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Abstract

We prove the following surprising result: given any quantum state ρ on n qubits, there exists
a local Hamiltonian H on poly (n) qubits (e.g., a sum of two-qubit interactions), such that any
ground state of H can be used to simulate ρ on all quantum circuits of fixed polynomial size.
In terms of complexity classes, this implies that BQP/qpoly ⊆ QMA/poly, which supersedes the
previous result of Aaronson that BQP/qpoly ⊆ PP/poly. Indeed, we can exactly characterize
quantum advice, as equivalent in power to untrusted quantum advice combined with trusted
classical advice.

Proving our main result requires combining a large number of previous tools—including a
result of Alon et al. on learning of real-valued concept classes, a result of Aaronson on the learn-
ability of quantum states, and a result of Aharonov and Regev on “QMA+ super-verifiers”—and
also creating some new ones. The main new tool is a so-called majority-certificates lemma,
which is closely related to boosting in machine learning, and which seems likely to find inde-
pendent applications. In its simplest version, this lemma says the following. Given any set
S of Boolean functions on n variables, any function f ∈ S can be expressed as the pointwise
majority of m = O (n) functions f1, . . . , fm ∈ S, such that each fi is the unique function in S
compatible with O (log |S|) input/output constraints.
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1 Introduction

How much classical information is needed to specify a quantum state of n qubits?

This question has inspired a rich and varied set of responses, in part because it can be interpreted
in many ways. If we want to specify a quantum state ρ exactly, then of course the answer is “an
infinite amount,” since amplitudes in quantum mechanics are continuous. A natural compromise is
to try to specify ρ approximately, i.e., to give a description which yields a state ρ̃ whose statistical
behavior is close to that of ρ under every measurement. (This statement is captured by the
requirement that ρ and ρ̃ are close under the so-called trace distance metric.) But it is not hard
to see that even for this task, we still need to use an exponential (in n) number of classical bits.
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This fact can be viewed as a disappointment, but also as an opportunity, since it raises the
prospect that we might be able to encode massive amounts of information in physically compact
quantum states: for example, we might hope to store 2n classical bits in n qubits. But an obvious
practical requirement is that we be able to retrieve the information reliably, and this rules out the
hope of significant “quantum compression” of classical strings, as shown by a landmark result of
Holevo [21] from 1973. Consider a sender Alice and a recipient Bob, with a one-way quantum
channel between them. Then Holevo’s Theorem says that, if Alice wants to encode an n-bit
classical string x into an m-qubit quantum state ρx, in such a way that Bob can retrieve x (with
probability 2/3, say) by measuring ρx, then Alice must take m ≥ n−O (1) (or m ≥ n/2−O (1), if
Alice and Bob share entanglement). In other words, for this communication task, quantum states
offer essentially no advantage over classical strings. In 1999, Nayak [28], improving on Ambainis
et al. [11] (see [12]), generalized Holevo’s result as follows: even if Bob wants to learn only a single
bit xi of x = x1 . . . xn (for some i ∈ [n] unknown to Alice), and is willing to destroy the state ρx in
the process of learning that bit, Alice still needs to send m = Ω(n) qubits for Bob to succeed with
high probability.

These results say that the exponential descriptive complexity of quantum states cannot be
effectively harnessed for classical data storage, but they do not bound the number of practically
meaningful “degrees of freedom” in a quantum state used for purposes other than storing data.
For example, a quantum state could be useful for computation, or it could be a physical system
worthy of study in its own right. The question then becomes, what useful information can we give
about an n-qubit state using a “reasonable” number (say, poly (n)) of classical bits?

One approach to this question is to identify special subclasses of quantum states for which a
faithful approximation can be specified using only poly (n) bits. This has been done, for example,
with matrix product states [34] and “tree states” [1]. A second approach is to try to describe an
arbitrary n-qubit state ρ concisely, in such a way that the state ρ̃ recovered from the description
is close to ρ with respect to some natural subclass of measurements. This has been done for
specific classes like the “pretty good measurements” of Hausladen and Wootters [20]. A more
ambitious goal in this vein, explored by Aaronson in two previous works [2, 5] and continued in
the present paper, is to give a description of an n-qubit state ρ which yields a state ρ̃ that behaves
approximately like ρ with respect to all (binary) measurements performable by quantum circuits
of “reasonable” size—say, of size at most nc, for some fixed c > 0. Then if c is taken large enough,
ρ̃ is arguably “just as good” as ρ for practical purposes.

Certainly we can achieve this goal using 2n
c+O(1)

bits: simply give approximations to the mea-
surement statistics for every size-nc circuit. However, the results of Holevo [21] and Ambainis et
al. [12] suggest that a much more succinct description might be possible. This hope was realized
by Aaronson [2], who gave a description scheme in which an n-qubit state can be specified using
poly (n) classical bits. There is a significant catch in Aaronson’s result, though: the encoder Alice
and decoder Bob both need to invest exponential amounts of computation.

In a subsequent paper [5], Aaronson gave a closely-related result which significantly reduces the
computational requirements: now Alice can generate her message in polynomial time (for fixed c).
Also, while Bob cannot necessarily construct the state ρ̃ efficiently on his own, if he is presented
with such a state (by an untrusted prover, say), Bob can verify the state in polynomial time.
The catch in this result is a weakened approximation guarantee: Bob cannot use ρ̃ to predict the
outcomes of all the measurements defined by size-nc circuits, but only most of them (with respect
to a samplable distribution used by Alice in the encoding process). Aaronson conjectured [5] that
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the tradeoff between the results of [5] and of [2] revealed an inherent limit to quantum compression.

1.1 Our Quantum Information Result

The main result of this paper is that Aaronson’s conjecture was false: one really can get the best
of both worlds, and simulate an arbitrary quantum state ρ on all small circuits, using a different
state ρ̃ that is easy to recognize. Indeed, we can even take ρ̃ to be the ground state of a local
Hamiltonian: that is, a pure state ρ̃ = |ψ〉 〈ψ| on poly (n) qubits minimizing the disagreement with
poly (n) local constraints, each involving a constant number of qubits. In a sense, then, this paper
completes a “trilogy” of which [2, 5] were the first two installments.

Here is a formal statement of our result.

Theorem 1 Let c, δ > 0, and let ρ∗ be any n-qubit quantum state. Then there exists a 2-local
Hamiltonian H on poly

(
n, 1δ

)
qubits, and a transformation C −→ C ′ of quantum circuits, com-

putable in time poly (n, 1/δ) given H, such that the following holds: for any ground state |ψ〉 of H,
and for any measurement C definable by a quantum circuit of size nc, we have |E [C ′ (|ψ〉〈ψ|)]− E [C (ρ∗)]| ≤
δ.

In other words, the ground states of local Hamiltonians are “universal quantum states” in a
very non-obvious sense. For example, suppose you own a quantum software store, which sells
quantum states ρ that can be fed as input to quantum computers. Then our result says that
ground states of local Hamiltonians are the only kind of state you ever need to stock. What makes
this surprising is that being a good piece of quantum software might entail satisfying an exponential
number of constraints: for example, if ρ is supposed to help a customer’s quantum computer Q
evaluate some Boolean function f : {0, 1}n → {0, 1}, then Q (ρ, x) should output f (x) for every
input x ∈ {0, 1}n. By contrast, any k-local Hamiltonian H can be described as a set of at most(n
k

)
= O(nk) constraints.
One can also interpret Theorem 1 as a statement about communication over quantum channels.

Suppose Alice (who is computationally unbounded) has a classical description of an n-qubit state
ρ∗. She would like to describe this state to Bob (who is computationally bounded), at least well
enough for Bob to be able to simulate ρ∗ on all quantum circuits of some fixed polynomial size.
However, Alice cannot just send ρ∗ to Bob, since her quantum communication channel is noisy and
there is a chance that the state might get corrupted along the way. Nor can she send a faithful
classical description of ρ∗, since that would require an exponential number of bits. Our result
provides an alternative: Alice can send a different quantum state σ, of poly(n) qubits, together
with a poly(n)-bit classical string x. Then, Bob can use x to verify that σ can be used to accurately
simulate ρ∗ on all small measurements.

We believe Theorem 1 makes a significant contribution to the study of the effective information
content of quantum states. It does, however, leave open whether a quantum state of n qubits can
be efficiently encoded and decoded in polynomial time, in a way that is “good enough” to preserve
the measurement statistics of measurements defined by circuits of fixed polynomial size. This
remains an important problem for future work.

1.2 Impact on Quantum Complexity Theory

The questions addressed in this paper, and our results, are naturally phrased and proved in terms of
complexity classes. In recent years, researchers have defined quantum complexity classes as a way
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to study the “useful information” embodied in quantum states. One approach is to study the power
of nonuniform quantum advice. The class BQP/qpoly, defined by Nishimura and Yamakami [29],
consists of all languages decidable in polynomial time by a quantum computer, with the help of a
poly (n)-qubit advice state that depends only on the input length n. This class is analogous to the
classical class P/poly. To understand the role of quantum information in determining the power of
BQP/qpoly, a useful benchmark of comparison is the class BQP/poly of decision problems efficiently
solvable by a quantum algorithm with poly (n) bits of classical advice (or equivalently, by a non-
uniform family of poly (n)-sized quantum circuits). It is open whether BQP/qpoly = BQP/poly.

A second approach studies the power of quantum proof systems, by analogy with the classical
class NP. Kitaev (unpublished, 1999) defined the complexity class now called QMA, for “Quantum
Merlin-Arthur.” This is the class of decision problems for which a “yes” answer can be proved
by exhibiting a quantum witness state (or quantum proof ) |ψ〉, on poly (n) qubits, which is then
checked by a skeptical polynomial-time quantum verifier. A useful benchmark class is QCMA (for
“Quantum Classical Merlin-Arthur”), defined by Aharonov and Naveh [7]. This is the class of
decision problems for which a “yes” answer can be checked by a quantum verifier who receives a
classical witness. Here the natural open question is whether QMA = QCMA.

In this paper we prove a new upper bound on BQP/qpoly:

Theorem 2 BQP/qpoly ⊆ QMA/poly.

Previously Aaronson showed in [2] that BQP/qpoly ⊆ PP/poly, and showed in [5] that BQP/qpoly
is contained in the “heuristic” class HeurQMA/poly; Theorem 2 supersedes both of these earlier
results.

Theorem 2 says that one can always replace polynomial-size quantum advice by polynomial-
size classical advice, together with a polynomial-size untrusted quantum witness. Indeed, we can
characterize the class BQP/qpoly, as equal to the subclass of QMA/poly in which the quantum
witness state |ψn〉 can only depend on the input length n.1

Using Theorem 2, we also obtain several other results for quantum complexity theory:

(1) Without loss of generality, every quantum advice state can be taken to be the ground state
of some local Hamiltonian H. In essence, this result follows by combining our BQP/qpoly ⊆
QMA/poly result with the result of Kitaev [27] that Local Hamiltonians is QMA-complete.
The proof, however, requires a close analysis of the structure of low-energy states of the
Hamiltonian H in Kitaev’s 5-local reduction (not proved or needed in [27]). To show that
the locality of H can be reduced to 2, we use gadgets and a perturbation-theoretic result
of Oliveira and Terhal [30], which built on Kempe, Kitaev and Regev’s original proof of the
QMA-completeness of 2-Local Hamiltonians [26].2

(2) It is open whether for every local Hamiltonian H on n qubits, there exists a quantum circuit of
size poly (n) that prepares a ground state of H. It is easy to show that an affirmative answer
would imply QMA = QCMA. As a consequence of Theorem 2, we can show that an affirmative
answer would also imply BQP/qpoly = BQP/poly—thereby establishing a previously-unknown
connection between quantum proofs and quantum advice.

1We call this restricted class YQP/poly. Its definition is closely related to the earlier notion of input-oblivious
nondeterminism; this concept was used to define several other complexity classes in works of Chakravarthy and
Roy [17] and Fortnow, Santhanam, and Williams [18]. We have made a significant alteration to the definition of
YQP/poly from prior versions of this work, as discussed in Section 1.3.

2Related results appear in [23], although these seem not to give what we need.
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(3) We generalize Theorem 2 to show that QCMA/qpoly ⊆ QMA/poly.

(4) We use our new characterization of BQP/qpoly to prove a quantum analogue of the Karp-
Lipton Theorem [25]. Recall that the Karp-Lipton Theorem says that if NP ⊂ P/poly,
then the polynomial hierarchy collapses to the second level. Our “Quantum Karp-Lipton
Theorem” says that if NP ⊂ BQP/qpoly (that is, NP-complete problems are efficiently solvable
with the help of quantum advice), then ΠP

2 ⊆ QMAPromiseQMA. As far as we know, this is
the first nontrivial result to derive unlikely consequences from a hypothesis about quantum
machines being able to solve NP-complete problems in polynomial time.

Finally, using our result, we are able to provide an illuminating perspective on a 2000 paper
of Watrous [36]. Watrous gave a simple example of a “purely-classical” problem in QMA that is
not obviously in QCMA—that is, for which quantum proofs actually seem to help.3 This problem
is called Group Non-Membership, and is defined as follows: Arthur is given a finite black-box
group G and a subgroup H ≤ G (specified by their generators), as well as an element x ∈ G. His
task is to verify that x /∈ H. It is known that, as a black-box problem, this problem is not in MA.
But Watrous showed that Group Non-Membership is in QMA, by a protocol in which Merlin is
“expected” to send the following quantum proof:

|H〉 = 1√
|H|

∑

h∈H

|h〉 .

Arthur’s verification procedure consists of two tests. In the first test, Arthur assumes that Merlin
sent |H〉, and then uses |H〉 to decide whether x ∈ H. The test is a simple, beautiful illustration
of the power of quantum algorithms. The second test in Watrous’s protocol confirms that Merlin
really sent |H〉 , or at least, a state which is “equivalent” for purposes of the first test. This second
test and its analysis are considerably more involved, and seem less “natural.”

Using our results, we see that a slightly weaker version of Watrous’s result can be derived in
an almost automatic way from his first test, as follows. If we assume that the black-box group
H = Hn is fixed for each input length, then Group Non-Membership is in BQP/qpoly, by letting
|Hn〉 as above be the trusted advice for length n and using Watrous’s first test as the BQP/qpoly
algorithm. Then Theorem 2 (which can be readily adapted to the black-box setting) tells us that
Group Non-Membership is in QMA/poly as well.

1.3 Changes to the Paper

We have corrected some significant issues with previous drafts. First, the definition of so-called YQP

machines needed to be amended to correct a deficiency in the previous definition, that prevented
completeness- and soundness-amplification techniques from working as claimed. This change ap-
pears necessary to preserve the claim BQP/qpoly = YQP/poly. The revised definition of YQP/poly
is actually more natural, and has the same intuitive interpretation: now as before, a YQP/poly
machine receives trusted classical advice plus untrusted quantum advice, each determined solely by
the input length, and applies two computations—a first which tests the quantum advice ρ by some
measurement process, and a second which uses ρ to compute to decide membership of an input x
in some language L.

3Aaronson and Kuperberg [6], however, give evidence that this problem might be in QCMA, under conjectures
related to the Classification of Finite Simple Groups.
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The necessary change is that, rather than testing one copy of ρ and separately using another
copy for the computation (an unnatural scenario, due to the No-Cloning Theorem of quantum
mechanics), a YQP/poly algorithm first tests ρ, then uses the modified, post-measurement state
ρ′ for computing L(x). The revised correctness requirement is that, for any quantum advice ρ
which has a noticeable chance of passing the test, the post-test state ρ′ is useful for computation,
conditioned on passing the test. Section 4.3 contains relevant definitions and further discussion.

The second significant issue we have addressed (pointed out to us by a journal referee) is that the
analysis of Local-Hamiltonian reductions for QMA in [27, 26] does not immediately supply enough
information about the structure of ground states to prove Theorem 1. In particular, ground states
of the Hamiltonians produced need not be “history states” encoding QMA verifier computations in
the intended format, as we had erroneously claimed.

In the present version, we instead prove some properties of existing Local-Hamiltonian reduc-
tions that suffice for our original application. First, we show that when Kitaev’s reduction [26]
is applied to a QMA verifier V which accepts some proof state with probability close to 1, the
resulting 5-local Hamiltonian HV is such that any nearly-minimal-energy state4 |ψ〉 is close (in
trace distance) to a history state, and can be used to efficiently obtain a proof state accepted
with high probability by V . Next, we show that the reductions of Oliveira and Terhal [30], which
can be used to transform a 5-local Hamiltonian H(5) into a 2-local H(2), are such that from any
nearly-minimal-energy state for H(2) we can obtain a nearly-minimal-energy state for H(5). While
this property is not immediate from past work, it can be obtained by applying a powerful theorem
in [30] (building on [26]) which describes the behavior of H(2) on its low-energy subspaces.

1.4 Proof Overview

We now give an overview of the proof of Theorem 2, that BQP/qpoly ⊆ QMA/poly. As we will
explain, our proof rests on a new idea we call the “majority-certificates” technique, which is not
specifically quantum and which seems likely to find other applications.

We begin with a language L ∈ BQP/qpoly and, for n > 0, a poly(n)-size quantum circuit
Q (x, ξ) that computes L(x) with high probability when given the “correct” advice state ξ = ρn on
poly (n) qubits. The challenge, then, is to force Merlin to supply a witness state ρ′ that behaves
like ρn on every input x ∈ {0, 1}n.

Every potential advice state ξ defines a function fξ : {0, 1}n → [0, 1], by fξ(x) := Pr [Q (x, ξ) = 1].

For each such ξ, let f̂ξ(x) := [fξ(x) ≥ 1/2] be the Boolean function obtained by rounding fξ.
As a simplification, suppose that Merlin is restricted to sending an advice state ξ for which
fξ(x) /∈ (1/3, 2/3): that is, an advice state which renders a “clear opinion” about every input
x. (This simplification helps to explain the main ideas, but does not follow the actual proof.) Let
S be the set of all Boolean functions f : {0, 1}n → {0, 1} that are expressible as f̂ξ for some such
advice state ξ. Then S includes the “target function” f∗ := Ln (the restriction of L to inputs of
length n), as well as a potentially-large number of other functions. However, we claim S is not
too large: |S| ≤ 2poly(n). This bound on the “effective information content” of quantum states was
derived previously by Aaronson [2, 5], building on the work of Ambainis et al. [12].

One might initially hope that, just by virtue of the size bound on S, we could find some set of

4Here, the energy of a pure state |ψ〉 with respect to Hamiltonian H is defined as 〈ψ|H |ψ〉, and the minimal-energy
states are precisely the ground states.
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poly(n) values
(x1, f

∗ (x1)) , . . . , (xk, f
∗ (xt))

which isolate f∗ in S—that is, which differentiate f∗ from all other members of S. In that case,
the trusted classical advice could simply specify those values, as “tests” for Arthur to perform on
the quantum state sent by Merlin. Alas, this hope is unfounded in general. For consider the case
where f∗ is the identically-zero function, and S consists of f∗ along with the “point function” fy
(which equals 1 on y and 0 elsewhere), for all y ∈ {0, 1}n. Then f∗ can only be isolated in S by
specifying its value at every point!

Luckily, this counterexample leads us to a key observation. Although f∗ is not isolatable in
S by a small number of values, each point function fy can be isolated (by its value at y), and
moreover, fy is quite “close” to f∗. In fact, if we choose any three distinct strings x, y, z, then
f∗ ≡ MAJ (fx, fy, fz). (Of course if f∗ were the identically-zero function, it could be easily specified
with classical advice! But f∗ could have been any function in this example.)

This suggests a new, more indirect approach to our general problem: we try to express f as the
pointwise majority vote

f∗ (x) ≡ MAJ (f1 (x) , . . . , fm (x)) ,

of a small number (m = O (n)) of other functions f1, . . . , fm in S, where each fi is isolatable in S
by specifying at most k = O (log |S|) of its values. Indeed, we will show this can always be done.
We call this key result the majority-certificates lemma; we will say more about its proof and its
relation to earlier work in Section 1.5.

With this lemma in hand, we can solve our (artificially simplified) problem: in the QMA/poly
protocol for L, we use certificates which isolate f1, . . . , fm ∈ S as above as the classical advice for
Arthur. Arthur requests from Merlin each of the m states ξ1, . . . , ξm such that fi = fξi , and verifies
that he receives appropriate states by checking them against the certificates. This involves multiple
measurements of each ξi—and an immediate difficulty is that, since measurements are irreversible
in quantum mechanics, the process of verifying the witness state might also destroy it. We get
around this difficulty by a somewhat more complicated protocol asking for multiple copies of each
state ξi. Our analysis builds on ideas of Aharonov and Regev [9] used to prove the complexity-class
equality QMA = QMA+; informally, this result says that protocols in which Arthur is granted the
(physically unrealistic) ability to perform “non-destructive measurements” on his witness state, can
be efficiently simulated by ordinary QMA protocols.

To build intuition, we will begin (in Section 2) by proving the majority-certificates lemma
for Boolean functions, as described above. However, to remove the artificial simplification we
made and prove Theorem 2, we will need to generalize the lemma substantially, to a statement
about possibly-infinite sets of real-valued functions f : {0, 1}n → [0, 1]. In the general version, the
hypothesis that S is finite and not too large will be replaced by a more subtle assumption: namely,
an upper bound on the so-called fat-shattering dimension of S. To prove our generalization, we
use powerful results of Alon et al. [10] and Bartlett and Long [13] on the learnability of real-valued
functions. We then use a bound on the fat-shattering dimension of real-valued functions defined
by quantum states (from Aaronson [5], building on Ambainis et al. [12]). Figure 1 shows the flow
of ideas and results going into the proof.
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Figure 1: Dependency structure of our proof that quantum advice states can be expressed as ground
states of local Hamiltonians.

1.5 Majority-Certificates Lemma in Context

The majority-certificates lemma is closely related to the seminal notion of boosting [32] from compu-
tational learning theory. Boosting is a broad topic with a vast literature, but a common “generic”
form of the boosting problem is as follows: we want to learn some target function f∗, given sam-
ple data of the form (x, f∗ (x)). We assume we have a weak learning algorithm Af

∗,D, with the
property that, for any probability distribution D over inputs x, with high probability A finds a
hypothesis f ∈ F which predicts f∗ (x) “reasonably well” when x ∼ D. The task is to “boost” this
weak learner into a strong learner Bf∗ . The strong learner should output a collection of functions
f1, . . . , fm ∈ F , such that a (possibly-weighted) majority vote over f1 (x) , . . . , fm (x) predicts f∗ (x)
“extremely well.” It turns out [32, 19] that this goal can be achieved in a very general setting.

Our majority-certificates lemma has strengths and weaknesses compared to boosting. Our
assumptions are much milder than those of boosting: rather than needing a weak learner, we
assume only that the hypothesis class S is “not too large.” Also, we represent our target function
f∗ exactly by MAJ (f1, . . . , fm), not just approximately. On the other hand, we do not give an
efficient algorithm to find our majority-representation. Also, the fi’s are not “explicitly given:” we
only give a way to recognize each fi, under the assumption that the function purporting to be fi is
in fact drawn from the original hypothesis class.

The proof of our lemma also has similarities to boosting. As an analogue of a “weak learner,”
we show that for every distribution D, there exists a function f ∈ S which agrees with the target
function f∗ on most x ∼ D, and which is isolatable in S by specifying O(log |S|) queries. Using
the Minimax Theorem, we then nonconstructively “boost” this fact into the desired majority-
representation of f∗. We note that Nisan used the Minimax Theorem for boosting in a similar
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way, in his alternative proof of Impagliazzo’s “hard-core set theorem” (see [22]).
The majority-certificates lemma is also reminiscent of Bshouty et al.’s algorithm [15], for learning

small circuits in the complexity class ZPPNP. Our lemma lacks the algorithmic component of this
earlier work, but unlike Bshouty et al., we do not require the functions being learned to come with
any succinct labels (such as circuit descriptions).

1.6 Organization of the Paper

In Section 2, we prove the Boolean majority-certificates-lemma. In Section 3, we give our real-
valued generalization of this lemma, and in Section 4 we use it to prove Theorem 2, and state
some consequences for quantum complexity classes. Theorem 1 is proved in Sections 5 through 7.
Section 8 contains some further applications to quantum complexity theory, and the Appendices
provide some additional applications of and perspectives on the majority-certificates lemma.

2 The Majority-Certificates Lemma

A Boolean concept class is a family of sets {Sn}n≥1, where each Sn consists of Boolean functions
f : {0, 1}n → {0, 1} on n variables. Abusing notation, we will often use S to refer directly to a set
of Boolean functions on n variables, with the quantification over n being understood.

By a certificate, we mean a partial Boolean function C : {0, 1}n → {0, 1, ∗}. The size of C,
denoted |C|, is the number of inputs x such that C (x) ∈ {0, 1}. A Boolean function f : {0, 1}n →
{0, 1} is consistent with C if f (x) = C (x) whenever C (x) ∈ {0, 1}. Given a set S of Boolean
functions and a certificate C, let S [C] be the set of all functions f ∈ S that are consistent with C.
Say that a function f ∈ S is isolated in S by the certificate C if S [C] = {f}.

We now prove a lemma that represents one of the main tools of this paper (although it will be
generalized, rather than used directly).

Lemma 3 (Majority-Certificates Lemma) Let S be a set of Boolean functions f : {0, 1}n →
{0, 1}, and let f∗ ∈ S. Then there exist m = O (n) certificates C1, . . . , Cm, each of size k =
O (log |S|), and functions f1, . . . , fm ∈ S, such that

(i) S [Ci] = {fi} all i ∈ [m];

(ii) MAJ (f1 (x) , . . . , fm (x)) = f∗ (x) for all x ∈ {0, 1}n.

Proof. Our proof of Lemma 3 relies on the following claim.

Claim 4 Let D be any distribution over inputs x ∈ {0, 1}n. Then there exists a function f ∈ S
such that

(i) f is isolatable in S by a certificate C of size k = O (log |S|);

(ii) Prx∼D[f(x) 6= f∗(x)] ≤ 1
10 .

Lemma 3 follows from Claim 4 by a boosting-type argument, as follows. Consider a two-player
game where:

• Alice chooses a certificate C of size k that isolates some f ∈ S, and
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• Bob simultaneously chooses an input x ∈ {0, 1}n.

Alice wins the game if f (x) = f∗ (x). Claim 4 tells us that for every mixed strategy of Bob (i.e.,
distribution D over inputs), there exists a pure strategy of Alice that succeeds with probability at
least 0.9 against D. Then by the Minimax Theorem, there exists a mixed strategy for Alice—that
is, a probability distribution C over certificates—that allows her to win with probability at least
0.9 against every pure strategy of Bob.

Now suppose we draw C1, . . . , Cm independently from C, isolating functions f1, . . . , fm in S.
Fix an input x ∈ {0, 1}n; then by the success of Alice’s strategy against x, and applying a Chernoff
bound,

Pr
C1,...,Cm∼C

[MAJ (f1 (x) , . . . , fm (x)) 6= f∗(x)] <
1

2n
,

provided we choose m = O (n) suitably. But by the union bound, this means there must be a fixed
choice of C1, . . . , Cm such that MAJ (f1, . . . , fm) ≡ f∗, where each fi is isolated in S by Ci. This
proves Lemma 3, modulo the Claim.

Proof of Claim 4. By symmetry, we can assume without loss of generality that f∗ is the
identically-zero function. Given the mixed strategy D of Bob, we construct the certificate C
as follows. Initially C is empty: that is, C (x) = ∗ for all x ∈ {0, 1}n. In the first stage, we draw
t = O (log |S|) inputs x1, . . . , xt independently from D. For any f : {0, 1}n → {0, 1}, let

wf := Pr
x∼D

[f (x) = 1] .

Now suppose f is such that wf > 0.1. Then

Pr
x1,...,xt∼D

[f (x1) = 0 ∧ · · · ∧ f (xt) = 0] < 0.9t ≤ 1

|S| ,

provided t ≥ log10/9 |S|. So by the union bound, there must be a fixed choice of x1, . . . , xt that kills
off every f ∈ S such that wf > 0.1—that is, such that f (x1) = · · · = f (xt) = 0 implies wf ≤ 0.1.
Fix that x1, . . . , xt, and set C (xi) := 0 for all i ∈ [t].

In the second stage, our goal is just to isolate some particular function f ∈ S [C]. We do this
recursively as follows. If |S [C]| = 1 then we are done. Otherwise, there exists an input x such
that f (x) 6= f ′ (x) for some pair f, f ′ ∈ S [C]. If setting C (x) := 0 decreases |S [C]| by at least
a factor of 2, then set C (x) := 0; otherwise set C (x) := 1. Since S [C] can halve in size at most
log2 |S| times, this procedure terminates after at most log2 |S| steps with |S [C]| = 1.

The end result is a certificate C of size O (log |S|), which isolates a function f in S for which
wf ≤ 1/10. We have therefore found a pure strategy for Alice that fails with probability at most
1/10 against D, as desired.

3 Extension to Real Functions

In this section, we extend the majority-certificates lemma from Boolean functions to real-valued
functions f : {0, 1}n → [0, 1]. We will need this extension for the application to quantum advice
in Section 4. In proving our extension we will have to confront several new difficulties. Firstly,
the concept classes S that we want to consider can now contain a continuum of functions—so
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Lemma 3, which assumed that S was finite and constructed certificates of size O (log |S|), is not
going to work. In Section 3.1, we review notions from computational learning theory, including
fat-shattering dimension and ε-covers, which (combined with results of Alon et al. [10] and Bartlett
and Long [13]) can be used to get around this difficulty. Secondly, it is no longer enough to
isolate a function fi ∈ S that we are interested in; instead we will need to “safely” isolate fi, which
roughly speaking means that (i) fi is consistent with some certificate C, and (ii) any f ∈ S that
is even approximately consistent with C is close to fi. In Section 3.2, we prove a “safe winnowing
lemma” that can be used for this purpose, and put our ingredients together to prove a real-valued
majority-certificates lemma.

3.1 Background from Learning Theory

A p-concept class S over {0, 1}n is a family of functions f : {0, 1}n → [0, 1] (as usual, quantification
over all n is understood). Given functions f, g : {0, 1}n → [0, 1] and a subset of inputs X ⊆ {0, 1}n,
we will be interested in three measures of the distance between f and g restricted to X:

∆∞ (f, g) [X] := max
x∈X

|f (x)− g (x)| ,

∆2 (f, g) [X] :=

√∑

x∈X

(f (x)− g (x))2,

∆1 (f, g) [X] :=
∑

x∈X

|f (x)− g (x)| .

For convenience, we define ∆∞ (f, g) := ∆∞ (f, g) [{0, 1}n], and similarly for ∆2 (f, g) and ∆1 (f, g).
Also, given a distribution D over {0, 1}n, define

∆1 (f, g) 〈D〉 := E
x∼D

[|f (x)− g (x)|] .

Finally, we will need the notions of coverability and fat-shattering dimension.

Definition 5 (Coverability) Let S be a p-concept class over {0, 1}n. The subset C ⊆ S is an
ε-cover for S if for all f ∈ S, there exists a g ∈ C such that ∆∞ (f, g) ≤ ε. We say S is coverable
if for all ε > 0, there exists an ε-cover for S of size 2poly(n,1/ε).

Definition 6 (Fat-Shattering Dimension) Let S be a p-concept class over {0, 1}n and ε > 0
be a real number. We say the set A ⊆ {0, 1}n is ε-shattered by S if there exists a function
r : A→ [0, 1] such that for all 2|A| Boolean functions g : A→ {0, 1}, there exists a p-concept f ∈ S
such that for all x ∈ A, we have f (x) ≤ r (x)−ε whenever g (x) = 0 and f (x) ≥ r (x)+ε whenever
g (x) = 1. Then the ε-fat-shattering dimension of S, denoted fatε (S), is the size of the largest set
ε-shattered by S.

We say S is bounded-dimensional if fatε (S) ≤ poly (n, 1/ε) for all ε > 0.

The p-concept classes we consider in this paper will be convex, when considered as subsets of
[0, 1]2

n
. We remark that for such classes, fatε (S) measures the largest dimension of any axis-parallel

subcube contained in S of side length 2ε.
The following central result was shown by Alon et al. [10] (see also [24]).
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Theorem 7 ([10]) Every p-concept class S has an ε-cover of size exp
[
O
(
(n+ log 1/ε) fatε/4 (S)

)]
.

Building on the work of Alon et al. [10], Bartlett and Long [13] then proved the following:

Theorem 8 ([13]) Let S be a p-concept class and D be a distribution over {0, 1}n. Fix an
f : {0, 1}n → [0, 1] (not necessarily in S) and an error parameter α > 0. Suppose we form a set
X ⊆ {0, 1}n by choosing m inputs independently with replacement from D. Then there exists a
positive constant K such that, with probability at least 1 − δ over X, any hypothesis h ∈ S that
minimizes ∆1 (h, f) [X] also satisfies

∆1 (h, f) 〈D〉 ≤ α+ inf
g∈S

∆1 (g, f) 〈D〉 ,

provided that

m ≥ K

α2

(
fatα/5 (S) log

2 1

α
+ log

1

δ

)
.

Theorem 8 has the following corollary, which is similar to Corollary 2.4 of Aaronson [5], but
more directly suited to our purposes here.5

Corollary 9 Let S be a p-concept class over {0, 1}n and D be a distribution over {0, 1}n. Fix an
f ∈ S and an error parameter ε > 0. Suppose we form a set X ⊆ {0, 1}n by choosing m inputs
independently with replacement from D. Then there exists a positive constant K such that, with
probability at least 1− δ over X, any hypothesis h ∈ S that satisfies ∆∞ (h, f) [X] ≤ ε also satisfies
∆1 (h, f) 〈D〉 ≤ 11ε, provided

m ≥ K

ε2

(
fatε (S) log

2 1

ε
+ log

1

δ

)
.

Proof. Let S∗ be the p-concept class consisting of all functions g : {0, 1}n → [0, 1] for which
there exists an f ∈ S such that ∆∞ (g, f) ≤ ε. Fix an f ∈ S and a distribution D, and let X
be chosen as in the statement of the corollary. Suppose we choose a hypothesis h ∈ S such that
∆∞ (h, f) [X] ≤ ε. Define a function g by setting g (x) := h (x) if x ∈ X and g (x) := f (x)
otherwise. Note that ∆∞ (g, f) ≤ ε and that g ∈ S∗. Also note that ∆1 (h, g) [X] = 0, which
means that h minimizes the functional ∆1 (h, g) [X] over all hypotheses in S (and indeed in S∗).
By Theorem 8, this implies that with probability at least 1− δ over X,

∆1 (h, g) 〈D〉 ≤ α+ inf
u∈S∗

∆1 (u, g) 〈D〉 = α

for all α > 0, provided we take

m ≥ K

α2

(
fatα/5 (S

∗) log2
1

α
+ log

1

δ

)
.

Here we have used the fact that g ∈ S∗, and hence

inf
u∈S∗

∆1 (u, g) 〈D〉 = 0.

5It would also be possible to apply the bound from [5] “off-the-shelf,” but at the cost of a worse dependence on
1/ε.
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So by the triangle inequality,

∆1 (h, f) 〈D〉 ≤ ∆1 (h, g) 〈D〉+∆1 (g, f) 〈D〉
≤ α+∆∞ (g, f)

≤ α+ ε.

Next, we claim that fatα/5 (S
∗) ≤ fatα/5−ε (S). The reason is simply that, if a given set is β

-fat-shattered by S∗, then it must also be (β − ε)-fat-shattered by S, by the triangle inequality.
Setting α := 10ε now yields the desired statement.

3.2 The Safe Winnowing Lemma and the Real-Valued Majority-Certificates

Lemma

An important technical step toward proving the real-valued majority-certificates lemma is our
so-called “Safe Winnowing Lemma.” This lemma says intuitively that, given any set S of real-
valued functions with a small ε-cover (or equivalently, with polynomially-bounded fat-shattering
dimension), and given any f∗ ∈ S and subset Y ⊆ {0, 1}n of inputs to f∗, it is possible to find a
set of k = poly (n) constraints |f (x1)− a1| ≤ ǫ, . . . , |f (xk)− ak| ≤ ǫ, and another function f ∈ S,
such that f is close to f∗ in L∞ norm on Y , and f is essentially the only function in S compatible
with the constraints. Here “essentially” means that (i) any function that satisfies the constraints
is close to f∗ in L∞-norm, and (ii) f∗ itself not only satisfies the constraints, but does so with a
“margin to spare.”

Lemma 10 (Safe Winnowing Lemma) Let S be a p-concept class over {0, 1}n. Fix a function
f∗ ∈ S and subset Y ⊆ {0, 1}n. For some parameter ε > 0, let C be a finite ε-cover for S. Then
there exists an f ∈ S, as well as a subset Z ⊆ {0, 1}n of size at most k = log2 |C|, such that:

(i) Every g ∈ S that satisfies ∆∞ (f, g) [Y ∪ Z] ≤ ε
5k also satisfies ∆∞ (f, g) ≤ 3ε.

(ii) ∆∞ (f, f∗) [Y ] ≤ ε/5.

Note that Lemma 10 is still interesting in the special case Y = ∅, in which case f∗ is irrelevant,
and the problem reduces to finding a Z such that every g ∈ S that satisfies ∆∞ (f, g) [Z] ≤ ε

5k also
satisfies ∆∞ (f, g) ≤ 3ε.

In Appendix C, we will develop the theory of “winnowability” of p-concept classes for its own
sake. We show there that the condition ∆∞ (f, g) [Z] = O (ε/k) can be improved to ∆1 (f, g) [Z] =
O (ε). On the other hand, the proof becomes more involved, and we no longer know how to
incorporate f∗ and Y . We also show that the condition ∆∞ (f, g) [Z] = O (ε/k) cannot be improved
to ∆∞ (f, g) [Z] = O (ε) or even ∆2 (f, g) [Z] = O (ε).

We defer the proof of Lemma 10, showing first how it helps us to prove our generalization of
Lemma 3 to the case of real-valued functions:

Lemma 11 (Real Majority-Certificates) Let S be a p-concept class over {0, 1}n, let f∗ ∈
S, and let ε > 0. Then for some m = O

(
n/ε2

)
, there exist functions f1, . . . , fm ∈ S, sets

X1, . . . ,Xm ⊆ {0, 1}n each of size k = O
((
n+ log2 1/ε

ε2

)
fatε/48 (S)

)
, and an α = Ω

(
ε

(n+log 1/ε) fatε/48(S)

)
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for which the following holds. All g1, . . . , gm ∈ S that satisfy ∆∞ (fi, gi) [Xi] ≤ α for i ∈ [m] also
satisfy ∆∞ (f∗, g) ≤ ε, where

g (x) :=
g1 (x) + · · ·+ gm (x)

m
.

Proof. Let

β :=
ε

48
,

t := C

(
n+ log

1

β

)
fatβ (S) ,

α :=
0.4β

t
,

where C is a suitably large constant. Also, let Sfin be a finite α-cover for S: that is, a finite subset
Sfin ⊆ S such that for all f ∈ S, there exists a g ∈ Sfin such that ∆∞ (f, g) ≤ α.6 Given f and X,
let S [f,X] be the set of all g ∈ S such that ∆∞ (f, g) [X] ≤ α.

Now consider a two-player game where Alice chooses a function f ∈ Sfin and a set X ⊆ {0, 1}n
of size k, and Bob simultaneously chooses an input x ∈ {0, 1}n. Alice’s penalty in this game (the
number she is trying to minimize) equals

sup
g∈S[f,X]

|f∗ (x)− g (x)| .

We claim that there exists a mixed strategy for Alice—that is, a probability distribution P over
(f,X) pairs—that gives her an expected penalty of at most ε/2 against every pure strategy of Bob.

Let us see why Lemma 11 follows from this claim. Fix an input x ∈ {0, 1}n, and suppose Alice
draws (f1,X1) , . . . , (fm,Xm) independently from P. Then for all i ∈ [m],

E(fi,Xi)∼P

[
sup

g∈S[f,X]
|f∗ (x)− g (x)|

]
≤ ε

2
.

Thus, letting z1, . . . , zm be independent random variables in [0, 1], each with expectation at most
ε/2, the expression

Pr
(f1,X1),...,(fm,Xm)∼P

[
∃g1 ∈ S [f1,X1] , . . . , gm ∈ S [fm,Xm] :

∣∣∣∣f∗ (x)−
g1 (x) + · · ·+ gm (x)

m

∣∣∣∣ > ε

]

is at most Pr [z1 + · · · zm > εm] using the triangle inequality. This, in turn, is less than

2 exp

(
−2 (εm/2)2

m

)
< 2−n

by Hoeffding’s inequality, provided we choose m = O
(
n/ε2

)
suitably. By the union bound, this

means that there must be a fixed choice of f1, . . . , fm and X1, . . . ,Xm such that
∣∣∣∣f∗ (x)−

g1 (x) + · · ·+ gm (x)

m

∣∣∣∣ ≤ ε

6We will need Sfin for the technical reason that the basic Minimax Theorem only works with finite strategy spaces.
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for all g1 ∈ S [f1,X1] , . . . , gm ∈ S [fm,Xm] and all inputs x ∈ {0, 1}n simultaneously, as desired.
We now prove the claim. By the Minimax Theorem, our task is equivalent to the following:

given any mixed strategy D of Bob, find a pure strategy of Alice that achieves a penalty of at most
ε/2 against D. In other words, given any distribution D over inputs x ∈ {0, 1}n, we want a fixed
function f ∈ Sfin, and a set X ⊆ {0, 1}n of size k, such that

Ex∼D

[
sup

g∈S[f,X]
|f∗ (x)− g (x)|

]
≤ ε

2
.

We construct this (f,X) pair as follows. In the first stage, we let Y be a set, of size at most

M :=
K

β2

(
fatβ (S) log

2 1

β
+ log

1

δ

)
,

formed by choosing M inputs independently with replacement from D. Here β = ε/48 as defined
earlier, δ = 1/2, and K is the constant from Corollary 9. Then by Corollary 9, with probability
at least 1 − δ = 1/2 over the choice of Y , any g ∈ S that satisfies ∆∞ (f∗, g) [Y ] ≤ β also satisfies
∆1 (f

∗, g) 〈D〉 ≤ 11β. So there must be a fixed choice of Y with that property. Fix that Y , and
let S′ be the set of all g ∈ S such that ∆∞ (f∗, g) [Y ] ≤ β.

In the second stage, our goal is just to use Lemma 10 to winnow S′ down to a particular function
f . More precisely, we want to find an f ∈ S′ ∩ Sfin, and a set X ⊆ {0, 1}n containing Y , such that
any g ∈ S that satisfies ∆∞ (f, g) [X] ≤ α also satisfies ∆∞ (f, g) ≤ 11β. We assert that such a
pair (f,X) can be found. It will then follow that

Ex∼D

[
sup

g∈S[f,X]
|f∗ (x)− g (x)|

]
≤ ∆1 (f

∗, f) 〈D〉+ sup
g∈S[f,X]

∆∞ (f, g)

≤ 11β + 13β

=
ε

2
,

which proves that (f,X) give a strategy for Alice having the needed quality against the mixed
strategy D for Bob.

We find the desired (f,X) pair as follows. By Theorem 7, the class S′ has a 4β-cover of size

N = exp

[
O

((
n+ log

1

4β

)
fatβ

(
S′
))]

≤ exp

[
O

((
n+ log

1

β

)
fatβ (S)

)]
.

Let t := log2N . Then by Lemma 10, there exists a function u ∈ S′, as well as a subset Z ⊆ {0, 1}n
of size at most t, such that:

(i) ∆∞ (u, f∗) [Y ] ≤ 0.8β.

(ii) Every g ∈ S′ that satisfies ∆∞ (u, g) [Y ∪ Z] ≤ 0.8β
t also satisfies ∆∞ (u, g) ≤ 12β.

Let X := Y ∪ Z, and observe that

|X| = O

(
1

β2
fatβ (S) log

2 1

β
+

(
n+ log

1

β

)
fatβ (S)

)

= O

((
n+

log2 1/ε

ε2

)
fatε/48 (S)

)
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as desired. Now let f be a function in Sfin such that ∆∞ (f, u) ≤ α. Let us check that (f,X)
have the properties we want. First,

∆∞ (f∗, f) [Y ] ≤ ∆∞ (f∗, u) [Y ] + ∆∞ (u, f) [Y ]

≤ 0.8β + α

< 0.9β,

hence f ∈ S′ as desired. Next, consider any g ∈ S that satisfies ∆∞ (f, g) [X] ≤ α. Then we also
have

∆∞ (f∗, g) [Y ] ≤ ∆∞ (f∗, f) [Y ] + ∆∞ (f, g) [Y ]

≤ 0.9β + α

< β,

hence g ∈ S′, so that (by our construction of Y ) we have ∆1 (f
∗, g) 〈D〉 ≤ 11β. Next, observe that

∆∞ (u, g) [X] ≤ ∆∞ (u, f) [X] + ∆∞ (f, g) [X]

≤ 2α

=
0.8β

t
,

so that, using our guarantee (ii) above, we have ∆∞ (u, g) ≤ 12β. Then we find that

∆∞ (f, g) ≤ ∆∞ (f, u) + ∆∞ (u, g)

≤ α+ 12β

≤ 13β,

as required. This shows that (f,X) have the required properties, and completes the proof of
Lemma 11.

Proof of Lemma 10. Let δ := ε
5k . We construct (f, Z) by an iterative procedure. Initially

let S0 := S, let f0 := f∗, and let Z0 := Y . We will form new sets S1, S2, . . . by repeatedly adding
constraints of the form f (x) ≤ α or f (x) ≥ α for various x, α, maintaining the invariant that ft ∈
St. At iteration t, suppose there exists a function g ∈ St−1 such that ∆∞ (ft−1, g) [Y ∪ Zt−1] ≤ δ,
but nevertheless |ft−1 (zt)− g (zt)| > 3ε for some input zt. Then first set Zt := Zt−1∪{zt} (i.e., add
zt into our set of inputs, if it is not already there). Let v := 1

2 [ft−1 (zt) + g (zt)], let A be the set of
all functions h ∈ St−1 such that h (zt) < v, and let B be the set of all h ∈ St−1 such that h (zt) ≥ v.

Also, for any given set M , let M♦ := M ∩ C. Then clearly min
{∣∣A♦

∣∣ ,
∣∣B♦

∣∣} ≤
∣∣∣S♦
t−1

∣∣∣ /2. If∣∣A♦
∣∣ <

∣∣B♦
∣∣, then set St := A; otherwise set St := B. Then set ft := ft−1 if ft−1 ∈ St and ft := g

otherwise. Since
∣∣∣S♦
t

∣∣∣ can halve at most k = log2 |C| times, it is clear that after T ≤ k iterations

we have
∣∣∣S♦
T

∣∣∣ ≤ 1. Set f := fT and Z := ZT . Then by the triangle inequality,

∆∞ (f, f∗) [Y ] ≤ Tδ ≤ ε

5
,

and also
|f (zt)− ft (zt)| ≤ (T − t) δ <

ε

5
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for all t ∈ [T ]. So suppose by contradiction that there still exists a function g ∈ ST such that
∆∞ (f, g) [Y ∪ Z] ≤ δ but |f (x)− g (x)| > 3ε for some x, and consider functions p, q ∈ C in the
cover such that ∆∞ (f, p) ≤ ε and ∆∞ (g, q) ≤ ε. Then p, q ∈ S♦

T but p 6= q, which contradicts the

fact that
∣∣∣S♦
T

∣∣∣ ≤ 1. Also notice that for all g ∈ S, if ∆∞ (f, g) [Y ∪ Z] ≤ δ then g ∈ ST . Thus

∆∞ (f, g) [Y ∪ Z] ≤ δ implies ∆∞ (f, g) ≤ 3ε as desired.

4 Application to Quantum Advice Classes

In this section, we prove Theorem 2, as well as several other results. We will be defining quantum
circuits over some fixed universal basis of 2-local unitary and measurement gates. We use size(C)
to denote the number of gates of a classical or quantum circuit (including the input and output
gates).

4.1 Classical Descriptions for Quantum States

Fix a quantum circuit Q taking an n-bit string x and a p-qubit state ρ and producing a 1-bit
output. For a given state ρ, let fρ (x) := E [Q(x, ρ)]. Let S be the p-concept class consisting of fρ
for all p-qubit mixed states ρ. Then Aaronson [5] proved the following result, which allows us to
apply the real-valued majority-certificates lemma to the study of quantum advice.

Theorem 12 ([5]) fatγ (S) = O
(
p/γ2

)
.

The next claim gives a useful consequence of Theorem 12 and the majority-certificates lemma.

Lemma 13 Let Qn(x, ρ) be a quantum circuit taking as input a string x ∈ {0, 1}n and a quantum
state ρ on p qubits, and outputting a single bit. Fix any p-qubit state ρ∗n.

Let c ≥ 1 be a constant. For suitably chosen integers m,k ≤ poly(n, p) and a real parameter
α ≥ 1/poly(n, p), there exists:

• a second circuit Q′
n(x, σ) of size at most poly(size(Qn)) taking as input x ∈ {0, 1}n and an

m · p-qubit state σ;

• a collection Cn = {C(i,j)(σ)}(i,j)∈[m]×[k] of circuits, each of size poly(size(Qn)), and each taking
as input a quantum state σ on m · p qubits; and,

• a collection {r(i,j)}(i,j)∈[m]×[k] of rational numbers in [0, 1], each specified by a decimal expan-
sion of length O(log(n+ p)).

(Here, Q′
n can be uniformly constructed in time poly(s, n) given a description of Qn, while Cn, {r(i,j)}

are non-uniformly chosen.) We have the following properties:

(i) There exists a state σ on m·p qubits, of the form σ = σ1⊗. . .⊗σm, that satisfies |E[C(i,j)(σ)]−
r(i,j)| ≤ α for each (i, j) ∈ [m]× [k];

(ii) If we are given any state σ on m · p qubits, satisfying

|E[C(i,j)(σ)]− r(i,j)| ≤ 4α ∀(i, j) ∈ [m]× [k] ,
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then it also holds that

|E[Q′
n(x, σ)]− E[Qn(x, ρ

∗
n)]| ≤ n−c ∀x ∈ {0, 1}n .

Proof. For each x ∈ {0, 1}n and state ξ on p qubits, let fξ (x) := E [Qn (x, ξ)]. Let S be collection
{fξ}, ranging over all p-qubit mixed states ξ. Then Theorem 12 implies that fatγ (S) = O

(
p/γ2

)

for all γ > 0. Set ε := n−c, γ := ε/48. By Lemma 11, for some m,k ≤ poly(n), there exist p-qubit

mixed states ρ1, . . . , ρm, sets X1, . . . ,Xm ⊆ {0, 1}n each of size k, and an α = Ω
(

1
poly(n,p)

)
for

which the following holds:

(*) All collections σ1, . . . , σm of p (n)-qubit states that satisfy ∆∞ (fρi , fσi) [Xi] ≤ α for i ∈ [m]
also satisfy ∆∞

(
fρ∗n , fσavg

)
≤ n−c, where σavg := 1

m(σ1 + . . .+ σm).

For an m · p-qubit state σ and i ∈ [m], let σ[i] denote the reduced state of σ on the ith register of p
qubits. Let x(i,j) ∈ {0, 1}n denote the jth element in Xi (under some fixed ordering). The circuits
{C(i,j)}(i,j)∈[m]×[k] are then defined as follows: each C(i,j), on input state σ, simulates Qn

(
xi,j, σ[i]

)

(by applying Qn(x
(i,j), ·) to the ith register of σ) and outputs the resulting bit. The value ri,j

is chosen as a rational approximation to the value E[Qn
(
x(i,j), ρi

)
], accurate to within ±.1α; this

can be achieved with O(log(n + p)) bits of precision, since α ≥ 1/poly(n, p). Finally, for the
circuit Q′

n(x, σ), we let Q′
n choose a uniformly random register i ∈ [m] and simulate Qn(x, σ[i]),

outputting the result. All of our efficiency claims for Q′
n and {C(i,j)}(i,j)∈[m]×[k], and our uniform

constructibility claim for Q′
n, follow from the definitions.

To establish item (i) in the Theorem’s conclusion, it is enough to verify that σ := ρ1 ⊗ . . .⊗ ρm
is a suitable choice of σ, by our settings to {C(i,j), r(i,j)}. For item (ii), let the m · p(n)-qubit
state σ satisfy the hypothesis in that item. By our definitions and the quality of our rational
approximations {r(i,j)}, this implies that ∆∞

(
fρi , fσ[i]

)
[Xi] ≤ α for i ∈ [m]. Then by (*), we have

∆∞

(
fρn , fσ[avg]

)
≤ n−c, where we here define σ[avg] := 1

m(σ[1] + . . . + σ[m]). Also, for our choice
of Q′

n we have

E[Q′
n(x, σ)] =

1

m

∑

i∈[m]

E[Qn(x, σ[i])] = E[Qn(x, σ[avg])] = fσ[avg](x) .

This gives item (ii), completing the proof of Lemma 13.

4.2 Advice-Testing Quantum Circuits and Input-Oblivious Testers

Next we define a class of quantum circuits that will play an important role in our work.

Definition 14 An advice-testing circuit (for the input length n > 0) is a quantum circuit Y = Yn
with a classical n-bit input register, along with advice and ancilla registers and two designated 1-
qubit “advice-testing” and “output” registers. On input a string x ∈ {0, 1}n, and with the advice
register initialized to some advice state ρ, the remaining registers are each initialized to the all-zero
state. Y acts as follows:

1. First Y applies a subcircuit A to all registers, after which the advice-testing register is mea-
sured, producing a value badv ∈ {0, 1};
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2. Next, Y applies a second subcircuit B to all registers, then measures the output register,
producing a value bout ∈ {0, 1}.

If in step 1 above, the subcircuit A ignores the input register, then Y is said to be an input-oblivious
advice-testing circuit.

Next, suppose we have a quantum circuit Qn(x, ρ) taking a classical string x ∈ {0, 1}n and a
quantum state ρ, that we wish to simulate for a specific desired setting ρ := ρ∗. The next result
gives a general method to do so by an input-oblivious advice-testing algorithm with polynomial
classical advice. Our use of Lemma 13 in proving this result draws ideas from the proof of Aharonov
and Regev of the equality of complexity classes QMA+ = QMA [8].

Theorem 15 Let Qn(x, ρ) be a quantum circuit taking as input a string x ∈ {0, 1}n and a quantum
state ρ on p ≤ s qubits, and outputting a single bit. Fix any p-qubit state ρ∗, and let d ≥ 1 be a
fixed constant.

Then there exists an input-oblivious advice-testing circuit Yn of size poly(size(Qn)), taking an
input x ∈ {0, 1}n and a P -qubit advice state (for some P ≤ poly(n, p)), with the following properties:

(i) There exists an advice state σ∗ on P qubits such that for all x ∈ {0, 1}n, in the execution of
Yn(x, σ

∗) we have Pr[badv = 1] ≥ 1− e−n;

(ii) For each n and advice state σ on P qubits, it holds that in the execution of Yn(x, σ) (for each
x ∈ {0, 1}n) we have

Pr[badv = 1] ≥ n−d =⇒ |E[bout|badv = 1] − E[Qn(x, ρ
∗)]| ≤ n−d .

Proof of Theorem 15. For n > 1, let

m, k, α, Q′
n, Cn, {r(i,j)}i∈[m],j∈[k]

be as given by Lemma 13 applied to Q, ρ∗, and with c := 2d. We set M := ⌈10n8dmk/α⌉, N :=
⌈10 lnM/α2⌉, and P := MNmp. We regard a P -qubit state as having MN registers (indexed by
[M ]× [N ]) of m ·p qubits each. We refer to the register indexed by (s, t) ∈ [M ]× [N ] as the “(s, t)th

proof register.”
The subroutine A for Yn is defined as follows:

Algorithm A(σ, y):

1. Set badv := 1, and choose S ∈ [M ] uniformly;

2. For s = 1, 2, . . . , (S − 1):

2.a. Choose (i(s), j(s)) ∈ [m]× [k] uniformly;

2.b. Apply C(i(s),j(s)) successively to the proof registers (s, 1), (s, 2), . . . , (s,N), and let r̂s ∈
[0, 1] be the fraction of these computations that accept;

2.c If |r̂s − r(i(s),j(s))| > .5α, set badv := 0.
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Note that in step (2.b), the joint state on the proof registers may change after each application
of C(i(s),j(s)). If S = 1, the proof registers go untouched and badv = 1.

Next, the subroutine B acts as follows. B measures the value S chosen by A (and stored in the
ancilla register). It then chooses t ∈ [N ] uniformly and simulates Q′

n applied to input x and with
the (S, t)th proof register as the quantum advice state for Q′

n, taking the resulting bit as bout.
Yn can clearly be implemented in size poly(size(Qn)). Now let us analyze Yn to establish items

(i)-(ii) in the Theorem’s conclusion. For item (i), consider the execution Yn(x, σ) on the advice state
σ which is the tensor product of MN independent copies of the state σ guaranteed to exist by item
(i) in our application of Lemma 13. Then in the operation of the subroutine A, for each execution
of step (2.b) (indexed by an s ∈ [M ]), the expected fraction E[r̂s] is within ±.1α of ri(s),j(s) after
conditioning on i(s), j(s). Also, the outcome of the executions of Ci(s),j(s) are mutually independent,
since σ is a product state over the MN registers. Chernoff bounds and our setting of N then imply
that r̂s is within ±.5α of ri(s),j(s) with probability > 1− e−n/M . A union bound over all s ∈ [M ]
completes the proof of item (i) in the Theorem.

We now turn to item (ii). Let σ be any P -qubit state for which, in the execution of Yn(x, σ),
we have E[badv] ≥ n−d. (If this holds for some x ∈ {0, 1}n then it holds for all such x; we fix some
such x in what follows.) For s ∈ [M − 1], let qs denote the probability that |r̂s − r(i(s),j(s))| ≤ .5α
holds in the execution of subroutine A in the operation of Yn(x, σ), conditioned on the following
two events:

1. S = s+ 1, so that the For loop in Step 2 of A executes for the value s;

2. |r̂s′ − r(i(s′),j(s′))| ≤ .5α for all s′ < s.

Note that the value qs would be unchanged if in the first item above we instead conditioned on
[S = s′′], for any s′′ > s. Also, for future use we define σ(s) as the Nmp-qubit reduced state on the
proof registers (s, 1), (s, 2), . . . , (s, t), conditioned on items 1 and 2 above.

Let Ibad ⊆ [M − 1] be the set of indices s for which qs < 1− α/(n3dmk). We will upper-bound

Pr[S ∈ Ibad∧ badv = 1]. Let Iearlybad be the firstW := ⌈n4dmk/α⌉ elements of Ibad in increasing order

(or if Ibad ≤W , then Iearlybad := Ibad). Let I
late
bad := Ibad \ Iearlybad . We have

Pr[S ∈ Ibad ∧ badv = 1] ≤ W/M + Pr[S ∈ I latebad ∧ badv = 1] ,

since Pr[S ∈ Iearlybad ] ≤W/M . If I latebad 6= ∅, then conditioned on any value of S with S > max(Iearlybad ),
the probability that badv is not set to 0 in the S − 1 executions of step 2 of A equals

∏

s<S

qs ≤
∏

s∈Iearlybad

qs ≤ (1− α/(n3dmk))W ≤ n−4d .

Thus, Pr[S ∈ I latebad ∧ badv = 1] ≤ n−4d, and Pr[S ∈ Ibad ∧ badv = 1] ≤ n−4d +W/M ; this is at most
2n−4d, by our setting to M . It follows that

Pr[S ∈ Ibad|badv = 1] ≤ 2n−4d

Pr[badv = 1]
≤ 2n−3d ,

using our assumption in item (ii) that Pr[badv = 1] ≥ n−d.
Next, we claim that for each s ∈ [M ]\Ibad, the conditional expectation E[bout = 1|S = s∧badv =

1] satisfies
|E[bout = 1|S = s ∧ badv = 1]− E[Qn(x, ρ

∗
n)]| ≤ n−3d .
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To see this, fix any such s. First note that, if we condition on [S = s ∧ badv = 1], the joint post-
conditioned state of the proof registers (s, 1), (s, 2), . . . , (s, t) is precisely σ(s) as defined previously.
Now consider the experiment in which we choose a pair (i, j) uniformly from [m] × [k] and apply
C(i,j) to each of these proof registers, prepared in the joint state σ(s), and let r̂(i,j) ∈ [0, 1] be the
fraction of 1s measured. The probability in this experiment that |r̂(i,j) − r(i,j)| ≤ .5α is, by the

linearity of quantum mechanics, equal to qs; this is greater than 1 − α/(n3dmk) since s /∈ Ibad.
Then by an application of Markov’s inequality, for every (i∗, j∗) ∈ [m] × [k], if we perform this
experiment on σ(s) with the fixed choice (i, j) = (i∗, j∗), then we see |r̂(i∗,j∗) − r(i∗,j∗)| ≤ .5α with

probability greater than 1− αn−3d > 1− .2α. Thus |E[r̂(i∗,j∗)]− r(i∗,j∗)| ≤ .7α.

For t ∈ [N ], let σ(s,t) denote the reduced state of σ(s) on the (s, t) proof register. Let
σ(s,avg) := 1

N

∑
t∈[N ] σ

(s,t), and note that in the experiment above with fixed pair (i∗, j∗), we have

E[r̂(i∗,j∗)] = E[C(i∗,j∗)(σ
(s,avg))]. By our work above, |E[C(i∗,j∗)(σ

(s,avg))]− r(i∗,j∗)| ≤ .7α. As (i∗, j∗)
was arbitrary, it follows from item (ii) in our application of Lemma 13 that

∣∣∣E[Q′
n(x, σ

(s,avg))]− E[Qn(x, ρ
∗
n)]
∣∣∣ ≤ n−2d .

Now let us return to the definition of the algorithm Yn and note that, in the execution Yn(x, σ),
if we condition on [badv = 1 ∧ S = s], then Yn simulates Q′

n applied to x and to an advice state
whose density operator is (under our conditioning) precisely that of σ(s,avg), and Yn outputs the
resulting bit. Thus, |E[bout|badv = 1 ∧ S = s]− E[Qn(x, ρ

∗
n)]| ≤ n−2d, and since s was an arbitrary

element of [M ] \ Ibad, we also have |E[bout|badv = 1 ∧ S /∈ Ibad]− E[Qn(x, ρ
∗
n)]| ≤ n−2d. Combining

our findings, we see that

|E[bout|badv = 1]− E[Qn(x, ρ
∗
n)]| ≤ Pr[S ∈ Ibad|badv = 1] + n−2d

≤ 2n−3d + n−2d

≤ n−d ,

for n > 1. The statement of item (ii) is trivial for n = 1, so this proves item (ii), completing the
proof of the Theorem.

4.3 Bestiary of Quantum Complexity Classes

In this section we define some old and new complexity classes which our techniques shed light on.
Given a language L ⊆ {0, 1}∗, let L : {0, 1}∗ → {0, 1} be the characteristic function of L. We now
give a formal definition of the class BQP/qpoly.

Definition 16 A language L is in BQP/qpoly if there exists a polynomial-time quantum algorithm
A and polynomial-time computable function p(n) ≤ poly(n) such that for all n, there exists an
advice state ρn on p (n) qubits such that A (x, ρn) outputs L (x) with probability ≥ 2/3 for all
x ∈ {0, 1}n.

Closely related to quantum advice are quantum proofs. We now recall the definition of QMA

(Quantum Merlin-Arthur), a quantum version of NP.

Definition 17 A language L is in QMA if there exists a polynomial-time quantum algorithm A
and polynomial-time computable function p(n) ≤ poly(n) such that for all x ∈ {0, 1}n:
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(i) If x ∈ L then there exists a witness ρx on p (n) qubits such that A (x, ρx) accepts with proba-
bility ≥ 2/3.

(ii) If x /∈ L then A (x, ρ) accepts with probability ≤ 1/3 for all ρ.

We will define some complexity classes involving untrusted (classical or quantum) advice that
depends only on the input length. This notion has been studied before: Chakaravarthy and Roy [17]
and Fortnow, Santhanam, and Williams [18] defined the complexity class ONP (“Oblivious NP”),
which is like NP except that the witness can depend only on the input length. Independently,
Aaronson [5] defined the complexity class YP,7 which is easily seen to equal ONP ∩ coONP. We
will adopt the “Y” notation in this paper.

We now give a formal definition of YP, as well as a slight variant called YP∗.

Definition 18 A language L is in YP if there exist polynomial-time algorithms A,B and a polynomial-
time computable function p(n) ≤ poly(n) such that:

(i) For all n, there exists an advice string yn ∈ {0, 1}p(n) such that A (x, yn) = 1 for all x ∈
{0, 1}n.

(ii) If A (x, y) = 1, then B (x, y) = L (x).

L is in YP∗ if moreover A ignores x, depending only on y.

Clearly P ⊆ YP∗ ⊆ YP ⊆ P/poly ∩ NP ∩ coNP. Also, Aaronson [5] showed that ZPP ⊆
YP. We will be primarily interested in a quantum analogue of YP∗. This analogue builds on
Definition 14. However, it also models a distinctively quantum ingredient: we consider two-phase
protocols in which an untrusted quantum advice state is first tested in an input-oblivious fashion
and, if accepted, is passed along in altered form to be used in computation with the given input.
This model is natural, since quantum measurements unavoidably alter the measured states; the
alterations performed by the initial testing are also crucial to the power of these protocols. (Roughly
speaking, this works as follows: if the given quantum advice state is a mixture ρ = tρ1 + (1− t)ρ2
of a “good state” ρ1 which passes our test with high probability and is useful for computation, and
a “bad state” ρ2 which passes with low probability, then conditioning on passing the test “filters
out” the contribution of ρ2, making the resulting state more useful.8 We emphasize, however, that
the test involves various measurements that significantly alter even a state that passes with high
probability. The technical core of this procedure has already been given in Theorem 15.)

Definition 19 (YQP and YQP∗) A language L is in YQP if there exists a uniform (i.e., polynomial-
time constructible) family of advice-testing quantum circuits {Yn(x, ρ)}n>0 (as per Definition 14).
Each Yn is of size poly(n) and takes as input an x ∈ {0, 1}n and a p(n)-qubit state ρ (for some
p(n) ≤ poly(n)). We have the following properties:

7YP stands for “Yoda Polynomial-Time,” a nomenclature that seems to make neither more nor less sense than
“Arthur-Merlin.”

8Conversely, if our testing procedure did not alter the advice state, as per our definitions in previous drafts (which
essentially assumed the availability of two identical, independent copies of the state—one for testing and one for
computation), and if t = .5, say, then ρ as above will pass the test with probability close to .5, but ρ cannot be
useful for computation with correctness guarantee close to 1, due to the continuing presence of the useless ρ2 in equal
mixture with ρ1. This weakness necessitated the change in definitions.
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(i) For all n, there exists a setting ρn to the quantum advice register such that for any x ∈ {0, 1}n,
in the execution of Y on (x, ρn) we have E[badv] ≥ 9/10.

(ii) If for any settings (x, ρ) to the input and advice registers we have E[badv] ≥ 1/10, then
Pr[bout = L(x)|badv = 1] ≥ 9/10.

L is in YQP∗ if the circuit family {Yn}n>0 can be additionally be chosen to obey the input-
oblivious property.

We define the corresponding non-uniform classes YQP/poly,YQP∗/poly by removing the require-
ment that the family {Yn}n>0 be uniform.

Clearly BQP ⊆ YQP∗ ⊆ YQP ⊆ BQP/qpoly ∩ QMA ∩ coQMA.

4.4 Characterizing Quantum Advice

We now prove the following characterization of BQP/qpoly, which immediately implies (and strength-
ens) Theorem 2:

Theorem 20 BQP/qpoly = YQP∗/poly.

Proof. One direction (YQP∗/poly ⊆ BQP/qpoly) is obvious, since untrusted quantum advice
and trusted classical advice can both be simulated by trusted quantum advice. We prove that
BQP/qpoly ⊆ YQP∗/poly. Let L ∈ BQP/qpoly, and let Q(x, ρ), {ρ∗n}n>0 be a polynomial-time quan-
tum algorithm (given by a uniform circuit family {Qn}n>0 for input length n) and polynomial-size
quantum advice family defining L. We insist that Q enjoy completeness and soundness parameters
(99/100, 1/100) in place of 2/3, 1/3 in Definition 16; this can be achieved by standard soundness
amplification by providing multiple copies of the trusted advice state. We apply Theorem 15 to
Qn(x, ρ) and {ρ∗n}n>0 with d := 1, for each n. We obtain a (non-uniform) family of input-oblivious
advice-testing quantum circuits {Yn}n>0, such that:

(i) For each n, there is a state σ such that in the execution of Yn(x, σ) we have Pr[badv = 1] ≥
1− e−n;

(ii) For any n > 1 and advice state σ, it holds that for each x ∈ {0, 1}n, in the execution of
Yn(x, σ),

Pr[badv = 1] ≥ n−1 =⇒ |E[bout|badv = 1] − E[Qn(x, ρ
∗
n)]| ≤ n−1 .

Now by the definitions of Qn and ρ∗n, we have |E[Qn(x, ρ∗n)] − L(x)| ≤ 1/100 for all x ∈ {0, 1}n.
Thus, if n is sufficiently large, we have

(iii) For any advice state σ for length n, it holds that for each x ∈ {0, 1}n, in the execution of
Yn(x, σ), if Pr[badv = 1] ≥ 1/10, then we have

|E[bout|badv = 1] − L(x)| ≤ n−1 + 1/100 ≤ 1/10 .
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Thus the family {Yn}n>0 witnesses that L ∈ YQP∗/poly. This proves Theorem 20.

One interesting consequence of Theorem 20 is that YQP/poly = YQP∗/poly. We do not know of
an easier proof of this equality, and we leave as an open question whether, in the uniform setting,
the corresponding equality YQP = YQP∗ holds.

Since we never critically used the assumption that the BQP/qpoly machine computes a language
(i.e., a total Boolean function), a strengthening of Theorem 20 we can easily observe is the promise-
class equality PromiseBQP/qpoly = PromiseYQP∗/poly = PromiseYQP/poly.

4.5 Application to Quantum Communication

We can also use our Theorem 15 to obtain a new positive result about the possibility of robust
communication over fault-prone quantum communication channels (augmented with a trustworthy
classical channel). Our result does not assume any particular error model for quantum channels.
Rather, it asserts that a successful outcome is achieved by the protocol under a perfect transmission,
and that the protocol guards against a certain type of bad outcome under any corruption of the
transmitted quantum state.

Theorem 21 Suppose that Alice, who is computationally unbounded, has a classical description
of an N -qubit quantum state ρ∗. She wants to send ρ∗ to Bob, who is computationally bounded.
Assume that Alice has at her disposal a noiseless one-way classical channel to Bob, as well as a
noisy one-way quantum channel. Bob holds a binary measurement E for which he wishes to learn
E[E(ρ∗)] to within an accuracy ε > 0. We assume E is implemented by a circuit with at most m
gates (under some fixed finite basis); here m is known to Alice, but E is known only to Bob.

Then for all ε > 0, there exists a protocol whereby

• Alice sends Bob a classical string z of poly (N,m, 1/ε) bits, as well as a state σ of poly (N,m, 1/ε)
qubits;

• Bob receives z together with a possibly-corrupted version σ̃ of σ, and performs a (non-binary)
measurement fz (E) on σ̃, outputting a real value β ∈ [0, 1] along with a “success bit” bsuc ∈
{0, 1}. This fz (E) can be computed and performed in poly (N,m, 1/ε) steps, given z together
with a description of E.

The following properties hold:

(i) If σ̃ = σ, then with probability greater than 1− 2−N we have |β − E[E(ρ∗)]| ≤ ε and bsuc = 1;

(ii) For every σ̃ and every measurement E as described above, with probability at least 1 − 2−N ,
Bob either sets bsuc = 0, or outputs a β ∈ [0, 1] such that |β − E[E(ρ)]| ≤ ε.

Proof. We will apply Theorem 15 to the communication setting. The string z plays the role
of the trusted classical advice; the state σ̃ plays the role of the untrusted quantum advice; the
measurement E plays the role of the input x; Bob plays the role of the advice-testing algorithm Y .
We will perform multiple trials to increase our confidence.

We prove the result under the assumption that ε is at least inverse-polynomial in N , which
allows us to apply our prior work more directly. We will assume that ε ≥ N−1; the general result
will follow, since in our construction we may begin by padding the quantum register with 1/ε
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dummy qubits. The protocol will succeed for sufficiently large N—smaller values of N can be
handled by brute force.

Let n > 0 be a fixed description length adequate to describe any m-gate measurement E that
may be held by Bob in our communication scenario, for our specific values of interest m,N ; here
we can take N ≤ n ≤ poly(N,m). Let Qn(E, ξ) be a quantum circuit which receives a description
of a binary measurement E of description length n, described by a circuit in our fixed finite basis.
Qn also receives a quantum state ξ on N qubits, and outputs the result of E(ξ). This Qn can be
implemented in size poly(n,N) ≤ poly(N,m). Let Yn = Yn(E, σ) be the input-oblivious advice-
testing circuit of size poly(N,m) given by Theorem 15 for (Qn, ρ

∗, d := 2).
In our protocol, Alice sends a description of Yn as the reliable classical message z to Bob, and

for the fault-prone quantum state σ, Alice sends T := n4 independent copies of the P -qubit advice
state σ∗ guaranteed to exist by item (i) of Theorem 15; we have |z| ≤ poly(N,m) and σ is on
poly(N,m) qubits, as needed.

Bob receives the (correct) string z, and a quantum state σ̃ on T · P qubits, where we consider
this state to be defined over T registers called the “transmission registers.” Bob acts as follows
(these steps define the measurement fz(E)): For i = 1, 2, . . . , T , Bob executes Yn applied to input
bitstring E, classical advice z, and with the ith transmission register used as the quantum advice
state. For each such application of Yn in turn, Bob measures the bits badv,i, bout,i (here, we use
badv,i to denote the value of badv on the ith trial, and similarly for bout,i). If badv,i = 0 for any i,
Bob sets bsuc := 0 (and sets β := 0, say). Otherwise, Bob sets bsuc := 1 and outputs the value
β := 1

T

∑
i∈[T ] bout,i.

Let us analyze this procedure. First note that when Bob receives the same state σ∗ sent by
Alice, item (i) of Theorem 15 tells us that each badv,i equals 1 with probability at least 1−e−n. Then
by a union bound over all i, for sufficiently large N , each of these bits equals 1 with probability at
least 1 − 2−(n+1). So Pr[bsuc = 1] ≥ 1 − 2−(n+1). Also, item (ii) of Theorem 15 tells us that each
bout,i satisfies |E[bout,i]− E[E(ρ∗)]| = |E[bout,i]−Qn(E, ρ

∗)| ≤ n−2, and these bits are independent.
By Chernoff’s bound, Pr[|β−E[E(ρ∗)]| ≤ n−1] ≥ 1−2−(n+1) for large n. A union bound completes
the proof of item (i) in the Theorem’s statement.

For item (ii), consider any quantum state σ̃ on T · P qubits received by Bob. Each execution
of Bob’s algorithm determines, for each i ∈ [T ], a mixed state ξi on P qubits that describes the
reduced state on the ith transmission register, immediately after Bob has applied Yn to the first
(i − 1) transmission registers and measured badv,1, bout,1, . . . , badv,i−1, bout,i−1. We consider ξi as a
random variable determined by Bob’s execution (acting on the pair z, σ̃).

Say that state ξ on P qubits is good, if in the execution of Yn(x, ξ), we have Pr[badv =
1] ≥ n−2. Let G ⊆ [T ] be the (random) set {i : ξi is good}. Conditioned on any out-
comes badv,1, bout,1, . . . , badv,i−1, bout,i−1 which determine a state ξi which is good, item (ii) of The-
orem 15 tells us that the expected value of bout,i, conditioned on [badv,i = 1], is within ±n−2 of
E[Q(E, ρ∗)] = E[E(ρ∗)].

For i ∈ [T ], let the random variable Zi ∈ {0, 1} be defined by

Zi :=

{
bout,i if i ∈ G and badv,i = 1,

an independent coin flip with bias E[E(ρ∗)] otherwise.
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Note that we have the relation |E[Zi|Z1, . . . , Zi−1]− E[E(ρ∗)]| ≤ n−2. By an application of Azuma’s
inequality,

Pr

[∣∣∣∣∣
1

T

∑

i∈T

Zi − E[E(ρ∗)]

∣∣∣∣∣ ≥ n−2 + .5n−1

]
≤ exp

(
−Ω((.5n−1)2 · T )

)
≤ e−n ,

for sufficiently large N .
Now, it is clear that Pr[|[T ] \G| > n ∧ bsuc = 1] ≤ (n−2)n < e−n. If |[T ] \G| ≤ n and bsuc = 1,

then we have badv,i = 1 for all i so that
∣∣ 1
T

∑
i∈T Zi − 1

T

∑
i∈T bout,i

∣∣ ≤ n/T . Combining this with
our previous work, it follows that

Pr

[
bsuc = 1 ∧

∣∣∣∣∣
1

T

∑

i∈T

bout,i − E[E(ρ∗)]

∣∣∣∣∣ ≥
(
n−2 + .5n−1

)
+ n/T

]
≤ 2 · e−n ≤ 2−n ,

for large N ; for such N we have n2 + .5n−1 + n/T ≤ n−1. As n−1 ≤ N−1 ≤ ε, this gives item (ii).

5 Local Hamiltonians and the Complexity of Preparing Quantum

Advice States

In this section we begin the proof of Theorem 1 from the Introduction, which we will obtain from
a slightly more general result.

Let B⊗N denote the 2N -dimensional complex Hilbert space whose unit ball consists of the N -
qubit pure quantum states. Recall that a Hamiltonian on N -qubit states is a Hermitian operator
H : B⊗N → B⊗N . (We will only discuss the action of Hamiltonians on pure states.) H is called a
k-local Hamiltonian if it can be written as H =

∑s
i=1Hi, where each Hi is a Hermitian operator

acting on at most k qubits.
If we combine Theorem 15 with known QMA-completeness reductions (and some further analysis

of these reductions), we can obtain a striking consequence for quantum complexity theory. Namely,
the preparation of quantum advice states can always be reduced to the preparation of ground states of
2-local Hamiltonians—despite the fact that quantum advice states involve an exponential number
of constraints, while ground states of local Hamiltonians involve only a polynomial number. (In
particular, if ground states of local Hamiltonians can be prepared by polynomial-size circuits, then
we have not only QMA = QCMA, but also BQP/qpoly = BQP/poly.) Our objective in Sections 6
and 7 is to prove the following result:

Theorem 22 Let C∗(z, ρ) be a quantum circuit of T gates (each 2-local) taking an input string
z ∈ {0, 1}N and a quantum state ρ on ℓ qubits (we may assume ℓ ≤ 2T ). Let ρ∗ be a distinguished
state on ℓ qubits. For all δ > 0, there exists a second quantum circuit C ′ and a 2-local Hamiltonian
H acting on ℓ′ ≤ poly (T,N, 1/δ) qubits, such that for any ground state |ψ〉 of H and any input
z ∈ {0, 1}N , ∣∣E

[
C ′(z, |ψ〉〈ψ|)

]
− E [C∗(z, ρ∗)]

∣∣ ≤ δ .

While a description of H may not be efficiently computable, C ′ can be constructed in (classical,
deterministic) time poly(T,N, 1/δ), given δ and descriptions of C∗ and H.
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Our proof of Theorem 22 combines Theorem 15 with the following result on the expressive
power of ground states of 2-local Hamiltonians.

Theorem 23 Let V (ξ) be a quantum “verifier” circuit of T gates (each 2-local), which acts on an
m-qubit quantum state ξ and an ancilla register of N −m qubits (we may assume N ≤ 2T ), with
the ancilla register initially in the all-zero state. Suppose that V defines a binary measurement on
ξ. Fix any ε > 0, and assume that maxρ E[V (ρ)] ≥ 1− ε. Then there exists

• A 2-local Hamiltonian HV,ε acting on N ′-qubit states, for some N ′ ≤ poly(T, 1/ε), expressed
as a sum of 2-local terms Hi with operator norm 1

poly(T,1/ε) ≤ ||Hi|| ≤ poly(T, 1/ε); and

• A quantum operation RV,ε mapping N ′-qubit states to m-qubit states,9 implemented by a
quantum circuit with poly(T, 1/ε) gates,

for which the following property holds: if |ψ〉〈ψ| is any ground state of HV,ε, then for ξ :=
RV,ε(|ψ〉〈ψ|) we have

E[V (ξ)] ≥ 1− κ · T κε1/κ ,
where κ > 1 is an absolute constant. Furthermore, HV,ε and RV,ε can be constructed in (classical,
deterministic) time poly(T, 1/ε), given a description of V .

We will obtain Theorem 23 by a detailed analysis of known QMA-completeness reductions. We
defer the proof.

Theorem 1 is now easily obtained:
Proof of Theorem 1. Define a circuit C∗(E, ρ) which takes as input a circuit E of size nc

defining a binary measurement, and a quantum state ρ on n qubits, and executes C(ρ). The circuit
C∗ can be implemented in size poly(n) using 2-local gates, and we have E[C∗(E, ρ)] = E[E(ρ)] for
all inputs (E, ρ) to C∗. The result follows by an application of Theorem 22 to C∗ and ρ∗.

Proof of Theorem 22. We may (by a padding argument as in the proof of Theorem 21) assume
that δ ≥ 2/N . We may also assume that N ≥ 2 and δ < .5. Let n be a value such that for any
z ∈ {0, 1}N , a description of length exactly n can be given for the specialized circuit C∗(z, ·); here,
we can take N ≤ n ≤ poly(T,N).

Let P (C, ξ) be a polynomial-time quantum algorithm which receives a description of a circuit
C, of description length n, defining a binary measurement, and applies C to an ℓ-qubit input state
ξ (where ℓ is as in the statement of Theorem 22), outputting the result.

Let Yn = Yn(C, σ) be the input-oblivious advice-testing circuit provided by Theorem 15 for
(P, ρ∗, d := 2). The number of gates in Yn is at most poly(n) ≤ poly(T,N). Let p be the number
of qubits in the quantum advice register for Yn. Let C ′ = C ′(z, σ) be the circuit which executes
Yn(C

∗(z, ·), σ) and outputs the measured bit bout.
Next we will define H as in the Theorem statement, using Theorem 23. The circuit Yn has two

subcircuits A,B, following Definition 14. Let V (σ) be the circuit which executes A(σ), and outputs
the measured bit badv. By item (i) of Theorem 15, there exists a state σ∗ on p qubits for which
E[V (σ∗)] ≥ 1− 2−n. For large enough N this is greater than 1− ε, where ε := (δ/(2κT κ))κ for the
constant κ > 1 from Theorem 23.

9The state output by RV,ε may be mixed, even if its input state is pure.
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Theorem 23 now gives us a Hamiltonian H = HV,ε and quantum operation R = RV,ε. These
have the property that for any ground state |ψ〉〈ψ| of H, for ξ := R(|ψ〉〈ψ|) we have

E[V (ξ)] ≥ 1− δ/2 > n−2

(the first inequality holding by of our choice of ε). By definition of V , this means that in the
execution of Yn(C(z, ·), ξ), we have Pr[badv = 1] > n−2. (This holds for any z ∈ {0, 1}N ; the
expectation above is independent of z since Yn has the input-oblivious testing property.) By our
guarantee for Yn given in Theorem 15, item (ii), it follows that in the execution of Yn(C(z, ·), ξ) on
any circuit C(z, ·) of description length n,

|E[bout|badv = 1]− E[P (C(z, ·), ρn)]| ≤ n−2 .

Recall from our definition that the output bit of C ′(z, ξ) is distributed as bout in the execution of
Yn(C

∗(z, ·), ξ). Thus,
∣∣E[C ′(z, ξ)] − E[P (C∗(z, ·), ρ∗)]

∣∣ ≤ n−2 + Pr[badv = 0] ,

where badv is as in the execution of Yn(C(z, ·), ξ). We have seen that in this execution Pr[badv =
1] > 1 − δ/2, so the right-hand side above is at most n−2 + δ/2 ≤ δ. Also, by our definitions,
E[P (C(z, ·), ρ∗)] = E[C(z, ρ∗)]. This proves the Theorem.

6 Reduction to 5-local Hamiltonians

In Sections 6 and 7, we prove Theorem 23. The proof is achieved by a sequence of reductions. Each
reduction was defined previously, but we need to establish facts about these reductions not found
in previous references [27, 7, 26, 30]. This requires careful work.

For a Hamiltonian H, we use λ1(H) ≤ . . . ≤ λM (H) to denote the real eigenvalues of H, counted
according to their geometric multiplicity10 and sorted in nondecreasing order. We will use ||H|| to
denote the operator norm of H.

The energy of a pure state |ψ〉 with respect to H is defined as 〈ψ|H|ψ〉. It is a basic fact that
for all vectors |ψ〉 we have 〈ψ|H|ψ〉 ≥ λ1(H) · |||ψ〉||, and the ground states of H are precisely
those unit vectors for which equality holds. In proving Theorem 23 a key role will be played by
nearly-minimal-energy states—those unit vectors |ψ〉 for which 〈ψ|H|ψ〉 ≈ λ1(H).

In this section, we will use the original QMA-completeness reduction, due to Kitaev [27], to
prove Theorem 24 below, a variant of Theorem 23. This variant is weaker, in that the Hamiltonian
H produced is only required to have locality 5, rather than 2; but it is stronger in that the reduction
R is required to produce a useful state given any nearly-minimal-energy state for H (not just any
ground state). This “robust” guarantee will be important in our subsequent construction of 2-local
Hamiltonians. Theorem 24 is also stronger in that H,R are chosen independent of ε, although this
property is not essential for our work.

Theorem 24 Let V (ξ) be a quantum “verifier” circuit of T gates (each 2-local), which acts on an
m-qubit quantum state ξ and an ancilla register of N −m qubits (we may assume N ≤ 2T ), with
the ancilla register initially in the all-zero state. Suppose that V defines a binary measurement on
ξ. Then there exists

10That is, an eigenvalue λ appears p times in the list, where p is the dimension of the eigenspace for λ. By the
spectral theorem we have M = dim(B⊗N ) = 2N .
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• A 5-local Hamiltonian HV acting on N ′-qubit states, for some N ′ ≤ O(T ), expressed as a
sum of 5-local terms Hi of operator norm 1

poly(T,1/ε) ≤ ||Hi|| ≤ poly(T, 1/ε), and

• A quantum operation RV mapping N ′-qubit states to m-qubit states, implemented by a quan-
tum circuit with poly(T ) gates,

for which the following property holds for any ε > 0: if maxρ E[V (ρ)] ≥ 1 − ε, and if |ψ〉 is any
N ′-qubit state such that

〈ψ|HV |ψ〉 < λ1(HV ) + ε ,

then for ξ := RV (|ψ〉〈ψ|) we have

E[V (ξ)] ≥ 1− c · T cε1/c ,

where c > 1 is an absolute constant. Furthermore, HV and RV can be constructed in time poly(T ),
given a description of V .

Theorems 22 and 23 can be similarly strengthened, so that their guarantees hold for nearly-
minimal-energy states of the local Hamiltonian as well as for ground states. The dependence of
the output Hamiltonian upon the choice of error parameters appears necessary in these results,
however.

Similarly to Kitaev’s work, it turns out to be convenient to first prove a weakened form of
Theorem 24 in which the Hamiltonian is only required to be O(log T )-local. This forms the bulk
of our work in this section. It will then be a simple step to reduce the locality to 5.

6.1 The O(log T )-Local Reduction

The Hamiltonian: Say that V , which expects a proof state ξ on m qubits, acts upon the “proof
register” containing ξ and an (N −m)-qubit “ancilla register,” initialized to the all-zero state, by
the sequence U1, . . . , UT of unitary transformations, each of which is 2-local. Here we may assume
(by padding, if necessary) that T +1 is a power of 2. The transformation performed by V , applied
to a pure input state |ψ〉〈ψ|, produces the state

UT . . . U1 ·
(
|ψ〉 ⊗ |0N−m〉

)
.

Afterward, we assume that the first qubit is measured in the standard basis; V outputs the measured
value. We use V to define a Hamiltonian H = HV acting on N ′ := N + D qubits, where D :=
log2(T +1), as follows. We speak of the first N qubits (consisting of the proof and ancilla registers)
jointly as the “circuit register,” and the last N qubits as a “clock register.” The local unitaries
U1, . . . , UT will be regarded as operators on the Hilbert space of the circuit register. We identify
the computational basis states of the clock register with the integers {0, 1, . . . , T}, and we write
these basis states as |t〉 for 0 ≤ t ≤ T .

To specify projective operators acting on the circuit register, we use the notation |b〉〈b|i for
b ∈ {0, 1}, i ∈ [N ] to denote the projection onto the subspace spanned by all computational basis
vectors whose ith coordinate is b. Formally,

|b〉〈b|i := Ii−1 ⊗ |b〉〈b| ⊗ IN−i .
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We define a Hamiltonian operator H = HV having three terms, Hin,Hout, and Hprop. For our
analysis we will depart slightly from [26] in our definitions; however, each of the three terms will
be a positive scalar multiple of the corresponding term in [26]. We define

H := Hin +Hout +Hprop , (1)

where

Hin :=
1

2

N∑

i=m+1

|1〉〈1|i ⊗ |0〉〈0| (2)

(here the rightmost projector |0〉〈0| is onto the basis vector |t = 0〉 for the clock register),

Hout :=
1

2
|0〉〈0|1 ⊗ |T 〉〈T | , (3)

and

Hprop :=
T∑

t=1

Hprop,t , (4)

where the operators Hprop,t are defined for t ∈ [T ] by

Hprop,t :=
1

2

(
IN ⊗ |t〉〈t|+ IN ⊗ |t− 1〉〈t− 1| − Ut ⊗ |t〉〈t− 1| − U †

t ⊗ |t− 1〉〈t|
)
. (5)

Note immediately that the operator norms of the individual O(log T )-local terms of H are each
Θ(1).

One can verify that Hprop,t is Hermitian. More strongly, Hin,Hout, and the terms Hprop,t are all
positive semidefinite (PSD). For the first two this is obvious: Hin,Hout are orthogonal projectors.
To see that Hprop,t is PSD, it is clearly enough to show that 〈w|Hprop,t|w〉 ≥ 0 for any |w〉 of form
|w〉 = |wt−1〉 ⊗ |t− 1〉+ |wt〉 ⊗ |t〉. We compute

2 · 〈w|Hprop,t|w〉 = 〈wt|wt〉+ 〈wt−1|wt−1〉 − 〈wt|Ut|wt−1〉 − 〈wt−1|U †
t |wt〉

= |||w〉||2 − 〈wt|Ut|wt−1〉 − 〈wt|Ut|wt−1〉
(a real value, so Hprop,t is Hermitian)

≥ |||w〉||2 − 2|||wt〉|| · ||Ut|wt−1〉||
= |||w〉||2 − 2|||wt〉|| · |||wt−1〉||
≥ |||w〉||2 − |||wt〉||2 − |||wt−1〉||2
= 0 ,

as needed. Thus H, a sum of PSD operators, is itself PSD (and λ1(H) ≥ 0). This will be important
for our analysis.

The transformation of quantum states: For our transformation R = RV of quantum states
as in Theorem 23, we use the operation which first measures the clock register, observing some
value t ∈ [0, T ], and then applies U †

1 . . . U
†
T to the circuit register, outputting the resulting m-

qubit reduced state on the proof register alone (eliminating the ancilla and clock registers). This
transformation is implementable in size poly(T ), since an inverse unitary operation U † is k-local
whenever U is k-local.
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Objective of the analysis: It is shown in [27, 7] that, if maxρ E[V (ρ)] ≥ 1−ε, then the minimal
eigenvalue λ1(H) is at most O(ε). (This fact is unaffected by our scalar-multiple adjustments to
the definitions of Hin,Hout,Hprop.) In our analysis, we will assume that λ1(H) < .01δ/T , where
δ > 0 will be defined as a sufficiently small inverse-polynomial in T . This smallness assumption
is without loss of generality, since our sought-after bound in Theorem 24 allows a poly(T ) slack
factor. We will then show that if |ψ〉 is any state satisfying 〈ψ|H|ψ〉 < .02δ/T , the m-qubit (mixed)
state ξ := R(|ψ〉〈ψ|) satisfies E[V (ξ)] ≥ 1 − δΩ(1). This suffices to prove the weakened version of
Theorem 24 in which H is only required to be O(log T )-local.

6.2 Describing the Action of H on a State

Here we introduce notation and derive some useful expressions which describe the action of H on
an arbitrary pure state.

Consider an (N + log2(T + 1))-qubit state |ψ〉, given by

|ψ〉 =
∑

y∈{0,1}N ,t∈{0,1,...,T}

αy,t|y〉 ⊗ |t〉 ,

with
∑

y,t |αx,t|2 = 1. We may write

|ψ〉 =
∑

t∈{0,1,...,T}

|ψt〉 ⊗ |t〉 ,

where
|ψt〉 :=

∑

y∈{0,1}N

αy,t|y〉 .

is a state on the circuit register. Note, |ψt〉 is not in general a unit vector; we have
∑

t |||ψ〉t||2 = 1.
We define vectors |ξ0〉, . . . , |ξT 〉 by the relation

H|ψ〉 =

T∑

t=0

|ξt〉 ⊗ |t〉 , (6)

noting that the |ξt〉 will also not in general be unit vectors (nor will H|ψ〉 be).
Now for t ∈ [0, T ] define

|φt〉 := U †
1U

†
2 . . . U

†
t |ψt〉 ,

so that
|ψt〉 = UtUt−1 . . . U1|φt〉 .

(Here, |φ0〉 = |ψ0〉 and |φ1〉 = U †
1 |ψ1〉.) Note that |||φt〉|| = |||ψt〉|| and

T∑

t=0

|||φt〉||2 =
∑

t

|||ψt〉||2 = 1 ,

as the Ut are unitary.
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With these definitions, we first examine the action of Hprop on |ψ〉. For t ∈ [T ], the operator
Hprop,t acts as

Hprop,t|ψ〉 =
1

2

(
|ψt〉 ⊗ |t〉+ |ψt−1〉 ⊗ |t− 1〉 − Ut|ψt−1〉 ⊗ |t〉 − U †

t |ψt〉 ⊗ |t− 1〉
)
, (7)

which we can express as

Hprop,t|ψ〉 =
1

2

(
Ut . . . U1 (|φt〉 − |φt−1〉)⊗ |t〉 + Ut−1 . . . U1 (|φt−1〉 − |φt〉)⊗ |t− 1〉

)
. (8)

Next, observe that Hin only outputs vectors in the span of the basis vectors with clock-register
equal to 0, i.e., in the span of {|y〉⊗|0〉}y , and that Hout outputs vectors in the span of {|y〉⊗|T 〉}y .
Thus for t ∈ [T − 1], the only contribution of terms of form |y〉 ⊗ |t〉 to the output of H|ψ〉 comes
from Hprop,t and Hprop,t+1, and we compute that for such t,

|ξt〉 = Ut . . . U1 (|φt〉 − .5|φt−1〉 − .5|φt+1〉) . (9)

In particular, as (Ut . . . U1) is unitary we have

|||ξt〉 ⊗ |t〉|| = |||ξt〉|| = |||φt〉 − .5|φt−1〉 − .5|φt+1〉|| . (10)

Next we examine the terms in H|ψ〉 on clock-value t = 0, which come solely from the actions of
Hin and Hprop,1. Define the orthogonal projector Πin acting on the N -qubit circuit register by

Πin :=

N∑

i=m+1

|1〉〈1|i ;

the operator
Π′

in := (IN −Πin)

is also an orthogonal projection. We have

|ξ0〉 = .5|ψ0〉 − .5U †
1 |ψ1〉+ .5Πin|ψ0〉

= .5|φ0〉 − .5|φ1〉+ .5Πin|φ0〉
= |φ0〉 − .5(|φ0〉 −Πin|φ0〉)− .5|φ1〉
= |φ0〉 − .5Π′

in|φ0〉 − .5|φ1〉 .

Thus,
|||ξ0〉 ⊗ |0〉|| = |||ξ0〉|| = |||φ0〉 − .5Π′

in|φ0〉 − .5|φ1〉|| . (11)

Finally we examine the terms in H|ψ〉 on clock-value T , which come solely from the actions of Hout

and Hprop,T . Define the projector Πout acting on the circuit register by Πout := |0〉〈0|1; define the
operators

Φout := U †
1 . . . U

†
TΠoutUT . . . U1

and
Φ′
out := IN − Φout
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acting on N qubits. Then we have

|ξT 〉 = .5|ψT 〉 − .5UT |ψT−1〉+ .5Πout|ψT 〉 (12)

= |ψT 〉 − .5UT |ψT−1〉 − .5|ψT 〉+Πout|ψT 〉 (13)

= UT . . . U1

(
|φT 〉 − .5|φT−1〉 − .5|φT 〉

)
+ .5Πout|ψT 〉 (14)

= UT . . . U1

(
|φT 〉 − .5|φT−1〉 − .5|φT 〉

)
+ .5ΠoutUT . . . U1|φT 〉 (15)

= UT . . . U1

(
|φT 〉 − .5|φT−1〉 − .5|φT 〉+ .5U †

1 . . . U
†
TΠoutUT . . . U1|φT 〉

)
(16)

= UT . . . U1

(
|φT 〉 − .5|φT−1〉 − .5Φ′

out|φT 〉
)
. (17)

Thus,
|||ξT 〉 ⊗ |T 〉|| = |||ξT 〉|| = |||φT 〉 − .5Φ′

out|φT 〉 − .5|φT−1〉|| . (18)

6.3 Analyzing Low-Energy States of H

Here we argue that if |ψ〉 is any state for which the energy 〈ψ|H|ψ〉 is sufficiently small, then our
operation R = RV , when applied to |ψ〉〈ψ|, produces a state accepted with high probability by V .
No corresponding result is needed or established in Kitaev’s original work [27], which analyzed the
minimal eigenvalue of H, but not the structure of ground states themselves. Subsequent works,
including [26, 30], have provided more detailed information about the low-energy subspaces of
several local-Hamiltonian reductions (although these works do not immediately yield the conclusions
we seek). We will make crucial use of results from [26, 30] in Section 7.

We first describe the idea of our analysis. Suppose |ψ〉 is any unit vector for which ||H|ψ〉|| is
“very small.” We have

||H|ψ〉||2 =
∑

t

|||ξt〉 ⊗ |t〉||2 =
∑

t

|||ξt〉||2 ,

so each |ξt〉 is a very small vector. If t ∈ [T − 1], then Eq. (10) tells us that |φt〉 = U †
1 . . . U

†
t |ψt〉

is nearly equal to the average of |φt−1〉 and |φt+1〉. For t = 0, Eq. (11) tells us that |φ0〉 is nearly
the average of Π′

in|φ0〉 and |φ1〉; and for t = T , Eq. (18) tells us that |φT 〉 is nearly the average of
Φ′
out|φT 〉 and |φT−1〉. Thus, the sequence

Π′
in|φ0〉, |φ0〉, |φ1〉, . . . , |φT 〉, Φ′

out|φT 〉 (19)

is very nearly an arithmetic progression within the N -qubit Hilbert space of the circuit register.
Now there are essentially two possibilities. In the first, “good” case, the terms in this near-

arithmetic progression are all nearly equal to |φ0〉, so that each |ψt〉 is nearly equal to Ut . . . U1|ψ0〉.
Inspecting the definitions of Π′

in and Φ′
out, we then find that Πin|ψ0〉 and Πout|ψT 〉 are both ≈ 0.

This implies that |ψ0〉, after normalization, is close to a legal input state (i.e., with the ancilla
register in the all-zero state) causing the verifier V to accept with high probability. Moreover, we
may obtain a near-perfect copy of |ψ0〉 by the operation RV defined earlier.

In the second, “bad” case, our near-arithmetic progression has some nontrivial step size, and
its terms are close to being (T + 3) equally-spaced points along some line in Hilbert space. Now
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in such an arrangement, it is an intuitive fact that the furthest of these points from the origin will
be either the first or the last point along the line. Thus, either Π′

in|φ0〉 or Φ′
out|φT 〉 will have the

largest norm from among the vectors in our sequence. However, one easily verifies that Π′
in and

Φ′
out each have operator norm at most 1, so that ||Π′

in|φ0〉|| ≤ |||φ0〉|| and ||Φ′
out|φT 〉|| ≤ |||φT 〉||. So

in fact the bad case cannot occur.
With this informal sketch in mind, we begin. Fix any δ > 0 satisfying

δ <
1

88(T + 3)18
.

As discussed in Section 6.1, we will assume that there is some unit vector |ψ〉 =
∑T

t=0 |ψt〉 ⊗ |t〉
such that

〈ψ|H|ψ〉 ≤ .02δ/T ,

and will show that E[V (ξ)] ≥ 1− δΩ(1) , where ξ := R(|ψ〉〈ψ|). First, we claim that the vector H|ψ〉
has small norm. To see this, first use the spectral theorem to write

H =
∑

ℓ∈[2N′ ]

λℓ|ℓ〉〈ℓ| ,

where {|ℓ〉} is an orthonormal eigenbasis for H and {λℓ = λℓ(H)} are the corresponding eigenvalues.
We have 0 ≤ λ1 ≤ . . . ≤ λ2N′ . Write |ψ〉 =∑ℓ∈[2N′ ] βℓ|ℓ〉, with βℓ ∈ C and

∑
ℓ∈[2N′ ] |βℓ|2 = 1. We

have the expressions

H|ψ〉 =
∑

ℓ∈[2N′ ]

βℓλℓ|ℓ〉 , ||H|ψ〉||2 =
∑

ℓ∈[2N′ ]

|βℓ|2λ2ℓ , 〈ψ|H|ψ〉 =
∑

ℓ∈[2N′ ]

|βℓ|2λℓ .

Thus ||H|ψ〉||2 ≤ λ2N′ · 〈ψ|H|ψ〉 = ||H|| · 〈ψ|H|ψ〉. We have the crude operator-norm bound
||H|| ≤ 10T , which follows by summing bounds on the norms of each term of H. Thus,

||H|ψ〉||2 =

T∑

t=0

|||ξt〉||2 ≤ δ , (20)

where we again define {|ξt〉}t by the relation H|ψ〉 =∑t |ξt〉 ⊗ |t〉.
For each t ∈ {0, 1, . . . , T}, let δt := |||ξt〉||2. Define

|∆0〉 := |φ0〉 −Π′
in|φ0〉

as the difference between the first two terms in the sequence from Eq. (19). For t ∈ [T ], define

|∆t〉 := |φt〉 − |φt−1〉 ,

and define
|∆T+1〉 := Φ′

out|φT 〉 − |φT 〉 .
By Eq. (11), we have

δ0 = |||ξ0〉||2

= ||.5(|φ0〉 −Π′
in|φ0〉)− .5(|φ1〉 − |φ0〉)||2

= .25|||∆0〉 − |∆1〉||2 . (21)
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Similarly, by Eq. (10), for t ∈ [T − 1] we have

δt = |||ξt〉||2

= ||.5(|φt〉 − |φt−1〉)− .5(|φt+1〉 − |φt〉)||2

= .25|||∆t〉 − |∆t+1〉||2 . (22)

Finally, by Eq. (18) we have

δT = |||ξT 〉||2

= ||.5(|φT 〉 − |φT−1〉)− .5(Φ′
out|φT 〉 − |φT 〉)||2

= .25|||∆T 〉 − |∆T+1〉||2 . (23)

Combining our work, we find that for each t ∈ {0, 1, . . . , T} we have

|||∆T+1〉 − |∆T 〉|| = 2
√
δt . (24)

At this point, for notational convenience we define

|φ−1〉 := Π′
in|φ0〉 , |φT+1〉 := Φ′

out|φT 〉 .

From the definitions of Π′
in,Φ

′
out one can verify that their operator norms are each at most 1, so

that
|||φ−1〉|| ≤ |||φ0〉|| ≤ |||ψ〉|| = 1

and
|||φT+1〉|| ≤ |||φT 〉|| ≤ |||ψ〉|| = 1 .

By our definitions, for each t ∈ [T + 1] we have

|φt〉 = |φ−1〉+
t∑

t′=0

|∆t′〉

= |φ−1〉+
t∑

t′=0

(
|∆0〉+

t′−1∑

t′′=0

(|∆t′′+1〉 − |∆t′′〉)
)

= |φ−1〉+ (t+ 1)|∆0〉+
t−1∑

s=0

(t− s) · (|∆s+1〉 − |∆s〉) .

Using the triangle inequality and Eq. (24), we find that for t ∈ [T + 1],

|||φt〉 − (|φ−1〉+ (t+ 1)|∆0〉)|| =

∣∣∣∣∣

∣∣∣∣∣
t−1∑

s=0

(t− s) · (|∆s〉 − |∆s−1〉)
∣∣∣∣∣

∣∣∣∣∣

≤ 2 ·
t−1∑

s=0

(t− s)
√
δs . (25)

In particular, this implies that

|||φT 〉|| ≤ |||φ−1〉+ (T + 1)|∆0〉||+ 2 ·
T−1∑

s=0

(T − s)
√
δs
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and

|||φT+1〉|| ≥ |||φ−1〉+ (T + 2)|∆0〉|| − 2 ·
T∑

s=0

(T − s+ 1)
√
δs .

To understand these bounds, consider the linear function ℓ : RT+1 → R given by

ℓ(x0, . . . , xT ) :=

T∑

s=0

(T − s+ 1)xs .

It is a standard fact that the maximum value of ℓ in the disk B0,r = {x ∈ RT+1 :
∑

s x
2
s ≤ r2} is

attained at the point

x∗ = (x∗0, . . . , x
∗
t ) := r · ∇ℓ

||∇ℓ|| ,

where the gradient function ∇ℓ is defined as

∇ℓ :=

(
∂ℓ

∂x0
, . . . ,

∂ℓ

∂xT

)
.

In our case, the gradient is the constant vector ∇ℓ = (T + 1, T, T − 1, . . . , 1).
Now recall that

∑T
s=0 δs ≤ δ. It follows that

T∑

s=0

(T − s+ 1)
√
δs = ℓ(

√
δ0,
√
δ1, . . . ,

√
δT )

≤ ℓ

(√
δ · ∇ℓ

||∇ℓ||

)

=

√
δ

||∇ℓ|| · ℓ(∇ℓ)

=

√
δ√∑T

s=0(T − s+ 1)2
·
(

T∑

s=0

(T − s+ 1)2

)

=

√√√√δ ·
T∑

s=0

(T − s+ 1)2

=

√
δ(T + 2)(T + 3)(2T + 3)

6

<

√
δ(T + 3)3

3
. (26)

Combining this with Eq. (25), we find that for t ∈ [T + 1],

|||φt〉 − (|φ−1〉+ (t+ 1)|∆0〉)|| ≤ 2

√
δ(T + 3)3

3
. (27)

In particular, we have

|||φT 〉|| ≤ |||φ−1〉+ (T + 1)|∆0〉||+ 2

√
δ(T + 3)3

3
(28)
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and

|||φT+1〉|| ≥ |||φ−1〉+ (T + 2)|∆0〉|| − 2

√
δ(T + 3)3

3
. (29)

Next, we claim that the quantity

Qext := |||φ−1〉||2 + |||φ−1〉+ (T + 2)|∆0〉||2

is slightly larger than
Qint := |||φ0〉||2 + |||φ−1〉+ (T + 1)|∆0〉||2 ,

if |∆0〉 is of noticeable size. This will be a useful way to quantify our intuition that the largest
point in an arithmetic progression should be one of the endpoints. Recall that |φ0〉 = |φ−1〉+ |∆0〉.
We have

Qint =
(
〈φ−1|φ−1〉+ 〈∆0|∆0〉+ 〈φ−1|∆0〉+ 〈φ−1|∆0〉

)

+
(
〈φ−1|φ−1〉+ (T + 1)2〈∆0|∆0〉+ (T + 1)

(
〈φ−1|∆0〉+ 〈φ−1|∆0〉

))

= 2|||φ−1〉||2 + (T 2 + 2T + 2)|||∆0〉||2 + (T + 2)
(
〈φ−1|∆0〉+ 〈φ−1|∆0〉

)
.

By a similar calculation,

Qext = 2|||φ−1〉||2 + (T 2 + 2T + 4)|||∆0〉||2 + (T + 2)
(
〈φ−1|∆0〉+ 〈φ−1|∆0〉

)
,

so that
Qext −Qint = 2 · |||∆0〉||2 . (30)

We next define
Q′

ext := |||φ−1〉||2 + |||φT+1〉||2

and
Q′

int := |||φ0〉||2 + |||φT 〉||2 .
Using Eq. (29), we have

Qext −Q′
ext = |||φ−1〉+ (T + 2)|∆0〉||2 − |||φT+1〉||2

≤
(
|||φT+1〉||+ 2

√
δ(T + 3)3

3

)2

− |||φT+1〉||2

≤ 4δ(T + 3)3

3
+ 4

√
δ(T + 3)3

3

≤ 8

√
δ(T + 3)3

3
(31)

where in the last two steps we used the fact that |||φT+1〉|| ≤ 1 and our smallness assumption on δ.
Similarly, using Eq. (28),

Q′
int −Qint = |||φT 〉||2 − |||φ−1〉+ (T + 1)|∆0〉||2

≤ |||φT 〉||2 −
(
|||φT 〉|| − 2

√
δ(T + 3)3

3

)2

≤ 4

√
δ(T + 3)3

3
, (32)
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where in the last step we used that |||φ〉T || ≤ 1.
Combining Eqs. (30), (31), and (32), we compute that

Q′
ext −Q′

int = (Q′
ext −Qext) + (Qext −Qint) + (Qint −Q′

int)

≥ −8

√
δ(T + 3)3

3
+ 2||∆0||2 − 4

√
δ(T + 3)3

3

= 2
(
||∆0||2 −

√
12δ(T + 3)3

)
. (33)

On the other hand, recall that |||φ−1〉|| ≤ |||φ0〉|| and |||φT+1〉|| ≤ |||φT 〉||. Thus, Q′
ext − Q′

int ≤ 0.
With Eq. (33), this implies that

|||∆0〉|| ≤ (12δ)1/4 (T + 3)3/4 . (34)

Informally, this tells us that |∆0〉 is small, so that we are not in the “bad case” described earlier.
Now, Eqs. (27) and (34) combine to show us that |φ1〉, |φ2〉, . . . , |φT+1〉 are all close to |φ−1〉:

for t ∈ [T + 1],

|||φt〉 − |φ−1〉|| ≤
∣∣∣∣
∣∣∣∣|φt〉 − (|φ−1〉+ (t+ 1)|∆0〉)

∣∣∣∣
∣∣∣∣+
∣∣∣∣
∣∣∣∣(|φ−1〉+ (t+ 1)|∆0〉)− |φ−1〉

∣∣∣∣
∣∣∣∣

≤ 2

√
δ(T + 3)3

3
+ (t+ 1)|||∆0〉||

≤ 2

√
δ(T + 3)3

3
+ (12δ)1/4 (T + 3)7/4

≤ 4δ1/4(T + 3)7/4 , (35)

using our smallness assumption on δ for the last step. This also implies that

|||φT+1〉 − |φT 〉|| ≤ 8δ1/4(T + 3)7/4 . (36)

Also, using Eq. (34) again, we have

|||φ0〉 − |φ−1〉|| = |||∆0〉|| ≤ 2δ1/4(T + 3)3/4 . (37)

Next we argue that for each t ∈ [0, T ], the vector |φt〉 has norm close to T−1/2. Recall that
|||φt〉|| = |||ψt〉|| for t ∈ [0, T ], and that

∑T
t=0 |||ψt〉||2 = 1. Thus there is at least one value

t∗ ∈ [0, T ] for which |||φt∗〉|| ≥ (T + 1)−1/2. Then, using Eq. (35), for any t ∈ [0, T + 1] we have

|||φt〉|| ≥ |||φt∗〉|| − |||φt∗〉 − |φ−1〉|| − |||φ−1〉 − |φt〉||
≥ (T + 1)−1/2 − 8δ1/4(T + 3)7/4

≥ (1− δ1/8)(T + 1)−1/2 , (38)

where in the last step we again used our smallness assumption on δ. Similarly, using Eqs. (35)
and (37) we obtain

|||φ−1〉|| ≥ (1− δ1/8)(T + 1)−1/2 .

On the other hand, there is also a t∗ ∈ [0, T ] for which |||φt∗〉|| ≤ (T + 1)−1/2. By modifying the
above arguments only slightly, we find that for each t ∈ [−1, T ],

|||φt〉|| ≤ (1 + δ1/8)(T + 1)−1/2 . (39)
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For t ∈ [−1, T + 1], define the normalized vector

|̂φt〉 :=
|φt〉

|||φt〉||
.

Also, for t ∈ [0, T ], similarly define

|̂ψt〉 :=
|ψt〉

|||ψt〉||
.

Next, we define γt by the relation

|̂φt〉 = (1 + γt)
√
T + 1 · |φt〉 ;

by Eqs. (38)-(39), we have γt ∈ [−δ1/8,+δ1/8]. Then for t ∈ [0, T + 1] we have

|||̂φt〉 − |̂φ−1〉|| ≤
√
T + 1 · (|||φt〉 − |φ−1〉|| + |γt| · |||φt〉||+ |γ−1| · |||φ−1〉||)

≤
√
T + 1 ·

(
4δ1/4(T + 3)7/4 + 2δ1/8(1 + δ1/8)(T + 1)−1/2

)

≤ 4δ1/4(T + 3)9/4 + 3δ1/8

≤ 4δ1/8 . (40)

This in particular implies

4δ1/8 ≥ ||UT . . . U1(|̂φT 〉 − |̂φ−1〉)|| =

∣∣∣∣
∣∣∣∣̂|ψT 〉 − UT . . . U1

(
Π′

in|ψ0〉
||Π′

in|ψ0〉||

)∣∣∣∣
∣∣∣∣ . (41)

Next, expanding the definitions of terms in Eq. (36), we find that

8δ1/4(T + 3)7/4 ≥ ||Φ′
out|φT 〉 − |φT 〉||

= ||Φout|φT 〉||
= ||U †

1 . . . U
†
TΠoutUT . . . U1(U

†
1 . . . U

†
T |ψT 〉)||

= ||U †
1 . . . U

†
TΠout|ψT 〉||

= ||Πout|ψT 〉|| . (42)

Now Eq. (38), applied with t := T , tells us that |||ψT 〉|| = |||φT 〉|| ≥ (1−δ1/8)(T+1)−1/2. Combining
this with Eq. (42), we have

||Πout
̂|ψT 〉|| ≤ 2

√
T + 1 · 8δ1/4(T + 3)7/4 ≤ 16δ1/4(T + 3)9/4 . (43)

Πout is an orthogonal projection and has operator norm 1. This fact, combined with Eqs. (41)
and (43), allows us to infer that

∣∣∣∣
∣∣∣∣Πout

(
UT . . . U1

(
Π′

in|ψ0〉
||Π′

in|ψ0〉||

))∣∣∣∣
∣∣∣∣ ≤ 4δ1/8 + 16δ1/4(T + 3)9/4 ≤ 8δ1/8 .

This shows that the quantum state |̂φ−1〉 = Π′
in|ψ0〉

||Π′
in|ψ0〉||

, when set as the initial state of the circuit

register of the verifier V , causes V to accept with probability ≥ 1 − δΩ(1). Also, |̂φ−1〉 lies in the
kernel of the orthogonal projector Πin = IN −Π′

in, so its final N−m qubits are in the all-zero state.
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Finally, we claim that being given the state |ψ〉 allows us to recover a close approximation to

|̂φ−1〉 by applying our quantum operation R = RV . This procedure first measures the clock register.

If t ∈ [T ] is observed, the post-measurement circuit register state is |̂ψt〉; the transformation

|̂ψt〉 −→ U †
1 . . . U

†
t |̂ψt〉 = |̂φt〉 ;

is then performed. (If the value t = 0, the post-measurement state on the circuit register is

|̂ψ0〉 = |̂φ0〉 and R applies none of these unitaries.) Eq. (40) tells us that the resulting state |̂φt〉
on the circuit register is 4δ1/8-close to the desired state |̂φ−1〉. Thus, the reduced state of |̂φt〉 on
the m-qubit proof register (which R outputs) causes V to accept with probability ≥ 1− δΩ(1). We
have established the variant of Theorem 24 which requires H only to be O(log T )-local.

6.4 Reduction to Locality 5

Following [27, 7], we now describe a small alteration of the above O(log T )-local reduction that
produces a 5-local Hamiltonian.

The modified reduction: The Hilbert space used still consists of an N -qubit along with a “clock
register.” This time, however, the clock register consists of T qubits; informally, its “intended
purpose” is to store a time-index t ∈ [0, T ] by the unary encoding |1t0T−t〉. A clock-register basis
state of this form is called valid ; basis states not of this form are said to be invalid, and will be
penalized by our Hamiltonian. For t ∈ [0, T − 2] and bits a, b, c, a′, b′, c′, we let

|a′b′c′〉〈abc|clk(t)

denote the 3-local operator |a′b′c′〉〈abc| applied to the tth, (t + 1)st, and (t + 2)nd clock register
qubits. Similarly, |a′b′〉〈ab|clk(t) denotes |a′b′〉〈ab| applied to the tth and (t+ 1)st clock qubits.

We modify the Hamiltonian H = HV : B⊗(N+D) → B⊗(N+D) from our previous work to pro-
duce a new Hamiltonian H ′ = H ′

V acting on the new Hilbert space B⊗(N+T ). First, in each
tensor term appearing in Hin,Hout, we replace the clock-register projectors |0〉〈0|, |T 〉〈T | with
|00〉〈00|clk(0), |11〉〈11|clk(T−1) respectively to get modified operators H ′

in,H
′
out acting on our new

Hilbert space:

H ′
in :=

1

2

N∑

i=m+1

|1〉〈1|i ⊗ |00〉〈00|clk(0) , H ′
out :=

1

2
|0〉〈0|1 ⊗ |11〉〈11|clk(T−1) .

Similarly, we define H ′
prop :=

∑T
t=1H

′
prop,t as follows. In each tensor-product term defining Hprop,t,

if t ∈ [2, T − 1] then we replace the clock-register projectors

|t〉〈t| , |t− 1〉〈t− 1| , |t〉〈t− 1| , |t− 1〉〈t|

with, respectively,

|110〉〈110|clk(t−1) , |100〉〈100|clk(t−1) , |110〉〈100|clk(t−1) , |100〉〈110|clk(t−1) ,

to obtain H ′
prop,t. Finally, we introduce a new “clock term” H ′

clk :=
∑T

t=1 IN ⊗ |01〉〈01|clk(t−1),
penalizing invalid clock-register states. We let H ′ := H ′

in+H
′
out+H

′
prop+H

′
clk. The operator norms
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of the individual 5-local terms of H ′ are Θ(1), satisfying the norm requirement in Theorem 24’s
statement.

The modified quantum operation R′ is defined in close analogy to R from our previous reduc-
tion. The only difference is that when R′ first measures the clock register (now on T qubits), a
measurement outcome 1t0T−t is interpreted as the time-index t, and an outcome not of this form
is interpreted (arbitrarily) as seeing the time-index t = 0.

The analysis: Following previous works, we make several observations about H ′. First, H ′ is
PSD by the same argument as for H, and its operator norm still satisfies the crude upper-bound
||H ′|| ≤ 10T used previously. Next, define the subspace Sval ≤ B⊗(N+T ) as all vectors which place
amplitude 0 on invalid clock-register basis states. Note that H ′(Sval) ⊆ Sval, and therefore (as H ′

is Hermitian) also H ′(S⊥
val) ⊆ S⊥

val.
Let L : Sval → B⊗(N+D) be the linear mapping defined on basis states by

L(|x〉 ⊗ |1t0T−t〉) := |x〉 ⊗ |t〉 for x ∈ {0, 1}N , t ∈ [0, T ].

Then we observe that for any |φ〉 ∈ Sval, we have the relation

H ′(|φ〉) = H(L(|φ〉)) . (44)

Moreover, L is surjective; it follows that λ1(H
′) ≤ λ1(H). We claim, however, that for any

|φ〉 in the orthogonal complement S⊥
val (consisting of vectors which place zero amplitude on valid

clock-register states), we have 〈φ|H ′|φ〉 ≥ 1. To see this, just note that 〈φ|H ′
clk|φ〉 ≥ 1, and that

〈φ|(H ′
in+H

′
out+H

′
⊥)|φ〉 ≥ 0 (since each of the three inner summands is PSD). Thus Sval is spanned

by eigenvalues of H ′ all of which are ≥ 1.
Following the discussion at the end of Section 6.1, let us once more assume that maxξ E[V (ξ)] ≥

1 − γ, where γ = Θ(δ/T ) is sufficiently small that λ1(H) < .001δ/T , where δ is as in Eq. (20).
Let |φ〉 ∈ B⊗(N+T ) be any unit vector satisfying 〈φ|H ′|φ〉 < .002δ/T (some such |φ〉 must exist,
since λ1(H

′) ≤ λ1(H)). Decompose |φ〉 = α|φ〉val + β|φ〉inval into its components in Sval, S
⊥
val

respectively (where |φ〉val, |φ〉inval are normalized). H ′|φ〉inval is contained in S⊥
val and has inner

product at least 1 with |φ〉inval, so we must have |β|2 ≤ .002δ/T . Thus, if we define the unit vector
|φ′〉 := α

|α| |φ〉val ∈ Sval, we have

∣∣∣∣|φ〉 − |φ′〉
∣∣∣∣ ≤ O(

√
δ/T ) . (45)

|φ′〉 also satisfies 〈φ′|H ′|φ′〉 ≤ 1
|α|2

·〈φ|H ′|φ〉 < .02δ/T . Eq. (44) and our analysis of the Hamiltonian

H from previous sections then imply that the state ξ := R(L(|φ′〉〈φ′|)) satisfies E[V (ξ)] ≥ 1− δΩ(1).
Now observe that, by our definition of R′, the state R′(|φ′〉〈φ′|) is identically distributed to ξ
(over the randomness in the measurement of the clock register). Thus E[V (R′(|φ′〉〈φ′|))] ≥ 1 −
δΩ(1). Combining this with Eq. (45), we conclude that E[V (R′(|φ〉〈φ|))] ≥ 1 − δΩ(1). This proves
Theorem 24.

7 Reduction to 2-local Hamiltonians
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7.1 Goals of the Section, and Proof of Theorem 23

In this section, we complete the proof of Theorem 23. The following definition will be of central
importance. Informally speaking, it gives a notion of “witness-preserving reductions” between two
problems in QMA, where the “witnesses” here are quantum states (the precise definition given here
is specific to the setting of Local Hamiltonian problems).11

Definition 25 Let k > k′ > 1 be integers. A (k, k′)-approximate ground-space-preserving reduc-
tion (AGPR) is a (classical, deterministic) algorithm A of the following form. A takes as input a
tuple (H,W, β), where H is a description of a k-local Hamiltonian H =

∑
i∈[s]Hi acting on some

number n of qubits; W ≥ 1 is an integer; and β ∈ (0, 1) is an accuracy parameter . The s ≥ n
terms H1, . . . ,Hs are each expected to have operator norm ||Hi|| in the range [W−1,W ]—if not, A
may behave arbitrarily. A runs in time poly(s,W, 1/β) and outputs a pair (H ′, R), where:

• H ′ is a k′-local Hamiltonian acting on some number n′ ≤ poly(s,W, 1/β) of qubits. Each
term in the expression for H ′ has operator norm in the range [1/W ′,W ′], for some W ′ ≤
poly(s,W, 1/β);

• R is a quantum operation involving one or more measurements, that maps a pure n′-qubit
pure state |ψ〉 to a pure n-qubit state under every possible set of measurement outcomes (the
resulting pure state depends on the outcomes). R is implemented by a quantum circuit of size
poly(s,W, 1/β).

Letting λ1, λ
′
1 ∈ R denote the minimal eigenvalues of H,H ′ respectively, the pair (H ′, R) are required

to obey the following property: there is a δ ≤ βΩ(1) · poly(W, s) such that, if |ψ〉 ∈ B⊗n′
is any pure

state such that
〈ψ|H ′|ψ〉 < λ′1 + β ,

then the state |φ〉 outputted by R(|ψ〉) satisfies

〈φ|H|φ〉 < λ1 + δ

with probability at least 1− δ over the randomness in R.

We will prove:

Theorem 26 For each of k ∈ {5, 4, 3}, there exists a (k, k − 1)-AGPR.

In fact, in the reductions we construct are able to take δ ≤ O(β) in Definition 25, although this
is not crucial to our work. We defer the proof of Theorem 26 to subsequent sections. AGPRs also
compose nicely, as we prove next:

Lemma 27 Let k > k′ > k′′ > 1 be integers. Suppose there exists a (k, k′)-AGPR, call it A, and
a (k′, k′′)-AGPR A′. Then there also exists a (k, k′′)-AGPR.

11We note that most natural NP-hardness reductions are easily seen to have a witness-preserving property: for
example, in Karp’s reduction mapping a 3-SAT instance ψ to a Hamiltonian Path instance G, the two instances are
not only equivalent with respect to their underlying decision problems, but any Hamiltonian path for G can also be
used to efficiently obtain a satisfying assignment for ψ.
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Proof. We will compose A and A′ with suitably chosen parameters. At the outset we note that,
by the polynomial slack factor allowed in Definition 25, we may assume that β < 1

D(s+W )D
for some

fixed constant D > 1. We will indicate where this assumption is used.
Consider the reduction A∗ which takes as input: a k-local Hamiltonian H(k) (of s terms, acting

on n qubits); a bound W as in the definition; and an β > 0. A∗ works as follows. First, we
choose γ := βc, with c > 0 a small value to be determined later. We apply our (k, k′)-AGPR A
to (H(k),W, γ) to obtain a pair (H(k′), R) each acting on n′ ≤ poly(s,W, 1/γ) qubits, with H(k′)

expressed by s′ ≤ poly(s,W, 1/γ) terms. By subdividing terms if necessary, we can assume s′ ≥ n′.
Associated with H(k′) is a second norm-bounding value W ′ ≤ poly(s,W, 1/γ) as in Definition 25.
Let δ ≤ γΩ(1) · poly(s,W ) be as in the guarantee for the pair (H(k),H(k′)).

Next, we apply our (k′, k′′)-AGPR A′ to (H(k′),W ′, β). We get a pair (H(k′′), R′) each acting
on n′′ ≤ poly(s′,W ′, 1/β) qubits. Let δ′ ≤ βΩ(1) · poly(s′,W ′) ≤ βΩ(1) · poly(s,W, 1/γ) be the value
in the associated guarantee for the pair (H(k′),H(k′′)).

We have δ′ ≤ C(s +W )Cβ1/C/γC for some constant C > 1 (independent of our choice for γ).
We choose γ := β1/(3C

2). It follows that δ′ ≤ C(s +W )Cβ2/(3C). Now using our aforementioned
slack, we require that β is a sufficiently small inverse-polynomial in (s +W ) that the above also
implies δ′ ≤ γ.

Our reduction A∗ outputs H(k′′) and the composed reduction R∗ := R ◦ R′, which (by the as-
sumed properties of R,R′) maps pure n′′ qubit-states to pure n-qubit states, and is implemented by
a circuit of size poly(s,W, 1/β). H(k′′) is k′′-local as needed, and is expressed by s′′ ≤ poly(s,W, 1/β)
terms whose operator norms are each in [1/W ′′,W ′′] for some W ′′ ≤ poly(s,W, 1/β).

Now suppose |ψ〉 ∈ B⊗n′′
is any state satisfying 〈ψ|H(k′′)|ψ〉 < λ1(H

(k′′))+β. Let |φ〉 := R′(|φ〉),
where |φ〉 is determined by the measurement outcomes in R′. By the AGPR property of R′,
with probability at least 1 − δ′ over R′ we have 〈φ|H(k′)|φ〉 < λ1(H

(k′)) + δ′ ≤ λ1(H
(k′)) + γ.

Condition on this event, and let |ν〉 := R(|φ〉). Then with probability at least 1− δ over R, we have
〈ν|H(k)|ν〉 < λ1(H

(k)) + γ ≤ λ1(H
(k)) + βΩ(1). Thus our reduction R∗ satisfies the desired AGPR

guarantee, for the value δ∗ := δ + γ ≤ βΩ(1) · poly(s,W ).

Theorem 23 now follows readily from our assembled results.
Proof of Theorem 23. Let V (ξ) be a verifier circuit as in Theorem 23’s statement, and let
ε > 0 be given such that maxξ E[V (ξ)] ≥ 1 − ε. We apply Theorem 24 to V to obtain an 5-local
Hamiltonian H on N∗ = O(T ) qubits, with s ≤ poly(T ) terms of operator norm in the range
[W−1,W ] for some W ≤ poly(T ), and a quantum operation R.

Next, it follows from the combination of Theorem 26 and Lemma 27 (applied twice) that there
exists a (5, 2)-AGPR A. We apply A to (H,W, β), with β ≥ εO(1)/poly(T ) a small value to be
determined later. We obtain a 2-local Hamiltonian H ′ and associated quantum operation R′ (both
acting on B⊗N ′

, for some N ′ ≤ poly(s, 1/β) ≤ poly(T, 1/ε)), and a termwise operator norm bound
W ′ ≤ poly(T, 1/ε) for H ′.

For the Hamiltonian HV,ε, we choose the Hilbert space B⊗N ′
and let HV,ε := H ′. For the

operation RV,ε, we take the composed measurement RV,ε := R ◦ R′. The efficient constructibility
claims in Theorem 23 are satisfied for our choice, by the efficiency properties of Theorem 24 and
Definition 26 and the requirement β ≥ εO(1)/poly(T ). Similarly, the termwise operator-norm bound
in Theorem 23 is satisfied.

Now let |ψ〉 ∈ B⊗N ′
be any ground state of H ′ = HV,ε. Let |φ〉 := R′(|ψ〉) ∈ B⊗N∗

be the
pure state determined by the measurement outcomes in R′ applied to |ψ〉. By the AGPR property
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of R′, for some δ ≤ βΩ(1) · poly(T ), we have PrR′ [〈φ|H|φ〉 < λ1(H) + δ] ≥ 1 − δ. We choose
β ≥ εO(1)/poly(T ) sufficiently small so that δ ≤ ε.

Consider conditioning on any outcome to |φ〉 above such that 〈φ|H|φ〉 < λ1(H)+δ ≤ λ1(H)+ε.
It follows from the guarantee in Theorem 24 that for ξ := R(|φ〉〈φ|) the verifier satisfies E[V (ξ)] ≥
1− εΩ(1) · poly(T ). Thus, under no conditioning on |φ〉 we have

E[V (ξ)] ≥ 1− εΩ(1) · poly(T )− δ ≥ 1− εΩ(1) · poly(T ) .

This proves Theorem 23.

7.2 Proof of Theorem 26

In our proof of Theorem 26, we use the perturbative gadgets and analysis ideas of Oliveira and
Terhal [30], who build upon work of Kempe, Kitaev and Regev [26]. Our main effort will be to
show that, for any k ≥ 4, there exists a (k, ⌈k/2⌉)-AGPR. This will imply Theorem 26 the cases
k = 5, 4. Then, a slightly different reduction from [30] gives a (3, 2)-AGPR; this will complete the
proof.

7.3 The Locality-Halving Reduction

The initial setup: Fix a constant k ≥ 4. As the input to our (k, ⌈k/2⌉)-AGPR, we are given a
tuple (Htarg,W, β), where Htarg (which we will call the “target Hamiltonian”) is a k-local Hamil-
tonian expressed as the sum of some number s of k-local terms over an n-qubit Hilbert space
Hcomp

∼= B⊗n. All k-local terms of H have operator norms ||Hi|| ∈ [W−1,W ].
By standard preprocessing steps, we can and will assume the following:

• Htarg is a sum of s′ ≤ poly(s) terms of form Hi = Hi,1Hi,2 . . . Hi,k, where each Hi,a is 1-local
12

and ||Hi,a|| ≤ poly(s +W ), and Hi,1, . . . ,Hi,k act on distinct qubits (hence they commute).
In the sequel we write s in place of s′;

• For each i, we assume min
(
||Hi,1Hi,2 . . . Hi,⌈k/2⌉||, ||Hi,⌈k/2⌉+1 . . . Hi,k||

)
∈ [1,K], for some

K ≤ poly(W ). (The lower bound is easily achieved by scaling Htarg by a poly(W ) factor.)

To satisfy Definition 25, we will create a ⌈k/2⌉-local derived Hamiltonian H ′ = H̃ on the larger
Hilbert spaceH = Hcomp⊗Hanc. We refer toHcomp,Hanc as the computational and ancilla registers,
respectively. For our quantum operation R as in Definition 25, we will take the operation which
simply measures the ancilla register in the standard basis.

Further preprocessing: First, we replace Htarg with H⋆
targ := Htarg −M · I, for some 0 < M ≤

poly(s+W ) chosen large enough to ensure that λ1(H
⋆
targ) is less than −1. For any j, |ψ〉 we have

λj(H
⋆
targ) = λj(Htarg)−M and 〈ψ|H⋆

targ|ψ〉 = 〈ψ|Htarg|ψ〉 −M . (46)

M · I can be implemented 1-locally, so H⋆
targ is k-local.

In the remainder of our work, we will useHtarg to denoteH
⋆
targ, so that λ1(Htarg) is now assumed

to be less than −1.

12Here, each Hi,a denotes an operator over all of Hcomp, which is the tensor product Hi,a = Yi,a ⊗ Irest of an
operator Yi,a on the Hilbert space of a single qubit with the identity operator Irest on the other n− 1 qubits.
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The components of Htarg: For each i ∈ [s], write Hi = AiBi, where we have grouped the k
factors of Hi into a ⌈k/2⌉-local part Ai and a ⌊k/2⌋-local part Bi. By our assumption, ||Ai||, ||Bi|| ≥
1.

Exploiting cancellations and the fact that Ai, Bi commute, we may write

Hi = (A2
i +B2

i )/2− (−Ai +Bi)
2/2 = −(−Ai +Bi)

2/2 +Hi,else , (47)

where Hi,else is a sum of ⌈k/2⌉-local and ⌊k/2⌋-local terms. Let

Helse :=
∑

i∈[s]

Hi,else . (48)

The ancilla register: For each index i ∈ [s] corresponding to a term in Htarg, we introduce an
ancilla qubit that we refer to as w(i). Thus Hanc consists of s qubits. For a Hamiltonian E acting
on the space of a single qubit, we use Ew(i) to denote the application of E to w(i) (tensored with
the identity on the rest of Hanc). Similarly, for a Hamiltonian F on s qubits we use Fw to indicate
operator on Hanc which applies F to the ordered qubit-set (w(1), . . . , w(s)).

The derived Hamiltonian H̃: The construction takes a parameter 0 < ∆ ≤ poly(s,W, 1/β),
to be chosen later as a sufficiently large value. We will take

H̃ = H0 + V , (49)

where
H0 := ∆

∑

i∈[s]

|1〉〈1|w(i) , (50)

and where
V := Helse +

√
∆/2 ·

∑

i∈[s]

(−Ai +Bi)⊗Xw(i) . (51)

Here, Xw(i) is the Pauli X operator applied to w(i).
When we choose a large value ∆, we will have ||H0|| ≫ ||V ||. In the analytical framework

of [26, 30], H0 is referred to as the “unperturbed” reference Hamiltonian; V as the “perturbation”
operator, regarded as “small;” and H̃ as the “perturbed” Hamiltonian, thought of as a slightly
deformed version of H0.

7.4 Some Tools for the Analysis

The effective Hamiltonian: For future use we define

Heff = Htarg ⊗ |0s〉〈0s|w . (52)

We will show that H̃ “behaves like” Heff in an appropriate sense, hence Heff is referred to as the
“effective Hamiltonian” for H̃.

The eigenvalues of Heff = Htarg ⊗ |0〉〈0|w are the same as those of Htarg, along with 0. The
introduction of this “unwanted” 0 eigenvalue is why we initially applied a global shift to Htarg to
assume its eigenvalues are negative, to ensure that the “lowest-energy part” of Htarg is preserved.
In particular, we have

λ1(Heff) = λ1(Htarg) < −1 , 1 < ||Heff || < poly(s+W ) . (53)
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The eigenspaces of H0, their projectors, and some notation: In our analysis, we will
use the derived Hamiltonian H0 as a “reference” with which we decompose our Hilbert space
H = Hcomp ⊗ Hanc. First, it is obvious from the construction that H0 has only nonnegative
eigenvalues, including 0 and ∆, and with no eigenvalues in (0,∆). We define the subspaces

L− , L+ ≤ H , (54)

where L− is the 0 eigenspace of H0, and L+ := L⊥
−. We define Π−,Π+ as the projectors onto L−

and L+; we have the expressions

Π− = |0s〉〈0s|w , Π+ =
∑

x∈{0,1}s\0s

|x〉〈x|w . (55)

Now for any operator A on H, following [26, 30] we define

A++ := Π+AΠ+ , A−− := Π−AΠ− , A+− := Π+AΠ− , A−+ := Π−AΠ+ . (56)

Also define
A+ := A++ , A− := A−− . (57)

The A+ notation will be used when A(L+) ⊆ L+, and similarly for A−,L−.

Some perturbation theory definitions: We will not introduce perturbation theory, only some
definitions used here. The terms we introduce will be defined with reference to the “unperturbed”
derived Hamiltonian H0, explicitly and through the notation A±± introduced previously. In one
definition we will also make reference to the perturbation operator V .

We define three functions
G, G̃ , Σ− ,

each of which takes as input a value z ∈ C and outputs an operator over H; the definitions involve
matrix inversion and for some values z the output may be undefined. We define G̃, the resolvent
of H̃, by

G̃(z) := (zI − H̃)−1 .

Define the self-energy Σ−(z) by

Σ−(z) := zI− − G̃−1
−−(z) . (58)

The perturbation theorems: Here we state a result from [30] that expresses the sense in which
H̃ approximates Heff . First we introduce one piece of helpful notation. For an operator A over
Hilbert space H and a subspace S ≤ H, we will use

||A||S := max
|v〉∈S\0

||A|v〉||
|||v〉||

to denote the (ℓ2) operator norm of A with inputs restricted to S.

Theorem 28 (Special case of [30], Theorem A.1) Say we are given Hamiltonians H0, H̃, V,Heff

and real values ∆ > b > 0, satisfying the following assumptions:
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1. H̃ = H0 + V ;

2. ||V || < ∆/2;

3. H0 has the eigenvalues {0,∆},13 with L−,L+ defined as above relative to H0, and with oper-
ators A±± defined relative to these subspaces;

4. All eigenvalues of Heff are contained in [−b, b];14

5. Heff = Π−HeffΠ−.

Next, fix r, ε > 0, and let Dr := {z ∈ C : |z| ≤ r} be the disk of radius r in the complex plane,
centered at the origin. Assume that

b+ ε < r < ∆/2 . (59)

Now our central assumption is that for all z ∈ Dr, the resolvent Σ−(z) is a good approximation to
Heff :

||Σ−(z) −Heff || ≤ ε . (60)

Let
S̃ ≤ H (61)

denote the “low-energy subspace” of H̃, namely, the subspace generated by the eigenvectors of H̃
whose eigenvalues are less than ∆/2. Then S̃ has dimension at least 1. Moreover, it holds that
Heff is well-approximated by H̃ on S̃:

||H̃ −Heff ||S̃ ≤ 3(||Heff ||+ ε)|| · ||V ||
∆− ||Heff || − ε

+
r(r + z0)ε

(r − b)(r − b− ε)
. (62)

We will also use the following theorem from [26] relating the spectrum of H̃ to that of Heff :

Theorem 29 (Special case of [26], Thm. 3; see also [30], Thm. 7) Under the same assump-
tions as in Theorem 28, we have the following. For every index j for which λj(H̃) < ∆/2 (in
particular, this must include j = 1), we have

|λj(H̃)− λj(Heff)| ≤ ε . (63)

Theorem 29 is also used in the proof of Theorem 28.

7.5 Application of the Perturbation Theorems

For the construction of H0, H̃, V described in Section 7.3, it is immediate that conditions 1, 3, and
5 in Theorem 28 are satisfied. Condition 2, asking that ||V || < ∆/2, is satisfied for sufficiently
large ∆ ≤ poly(s,W, 1/β); this follows by crudely bounding the norms of all terms used to define
V , using our initial norm-bound assumptions on Htarg.

As noted, the eigenvalues of Heff are the same as those of Htarg, along with 0. Thus we have
||Heff || ≤ poly(s+W ), independent of ∆, and if we take b := ||Heff ||, condition 4 in Theorem 28 is
satisfied.

13Here, in [30], Theorem A.1 we are fixing the setting λ∗ := ∆/2, as per the discussion in [30, p. 19-20].
14We are setting a := −b in Theorem A.1 of [30].
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Now, to satisfy the last requirement of that Theorem, Eq. (60), we first set r := 2b+ ε, with

ε := β/20 .

(Recall that β > 0 is an input parameter to our desired AGPR.) Thus Dr is a disk of radius
2||Heff ||+ ε in the complex plane, centered at the origin.

Our key tool is a bound shown in [30, p. 11, Eq. (25)]: for |z| < ∆,

Σ−(z) =


Helse +

∆

2(z −∆)

∑

i∈[s]

(−Ai +Bi)
2


⊗ |0s〉〈0s|w +O

( ||V ||3
(z −∆)2

)
. (64)

Note that for ∆ ≫ z the left-hand term approaches Heff (as defined in Eq. (52)), and the right-hand
error term approaches 0. Indeed, following the discussion in [30, pp. 11, 20], by taking a sufficiently
large ∆ ≤ poly(s +W )/ε2 we obtain

||Σ−(z) −Heff || ≤ ε , for all z ∈ Dr . (65)

Thus all requirements of Theorem 28 are satisfied for our settings, and we conclude that

||H̃ −Heff ||S̃ ≤ 3(||Heff ||+ ε)|| · ||V ||
∆− ||Heff || − ε

+
r(r + z0)ε

(r − b)(r − b− ε)
(66)

≤ ε+ 4ε = 5ε , (67)

with the last inequality valid if we choose ∆ large enough compared to ||Heff ||. For future work,
we also stipulate that ∆ be chosen large enough to satisfy

1

∆
≤ ε

2||Heff ||
. (68)

All this only requires ∆ ≤ poly(s,W, 1/β).
Under the same settings to our parameters, it is immediate that we also obtain the conclusions

of Theorem 29. In particular, using Eq. (53) we have

|λ1(H̃)− λ1(Htarg)| = |λ1(H̃)− λ1(Heff)| ≤ ε . (69)

For future work, we note that S̃ is a proper subspace of H, since ||H|| ≥ ||H0|| − ||V || ≥ ∆−∆/2.

Consequences for nearly-minimal-energy states: Consider any nearly-minimal-energy state
|ψ〉 ∈ H for the Hamiltonian H̃, satisfying

〈ψ|H̃ |ψ〉 < λ1(H̃) + β < λ1(Heff) + β + ε . (70)

We will upper-bound 〈ψ|Heff |ψ〉 to show that |ψ〉 is also nearly-minimal-energy for this second
Hamiltonian.

A small complication for our analysis is that |ψ〉 may not lie within S̃. Decompose |ψ〉 as

|ψ〉 = α1|ψS̃〉+ α2|ψS̃⊥〉 , (71)
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according to its components in S̃ and its orthogonal complement S̃⊥ (so, we have |α1|2 + |α2|2 = 1
and 〈ψS̃ |ψS̃⊥〉 = 0). Recall that both of these spaces have dimension at least 1. We assume that a
is real and positive; this assumption is without loss of generality, by applying a phase factor α1/|α1|
to the state if necessary, and just simplifies our expressions slightly.

By the definition of S̃⊥, we see that it is spanned by eigenvectors of H̃ with eigenvalues ≥ ∆/2.
Thus,

〈ψ|H̃ |ψ〉 = |α1|2〈ψS̃ |H̃|ψS̃〉+ |α2|2〈ψS̃⊥ |H̃|ψS̃⊥〉 (72)

≥ λ1(H̃) + |α2|2∆/2 . (73)

Combining this with Eqs. (70) and (69), we find

|α2|2 ≤ 2β

∆
≤ ε

||Heff ||
, (74)

where the last step follows from our prior largeness requirement on ∆ in Eq. (68). It also follows
that |α1−1|2 ≤ |

√
1− ε/||Heff ||−1|2 ≤ |1−ε/||Heff ||−1|2 ≤ ε2/||Heff ||2 (using here that α1 ∈ R+).

For analysis purposes, define the (non-normalized) state

|v〉 := (α1 − 1)|ψS̃〉+ α2|ψS̃⊥〉 . (75)

We have

|||v〉||2 = 〈v|v〉 = |α1 − 1|2 + |α2|2 ≤ 2ε

||Heff ||
. (76)

Now note that, using the definition of |v〉 and Eq. (76), we have

〈ψ|Heff |ψ〉 = 〈ψS̃ |Heff |ψS̃〉+ 〈v|Heff |v〉 (77)

≤ 〈ψS̃ |Heff |ψS̃〉+ ||Heff || · |||v〉||2 (78)

≤ 〈ψS̃ |Heff |ψS̃〉+ 4ε . (79)

Next, applying Eq. (67) and the fact that |ψS̃〉 ∈ S̃, we obtain

〈ψS̃ |Heff |ψS̃〉 ≤
(
〈ψS̃ |H̃|ψS̃〉+ ||H̃ −Heff || · |||ψS̃〉||2

)
+ ε (80)

≤ 〈ψS̃ |H̃ |ψS̃〉+ 6ε (81)

≤ 〈ψ|H̃ |ψ〉+ 6ε (82)

≤ λ1(Heff) + 6ε+ β . (83)

(In the third inequality, we used the definition of S̃ as a low-energy subspace for H̃, and the fact
that |ψS̃〉 is the component of |ψ〉 in S̃. In the last step, we used Eq. (70).) Combining Eqs. (79)
and (83), we conclude that

〈ψ|Heff |ψ〉 ≤ λ1(Heff) + 10ε + β < λ1(Heff) + 2β . (84)

Thus |ψ〉 is also nearly-minimal-energy for Heff = Htarg ⊗ |0s〉〈0s|w.
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Obtaining a nearly-minimal-energy state for Htarg: Recall that L− is the subspace of H in
which the ancilla qubits are all-zero. Any computational basis state in which the ancillas are not
all-zero vanishes under the action of Heff . For our state |ψ〉 as above, write

|ψ〉 = w|ψ−〉+ z|ψ+〉 , (85)

where |ψ−〉 ∈ L−, |ψ+〉 ∈ L+ are unit vectors. Re-expressing our inner product in this basis, we
have 〈ψ|Heff |ψ〉 ≥ |w|2 · λ1(Heff) + 0, so by Eq. (84), and using the facts that λ1(Heff) < −1 and
10ε + β < 1, we have

|w|2 ≥ 1− 10ε+ β

|λ1(Heff)|
> 1− 2β . (86)

Recall that the quantum operation R measures the ancilla register of |ψ〉. By the above, with
probability > 1 − 2β this measurement yields the all-zero outcome, and the post-measurement
state is |ψ−〉. Identifying L− with the Hilbert space Hcomp, on which Htarg acts, we have

〈ψ−|Htarg|ψ−〉 =
1

|w|2 〈ψ|Heff |ψ〉 (87)

≤ λ1(Heff) + 10ε + β (88)

= λ1(Htarg) + 10ε+ β (89)

< λ1(Htarg) + 2β (90)

using Eq. (53) in the penultimate step. Thus (H ′ = H̃,R) have the required AGPR properties
(where we may take δ := 2β in Definition 25). We have proved Theorem 26 for the cases k = 5, 4.

7.6 The 3-local-to-2-local Reduction

Given a 3-local target HamiltonianHtarg, we can use a different gadget construction in [30, p. 11-12].
The construction uses the same (1-local) unperturbed Hamiltonian H0 := ∆

∑
i∈[s] |1〉〈1|w(i) and

the same effective Hamiltonian Heff := Htarg⊗|0s〉〈0s|w, with a different perturbation Hamiltonian
V (this time 2-local), which again satisfies ||V || < ∆/2 for sufficiently large ∆ ≤ poly(s,W, 1/β).
As described in [30], for large enough ∆ ≤ poly(s,W, 1/β) one can ensure ||Σ−(z) −Heff || ≤ ε for
ε := β/20 and for z in a disk of appropriately chosen radius. This allows us to apply Theorems 28
and 29 in the same fashion as before. This yields the required (3, 2)-AGPR, completing the proof
of Theorem 26.

8 Further Implications for Quantum Complexity Theory

In this section, we use the BQP/qpoly = YQP∗/poly theorem to harvest two more results about
quantum complexity classes. The first is an “exchange theorem” stating that QCMA/qpoly ⊆
QMA/poly: in other words, one can always simulate quantum advice together with a classical witness
by classical advice together with a quantum witness. This is a straightforward generalization of
Theorem 20. The second result is a “Quantum Karp-Lipton Theorem,” which states that if
NP ⊂ BQP/qpoly (that is, NP-complete problems are efficiently solvable by quantum computers
with quantum advice), then ΠP

2 ⊆ QMAPromiseQMA, which one can think of as “almost as bad” as a
collapse of the polynomial hierarchy. This result makes essential use of Theorem 20, and is a good
illustration of how that theorem can be applied in quantum complexity theory.
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Theorem 30 (Exchange Theorem) QCMA/qpoly ⊆ QMA/poly.

Proof. The proof is almost the same as that of Theorem 20. Let L ∈ QCMA/qpoly. Then there
exists a polynomial-time quantum verifier Q, a family of polynomial-size advice states {ρn}n, and
a polynomial p such that for all inputs x ∈ {0, 1}n:

• x ∈ L =⇒ ∃w ∈ {0, 1}p(n) E [Q (x,w, ρn)] ≥ 2/3.

• x /∈ L =⇒ ∀w ∈ {0, 1}p(n) E [Q (x,w, ρn)] ≤ 1/3.

Now consider the following promise problem: given x and w as input (regarded as two parts of
the classical input string), as well as a constant c ∈ [0, 1], decide whether E [Q (x,w, ρn)] is at most
c − 1/10 or at least c + 1/10, promised that one of these is the case. (Equivalently, estimate the
probability within an additive error ±1/10.) This problem is clearly in PromiseBQP/qpoly, since
we can take ρn as the advice. So by Theorem 20, the problem is in PromiseYQP∗/poly as well,
as witnessed by an input-oblivious advice-testing algorithm Y ((x,w), σ, a) and a classical advice
string family {an}n>0. (By slight abuse of index notation, the advice string an is taken to possess
the correctness guarantee in Theorem 20 for inputs (x,w) ∈ {0, 1}n+p(n) obeying the promise.)

Our QMA/poly verifier takes the PromiseYQP∗/poly advice string an as its trusted classical
advice, and a state of the form σ ⊗ |w〉 〈w| as its untrusted witness state. It acts as follows:

(1) Execute Y ((x,w), σ, an), rejecting if the advice-testing bit badv = 0;

(2) If badv = 1, measure the bit bout from the same execution of Y and output this bit.

The protocol is polynomial-time, since Y is a polynomial-time quantum algorithm, and the
completeness and soundness properties follow directly from the guarantees of Theorem 20.

Indeed, let YQ·QCMA denote the complexity class where a BQP verifier receives a classical
untrusted witness that depends on the input, as well as an untrusted quantum witness that depends
only on the input size n. Then we can characterize QCMA/qpoly as equal to YQ·QCMA/poly,
similarly to how we characterized BQP/qpoly as equal to YQP/poly.

We now use Theorem 20 to prove an analogue of the Karp-Lipton Theorem for quantum advice.
Recall that a promise problem is a pair Π = (Πyes,Πno) of disjoint subsets of {0, 1}∗. We say that

a language A solves Π if for all x ∈ Πyes∪Πno, we have x ∈ A⇔ x ∈ Πyes. We say that a language
L is in QMAΠ if there is a single QMA verifier V A with oracle access, that witnesses the membership
L ∈ QMAA for any language A solving Π. We let QMAPromiseQMA :=

⋃
Π∈PromiseQMA QMAΠ. This

model of oracle access to promise problems, in which the machine may query strings violating the
promise Π (and for which the oracle may give arbitrary responses), is fairly standard; see, e.g., [16].

Theorem 31 (Quantum Karp-Lipton Theorem) If NP ⊂ BQP/qpoly, then ΠP
2 ⊆ QMAPromiseQMA.

In this result we use the model of oracle access to a promise problem which allows the algorithm
to query inputs not obeying the promise; in such cases the allows the oracle to answer such queries
arbitrarily. This model is fairly standard, see e.g. [16].

Previously, Aaronson [3] showed that if PP ⊂ BQP/qpoly, then the counting hierarchy CH

collapses. However, he had been unable to show that NP ⊂ BQP/qpoly would have unlikely
consequences in the uniform world.
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Figure 2: Containments among complexity classes related to quantum proofs and advice, in light of
this paper’s results. The containments QMA/qpoly ⊆ PSPACE/poly and QCMA/qpoly ⊆ PP/poly
were shown previously by Aaronson [4]. This paper shows that BQP/qpoly ⊆ QMA/poly, and
indeed BQP/qpoly = YQP/poly, where YQP is like QMA except that the untrusted quantum witness
can depend only on the input length n. It also shows that QCMA/qpoly ⊆ QMA/poly.
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Proof of Theorem 31. By Theorem 20, the hypothesis implies NP ⊂ YQP/poly = YQP∗/poly.
So let Y be a YQP∗/poly algorithm for SAT , which takes an input x ∈ {0, 1}n (representing a CNF
formula), a trusted classical nonuniform advice string a ∈ {0, 1}ℓ(n) for some ℓ(n) ≤ poly(n), and an
untrusted advice state ρ on q(n) ≤ poly(n) qubits. By inspecting the proof of Theorem 15, we see
that the completeness and soundness parameters .9, .1 in Definition 19 can easily be strengthened
to (1 − e−n, n−100); we assume that this holds for Y . Let {an}n>0 be the associated family of
classical advice strings of length ℓ(n).

Now consider an arbitrary language L ∈ ΠP
2 . As such, L is defined by a deterministic polynomial-

time predicate R (x, y, z):
x ∈ L ⇐⇒ ∀y∃z : R (x, y, z) = 1 ,

where we expect |y| = |z| = p(n) for some p(n) ≤ poly(n) on inputs x ∈ {0, 1}n.
Using Y and Cook’s theorem applied to the predicate R, we can create a polynomial-time input-

oblivious advice-testing algorithm Y ′ (x, y, ρ, a) producing output bits badv, bout (we use the notation
Y ′
adv, Y

′
out (x, y, ρ, a) to denote the values of these two bits in an execution of Y ′ on (x, y, ρ, a), noting

that E[badv] depends only on ρ, a), which has the following properties:

(P1) There exists a ρ such that E [Y ′
adv (x, y, ρ, an)] ≥ 1− 2−n for all x, y.

(P2) For any ρ, if E [Y ′
adv (x, y, ρ, an)] ≥ n−3, we have E [Y ′

out (x, y, ρ, an) |badv = 1] ≥ 1−1/(n ·p(n))
if there exists a z such that R (x, y, z) holds, and E [Y ′

out (x, y, ρ, an) |badv = 1] ≤ 1/(n · p(n))
otherwise.

Using the standard search-to-decision reduction for SAT , we can then strengthen property (P2)
to the following, for some polynomial-time quantum algorithm Y ′′ (x, y, ρ, a) outputting a bit badv
(denoted Y ′′

adv(x, y, ρ, a)) and a string z ∈ {0, 1}p(n).15 Here as before, the bit badv has expectation
determined by ρ, a alone. The algorithm Y ′′ satisfies:

(P1’) There exists a ρ such that E [Y ′′
adv (x, y, ρ, an)] ≥ 1− 2−n for all x, y.

(P2’) For all x, y pairs for which some z satisfies R(x, y, z) = 1, and for all states ρ, we have the
following. If E [Y ′′

adv (x, y, ρ, an)] ≥ .01, and if we condition on [badv = 1] in this execution,
then with probability at least .99, Y ′′ (x, y, ρ, an) outputs a z such that R(x, y, z) = 1.

Now let U (x, y, ρ, a) be a quantum algorithm outputting a single bit, and expecting y, ρ, a of
size determined by n = |x| exactly as with Y ′′. The algorithm U executes Y ′′ (x, y, ρ, a) and does
one of the following, both with equal probability:

• Outputs ¬badv;

• Outputs 1 if and only if the string z outputted by Y ′′ satisfies R (x, y, z) = 1.

U is polynomial-time, and we claim that

(A1) x ∈ L =⇒ ∃a, ρ : [E [Y ′′
adv (x, y, ρ, a)] ≥ 9/10] ∧ [∀σ, y : E [U (a, σ, x, y)] ≥ 1/5].

15This reduction requires repeated use of the advice state ρ to obtain the bits of a lexicographically first such z;
these measurements may alter ρ. This is not a serious obstacle, however, by the principle that a measurement whose
outcome is nearly information-theoretically certain has small expected effect on the measured state.
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(A2) x /∈ L =⇒ ∀a, ρ : [E [Y ′′
adv (x, y, ρ, a)] ≤ 2/3] ∨ [∃σ, y E [U (a, σ, x, y)] ≤ 1/6].

With reference to the machine U , we define the promise problem Π = (Πyes,Πno) by

Πyes = {(x, a) ∈ {0, 1}n+ℓ(n) : ∃ρ, y such that E[U(x, y, ρ, a)] ≤ 1/6} ,
Πno = {(x, a) ∈ {0, 1}n+ℓ(n) : ∀ρ, y we have E[U(x, y, ρ, a)] ≥ 1/5} ,

and note that Π ∈ PromiseQMA by standard techniques. Also, it is clear that (A1) and (A2)
together imply L ∈ QMAΠ ⊆ QMAPromiseQMA. (The crucial point here is that U does not take the
existentially-quantified advice state ρ as input in our query to Π—and therefore, the QMA machine
does not need to pass a quantum state to the PromiseQMA oracle, which would be illegal. This is
why we needed the BQP/qpoly = YQP∗/poly result here. Note also that in the case where x ∈ L,
our claim gives no control over the relevant acceptance probabilities of Q1 and U for settings to a
other than the “correct” setting; this necessitates the use of a PromiseQMA oracle—which is allowed
to behave arbitrarily on inputs not obeying the promise Π—rather than a QMA oracle.)

We now prove (A1) and (A2). First suppose x ∈ L. Then there exists an advice string an
with the following properties:

(B1) There exists a ρn such that E [Y ′′
adv (x, y, ρn, an)] ≥ 9/10 for all y. (By (P1’).)

(B2) For all σ, y pairs, either E [Y ′′
adv (x, y, σ, an)] ≤ 1/2, or for the string z outputted by this

execution of Y ′′, we have Pr [R (x, y, z) holds] ≥ (.5) · (.99) > 2/5. (By (P2’) and the
assumption x ∈ L.)

By (B2), we have ∀σ, y E [U (a, σ, x, y)] ≥ 1/5. This proves (A1).
Next suppose x /∈ L. Then given an advice string a, suppose there exists a pair ρ, y such

that E [Y ′′
adv (x, y, ρ, a)] > 2/3. (Then this relation holds for all y, since E[badv] is a function of ρ, a

alone.) Set σ := ρ, and choose a y for which there is no z such that R (x, y, z) holds. Then for
the random string z as produced by Y ′′(x, y, σ, a) we have Pr [R (x, y, z) = 1] = 0, since x /∈ L.

It follows from the above that Pr [U (a, σ, x, y) accepts] < 1
2(1/3 + 0) = 1/6. This proves (A2),

and completes the proof of the Theorem.

9 Open Problems

One open problem is simply to find more applications of the majority-certificates lemma, which
seems likely to have uses outside of quantum complexity theory. Can we improve the parameters
of the majority-certificates lemma (the size of the certificates or the number O (n) of certificates),
or alternatively, show that the current parameters are essentially optimal? Also, can we prove the
real-valued majority-certificates lemma with an error tolerance α that depends only on the desired
accuracy ε of the final approximation, not on n or the fat-shattering dimension of S?

On the quantum complexity side, we mention several questions. First, in Theorem 22, is
the polynomial blowup in the number of qubits unavoidable? Could one hope for a way to
simulate an n-qubit advice state by the ground state of n-qubit local Hamiltonian, or would that
have implausible complexity consequences? Second, can we use the ideas in this paper to prove
any upper bound on the class QMA/qpoly better than the PSPACE/poly upper bound shown by
Aaronson [4]? Third, if NP ⊂ BQP/qpoly, then does QMAPromiseQMA contain not just ΠP

2 but the
entire polynomial hierarchy? Finally, is BQP/qpoly = BQP/poly?
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A Appendix: Untrusted Oracles

In this appendix, we give an interesting consequence of the majority-certificates lemma for classical
complexity theory.

When we give a machine an oracle, normally we assume the oracle can be trusted. But it is
also natural to consider untrusted oracles, which are nevertheless restricted in their computational
power. We formalize this notion as follows:

Definition 32 (Untrusted Oracles) Let C and D be complexity classes. Also, given a family
a = {an}n≥1 of p (n)-bit advice strings and a machine V , let V [a] be the language decided by V

given a as advice. Then CUntrusted-D is the class of languages L for which there exists a C machine
U , a D machine V , and a polynomial p such that for all n:

(i) There exist p (n)-bit advice strings a1, . . . , am such that UV [a1],...,V [am] decides L.

(ii) UV [a1],...,V [am] (x) outputs either L (x) or “FAIL,” for all inputs x ∈ {0, 1}n and all p (n)-bit
advice strings a1, . . . , am.

We can now state the consequence.

Theorem 33 Let C be a uniform syntactic complexity class, such as P, NP, or EXP. Then

C/poly ⊆
(
AC0

)Untrusted-C
.

Proof. Let V be a C/poly machine that uses a family a = {an}n≥1 of p (n)-bit advice strings. Fix

an input length n, and let fw (x) be the output of V on input x and advice string w ∈ {0, 1}p(n).
Then S = {fw}w∈{0,1}p(n) is a Boolean concept class of size |S| ≤ 2poly(n). So by Lemma 3, there

exist m = O (n) polynomial-size certificates C1, . . . , Cm, which isolate functions f1, . . . , fm ∈ S
respectively such that MAJ (f1, . . . , fm) = fan . Now, we can easily modify the proof of Lemma 3
to ensure not only that MAJ (f1, . . . , fm) = f∗, but also that

fan (x) = 1 =⇒ f1 (x) + · · ·+ fm (x) ≥ 2m

3
,

fan (x) = 0 =⇒ f1 (x) + · · ·+ fm (x) ≤ m

3
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for all inputs x. To do so, we simply take m = O (n) sufficiently large and redo the Chernoff bound.
Furthermore, it is known that Approximate Majority—that is, Majority where the fraction
of 1’s in the input is bounded away from 1/2 by a constant—can be computed by polynomial-size
depth-3 circuits, so in particular, in AC0 (see Viola [35] for example).

By hardwiring the certificates C1, . . . , Cm into the AC0 circuit, we can produce an AC0 circuit
that first checks whether fi is consistent with Ci for all i ∈ [m], outputs “FAIL” if not, and otherwise
outputs Uf1,...,fm (x) = fan (x).

If C is a semantic complexity class, such as BPP or UP, the difficulty is that there might be a
C/poly machine M and advice string w for which the function fw is undefined (since M need not
decide a language for every w). However, if we force the Untrusted−C oracle to restrict itself to
w for which fw is defined, then Theorem 33 goes through for semantic classes as well. Using the
real-valued majority-certificates lemma that we develop in Section 3, it is possible to remove the
assumption that fw is defined for all w for semantic classes such as BPP.

B Appendix: Isolatability and Learnability

The following definition abstracts a key notion from the majority-certificates lemma.

Definition 34 (Majority-Isolatability) A Boolean concept class S is majority-isolatable if for
every f ∈ S, there exist m = poly (n) certificates C1, . . . , Cm, each of size poly (n), such that

(i) S [Ci] is nonempty for all i ∈ [m], and

(ii) if fi ∈ S [Ci] for all i ∈ [m], then MAJ (f1, . . . , fm) = f , where MAJ denotes pointwise
majority.

We now show that the majority-isolatability of a Boolean concept class S is equivalent to
a large number of other properties of S—including having singly-exponential cardinality, having
polynomial VC-dimension, being PAC-learnable using poly (n) samples, and being “winnowable.”
While we do not need this equivalence theorem elsewhere in the paper, we feel it has independent
interest. The equivalence theorem we prove is easily seen to break down for concept classes with
infinite input domains.

Definition 35 (VC-dimension) We say a Boolean concept class S shatters the set A ⊆ {0, 1}n
if for all 2|A| functions g : A→ {0, 1}, there exists an f ∈ S whose restriction to A equals g. Then
the VC-dimension of S, or VCdim (S), is the size of the largest set shattered by S.

Given a distribution D over {0, 1}n, we say the Boolean functions f, g : {0, 1}n → {0, 1} are
(D, ε)-close if

Pr
x∼D

[g (x) = f (x)] ≥ 1− ε.

Definition 36 (Learnability) S is learnable if for all f ∈ S, distributions D, and ε, δ > 0,
there exists an m = poly (n, 1/ε, log 1/δ) such that with probability at least 1− δ over sample points
x1, . . . , xm drawn independently from D, every g ∈ S satisfying g (x1) = f (x1) , . . . , g (xm) = f (xm)
is (D, ε)-close to f .
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We can also define “approximability,” which is like learnability except that the choice of training
examples can be nondeterministic:

Definition 37 (Approximability) S is approximable if for all f ∈ S and distributions D, there
exists a certificate C of size poly (n, 1/ε) such that every g ∈ S [C] is (D, ε)-close to f .

Finally, let us call attention to a notion that implicitly played a major role in the proof of
Lemma 3.

Definition 38 (Winnowability) S is winnowable if for all nonempty subsets S′ ⊆ S, there exists
a certificate C of size poly (n) such that |S′ [C]| = 1.

We can now prove the equivalence theorem.

Theorem 39 Let S be a Boolean concept class. Then |S| ≤ 2poly(n) iff VCdim (S) ≤ poly (n) iff
S is learnable iff S is approximable iff S is majority-isolatable iff S is winnowable.

Proof. |S| ≤ 2poly(n) =⇒ VCdim (S) ≤ poly (n) follows from the trivial upper bound VCdim (S) ≤
log2 |S|.

VCdim (S) ≤ poly (n) =⇒ |S| ≤ 2poly(n) is Sauer’s Lemma [31], which implies the relation
|S| ≤ 2nVCdim(S).

|S| ≤ 2poly(n) =⇒Learnable was proved by Valiant [33].
Learnable=⇒Approximable is immediate, and Approximable=⇒ VCdim (S) ≤ poly (n)

follows from a counting argument (see Blumer et al. [14] for details).
|S| ≤ 2poly(n) =⇒Majority-Isolatable was the content of Lemma 3.
Majority-Isolatable=⇒ |S| ≤ 2poly(n) follows from another counting argument: if S is

majority-isolatable, then every f ∈ S is uniquely determined by poly (n) certificates C1, . . . , Cm,
each of which can be specified using poly (n) bits.

For |S| ≤ 2poly(n) =⇒Winnowable, let S′ ⊆ S. Then as in the proof of Lemma 3, we can use
binary search to winnow S′ down to a single function f ∈ S′, which yields a certificate of size at
most log2 |S′| ≤ log2 |S|.

For Winnowable=⇒ |S| ≤ 2poly(n), we prove the contrapositive. Suppose |S| ≥ 2t(n) for some
superpolynomial function t (n) (at least, for infinitely many n). Then define a subset S′ ⊆ S by
the following iterative procedure. Initially S′ = S. Then so long as there exists a certificate C of
size at most t (n) / (2n+ 2) such that |S′ [C]| = 1, remove the function f ∈ S′ [C] from S′, halting
only when no more such “isolating certificates” can be found.

The number of certificates of size k is at most 2(n+1)k, and a given certificate C can only be
chosen once, since thereafter S′ [C] is empty. So when the above procedure halts, we are left with
a set S′ such that |S′| ≥ 2t(n) − 2(n+1)t(n)/(2n+2) > 0. Furthermore, for every function f remaining
in S′, there can be no polynomial-size certificate C such that S′ [C] = {f}—for if there were, then
we would already have eliminated f in the process of forming S′. Hence S is not winnowable.

C Appendix: Winnowing of p-Concept Classes

In this appendix, we look more closely at the problem solved by Lemma 10 (the “Safe Winnowing
Lemma”), and ask in what senses it is possible to winnow a p-concept class down to “essentially”
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just one function. The answer turns out to be interesting, even though we do not need it for our
quantum complexity applications.

We first give a definition that abstracts part of what Lemma 10 was trying to accomplish.

Definition 40 (Winnowability) A p-concept class S is L1-winnowable if the following holds.
For all nonempty subsets S′ ⊆ S and ε > 0, there exists a function f ∈ S′, a set X ⊆ {0, 1}n of
size poly (n, 1/ε), and a δ = poly (ε) such that every g ∈ S′ that satisfies ∆1 (f, g) [X] ≤ δ also
satisfies ∆∞ (f, g) ≤ ε. Likewise, S is L2-winnowable if ∆2 (f, g) [X] ≤ δ implies ∆∞ (f, g) ≤ ε,
and L∞-winnowable if ∆∞ (f, g) [X] ≤ δ implies ∆∞ (f, g) ≤ ε.

Clearly L∞-winnowability implies L2-winnowability implies L1-winnowability. The following
lemma will imply that every set of functions with a small cover is L1-winnowable.

Lemma 41 (L1-Winnowing Lemma) Let S be a set of functions f : {0, 1}n → [0, 1]. For some
parameter ε > 0, let C be a finite ε-cover for S. Then there exists an f ∈ S, as well as a subset
X ⊆ {0, 1}n of size O

(
1
ε log |C|

)
, such that every g ∈ S that satisfies ∆1 (f, g) [X] ≤ 0.4ε also

satisfies ∆∞ (f, g) ≤ 2ε.

Proof. We will consider functions P : S → [0, 1], which we think of as assigning a probability
weight P (g) to each function g ∈ S. In particular, given an f ∈ S and a subset of inputs
X ⊆ {0, 1}n, define

Pf,X (g) := exp (−∆1 (f, g) [X]) .

Clearly Pf,X (f) = 1. Our goal will be to find f ∈ S and X ⊆ {0, 1}n, with |X| = O
(
1
ε log |C|

)
,

such that every g ∈ S that satisfies Pf,X (g) ≥ e−0.4ε also satisfies ∆∞ (f, g) ≤ 2ε. Supposing we
have found such an (f,X) pair, the lemma is proved.

Consider the progress measure

Mf,X :=
∑

h∈C

Pf,X (h) .

Clearly Mf,X ≤ |C| for all (f,X). We claim, furthermore, that Mf,X ≥ exp (−ε |X|) for all (f,X).
For since C is an ε-cover for S, there always exists an h ∈ C such that ∆1 (f, h) [X] ≤ ε |X|, and
that h alone contributes at least exp (−ε |X|) to Mf,X .

We will construct (f,X) by an iterative process. Initially f is arbitrary and X is the empty set,
so Pf,X (g) = 1 for all g, and Mf,X = |C|. Now, suppose there exists a g ∈ S such that Pf,X (g) ≥
e−0.4ε, as well as an input y such that |f (y)− g (y)| > 2ε. As a first step, let Y := X ∪ {y} (that
is, add y into our set of inputs). Then the crucial claim is that either Mf,Y or Mg,Y is a 1−Ω (ε)
factor smaller than Mf,X . This means in particular that, by replacing X with Y (increasing |X|
by 1), and possibly also replacing f with g, we can decrease Mf,X by a 1− Ω (ε) factor compared
to its previous value. Since exp (−ε |X|) ≤ Mf,X ≤ |C|, it is clear that Mf,X can decrease in this
way at most

O

(
log1+ε

|C|
exp (−ε |X|)

)

times. Setting the above expression equal to |X| and solving, we find that the process must
terminate when |X| = O

(
1
ε log |C|

)
, returning an (f,X) pair with the properties we want.
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We now prove the crucial claim. The first step is to show that either

Mf,Y =
∑

h∈C

Pf,X (h) e−|f(y)−h(y)|

or else
M ′ :=

∑

h∈C

Pf,X (h) e−|g(y)−h(y)|

is at most
1 + e−ε

2
Mf,X .

For since |f (y)− g (y)| > 2ε, either |f (y)− h (y)| > ε or |g (y)− h (y)| > ε by the triangle inequal-
ity. So for every y, either e−|f(y)−h(y)| < e−ε or e−|g(y)−h(y)| < e−ε. This in turn means that either
Mf,Y or M ′ must have at least half its terms (as weighted by the Pf,X (h)’s) shrunk by an e−ε

factor.
If Mf,Y < 1+e−ε

2 Mf,X then we are done. So suppose instead that M ′ < 1+e−ε

2 Mf,X . Then

Mg,Y =
∑

h∈C

Pg,X (h) e−|g(y)−h(y)|

≤M ′ max
h∈C

Pg,X (h)

Pf,X (h)

=M ′ max
h∈C

exp (−∆1 (g, h) [X])

exp (−∆1 (f, h) [X])

≤M ′ exp (∆1 (f, g) [X])

=
M ′

Pf,X (g)

<
1+e−ε

2 Mf,X

e−0.4ε

<
(
1− ε

20

)
Mf,X

and we are done.

Recall that S is coverable if for all ε > 0, there exists an ε-cover for S of size 2poly(n,1/ε). We
can now prove the following equivalence theorem.

Theorem 42 A p-concept class S is coverable if and only if it is L1-winnowable.

Proof. For Coverable=⇒L1-Winnowable: fix a subset S′ ⊆ S and an ε > 0. Let C be
an ε/2-cover for S′ of size 2poly(n,1/ε). Then by Lemma 41, there exists an f ∈ S′, as well as
a subset X ⊆ {0, 1}n of size O

(
1
ε log |C|

)
= poly (n, 1/ε), such that every g ∈ S′ that satisfies

∆1 (f, g) [X] ≤ ε/5 also satisfies ∆∞ (f, g) ≤ ε.
For L1-Winnowable=⇒Coverable, we prove the contrapositive. Suppose there exists a

function t (n, 1/ε), superpolynomial in either n or 1/ε, such that S has no ε-cover of size 2t(n,1/ε)

(at least, for infinitely many n or 1/ε). Let p = poly (n, 1/ε) and δ = poly (ε). Given a function f
and subset X ⊆ {0, 1}n, let L [f,X] be the set of all functions g such that ∆1 (f, g) [X] ≤ δ. Then
our goal is to construct a subset S′ ⊆ S for which there is no pair (f,X) such that
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• f ∈ S′,

• X ⊆ {0, 1}n is a set of inputs with |X| = p, and

• g ∈ S′ ∩ L [f,X] implies ∆∞ (f, g) ≤ ε.

Let W := ⌈2p/δ⌉. Also, call a set B of functions f : {0, 1}n → [0, 1] a sliver if there exists a
set X ⊆ {0, 1}n with |X| = p, as well a function a : X → [W ], such that

f ∈ B ⇐⇒ f (x) ∈
[
a (x)− 1

W
,
a (x)

W

]
∀x ∈ X.

Then define a subset S′ ⊆ S by the following iterative procedure. Initially S′ = S. Then so long
as there exists a sliver B such that S′ ∩B is nonempty, together with a function fB ∈ S such that

g ∈ S′ ∩B =⇒ ∆∞ (fB, g) ≤ ε,

remove B from S′ (that is, set S′ := S′ \B). Halt only when no more such slivers B can be found.
As a first observation, the total number of slivers is at most (2nW )p = 2poly(n,1/ε). Thus, the

above procedure must halt after at most 2poly(n,1/ε) iterations.
As a consequence, we claim that S′ must be nonempty after the procedure has halted. For

suppose not. Then the sequence of functions fB chosen by the procedure would form an ε-cover
for S of size 2poly(n,1/ε)—since for all g ∈ S, we would simply need to find a sliver B containing g
that was removed by the procedure; then fB would satisfy ∆∞ (fB , g) ≤ ε. But this contradicts
the assumption that no such ε-cover exists.

Finally, we claim that once the procedure halts, there can be no f ∈ S′ and set X of p inputs
such that ∆∞ (f, g) ≤ ε for all g ∈ S′ ∩ L [f,X]. For suppose to the contrary that such an (f,X)
pair existed. It is not hard to see that for every (f,X), there exists a sliver B that contains f
and is contained in L [f,X]. But then S′ ∩ B would be nonempty, and (B, f) would satisfy the
condition g ∈ S′ ∩ B =⇒ ∆∞ (f, g) ≤ ε. So B (or some other sliver containing f) would already
have been eliminated in the process of forming S′.

A natural question is whether Lemma 41 and Theorem 42 would also hold with L2-winnowability
or L∞-winnowability in place of L1-winnowability. The next theorem shows, somewhat surprisingly,
that the use of the L1 norm is essential.

Theorem 43 There exists a p-concept class S that is coverable, but not L2-winnowable or L∞-
winnowable.

Proof. We prove a stronger statement: there exists a finite p-concept class S, of size |S| ≤ 2poly(n),
that is not L2-winnowable (and as a direct consequence, not L∞-winnowable either). To prove
this, it suffices to find a set S with |S| ≤ 2poly(n), as well as a constant ε > 0, for which the following
holds. For all f ∈ S, subsets X ⊆ {0, 1}n of size less than 2n − n2, and constants δ depending on
ε, there exists a g ∈ S such that ∆2 (f, g) [X] ≤ δ but ∆∞ (f, g) > ε (at least, for all sufficiently
large n).

Let ε be any constant in (0, 1), and let S be the class of all functions f : {0, 1}n → [0, 1] of the
form

f (x) =
ax
n
,
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where the ax’s are nonnegative integers satisfying

∑

x∈{0,1}n

ax = n2.

Then clearly |S| ≤ (2n)n
2

, since we can form any f ∈ S by starting from the identically-0 function,
then choosing n2 inputs x (with repetition) on which to increment f by 1/n.

Now let f ∈ S, and let X ⊆ {0, 1}n have size |X| < 2n − n2. Then we can “corrupt” f to
create a new function g ∈ S as follows. Let Z be a set of n inputs x ∈ {0, 1}n on which f (x) > 0
(note that such a Z must exist, since

∑
x f (x) = n but f (x) ≤ 1 for all x). By the pigeonhole

principle, there exists a y ∈ {0, 1}n \X such that f (y) = 0. Fix that y, and define

g (x) :=





1 if x = y
f (x)− 1/n if x ∈ Z

f (x) otherwise.

Clearly g ∈ S and

∆2 (f, g) [X] =

√ ∑

x∈Z∩X

1

n2
≤ 1√

n
.

On the other hand, we have f (y) = 0 and g (y) = 1, so ∆∞ (f, g) = 1. Therefore S is not
L2-winnowable.
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