, as well as polynomials p, q such that for all x ∈ {0, 1}n:

(i) If x ∈ L then there exists a witness ρx on p (n) qubits such that |Pr [Cx,i (ρx) accepts]− rx,i| ≤
1/q (n) for all i ∈ [m].

(ii) If x /∈ L then for all ρ, there exists an i ∈ [m] such that |Pr [Cx,i (ρ) accepts]− rx,i| > 5/q (n).

Aharonov and Regev [9] proved the following extremely useful result, which we prove here for
completeness.

Theorem 15 ([10]) QMA+ = QMA.

Proof. QMA ⊆ QMA+ is obvious. For the other direction, let L ∈ QMA+, and fix an input
x ∈ {0, 1}n, quantum circuits Cx,1, . . . , Cx,m, rational numbers rx,1, . . . , rx,m, and polynomials
p, q. Then consider the following QMA verification procedure. Given a witness state σ on

K = O
(
q (n)2 log q (n)

)
registers:

(1) Choose i ∈ [m] uniformly at random.

5Aharonov and Regev actually defined QMA+ in a slightly more general way. However, the definition below is all
we need; note that all these classes turn out to equal QMA anyway.
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(2) For k := 1 to K, apply Cx,i to the kth register of σ.

(3) If the fraction α of invocations that accepted satisfies |α− rx,i| ≤ 2/q (n), then accept. Oth-
erwise reject.

Let Pi (σ) be the probability that the above procedure accepts, conditioned on choosing i ∈ [m]
in step (i).

Showing completeness is easy: if x ∈ L, an honest Merlin can send Arthur the product state
ρ⊗K
x . Then provided we take K sufficiently large, Pi

(
ρ⊗K
x

)
< 1/q (n)2 for all i ∈ [m] by a Chernoff

bound.
To show soundness, take some x /∈ L, and suppose for contradiction’s sake that there exists a

state σ such that

E
i∈[m]

[Pi (σ)] <
2

q (n)2
.

Then by Markov’s inequality, Pi (σ) < 2/q (n) for each particular i ∈ [m]. Now let σk be the
reduced state on the kth register of σ, and let ρ := 1

K (σ1 + · · ·+ σK). Then by linearity of
expectation,

|Pr [Cx,i (ρ) accepts] − rx,i| =
∣∣∣∣ E
k∈[K]

[Pr [Cx,i (σk) accepts]]− rx,i

∣∣∣∣

≤ 2

q (n)
+ Pi (σ)

≤ 4

q (n)
,

which contradicts the assumption that there exists an i ∈ [m] such that

|Pr [Cx,i (ρ) accepts]− rx,i| >
5

q (n)
.

The theorem now reduces to the standard fact that QMA protocols can be amplified to any desired
1/poly (n) soundness gap.

To state our results, it will be helpful to have the further notion of untrusted advice, which is like
advice in that it depends only on the input length n, but like a witness in that it cannot be trusted.
This notion has been studied before: Chakaravarthy and Roy [17] and Fortnow, Santhanam, and
Williams [18] defined the complexity class ONP (“Oblivious NP”), which is like NP except that the
witness can depend only on the input length. Independently, Aaronson [5] defined the complexity
class YP,6 which is easily seen to equal ONP ∩ coONP. We will adopt the “Y” notation in this
paper, because it is much easier to write YQP/poly (for example) than OQMA/poly∩coOQMA/poly.

We now give a formal definition of YP, as well as a slight variant called YP∗.

Definition 16 A language L is in YP if there exist polynomial-time algorithms A,B and a poly-
nomial p such that:

(i) For all n, there exists an advice string yn ∈ {0, 1}p(n) such that A (x, yn) = 1 for all x ∈
{0, 1}n.

6YP stands for “Yoda Polynomial-Time,” a nomenclature that seems to make neither more nor less sense than
“Arthur-Merlin.”
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(ii) If A (x, y) = 1, then B (x, y) = L (x).

L is in YP∗ if moreover A ignores x, depending only on y.

Clearly P ⊆ YP∗ ⊆ YP ⊆ P/poly∩NP∩ coNP. Also, Aaronson [5] showed that ZPP ⊆ YP. We
will be interested in the natural quantum analogues of YP and YP∗:

Definition 17 A language L is in YQP if there exist polynomial-time quantum algorithms A,B
and a polynomial p such that:

(i) For all n, there exists an advice state ρn on p (n) qubits such that A (x, ρn) accepts with
probability ≥ 2/3 for all x ∈ {0, 1}n.

(ii) If A (x, ρ) accepts with probability ≥ 1/3, then B (x, ρ) outputs L (x) with probability ≥ 2/3.

L is in YQP∗ if moreover A ignores x, depending only on ρ.

Clearly BQP ⊆ YQP∗ ⊆ YQP ⊆ BQP/qpoly∩QMA∩ coQMA. By direct analogy to QMA+, we
can define the following generalizations of YQP and YQP∗:

Definition 18 A language L is in YQP+ if there exists a polynomial-time algorithm A, which
takes x ∈ {0, 1}n as input and produces quantum circuits Cx,1, . . . , Cx,m and rational numbers
rx,1, . . . , rx,m as output; a polynomial-time quantum algorithm B; and polynomials p, q such that:

(i) For all n, there exists an advice state ρn on p (n) qubits such that |Pr [Cx,i (ρn) accepts]− rx,i| ≤
1/q (n) for all i ∈ [m] and x ∈ {0, 1}n.

(ii) If |Pr [Cx,i (ρ) accepts]− rx,i| ≤ 5/q (n) for all i ∈ [m], then B (x, ρ) outputs L (x) with
probability ≥ 2/3.

L is in YQP∗
+ if moreover A ignores x.

Then we have the following direct counterpart to Theorem 15:

Theorem 19 YQP+ = YQP and YQP∗
+ = YQP∗.

Proof. For YQP ⊆ YQP+ and YQP∗ ⊆ YQP∗
+, we simply take m = 1 and take q (n) to be a

constant. For YQP+ ⊆ YQP, the simulation procedure is essentially the same as in the proof of
Theorem 15. Namely, let L ∈ YQP+, and fix an input x ∈ {0, 1}n, quantum circuits Cx,1, . . . , Cx,m

generated by an algorithm A, rational numbers rx,1, . . . , rx,m, polynomials p, q, and an algorithm

B. Then given a witness state σ on K = O
(
q (n)2 log q (n)

)
registers, the YQP algorithm A′ does

the following:

(1) Choose i ∈ [m] uniformly at random.

(2) For k := 1 to K, apply Cx,i to the kth register of σ.

(3) If the fraction α of invocations that accepted satisfies |α− rx,i| ≤ 2/q (n), then accept. Oth-
erwise reject.

Likewise, let σk be the kth register of σ. Then the YQP algorithm B′ chooses k ∈ [K] uniformly
at random, runs B (x,σk), and outputs the result. One can check that conditions (i) and (ii) in the
definition of YQP are both satisfied, albeit with 1 − 1/q (n)2 and 1 − 2/q (n)2 in place of 2/3 and
1/3 (which is not an important difference, because of amplification). The proof of YQP∗

+ ⊆ YQP∗

is the same, except that both A and A′ ignore the input x when generating the Cx,i’s and rx,i’s.
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4.2 Characterizing Quantum Advice

Fix a polynomial-size quantum circuitQ. For a given advice state ρ, let fρ (x) := Pr [Q accepts x, ρ].
Let S be the p-concept class consisting of fρ for all p (n)-qubit mixed states ρ. Then Aaronson [5]
proved the following.

Theorem 20 ([5]) fatγ (S) = O
(
p (n) /γ2

)
.

We now prove the following characterization of BQP/qpoly, which immediately implies (and
strengthens) Theorem 2:

Theorem 21 BQP/qpoly = YQP/poly.

Proof. One direction (YQP/poly ⊆ BQP/qpoly) is obvious, since untrusted quantum advice
and trusted classical advice can both be simulated by trusted quantum advice. We prove that
BQP/qpoly ⊆ YQP/poly. It suffices to show that BQP/qpoly ⊆ YQP+/poly, since YQP = YQP+ by
Theorem 19. Let L ∈ BQP/qpoly, let Q be a quantum algorithm that decides L with completeness
and soundness errors 1/5, and let x ∈ {0, 1}n be the input. Also, let fξ (z) := Pr [Q (z, ξ) accepts],
where ξ is a p (n)-qubit quantum advice state for Q. Then by definition, there exists a “true”
advice state ρn such that

|fρn (z) − L (z)| ≤ 0.2

for all z ∈ {0, 1}n. Let S be the p-concept class consisting of fξ for all p (n)-qubit mixed states
ξ. Then Theorem 20 implies that fatγ (S) = O

(
p (n) /γ2

)
for all γ > 0. Set γ := 1/480.

Then by Lemma 11, for some m = O (n), there exist p (n)-qubit mixed states ρ [1] , . . . , ρ [m], sets

X1, . . . ,Xm ⊆ {0, 1}n each of size k = O (n · p (n)), and an α = Ω
(

1
n·p(n)

)
for which the following

holds:

(*) All p (n)-qubit states σ [1] , . . . ,σ [m] that satisfy ∆∞
(
fρ[i], fσ[i]

)
[Xi] ≤ 5α for i ∈ [m] also

satisfy ∆∞ (fρn , fσ) ≤ 0.1, where σ := 1
m (σ [1] + · · · + σ [m]).

Our YQP+/poly simulation is now the following. The classical /poly advice encodes the sets
X1, . . . ,Xm, as well as a rational approximation ri,z to fρ[i] (z) for each i ∈ [m] and z ∈ Xi. The
untrusted quantum advice ρ′n consists of m registers of p (n) qubits each; in the honest-prover case,
ρ′n is simply ρ [1]⊗ · · ·⊗ρ [m]. Let σ [i] be the ith register of ρ′n. Then given the advice, the YQP+

machine A outputs a circuit Ci,z that runs Q (z,σ [i]) and outputs the result, for each i ∈ [m] and
z ∈ Xi. The machine B chooses i ∈ [m] uniformly at random, then runs Q (x,σ [i]) and outputs
the result.

We are interested in the difference between Pr [Ci,z (ρ′n) accepts] and ri,z. In the honest-prover
case,

Pr
[
Ci,z

(
ρ′n

)
accepts

]
= Pr [Q (z, ρ [i]) accepts] = fρ[i] (z)

for all i, z. Moreover, we can easily arrange each ri,z to be within α of fρ[i] (z), by using O (log n)
bits to specify each ri,z. This establishes condition (i) in Def. 18. To establish condition (ii),
suppose that ∣∣Pr

[
Ci,z

(
ρ′n

)
accepts

]
− ri,z

∣∣ ≤ 5α

for all i ∈ [m] and z ∈ Xi. Then by (*), we have ∆∞ (fρn , fσ) ≤ 0.1. Notice that by linearity of
expectation,

Pr [B accepts] = E
i∈[m]

[Pr [Q (x,σ [i]) accepts]] = fσ (x) ,
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and that this holds regardless of what entanglement might be present among the m registers
σ [1] , . . . ,σ [m]. Hence

|Pr [B accepts]− L (x)| ≤ |Pr [B accepts] − fρn (x)|+ |fρn (x) − L (x)|
≤ 0.1 + 0.2

which is less than 1/3 as desired, establishing condition (ii). Thus L ∈ YQP+/poly = YQP/poly.

Theorem 21 actually yields the stronger result that BQP/qpoly ⊆ YQP∗/poly, since the machine
A had no dependence on the input x. We therefore have BQP/qpoly = YQP∗/poly = YQP/poly:
the two definitions of YQP become equivalent in the presence of polynomial-size classical advice.
Since we never needed the assumption that the BQP/qpoly machine computes a language (i.e.,
a total Boolean function), another strengthening we can easily observe is PromiseBQP/qpoly =
PromiseYQP/poly.

If we prefer, we can interpret Theorem 21 as a statement about quantum communication proto-
cols rather than quantum complexity classes. The following theorem makes this connection more
precise.

Theorem 22 Suppose that Alice, who is computationally unbounded, has a classical description of
an n-qubit quantum state ρ. She wants to send ρ to Bob, who is limited to BQP computations.
Alice has at her disposal a noiseless one-way classical channel to Bob, as well as a noisy one-way
quantum channel. Then for all m and ε > 0, there exists a protocol whereby

(i) Alice sends Bob a classical string y of poly (n,m, 1/ε) bits, as well as a state σ of poly (n,m, 1/ε)
qubits.

(ii) Bob receives y together with a possibly-corrupted version σ̃ of σ.

(iii) If σ̃ = σ, then for any measurement E performed by a circuit with at most m gates, Bob can
perform another measurement fy (E) on σ̃, and then output a number β ∈ [0, 1] such that
|β − Tr (Eρ)| ≤ ε with 1− 1/ exp (n) probability. Here fy (E) can be computed in polynomial
time given y together with a description of E.

(iv) For every σ̃ and every such measurement E, with 1−1/ exp (n) probability Bob outputs either
“FAIL” or else a β ∈ [0, 1] such that |β − Tr (Eρ)| ≤ ε.

Proof. This is just a direct translation of Theorem 21 to the communication setting. The string
y plays the role of the trusted classical advice, the state σ̃ plays the role of the untrusted quantum
advice, the measurement E plays the role of the input x ∈ {0, 1}n, and Bob plays the role of the
verifier. To get 1− 1/ exp (n) success probability, we amplify the protocol O (n) times, which just
makes y and σ̃ polynomially longer.

4.3 The Complexity of Preparing Quantum Advice States

If we combine Theorem 21 with known QMA-completeness results, we can obtain a striking con-
sequence for quantum complexity theory. Namely, the preparation of quantum advice states can
always be reduced to the preparation of ground states of local Hamiltonians—despite the fact that
quantum advice states involve an exponential number of constraints, while ground states of local

20



Hamiltonians involve only a polynomial number. In particular, if ground states of local Hamilto-
nians can be prepared by polynomial-size circuits, then we have not only QMA = QCMA, but also
BQP/qpoly = BQP/poly. The following theorem makes this connection precise.

Theorem 23 Let Q be a polynomial-size quantum circuit that takes an advice state ρn. Then
there exists another polynomial-size quantum circuit Q′ with the following property. For all n and
ε > 0, there exists a 2-local Hamiltonian H on poly (n, 1/ε) qubits, such that for all ground states
|φ〉 of H and inputs x ∈ {0, 1}n,

∣∣Pr
[
Q′ accepts x, |φ〉

]
− Pr [Q accepts x, ρn]

∣∣ ≤ ε.

Furthermore, Q′ can be efficiently generated given Q together with a description of H.

Proof. Kempe, Kitaev, and Regev [25] proved that the 2-Local Hamiltonians problem is QMA-
complete. Furthermore, examining their proof, we find that it yields the following stronger result.
Let V be a QMA verification procedure with completeness and soundness errors δ. Then there
exists a 2-local Hamiltonian H, as well as a polynomial-time “recovery procedure” R, such that if
|φ〉 is any ground state of H, then with Ω (1/poly (n)) probability, R (|φ〉) outputs a state |ϕ〉 such
that Pr [V accepts |ϕ〉] ≥ 1− δ. To prove the stronger result: consider a ground state of H, which
Kempe et al. show to be a history state of the form

|φ〉 = 1√
T

T∑

t=1

|t〉 |φt〉 .

Then R can simply measure the clock register |t〉. If the outcome is t = 1, then R may retrieve |ϕ〉
from the computation register |φ1〉.

Indeed, we can strengthen the above result further, to increase R’s success probability from
Ω (1/poly (n)) to 1− δ. To do so, we simply increase the number of steps T by a 1/δ factor, then
put additional terms in H, to impose the constraint that the computation should do nothing for
the first (1− δ)T steps (leaving |φ1〉 unchanged), and only apply V during the final δT steps.

Now let Q be a polynomial-size quantum circuit that takes advice state ρn, and let (A,B) be
the YQP/poly checking algorithm (with error parameter δ) from Theorem 21. Then by the above,
there exists a 2-local Hamiltonian H on poly (n, 1/δ) qubits, as well as a polynomial-time algorithm
R, such that

(i) If |φ〉 is any ground state of H, then with at least 1 − δ probability, R (|φ〉) outputs a state
|ϕ〉 such that Pr [A accepts |ϕ〉] ≥ 1 − δ.

(ii) This |ϕ〉 satisfies |Bϕ (x)− Qρn (x)| ≤ δ for all x ∈ {0, 1}n, whereBϕ (x) := Pr [B accepts x, |ϕ〉]
and Qρn (x) := Pr [Q accepts x, ρn].

We can now combine R and B into a single algorithm Q′, that applies B to x and the state

|ϕ〉 = R(|φ〉). We have
∣∣∣Q′

φ (x)− Qρn (x)
∣∣∣ ≤ 2δ for all x ∈ {0, 1}n. Setting δ := ε/2 then yields

the desired result.

Let us make two remarks about Theorem 23. First, as a “free byproduct,” we get that

∣∣Pr
[
Q′ accepts x, |φ〉

]
− Pr [Q accepts x, ρn]

∣∣ ≤ 2ε
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for all |φ〉 that are ε-close in trace distance to a ground state of H. Second, there is nothing
special here about 2-Local Hamiltonians. So far as we know, all existing QMA-completeness
reductions have the property we needed for Theorem 23: namely, the property that any ground
state of the new instance can be transformed into a QMA witness for the original instance, with
Ω (1/poly (n)) success probability. As one example, Aharonov et al. [7] showed that even finding
the ground state energy of a nearest-neighbor Hamiltonian on the line is QMA-complete, provided
the line is composed of qudits with d ≥ 12. We can combine their result with Theorem 21 to show
that for all L ∈ BQP/qpoly, there exists a nearest-neighbor qudit Hamiltonian H on the line, such
that any ground state of H is a valid quantum advice state for L.

We are now ready to prove Theorem 1 from the Introduction.

Proof of Theorem 1. Fix c, ε > 0, and let ρ be the n-qubit state in Theorem 1. Let Q(C, ξ) be
an efficiently constructible polynomial-size quantum circuit that takes a description of a quantum
measurement circuit C of size nc, as well as a quantum state ξ of n qubits, and that outputs the
measurement result C(ξ).

Fix ρn := ρ. Let H be the 2-local Hamiltonian given by Theorem 23. Let Q′(C, ξ) be the circuit
in Theorem 23, which is efficiently constructible given Q and H. We define the measurement C ′ as
C ′(ξ) := Q′(C, ξ). Then for any ground state |φ〉 of H, we have

∣∣C ′ (|φ〉 〈φ|)− C(ρ)
∣∣ =

∣∣Q′ (C, |φ〉 〈φ|) − Q(C, ρ)
∣∣ ≤ ε.

5 Further Implications for Quantum Complexity Theory

In this section, we use the BQP/qpoly = YQP/poly theorem to harvest two more results about
quantum complexity classes. The first is an “exchange theorem” stating that QCMA/qpoly ⊆
QMA/poly: in other words, one can always simulate quantum advice together with a classical witness
by classical advice together with a quantum witness. This is a straightforward generalization of
Theorem 21. The second result is a “Quantum Karp-Lipton Theorem,” which states that if
NP ⊂ BQP/qpoly (that is, NP-complete problems are efficiently solvable by quantum computers
with quantum advice), then ΠP

2 ⊆ QMAPromiseQMA, which one can think of as “almost as bad” as a
collapse of the polynomial hierarchy. This result makes essential use of Theorem 21, and is a good
illustration of how that theorem can be applied in quantum complexity theory.

Theorem 24 (Exchange Theorem) QCMA/qpoly ⊆ QMA/poly.

Proof. The proof is almost the same as that of Theorem 21. Let L ∈ QCMA/qpoly. Then there
exists a polynomial-time quantum verifier Q, a family of polynomial-size advice states {ρn}n, and
a polynomial p such that for all inputs x ∈ {0, 1}n:

• x ∈ L =⇒ ∃w ∈ {0, 1}p(n) Pr [Q (x,w, ρn) accepts] ≥ 2/3.

• x /∈ L =⇒ ∀w ∈ {0, 1}p(n) Pr [Q (x,w, ρn) accepts] ≤ 1/3.

Now consider the following promise problem: given x and w as input, as well as a constant
c ∈ [0, 1], decide whether Pr [Q (x,w, ρn) accepts] is at most c− 1/10 or at least c+1/10, promised
that one of these is the case. (Equivalently, estimate the probability within an additive error
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PP/polyQMA/qpoly

PSPACE/poly

BQP

YQP QCMABQP/poly

BQP/qpoly
=YQP/poly QCMA/poly QMA

QCMA/qpoly

Figure 2: Containments among complexity classes related to quantum proofs and advice, in light of
this paper’s results. The containments QMA/qpoly ⊆ PSPACE/poly and QCMA/qpoly ⊆ PP/poly
were shown previously by Aaronson [4]. This paper shows that BQP/qpoly ⊆ QMA/poly, and
indeed BQP/qpoly = YQP/poly, where YQP is like QMA except that the quantum witness can
depend only on the input length n. It also shows that QCMA/qpoly ⊆ QMA/poly.

±1/10.) This problem is clearly in PromiseBQP/qpoly, since we can take ρn as the advice. So by
Theorem 21, the problem is in PromiseYQP/poly as well.

We claim this implies L ∈ QMA/poly. For our QMA/poly verifier can take the PromiseYQP/poly
advice string an as its advice, and a state of the form σ ⊗ |w〉 〈w| as its witness. It can then do
the following:

(1) Using an, check that σ is a valid witness for the PromiseYQP/poly protocol, and reject if not.

(2) Using σ, check that Pr [Q (x,w, ρn) accepts] ≥ 2/3 (under the promise that it is either at
least 2/3 or at most 1/3).

Indeed, let YQ·QCMA denote the complexity class where a BQP verifier receives a classical
witness that depends on the input, as well as a quantum witness that depends only on the input
size n. Then we can characterize QCMA/qpoly as equal to YQ·QCMA/poly, similarly to how we
characterized BQP/qpoly as equal to YQP/poly.

We now use Theorem 21 to prove an analogue of the Karp-Lipton Theorem for quantum advice.

Theorem 25 (Quantum Karp-Lipton Theorem) If NP ⊂ BQP/qpoly, then ΠP
2 ⊆ QMAPromiseQMA.

Proof. By Theorem 21, the hypothesis implies NP ⊂ YQP/poly = YQP∗/poly. So let Q be a
YQP∗/poly algorithm to decide SAT , which takes an input x, a trusted advice string a, and an
untrusted advice state ρ. Let a∗ be the correct value of the advice string.

Now consider an arbitrary language L ∈ ΠP
2 , which is defined by a polynomial-time predicate

R (x, y, z) like so:
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• x ∈ L ⇐⇒ ∀y∃z R (x, y, z).

Using Q, we can create a pair of quantum algorithms Q1 (a, ρ), Q2 (ρ, x, y) with the following
properties:

(P1) There exists a ρ such that Pr [Q1 (a∗, ρ) accepts] ≥ 2/3.

(P2) If Pr [Q1 (a∗, ρ) accepts] ≥ 1/3, then for all x, y pairs, Pr [Q2 (ρ, x, y) accepts] ≥ 2/3 if there
exists a z such that R (x, y, z) holds, and Pr [Q2 (ρ, x, y) accepts] ≤ 1/3 otherwise.

Using standard amplification and NP self-reducibility, we can then strengthen property (P2) to
the following, for some quantum algorithm Q′

2 (ρ, x, y):

(P2’) If Pr [Q1 (a∗, ρ) accepts] ≥ 1/3, then for all x, y pairs, Q′
2 (ρ, x, y) outputs a z such that

R (x, y, z) holds with probability at least 2/3, whenever such a z exists.

Now let U (a, ρ, x, y) be a quantum algorithm that does one of the following, both with equal
probability:

• Runs Q1 (a, ρ), and accepts if and only if it rejects.

• Runs Q′
2 (ρ, x, y), and accepts if and only if R (x, y,Q′

2 (ρ, x, y)) holds.

Then we claim that

(A1) x ∈ L =⇒ ∃a, ρ [Pr [Q1 (a, ρ) accepts] ≥ 2/3] ∧ [∀σ, y Pr [U (a,σ, x, y) accepts] ≥ 1/3].

(A2) x /∈ L =⇒ ∀a, ρ [Pr [Q1 (a, ρ) accepts] ≤ 1/2] ∨ [∃σ, y Pr [U (a,σ, x, y) accepts] ≤ 1/4].

It is clear that this claim implies L ∈ QMAPromiseQMA. (The crucial point here is that U does
not take the existentially-quantified advice state ρ as input—and therefore, the QMA machine does
not need to pass a quantum state to the PromiseQMA oracle, which would be illegal. This is why
we needed the BQP/qpoly = YQP∗/poly theorem for this result.)

We now prove the claim. First suppose x ∈ L. Then there exists an advice string a = a∗ with
the following properties:

(B1) There exists a ρ such that Pr [Q1 (a, ρ) accepts] ≥ 2/3. (By (P1).)

(B2) For all σ, y pairs, either Pr [Q1 (a,σ) rejects] ≥ 2/3, or Pr [R (x, y,Q′
2 (σ, x, y)) holds] ≥ 2/3.

(By (P2’) and x ∈ L.)

By (B2), we have ∀σ, y Pr [U (a,σ, x, y) accepts] ≥ 1/3. This proves (A1).
Next suppose x /∈ L. Then given an advice string a, suppose there exists a ρ such that

Pr [Q1 (a, ρ) accepts] > 1/2. Set σ := ρ, and choose a y for which there is no z such that
R (x, y, z) holds. Then

• Pr [Q1 (a,σ) rejects] < 1/2. (By assumption.)

• Pr [R (x, y,Q′
2 (σ, x, y)) holds] = 0. (By x /∈ L.)

Combining these, Pr [U (a,σ, x, y) accepts] < 1/4. This proves (A2), and hence the claim, and
hence the lemma.

Previously, Aaronson [3] showed that if PP ⊂ BQP/qpoly, then the counting hierarchy CH
collapses. However, he had been unable to show that NP ⊂ BQP/qpoly would have unlikely
consequences in the uniform world.
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6 Open Problems

One open problem is simply to find more applications of the majority-certificates lemma, which
seems likely to have uses outside of quantum complexity theory; we mention one application (to
“untrusted oracles”) in Appendix 8. Can we improve the parameters of the majority-certificates
lemma (the size of the certificates or the number O (n) of certificates), or alternatively, show that
the current parameters are essentially optimal? Also, can we prove the real-valued majority-
certificates lemma with an error tolerance α that depends only on the desired accuracy ε of the
final approximation, not on n or the fat-shattering dimension of S?

On the quantum complexity side, we mention several questions. First, in Theorem 23, is
the polynomial blowup in the number of qubits unavoidable? Could one hope for a way to
simulate an n-qubit advice state by the ground state of n-qubit local Hamiltonian, or would that
have implausible complexity consequences? Second, can we use the ideas in this paper to prove
any upper bound on the class QMA/qpoly better than the PSPACE/poly upper bound shown by
Aaronson [4]? Third, if NP ⊂ BQP/qpoly, then does QMAPromiseQMA contain not just ΠP

2 but the
entire polynomial hierarchy? Finally, is BQP/qpoly = BQP/poly?
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8 Appendix: Untrusted Oracles

In this appendix, we give an interesting consequence of the majority-certificates lemma for classical
complexity theory.

When we give a machine an oracle, normally we assume the oracle can be trusted. But it is
also natural to consider untrusted oracles, which are nevertheless restricted in their computational
power. We formalize this notion as follows:

Definition 26 (Untrusted Oracles) Let C and D be complexity classes. Also, given a family
a = {an}n≥1 of p (n)-bit advice strings and a machine V , let V [a] be the language decided by V

given a as advice. Then CUntrusted-D is the class of languages L for which there exists a C machine
U , a D machine V , and a polynomial p such that for all n:

(i) There exist p (n)-bit advice strings a1, . . . , am such that UV [a1],...,V [am] decides L.

(ii) UV [a1],...,V [am] (x) outputs either L (x) or “FAIL,” for all inputs x ∈ {0, 1}n and all p (n)-bit
advice strings a1, . . . , am.

We can now state the consequence.

Theorem 27 Let C be a uniform syntactic complexity class, such as P, NP, or EXP. Then

C/poly ⊆
(
AC0

)Untrusted-C
.

Proof. Let V be a C/poly machine that uses a family a = {an}n≥1 of p (n)-bit advice strings. Fix

an input length n, and let fw (x) be the output of V on input x and advice string w ∈ {0, 1}p(n).
Then S = {fw}w∈{0,1}p(n) is a Boolean concept class of size |S| ≤ 2poly(n). So by Lemma 3, there

exist m = O (n) polynomial-size certificates C1, . . . , Cm, which isolate functions f1, . . . , fm ∈ S
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respectively such that MAJ (f1, . . . , fm) = fan . Now, we can easily modify the proof of Lemma 3
to ensure not only that MAJ (f1, . . . , fm) = f∗, but also that

fan (x) = 1 =⇒ f1 (x) + · · ·+ fm (x) ≥ 2m

3
,

fan (x) = 0 =⇒ f1 (x) + · · ·+ fm (x) ≤ m

3

for all inputs x. To do so, we simply take m = O (n) sufficiently large and redo the Chernoff bound.
Furthermore, it is known that Approximate Majority—that is, Majority where the fraction
of 1’s in the input is bounded away from 1/2 by a constant—can be computed by polynomial-size
depth-3 circuits, so in particular, in AC0 (see Viola [32] for example).

By hardwiring the certificates C1, . . . , Cm into the AC0 circuit, we can produce an AC0 circuit
that first checks whether fi is consistent with Ci for all i ∈ [m], outputs “FAIL” if not, and otherwise
outputs Uf1,...,fm (x) = fan (x).

If C is a semantic complexity class, such as BPP or UP, the difficulty is that there might be a
C/poly machine M and advice string w for which the function fw is undefined (since M need not
decide a language for every w). However, if we force the Untrusted−C oracle to restrict itself to
w for which fw is defined, then Theorem 27 goes through for semantic classes as well. Using the
real-valued majority-certificates lemma that we develop in Section 3, it is possible to remove the
assumption that fw is defined for all w for semantic classes such as BPP.

9 Appendix: Isolatability and Learnability

The following definition abstracts a key notion from the majority-certificates lemma.

Definition 28 (Majority-Isolatability) A Boolean concept class S is majority-isolatable if for
every f ∈ S, there exist m = poly (n) certificates C1, . . . , Cm, each of size poly (n), such that

(i) S [Ci] is nonempty for all i ∈ [m], and

(ii) if fi ∈ S [Ci] for all i ∈ [m], then MAJ (f1, . . . , fm) = f , where MAJ denotes pointwise
majority.

We now show that the majority-isolatability of a Boolean concept class S is equivalent to
a large number of other properties of S—including having singly-exponential cardinality, having
polynomial VC-dimension, being PAC-learnable using poly (n) samples, and being “winnowable.”
While we do not need this equivalence theorem elsewhere in the paper, we feel it has independent
interest. The equivalence theorem we prove is easily seen to break down for concept classes with
infinite input domains.

Definition 29 (VC-dimension) We say a Boolean concept class S shatters the set A ⊆ {0, 1}n
if for all 2|A| functions g : A → {0, 1}, there exists an f ∈ S whose restriction to A equals g. Then
the VC-dimension of S, or VCdim (S), is the size of the largest set shattered by S.

Given a distribution D over {0, 1}n, we say the Boolean functions f, g : {0, 1}n → {0, 1} are
(D, ε)-close if

Pr
x∼D

[g (x) = f (x)] ≥ 1− ε.
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Definition 30 (Learnability) S is learnable if for all f ∈ S, distributions D, and ε, δ > 0,
there exists an m = poly (n, 1/ε, log 1/δ) such that with probability at least 1− δ over sample points
x1, . . . , xm drawn independently from D, every g ∈ S satisfying g (x1) = f (x1) , . . . , g (xm) = f (xm)
is (D, ε)-close to f .

We can also define “approximability,” which is like learnability except that the choice of training
examples can be nondeterministic:

Definition 31 (Approximability) S is approximable if for all f ∈ S and distributions D, there
exists a certificate C of size poly (n, 1/ε) such that every g ∈ S [C] is (D, ε)-close to f .

Finally, let us call attention to a notion that implicitly played a major role in the proof of
Lemma 3.

Definition 32 (Winnowability) S is winnowable if for all nonempty subsets S′ ⊆ S, there exists
a certificate C of size poly (n) such that |S′ [C]| = 1.

We can now prove the equivalence theorem.

Theorem 33 Let S be a Boolean concept class. Then |S| ≤ 2poly(n) iff VCdim (S) ≤ poly (n) iff
S is learnable iff S is approximable iff S is majority-isolatable iff S is winnowable.

Proof. |S| ≤ 2poly(n) =⇒ VCdim (S) ≤ poly (n) follows from the trivial upper bound VCdim (S) ≤
log2 |S|.

VCdim (S) ≤ poly (n) =⇒ |S| ≤ 2poly(n) is Sauer’s Lemma [28], which implies the relation
|S| ≤ 2nVCdim(S).

|S| ≤ 2poly(n) =⇒Learnable was proved by Valiant [30].
Learnable=⇒Approximable is immediate, and Approximable=⇒ VCdim (S) ≤ poly (n)

follows from a counting argument (see Blumer et al. [15] for details).
|S| ≤ 2poly(n) =⇒Majority-Isolatable was the content of Lemma 3.
Majority-Isolatable=⇒ |S| ≤ 2poly(n) follows from another counting argument: if S is

majority-isolatable, then every f ∈ S is uniquely determined by poly (n) certificates C1, . . . , Cm,
each of which can be specified using poly (n) bits.

For |S| ≤ 2poly(n) =⇒Winnowable, let S′ ⊆ S. Then as in the proof of Lemma 3, we can use
binary search to winnow S′ down to a single function f ∈ S′, which yields a certificate of size at
most log2 |S′| ≤ log2 |S|.

For Winnowable=⇒ |S| ≤ 2poly(n), we prove the contrapositive. Suppose |S| ≥ 2t(n) for some
superpolynomial function t (n) (at least, for infinitely many n). Then define a subset S′ ⊆ S by
the following iterative procedure. Initially S′ = S. Then so long as there exists a certificate C of
size at most t (n) / (2n+ 2) such that |S′ [C]| = 1, remove the function f ∈ S′ [C] from S′, halting
only when no more such “isolating certificates” can be found.

The number of certificates of size k is at most 2(n+1)k, and a given certificate C can only be
chosen once, since thereafter S′ [C] is empty. So when the above procedure halts, we are left with
a set S′ such that |S′| ≥ 2t(n) − 2(n+1)t(n)/(2n+2) > 0. Furthermore, for every function f remaining
in S′, there can be no polynomial-size certificate C such that S′ [C] = {f}—for if there were, then
we would already have eliminated f in the process of forming S′. Hence S is not winnowable.
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10 Appendix: Winnowing of p-Concept Classes

In this appendix, we look more closely at the problem solved by Lemma 10 (the “Safe Winnowing
Lemma”), and ask in what senses it is possible to winnow a p-concept class down to “essentially”
just one function. The answer turns out to be interesting, even though we do not need it for our
quantum complexity applications.

We first give a definition that abstracts part of what Lemma 10 was trying to accomplish.

Definition 34 (Winnowability) A p-concept class S is L1-winnowable if the following holds.
For all nonempty subsets S′ ⊆ S and ε > 0, there exists a function f ∈ S′, a set X ⊆ {0, 1}n of
size poly (n, 1/ε), and a δ = poly (ε) such that every g ∈ S′ that satisfies ∆1 (f, g) [X] ≤ δ also
satisfies ∆∞ (f, g) ≤ ε. Likewise, S is L2-winnowable if ∆2 (f, g) [X] ≤ δ implies ∆∞ (f, g) ≤ ε,
and L∞-winnowable if ∆∞ (f, g) [X] ≤ δ implies ∆∞ (f, g) ≤ ε.

Clearly L∞-winnowability implies L2-winnowability implies L1-winnowability. The following
lemma will imply that every set of functions with a small cover is L1-winnowable.

Lemma 35 (L1-Winnowing Lemma) Let S be a set of functions f : {0, 1}n → [0, 1]. For some
parameter ε > 0, let C be a finite ε-cover for S. Then there exists an f ∈ S, as well as a subset
X ⊆ {0, 1}n of size O

(
1
ε log |C|

)
, such that every g ∈ S that satisfies ∆1 (f, g) [X] ≤ 0.4ε also

satisfies ∆∞ (f, g) ≤ 2ε.

Proof. We will consider functions P : S → [0, 1], which we think of as assigning a probability
weight P (g) to each function g ∈ S. In particular, given an f ∈ S and a subset of inputs
X ⊆ {0, 1}n, define

Pf,X (g) := exp (−∆1 (f, g) [X]) .

Clearly Pf,X (f) = 1. Our goal will be to find f ∈ S and X ⊆ {0, 1}n, with |X| = O
(
1
ε log |C|

)
,

such that every g ∈ S that satisfies Pf,X (g) ≥ e−0.4ε also satisfies ∆∞ (f, g) ≤ 2ε. Supposing we
have found such an (f,X) pair, the lemma is proved.

Consider the progress measure

Mf,X :=
∑

h∈C
Pf,X (h) .

Clearly Mf,X ≤ |C| for all (f,X). We claim, furthermore, that Mf,X ≥ exp (−ε |X|) for all (f,X).
For since C is an ε-cover for S, there always exists an h ∈ C such that ∆1 (f, h) [X] ≤ ε |X|, and
that h alone contributes at least exp (−ε |X|) to Mf,X .

We will construct (f,X) by an iterative process. Initially f is arbitrary and X is the empty set,
so Pf,X (g) = 1 for all g, and Mf,X = |C|. Now, suppose there exists a g ∈ S such that Pf,X (g) ≥
e−0.4ε, as well as an input y such that |f (y)− g (y)| > 2ε. As a first step, let Y := X ∪ {y} (that
is, add y into our set of inputs). Then the crucial claim is that either Mf,Y or Mg,Y is a 1−Ω (ε)
factor smaller than Mf,X . This means in particular that, by replacing X with Y (increasing |X|
by 1), and possibly also replacing f with g, we can decrease Mf,X by a 1 − Ω (ε) factor compared
to its previous value. Since exp (−ε |X|) ≤ Mf,X ≤ |C|, it is clear that Mf,X can decrease in this
way at most

O

(
log1+ε

|C|
exp (−ε |X|)

)

times. Setting the above expression equal to |X| and solving, we find that the process must
terminate when |X| = O

(
1
ε log |C|

)
, returning an (f,X) pair with the properties we want.
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We now prove the crucial claim. The first step is to show that either

Mf,Y =
∑

h∈C
Pf,X (h) e−|f(y)−h(y)|

or else
M ′ :=

∑

h∈C
Pf,X (h) e−|g(y)−h(y)|

is at most
1 + e−ε

2
Mf,X .

For since |f (y) − g (y)| > 2ε, either |f (y) − h (y)| > ε or |g (y)− h (y)| > ε by the triangle inequal-
ity. So for every y, either e−|f(y)−h(y)| < e−ε or e−|g(y)−h(y)| < e−ε. This in turn means that either
Mf,Y or M ′ must have at least half its terms (as weighted by the Pf,X (h)’s) shrunk by an e−ε

factor.
If Mf,Y < 1+e−ε

2 Mf,X then we are done. So suppose instead that M ′ < 1+e−ε

2 Mf,X . Then

Mg,Y =
∑

h∈C
Pg,X (h) e−|g(y)−h(y)|

≤ M ′ max
h∈C

Pg,X (h)

Pf,X (h)

= M ′ max
h∈C

exp (−∆1 (g, h) [X])

exp (−∆1 (f, h) [X])

≤ M ′ exp (∆1 (f, g) [X])

=
M ′

Pf,X (g)

<
1+e−ε

2 Mf,X

e−0.4ε

<
(
1 − ε

20

)
Mf,X

and we are done.

Recall that S is coverable if for all ε > 0, there exists an ε-cover for S of size 2poly(n,1/ε). We
can now prove the following equivalence theorem.

Theorem 36 A p-concept class S is coverable if and only if it is L1-winnowable.

Proof. For Coverable=⇒L1-Winnowable: fix a subset S′ ⊆ S and an ε > 0. Let C be
an ε/2-cover for S′ of size 2poly(n,1/ε). Then by Lemma 35, there exists an f ∈ S′, as well as
a subset X ⊆ {0, 1}n of size O

(
1
ε log |C|

)
= poly (n, 1/ε), such that every g ∈ S′ that satisfies

∆1 (f, g) [X] ≤ ε/5 also satisfies ∆∞ (f, g) ≤ ε.
For L1-Winnowable=⇒Coverable, we prove the contrapositive. Suppose there exists a

function t (n, 1/ε), superpolynomial in either n or 1/ε, such that S has no ε-cover of size 2t(n,1/ε)

(at least, for infinitely many n or 1/ε). Let p = poly (n, 1/ε) and δ = poly (ε). Given a function f
and subset X ⊆ {0, 1}n, let L [f,X] be the set of all functions g such that ∆1 (f, g) [X] ≤ δ. Then
our goal is to construct a subset S′ ⊆ S for which there is no pair (f,X) such that
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• f ∈ S′,

• X ⊆ {0, 1}n is a set of inputs with |X| = p, and

• g ∈ S′ ∩ L [f,X] implies ∆∞ (f, g) ≤ ε.

Let W := 82p/δ9. Also, call a set B of functions f : {0, 1}n → [0, 1] a sliver if there exists a
set X ⊆ {0, 1}n with |X| = p, as well a function a : X → [W ], such that

f ∈ B ⇐⇒ f (x) ∈
[
a (x) − 1

W
,
a (x)

W

]
∀x ∈ X.

Then define a subset S′ ⊆ S by the following iterative procedure. Initially S′ = S. Then so long
as there exists a sliver B such that S′ ∩B is nonempty, together with a function fB ∈ S such that

g ∈ S′ ∩ B =⇒ ∆∞ (fB, g) ≤ ε,

remove B from S′ (that is, set S′ := S′ \B). Halt only when no more such slivers B can be found.
As a first observation, the total number of slivers is at most (2nW )p = 2poly(n,1/ε). Thus, the

above procedure must halt after at most 2poly(n,1/ε) iterations.
As a consequence, we claim that S′ must be nonempty after the procedure has halted. For

suppose not. Then the sequence of functions fB chosen by the procedure would form an ε-cover
for S of size 2poly(n,1/ε)—since for all g ∈ S, we would simply need to find a sliver B containing g
that was removed by the procedure; then fB would satisfy ∆∞ (fB , g) ≤ ε. But this contradicts
the assumption that no such ε-cover exists.

Finally, we claim that once the procedure halts, there can be no f ∈ S′ and set X of p inputs
such that ∆∞ (f, g) ≤ ε for all g ∈ S′ ∩ L [f,X]. For suppose to the contrary that such an (f,X)
pair existed. It is not hard to see that for every (f,X), there exists a sliver B that contains f
and is contained in L [f,X]. But then S′ ∩ B would be nonempty, and (B, f) would satisfy the
condition g ∈ S′ ∩ B =⇒ ∆∞ (f, g) ≤ ε. So B (or some other sliver containing f) would already
have been eliminated in the process of forming S′.

A natural question is whether Lemma 35 and Theorem 36 would also hold with L2-winnowability
or L∞-winnowability in place of L1-winnowability. The next theorem shows, somewhat surprisingly,
that the use of the L1 norm is essential.

Theorem 37 There exists a p-concept class S that is coverable, but not L2-winnowable or L∞-
winnowable.

Proof. We prove a stronger statement: there exists a finite p-concept class S, of size |S| ≤ 2poly(n),
that is not L2-winnowable (and as a direct consequence, not L∞-winnowable either). To prove
this, it suffices to find a set S with |S| ≤ 2poly(n), as well as a constant ε > 0, for which the following
holds. For all f ∈ S, subsets X ⊆ {0, 1}n of size less than 2n − n2, and constants δ depending on
ε, there exists a g ∈ S such that ∆2 (f, g) [X] ≤ δ but ∆∞ (f, g) > ε (at least, for all sufficiently
large n).

Let ε be any constant in (0, 1), and let S be the class of all functions f : {0, 1}n → [0, 1] of the
form

f (x) =
ax
n
,
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where the ax’s are nonnegative integers satisfying

∑

x∈{0,1}n
ax = n2.

Then clearly |S| ≤ (2n)n
2
, since we can form any f ∈ S by starting from the identically-0 function,

then choosing n2 inputs x (with repetition) on which to increment f by 1/n.
Now let f ∈ S, and let X ⊆ {0, 1}n have size |X| < 2n − n2. Then we can “corrupt” f to

create a new function g ∈ S as follows. Let Z be a set of n inputs x ∈ {0, 1}n on which f (x) > 0
(note that such a Z must exist, since

∑
x f (x) = n but f (x) ≤ 1 for all x). By the pigeonhole

principle, there exists a y ∈ {0, 1}n \X such that f (y) = 0. Fix that y, and define

g (x) :=






1 if x = y
f (x)− 1/n if x ∈ Z

f (x) otherwise.

Clearly g ∈ S and

∆2 (f, g) [X] =

√ ∑

x∈Z∩X

1

n2
≤ 1√

n
.

On the other hand, we have f (y) = 0 and g (y) = 1, so ∆∞ (f, g) = 1. Therefore S is not
L2-winnowable.
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