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Abstract

We present a general notion of properties that are characterized by local conditions that are
invariant under a sufficiently rich class of symmetries. Our framework generalizes two popular
models of testing graph properties as well as the algebraic invariances studied by Kaufman and
Sudan (STOC’08).

We show that, in the aforementioned models of testing graph properties, characterization
by such invaraint local conditions is closely related to proximity oblivious testing (as defined by
Goldreich and Ron, STOC’09). In contrast to this relation, we show that, in general, charac-
terization by invaraint local conditions is neither necessary nor sufficient for proximity oblivious
testing. Furthermore, we show that easy testability is not guaranteed even when the property is
characterized by local conditions that are invariant under a 1-transitive group of permutations.
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1 Introduction

In the last couple of decades, the area of property testing has attracted much attention (see, e.g., a
couple of recent surveys [14, 15]). Loosely speaking, property testing typically refers to sub-linear
time probabilistic algorithms for deciding whether a given object has a predetermined property or
is far from any object having this property. Such algorithms, called testers, obtain local views of
the object by making adequate queries; that is, the object is seen as a function and the testers get
oracle access to this function (and thus may be expected to work in time that is sub-linear in the
length of the object).

While a host of fascinating results and techniques has emerged, the desire for a comprehensive
underastanding of what makes some properties easy to test (while others are hard to test) is far
from being satisfied.1 Two general approaches that seem to have a potential of addressing the
question (of “what makes testing possible”) were suggested recently.

1. Restricting attention to the class of proximity oblivious testers, which are constant-query
testers that reject any object with probability proportional (but not necessarily linearly pro-
portional) to its distance from the predetermined property. Indeed, the characterization of
proximity oblivious testers, in two central models of graph properties, obtained in [8], seems
to answer the foregoing question: graph properties have proximity oblivious testers if and only

if they can be characterized in terms of adequate local conditions.2

2. But even before [8], an approach based on adequately invariant local conditions was put
forward in [12]. It was shown that in the context of testing algebraic properties, a sufficient

condition for testability (which in fact yields proximity oblivious testers) is that the property

can be characterized in terms of local conditions that are invariant in an adequate sense.

Thus, these two approaches have a very similar flavor, but they are very different at the actual
details. On the one hand, the definition of proximity oblivious testers does not refer to any structure
of the underlying domain of functions, and the local conditions in the two graph models do not refer
explicitly to any invariance. However, invariance under relabelling of the graph’s vertices is implicit
in the entire study of graph properties (since the latter are defined in terms of such invaraince). On
the other hand, the linear invariances considered in [12] presume that the functions’ domain can be
associated with some vector space and that the properties are invariant under linear transformations
of this vector space.

Thus, the first task that we undertake is providing a definition of a general notion of “charac-
terization by invariant local conditions”, where at the very minimum this general definition should
unify the notions underlying [8, 12]. Such a definition is presented in Section 2.

Given such a definition, a natural conjecture that arises, hereafter refered to as the invariance

conjecture, is that a property has a constant-query proximity-oblivious tester if and only if it can
be characterized by invariant local conditions. This conjecture is rigorously formulated within our
definitional framework (see Section 2.2) and the current work is devoted to its study. The main
results of our study may be stated imformally as follows:

1. The invariance conjecture holds in the context of testing graph properties in the dense graph
model (see Theorem 3.1).

1This assertion is not meant to undermine significant successes of several characterization projects, most notably
the result of [1].

2We warn the the picture is actually not that clean, because in the case of the bounded-degree model the notion
of adequacy includes some technical condition, termed non-propagation.
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2. The invariance conjecture holds in the context of testing graph properties in the bounded-
degree graph model if and only if all local properties are non-propagating (see Theorem 3.1
and Open Problem 5.8 in [8]).

3. In general, the invariance conjecture fails in both directions.

(a) Charaterization by invariant local conditions is not necessary for proximity oblivious
testing. This is demonstrated both by linear properties (see Theorem 5.1) and by the
dictatorship property (see Theorem 5.2).

(b) Charaterization by invariant local conditions is not sufficient for proximity oblivious test-
ing (see Theorem 5.3). This is demostrated by the property called Eulerian orientation
(which refers to the orientation of the edges of a cyclic grid, cf. [5]).

Thus, there are natural settings in which the invariance conjecture holds, but there are also natural
settings in which it fails (in each of the possible directions).

The technical angle. Items 1 and 2 are established by relying on corresponding results of [8],
while our contribution is in observing that the local conditions stated in [8] (in terms of subgraph
freeness) coincide with local conditions that are invariant under graph isomorphisms. Actually, to
rule out charaterizations by other possible invariances, we use the canonization technique of [9,
Thm. 2]. In the two examples of Item 3a we rely on the fact that these properties were shown to
have (proximity oblivious) testers in [11] and [3], respectively. Thus, in both cases, our contribution
is showing that these properties cannot be charaterized by invariant local conditions. In Item 3b we
rely on a lower bound established in [5] (regarding testing Eulerian orientations of cyclic grids), and
our contribution is in observing that this property can be charaterized by invariant local conditions.

We mention that the property used towards establishing Item 3b is invariant under a 1-
transitive3 permutation group. Thus, even such an invariance feature does not guarantee easy
testability (i.e., a standard tester of query complexity that only depends on the proximity param-
eter).

Terminology. Throughout the text, when we say proximity oblivious testing we actually mean
proximity oblivious testing in a constant number of queries. The definition of proximity oblivious
testing appears in the appendix.

Organization. In Section 2 we provide a definitional framework that captures the foregoing dis-
cussion. In particular, this framework includes a general definition of the notion of characterizations
by invariant local conditions and a formal statement of the invariance conjecture. In Section 3 we
show the the invariance conjecture holds in the context of testing graph properties in the dense
graph model, and in Section 4 we present an analogous conditional (or partial) result for the
bouded-degree graph model. The failure of the invariance conjecture is demonstrated in Section 5,
and possible conclusions are discussed in Section 6.

2 General Framework

For simplicity, we consider properties of finite functions defined over a finite domain D and having
a finite range R, whereas an asymptotic treatment requires considering properties that are infinite

3A permutation group G over D is called 1-transitive if for every e, e′ ∈ D there exists a π ∈ G such that π(e) = e′.
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sequences of such properties (i.e., a sequence of the type (Pn)n∈N where Pn is a set of functions from
Dn to Rn). Still, we shall just write P,D,R, and (in order for our asymptotoc statements to make
sense) one should think of Pn,Dn, Rn In particular, when we say that some quantity is a “constant”,
we actually think of D as growing (along with P and possiblly R), while the said quantity remains
fixed. Thus, in the rest of our presentation, D and R should be considered as generic sets having
a variable size, although they will be often omitted from definitions and notations.

The simplified form of the invariant condition. We start by outlining a simplified version
of the condition that we seek, regarding a property P (of functions D → R):

1. P is closed under the action of some permutation group G, which is defined over D, and

2. P has a characterization via a constant number of “generic” constraints of constant size such
that a function f is in P iff all actual constraints obtained by having G act on the generic
constraints are satisfied.

In other words, P can be characterized by a set of constraints that are generated by some permu-
tation group G acting on a constant number of constant-size constraints.

We stress that the foregoing permuation group G is chosen arbitrarily, and may depend on P
(and not only on a natural class of properties to which P belongs). Thus, if P is a graph property,
then G need not be the group that preserves all graph properties (i.e., the vertex-relabeling group),
but rather may be any group that extend the vertex-relabeling group. For example, if P is the
property of having more edges than non-edges, then the group may be the symmetric group of all
(unordered) vertex pairs, which in particular contains the vertex-relabeling group as a subgroup.

2.1 Characterization by generated constraints

We now generalize and clarify the above discussion. First we need to define what we mean by
a constraint. A constraint will be a pair consisting of domain elements and a Boolean predicate
applied to the corresponding values, and it is satisfied by a function f if applying the predicate to
the f -values at the specified locations yields the Boolean value 1 (representing true).

Definition 2.1 (constraints): A constraint is a pair ((e1, ..., ec), φ) such that e1, ..., ec are distinct

elements in D, and φ : Rc → {0, 1} is an arbitrary predicate. We say that the foregoing is a

constraint of arity c (or a c-constraint). A function f : D → R is said to satisfy the foregoing

constraint if φ(f(e1), ..., f(ec)) = 1.

Note that at this point the predicate φ may depend on the sequence of elements (e1, ..., ec). Such
a dependence will not exist in the case that a large set of constraints is generated based on few
constraints (as in Definition 2.3).

The next notion is of characterization by a set of constraints. A property P of functions is
characterized by a set of constaints if f is in P if and only f satisfies all constraints in the set.

Definition 2.2 (characterization by constraints): Let C be a set of constraints and P be a property.

We say that P is characterized by C if for every f : D → R it holds that f ∈ P if and only if f
satisfies each constraint in C.

Next, we consider the set of constraints generated by the combination of (1) a fixed set of constraints,
(2) a group of permutations over D, and (3) a group of permutations over R. For starters, the
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reader is advised to think of the second group as of the trivial group containing only the identity
permutation. In general, we shall consider a subset of the set of all pairs consisting of a permutation
as in (2) and a permutation as in (3).

Definition 2.3 (generated constraints): Let C be a finite set of c-constraints, and M be a set of

pairs consisting of a permutation over D and a permutation over R (i.e., for any (π, µ) ∈ M it
holds that π is a permutation of D and µ is a permutation R). The set of constaints generated by

C and M , denoted CONS(C,M), is defined by

CONS(C,M)
def
= {((π(e1), ..., π(ec)), φ ◦ µ−1) : ((e1, ..., ec), φ)∈C , (π, µ)∈M} (1)

where φ ◦ µ−1(v1, ..., vc) denotes φ(µ−1(v1), ..., µ
−1(vc)).

Note that saying that f satisfies ((π(e1), ..., π(ec)), φ ◦ µ−1) means that

(φ ◦ µ−1)(f(π(e1)), ..., f(π(ec))) = φ(µ−1(f(π(e1))), ..., µ
−1(f(π(ec)))) = 1,

which means that µ−1◦f ◦π satisfies the constraint ((e1, ..., ec), φ). Note that µ◦f ◦π−1 (rather than
µ◦f ◦π) is indeed the natural choice, since f maps D to R whereas the new function f ′ = µ◦f ◦π−1

is meant to map π(D) to µ(R); thus, when f ′ is applied to e′ = π(e) this results in first recovering
e, next applying f , and finally applying µ.

Notation: As in Definition 2.3, it will be convenient to generalize functions to sequences over
their domain. That is, for any function F defined over some set S, and for any e1, ..., et ∈ S, we
denote the sequence (F (e1), ..., F (et)) by F (e1, ..., et). Throughout the text, id will be used to
denote the identity permutation, where the domain is understood from the context.

2.2 The invariance condition

Returning to the condition outlined initially, let us now formulate it as follows. We consider a group
of pairs (π, µ) such that π is a permutation over D and µ is a permutation over R with a group
operation that corresponds to component-wise composition of permuations (i.e., (π1, µ1)⊙(π2, µ2) =
(π1◦π2, µ1◦µ2), where ⊙ denotes the group operation). We call such a group a group of permutation

pairs, and note that it need not be a direct product of a group of permutation over D and a group
of permutations over R.

Definition 2.4 (the invariance condition): A property P satisfies the invariance condition if there

exists a constant, denoted c, a finite set of c-constraints, denoted C, and a group, denoted M , of

permutation pairs over D×R such that P is charaterized by CONS(C,M). In this case, we also say

that P satisfies the invariance condition w.r.t M .

Recall that the group operation ⊙ of M satisfies (π1, µ1) ⊙ (π2, µ2) = (π1 ◦ π2, µ1 ◦ µ2), where
◦ denotes composition of permutations. Thus, M induces a permutation group over D (as well
as one over R), but M is not necessarily their direct product (e.g., for D = R, it may be that
M = {(π, π) : π ∈ G}, where G is a permutation group over D).
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The invariance condition and covering the domain. We confine our discussion to the case

that the domain contains only elements that are influential w.r.t the property P; that is, for every
e ∈ D, there exists f1 ∈ P and f0 6∈ P such that f1(x) = f0(x) for every x ∈ D \ {e}. Observe that
if property P satisfies the invariance condition w.r.t M , then M induces a transitive permutation
group on a constant fraction of D. This follows because the permutation group (over D) induced
by M must map a constant number of elements (i.e., those appearing in the constraint set C) to
all elements of D.

The main question. We ask what is the relation between satisfying the invariance condition
and having a proximity oblivious tester (of constant-query complexity). One natural conjecture,
hereafter referred to as the invariance conjecture, is that a property satisfies the invariance condition

if and only if it has a proximity oblivious tester. Weaker forms of this conjecture refer to its validity
within various models of property testing. This leads us to ask what are “models of property
testing”.

2.3 Models of property testing

Natural model of property testing can be defined by specifying the domain and range of functions
(i.e., D and R) as well as closure features of the properties in the model (cf., independent elabor-
tation by Sudan [17]). (In addition, one may consider sub-models that are obtained by requiring
the functions in such a model to satisfy some auxiliary properties.)

For example, the model of testing graph properties in the adacency matrix representation,
introduced in [6], refers to D =

([N ]
2

)

and R = {0, 1} as well as the permutation group over D that
is defined by all relabeling of [N ]. Specifically, an N -vertex graph is represented by the Boolean
function g :

([N ]
2

)

→ {0, 1} such that g({u, v}) = 1 if and only if u and v are adjacent in the graph.
Here an adequate closure feature gives rise to graph properties, where P is a graph property if, for
every such function g, and every permutation ψ over [N ], it holds that g ∈ P iff gψ ∈ P, where

gψ({u, v})
def
= g({ψ(u), ψ(v)}).

In general, closure features are defined by groups of pairs of permutations, just as those in
Definition 2.4.

Definition 2.5 (closure features): Let M be as in Definition 2.4. We say that a property P is

closed under M if, for every (π, µ) ∈M , it holds that f ∈ P if and only if µ ◦ f ◦ π−1 ∈ P.

Regarding the use of µ ◦ f ◦ π−1 rather than µ ◦ f ◦ π, see discussion following Definition 2.3.

Definition 2.6 (closure-based models of property testing): The model of M consists of the class

of all properties that are closed under M .

For example, the model of testing graph properties in the adjacency matrix representation corre-
sponds to the set M that equals all pairs (π, id) such that there exists a permutation ψ over [N ]
such that π({u, v}) = {ψ(u), ψ(v)} (for all {u, v} ∈ D =

([N ]
2

)

). As we shall see, not all “common
models of property testing” can be reduced to Definition 2.6, but nevertheless Definition 2.6 is a
good starting point; that is, various models can be naturally defined as subclasses of the class of
all properties that are closed under some group M (where typically in such cases the subclass are
charcaterized by a set of constraints that are generated as in Definition 2.3).4

4Indeed, an alternative formulation of the model of testing graph properties in the adjacency matrix representation
is obtained by starting from D = [N ] × [N ] and M that equals all pairs (π,id) such that π(u, v) = (ψ(u), ψ(v)), for
some permutation ψ over [N ] (and all (u, v) ∈ D = [N ]× [N ]). In such a case, we consider the subclass of symmetric
function (i.e., functions g such that g(u, v) = g(v, u) for all (u, v)∈D).
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We observe that closure under M is a necessary condition for satisfying the invarince condition
with respect to M .

Proposition 2.7 If P satisfies the invarince condition w.r.t M , then P is closed under M .

Proof: For any f ∈ P and (π0, µ0) ∈ M , consider f ′
def
= µ0 ◦ f ◦ π−1

0 . We shall show that f ∈ P
if and only if f ′ ∈ P. Suppose that P is characterized by CONS(C,M), and consider an arbitrary
constraint in CONS(C,M). By definition (of being generated from (C,M)), this constraint has the
form (π(e1), ..., π(ec)), φ ◦µ

−1), where ((e1, ..., ec), φ) ∈ C and (π, µ) ∈M . Our aim is to show that
f ′ satisfies this constraint if and only if f satisfies some related constraint in CONS(C,M), where
the two constraints are related via (π0, µ0).

We start by looking at the value of (φ ◦ µ−1)(f ′(π(e1)), ..., f
′(π(ec))), which we shorthand as

(φ ◦ µ−1)(f ′(π(e1, ..., ec))). Plugging-in the definition of f ′, what we now look at is (φ ◦ µ−1)((µ0 ◦
f ◦ π−1

0 )(π(e1, ..., ec))), which may be written as φ(µ−1 ◦ µ0 ◦ f ◦ π−1
0 ◦ π(e1, ..., ec)), which in turn

equals φ((µ−1 ◦µ0)◦f ◦ (π−1
0 ◦π)(e1, ..., ec)). That is, we consider whether f satisfies the constraint

((π−1
0 ◦ π)(e1, ..., ec), φ ◦ (µ−1 ◦ µ0)), which can be written as ((π−1

0 ◦ π)(e1, ..., ec), φ ◦ (µ−1
0 ◦ µ)−1).

But this constraint is in CONS(C,M), since it is generated from ((e1, ..., ec), φ) ∈ C by using the
pair (π−1

0 ◦ π, µ−1
0 ◦ µ) ∈ M . Thus, f ′ satisfies the constraint generated (from ((e1, ..., ec), φ)) by

(π−1
0 ◦ π, µ−1

0 ◦ µ) if and only if f satisfies the constraint generated (from it) by (π, µ). It follows
that f ′ satisfies all constraints in CONS(C,M) if and only if f satisfies all constraints in CONS(C,M).

3 The Invariance Conjecture holds in the Dense Graph Model

We prove the invariance conjecture holds in the special case of graph properties in the adjacency
matrix representation model (a.k.a the dense graph model). Recall that in the adjacency matrix
model, an N -vertex graph is represented by the (symmetric) Boolean function g : [N ]×[N ] → {0, 1}
such that g(u, v) = 1 if and only if u and v are adjacent in the graph.

We rely on a recent result of [8], which states that (in this model) P has a proximity oblivious
tester if and only if it is a subgraph-freeness property. We next observe that being a subgraph-
freeness property is equivalent to satisfying invariance condition with respect to the canonical set,
where a set M is canonical if M = M ′×{id} such that M ′ is the group of permutations over vertex-
pairs that is induced by vertex-relabelling. (Indeed, the canonical set is the very set that defines
the current model; see Section 2.3). So it is left to show that P satisfies the invariance condition if

and only if P satisfies the invariance condition with respect to the canonical set. Details follow.

Theorem 3.1 Suppose that P is a set of Boolean functions over the set of unordered pairs over

[N ] such that P is closed under relabelling of the base set (i.e., P is a graph property that refers
to the adjacency representation of graphs). Then, P has a proximity oblivious tester if and only

if P satisfies the invariance condition. Furthermore, if P satisfies the invariance condition, then it

satisfies this condition with the canonical set.

Proof: The key observation is that, in this model, a property satisfies the invariance condition with

respect to the canonical set if and only if it is a subgraph-freeness property, where throughout this
proof subgraph-freeness means not having certain induced graphs (which are specified in a forbidden
set). The backward direction (i.e., from subgraph-freeness to the invariance condition) follows by
observing that every subgraph-freeness property satisfies the invariance condition with respect to
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the canonical set, because it can be generated by the predicate that forbids certain unlabeled
graphs (e.g., not having F = ([n], EF ) as an induced subgraph is captured by the constraint
(({1, 2}, .., {1, n}, ..., {n−1, n}), φ) such that φ(a1,2, ..., an−1,n) = 1 if and only if F is not represented
by (ai,j)i,j). In proving the other direction (i.e., from the invariance condition to subgraph-freeness),
observe that the “base” constraints may be viewed as a predicate on an unlabeled induced subgraph;
that is, the constraint (({i1, j1}, .., {ic, jc}), φ) can be viewed as forbidding all induced subgraphs
that are consistent with some (aik ,jk)k∈[c] such that φ(ai1,j1, ..., aic ,jc) = 0.

Another important observation is that if P satisfies the invariance condition then it does so with

the canonical pair. This observation is proven as follows. Let P be charaterized by CONS(C,M),
where M is not necessarily the canonical set. Then, we view CONS(C,M) (or rather the uniform
distribution over it) as a ((possibly “weak”) non-adaptive) tester with one-sided error; that is, this
tester always accepts any graph in P and its error probbaility (on no-instances) is strictly less
than 1 (i.e., it accepts graphs that are not in P with probability is at most 1 − |CONS(C,M)|−1).
Applying [9, Thm. 2], we obtain a tester with similar one-sided error that only inspects the graph
induced by a random constant-size vertex-set. (Indeed, the transformation in [9, Thm. 2] preserves
the detection probability no matter how small it is.) The latter tester gives rise to a characterization
of P that can be generated by the decision predicate of this tester coupled with the the group of
vertex-relabeling; that is, P satisfies the invariance condition with the canonical set.

The current theorem now follows by combining the two foregoing observations with [8, Thm. 4.7].
Specifically, by [8, Thm. 4.7], P has a proximity oblivious tester, if and only if it is a subgraph

freeness property, By the first observation, P is a subgraph freeness property if and only if P satisfies
the invariance condition with the canonical set, whereas (by the second observation) P satisfies the
invariance condition if and only if P satisfies the invariance condition with the canonical set.

4 The Invariance Conjecture in the Bounded-Degree Graph Model

The next challenge would be proving a result analogous to Theorem 3.1 for the bounded-degree
graph model (introduced in [7]). Unfortunately, only a partial result is established here, because
of a difficulty that arises in [8, Sec. 5] (regarding “non-propagation”), to be discussed below.

But first, we have to address a more basic difficulty that refers to fitting the bounded-degree
graph model within our framework (i.e., Section 2.3). Recall that the standard presentation of
the bounded-degree model represents a N -vertex graph of maximum degree d by a function g :
[N ] × [d] → {0, 1, ..., N} such that g(v, i) = u ∈ [N ] if u is the ith neighbor of v and g(v, i) = 0 if v
has less than i neighbors. This creates technical difficulties, which can be resolved in various ways.5

The solution adopted here is to modify the representation of the bounded-degree graph model such
that N -vertex graphs are represented by functions from [N ] to subsets of [N ]. Speficically, such a
graph is represented by a function g : [N ] → 2[N ] such that g(v) is the set of neighbors of vertex v.
Furthermore, we are only interested in functions g that described undirected graphs, which means
that g : [N ] → 2[N ] should satisfy u ∈ g(v) iff v ∈ g(u) (for every u, v ∈ [N ]).

Theorem 4.1 Suppose that P is a set of functions from [N ] to {S ⊂ [N ] : |S|≤d} that corresponds

to undirected graph properties; in particular, P is closed under the following canonical set M0 defined

5The problem is that here it is imporant to follow the standard convention of allowing the neighbors of each vertex
to appear in arbitrary order (as this will happen under relabeling of vertex names), but this must allow us to permute
over [d] without distinguishing vertices from the 0-symbol. One possibility is to give up the standard convention by
which the vertices appear first and 0-symbols appear at the end of the list. We choose a different alternative.
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by (π, µ) ∈ M0 if and only if π is a permutation over [N ] and µ acts analogously on sets (i.e.,
µ(S) = {π(v) : v ∈ S}).6 Then:

1. If P has a proximity oblivious tester, then it satisfies the invariance condition.

2. If P satisfies the invariance condition, then it satisfies it with respect to the canonical set, and

it follows that P is a generalized subgraph freeness property (as defined in [8, Def. 5.1]).

Recall that by [8, Sec. 5], if P is a generalized subgraph freeness property that is non-propagating,
then P has a proximity oblivious tester. But it is unknow whether each generalized subgraph
freeness property is non-propagating. (We note that this difficulty holds even with respect to
properties that satisfies the invariance condition with respect to the canonical set.)7

Proof: As in the dense graph model (i.e., Theorem 3.1), the key observation is that a property
in this model satisfies the invariance condition with respect to the canonical set if and only if it
is a generalized subgraph-freeness property (as defined in [8, Def. 5.1]). Thus, Part (1) follows
immediately from [8, Thm. 5.5], and the point is proving Part (2).8

Suppose that P is characterized by CONS(C,M). Viewing the uniform distribution over CONS(C,M)
as a (very weak) one-sided error non-adaptive tester, we apply a “canonialization” procedure that
is analogous to [9, Thm. 2], and obtain a (very weak) tester that inspects the neighborhoods of
c randomly distributed vertices. This yields a characterization of P by CONS({((1, ..., c), φ)},M0),
where φ is this tester’s decision predicate. So we are done.

5 The Invariance Conjecture Fails in Some Cases

We show that, in general, the invariance condition is neither necessary nor sufficient for the existence
of proximity oblivious testers (POTs).

5.1 The Invariance Condition is not necessary for POT

We present two examples (i.e., properties) that contradict the belief that satisfying the invariance
condition is necessary for having a proximity oblivious tester. Both examples are based on sparse
linear codes that have (proximity oblivious) codeword tests (i.e., these codes are locally testable).
In both cases, the key observation is that satisfying the invariance condition with respect to M (as
in Definition 2.4) requires that M is “rich enough” since the domain permutations should map a
fixed number of elements to all the domain elements. On the other hand, Proposition 2.7 requires
that the property be closed under M , whereas this is shown to be impossible in both examples. In
the first example, presented next, the property will be shown to be closed only under the trivial
pair (id, id).

6Recall that we also assume that for every g ∈ P it holds that u ∈ g(v) iff v ∈ g(u) (for every u, v ∈ [N ]). We note
that this extra property is easy to test.

7In fact, the negative example in [8, Prop. 5.4] can arise in our context. Specifically, consider the set of constaints
generated by the constraint ((1, 2), φ) such that φ(S1, S2) = 1 iff both (1) |{i ∈ {1, 2} : Si = ∅}| 6= 1 and (2) |S1| ∈
{0} ∪ {2i− 1 : i ∈ N}. (Indeed, condition (1) mandates that if the graph contains an isolated vertex then it contains
no edges, whereas condition (2) mandates that all non-isolated vertices have odd degree.)

8The point (i.e., Part (2)) is showing that if P satisfies the invariance condition, then it satisfies it with respect
to the canonical set. We mention that the transformation from the possiblly adaptive character of a proximity
oblivious tester to the non-adaptive character of the invariance condition (equivalently, generalized subgraph-freeness)
is performed in [8, Thm. 5.5].
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Theorem 5.1 There exists a property, denoted P, of Boolean functions such that P has a proximity

oblivious tester but does not satisfies the invariance condition. Furthermore, P is a linear property;

that is, if f1, f2 ∈ P then f1 + f2 ∈ P, where (f1 + f2)(x) = f1(x) ⊕ f2(x) for every x.

Proof: We consider a random linear property of dimension ℓ = O(log n). That is, for uniformly
selected functions g1, ..., gℓ : [n] → {0, 1}, we consider the property Pn = {

∑

i∈I gi : I ⊆ [ℓ]}.
Actually, we repeat this selection for every value of n, obtaining the property P = (Pn)n∈N. It was
shown in [11] that, with high probability over these random choices, the property P has a POT. We
shall show that, with high probability over these random choices, the property P does not satisfy
the invariance condition.

The key observation is that satisfying the invariance condition with respect to M (as in Defini-
tion 2.4) requires that M is non-trivial (i.e., contains a non-trivial pair), because otherwise Pn is
characterized by a fixed (i.e., independent of n) number of constraints (which is highly improbable
for random gi’s). On the other hand, Proposition 2.7 requires that Pn be closed under M , which
is highly improbable when M is non-trivial. Specifically, we will show that with high probability
(over the choice of Pn), for every non-trivial (π, µ), there exists f ∈ Pn such that µ ◦ f ◦ π−1 6∈ P.
We distinguish two cases: (1) the case that π is not the indentity permutation but µ is the identity
permutation, and (2) the case that µ is not the identity permutation (which implies that µ(b) = 1−b
for every b ∈ {0, 1}).

Claim 5.1.1 Let π be a permutation such that m
def
= |{i∈ [n] : π(i) 6= i}| > 0. Then, for a random

Pn, the probability that {f ◦ π : f ∈ Pn} = Pn is less than 2−mℓ/4.

Note that the number of permutations that satisfy the hypothesis is smaller than
(n
m

)

· (m!) <
2m log2 n. Thus, the aggregated probability for the aforementioned Case (1) is a small constant (i.e.,
∑

m>0 2−m·((ℓ/4)−log2 n) is smaller than, say, 0.01).

Proof: As a warm-up we upper bound the probability that g ◦ π = g, where g : [n] → {0, 1} is
uniformly distributed. For g ◦ π = g to hold, g must be constant on each cycle of π. Denoting the
number of cycles by c ≤ m/2, it follows that Prg[g◦π = g] = 2−m+c ≤ 2−m/2. The argument extends
to the case that we wish g ◦π = g+ f to hold for an arbitrary fixed f and a random g. Specifically,
consider a cycle of π, denoted i1, ..., it. Then, Prg[(∀j∈ [t− 1]) g(j + 1) = g(j) + f(j)] = 2−(t−1). It
is even easier to prove that Prg[g ◦ π = f ] ≤ 2−m/2, since actually Prg[g ◦ π = f ] = 2−n. We now
turn to upper-bound the probability that {f ◦ π : f ∈ Pn} = Pn, by upper-bounding

Prg1,...,gℓ
[(∀i∈ [ℓ]) gi ◦ π ∈ Pn] = Prg1,...,gℓ



∀i∈ [ℓ]∃Ii ⊆ [ℓ] s.t. gi ◦ π =
∑

j∈Ii

gj



 (2)

≤
∑

I1,...,Iℓ⊆[ℓ]

Prg1,...,gℓ



∀i∈ [ℓ] gi ◦ π =
∑

j∈Ii

gj



 (3)

We break the sum in Eq. (3) into two parts, separating the single term that corresponds to
(I1, ..., Iℓ) = ({1}, ..., {ℓ}) from all other terms. The contribution of the first term to Eq. (3) is
upper-bounded by (2−m/2)ℓ, because Prg1,...,gℓ

[∀i ∈ [ℓ] gi ◦ π = gi] equals
∏ℓ
i=1 Prgi

[gi ◦ π = gi].
For each other term corresponding to (I1, ..., Iℓ) 6= ({1}, ..., {ℓ}), we pick an arbitrary i such that
Ii 6= {i}, and note that Prg1,...,gℓ

[gi ◦ π =
∑

j∈Ii gj ] equals 2−n, since gi is uniformly distributed
even when fixing the value of

∑

j∈Ii gj . Furthermore, this assertion holds even if we only select gi
and fi =

∑

j∈Ii gj at random (where in case Ii = ∅ we mean setting fi ≡ 0). We now consider
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an interative process starting with i1 = i, such that at the first step we select uniformly gi1 and
fi1 =

∑

j∈Ii1
gj . Recall that we have Prgi1

,fi1
[gi1 ◦π = fi1] = 2−n. For k = 2, ..., ℓ/2, at the kth step

we set ik such that gik is independent of gi1 , ..., gik−1
and fi1 , ..., fik−1

(where fi =
∑

j∈Ii gj), and
uniformly select gik and fik (unless fik was already determined in which case it is left unchanged).
Note that such a ik exists as long as k ≤ ℓ/2, but Iik need not be different than {ik}. Then, the
probability that gik ◦π =

∑

j∈Ii
k

gj , conditioned on the values of gi1 , ..., gik−1
and fi1 , ..., fik−1

, is at

most 2−m/2, where the probability is taken merely over the choice of gik (and possibily fik). Thus,
the contribution of this generic term to Eq. (3) is upper-bounded by 2−n · (2−m/2)(ℓ/2)−1. Using
the union bound, we upper-bound the contribution of all these (2ℓ)ℓ − 1 terms by

2ℓ
2

· 2−(n−(m/2)) · (2−m/2)ℓ/2, (4)

which is upper-bounded by 2−(mℓ/4)−1 (because 2ℓ
2

·2−(n−(m/2)) < 1/2). The claim follows (because
2−mℓ/2 < 2−(mℓ/4)−1). 2

Claim 5.1.2 Let µ(b) = 1−b. Then, for a random Pn, the probability that there exists a permuation

π such that {µ ◦ f ◦ π−1 : f ∈ Pn} = Pn is negligible as a function of n (i.e., is vanishes faster than
any polynomial fraction (in n)).

Proof: It suffices to show that, while the all-zero function is in Pn, with very high probability the
constant-one function is not in Pn. This is the case because, with overwhelmingly high probability,
for every non-empty I ⊆ [ℓ] it holds that |{j ∈ [n] :

∑

i∈I gi(j) = 1}| is in (1 ± o(1)) · n/2. 2

Combining Claims 5.1.1 and 5.1.2, we conslude that with high constant probability P is not closed
under any non-trivial pair. Recalling the initial discussion, the theorem follows.

Testing the Long-Code (a.k.a dictatorship tests). We refer to the property P = (Pn), where
for n = 2ℓ, it holds that f : {0, 1}ℓ → {0, 1} is in Pn if and only if there exists i ∈ [ℓ] such that
f(σ1 · · · σℓ) = σi. Such a funmction f is a dictatorhip (determined by bit i) and can be viewed as
the ith codeword in the long-code (i.e., the long-code encoding of i). Note that this property is
closed under the pair (π, id), where π is a permutation π over {0, 1}ℓ, if and only if there exists a
permutation φ over [ℓ] such that π(σ1 · · · σℓ) = σφ(1) · · · σφ(ℓ). (An analogous consideration applies
to pairs (π, flip).) We shall show that these are the only pairs under which the dictatorship
property is closed under, and it will follow that the dictatorship property violates the invariance
condition.

Theorem 5.2 The dictatorship property violates the invariance condition, although it has a prox-

imity oblivious tester.

Proof: The fact that the dictatorship property has a proximity oblivious tester is established in [3]
(see also [13]). We shall show that this property violates the invariance condition because it is not
closed under pairs (π, µ) unless π either preserves the (Hamming) weight of the strings or preserves
this weight under flipping.

Indeed, the notion of (Hamming) weight is pivotal to this proof, where the weight of a string
α ∈ {0, 1}ℓ, denoted wt(α), is defined as the number of bit positions that contain a one (i.e.,

wt(σ1 · · · σℓ)
def
= |{i ∈ [ℓ] : σi = 1}|). We first claim that if Pn is closed under (π, µ) then wt(π(α))

equals either wt(α) or ℓ − wt(α) for every α ∈ {0, 1}ℓ. (These two cases correspond to whether
µ = id or µ = flip (i.e., µ(σ) = 1 − σ).)
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Suppose that π maps some ℓ-bit string α to a string β that has a different weight (i.e., wt(β) 6=
wt(α)). Then, |{f ∈ Pn : f(α) = 1}| = wt(α), because for every f ∈ Pn there exists a different
i ∈ [ℓ] such that f(σ1 · · · σℓ) = σi. Similarly, |{f ◦ π : f ∈ Pn ∧ (f ◦ π)(α) = 1}| = wt(β), since
(f ◦ π)(α) = f(β). Using wt(α) 6= wt(β), we infer that Pn 6= {f ◦ π : f ∈ Pn}, since each set
contains a different number of functions that evaluated to 1 at the point α. This handles the case
of µ = id, and the case of µ = flip is handled similarly (i.e., if π maps some ℓ-bit string α to a
string β such that wt(β) 6= ℓ− wt(α), then Pn 6= {µ ◦ f ◦ π : f ∈ Pn}).

Having established the above, we note that if P had satisfied the invaraince condition then the
corresponding M would have mapped a fixed number of elements to all domain elements. But this
fixed number of domain elements (i.e., ℓ-bit long strings) have a fixed number of weights, whereas
(by Proposition 2.7 and the above) the set M may only contain pairs (π, µ) such that π preserves
(or “complements”) the weight of strings. This contradicts the requirement that all ℓ+ 1 different
weights must be covered by the generated constraints, and the theorem follows.

5.2 The Invariance Condition is not sufficient for POT

We next demonstrate that the invariance condition does not suffice for obtaining a proximity
oblivious tester. Actually, this example also shows that the invariance condition does not suffice
for the standard definition of testing (with query complexity that only depends on the proximity
paramter).

Theorem 5.3 There exists a property, denoted P, of Boolean functions such that P satisfies the

invariance condition but has no proximity oblivious tester. Futhermore, the invariant condition

holds with respect to a single linear constraint that refer to four domain elements, and a group of

domain permutations that is 1-transitive. Moreover, P cannot be tested (in the standard sense)
within query complexity that only depends on the proximity parameter.

Proof: We use a lower bound of [5] that refers to the query complexity of testing Eulerian
orientations of fixed (and highly regular) bounded-degree graphs. Specifically, [5, Thm. 9.14] proves
an Ω(log ℓ) query lower bound on the complexity of testing whether the orientation of an ℓ-by-ℓ
cyclic grid is Eulerian. It follows that this property has no POT, while we shall see that it satisfies
the invariance condition.

We represent the orientation of the ℓ-by-ℓ cyclic grid by two functions h, v : Zℓ × Zℓ → {0, 1}
such that h(i, j) represents the orientation of the horizontal edge between the vertices (i, j) and
(i, j + 1), whereas v(i, j) represents the orientation of the vertical edge between the vertices (i, j)
and (i+1, j), and the arithmetics is of Zℓ (i.e., modulo ℓ). Specifically, h(i, j) = 1 (resp., v(i, j) = 1)
indicates an orientation from (i, j) to (i, j+1) (resp., (i+1, j)). (Needless to say, we can pack both
functions in a single function; for example, f(1, i, j) = h(i, j) and f(0, i, j) = v(i, j).)

The key observation is that the Eulerian orientation property can be characterized by 4-
constraints that are generated from a single constraint. Specifically, this property is characterized
by the set of 4-constraints {h(i, j) + v(i, j) = h(i, j − 1) + v(i − 1, j) : i, j ∈ Zℓ}, where the con-
straint h(i, j) + v(i, j) = h(i, j − 1) + v(i − 1, j) mandates that exactly two of the four edges of
vertex (i, j) are oriented outwards. Finally, note that this set of constraints is generated by the
single constraint h(1, 1) + v(1, 1) = h(1, 0) + v(0, 1) and the set of mappings {(πr,s, id)}, where
πr,s(i, j) = (i+ r, j + s). The main claim follows.

The only part of the furthermore claim that requires elaboration is the claim that the group
of domain permutations is 1-transitive. To show this we explicitly consider the packing of the
aforementioned two functions in a single function f : {0, 1}×Zℓ×Zℓ → {0, 1} such that f(1, i, j) =
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h(i, j) and f(0, i, j) = v(i, j). We redefine the domain permutations πr,s such that πr,s(σ, i, j) =
(σ, i + r, j + s) and introduce an auxiliary permutation π′ such that π′(σ, i, j) = (1 − σ, s, r).
Observe that a generic constraint (now written as f(1, i, j)+f(0, i, j) = f(1, i, j−1)+f(0, i−1, j))
is preserved under the auxiliary permutation π′, The full claim now follows.

6 Conclusions

While the invariance conjecture holds in two natural models of testing graph properties, it was
shown to fail in other settings. These failures, described in Section 5 are of three different types.

1. As shown in Theorem 5.1, proximity oblivious testers exist also for properties that are only
closed under the identity mapping. That is, a strong notion of testability is achievable also
in the absence of any invariants.

2. As shown in Theorem 5.2, the existence of proximity oblivious testing for properties that
do not satisfy the invariance condition is not confined to unnatural properties and/or to
properties that lack any invariance.

3. As shown in Theorem 5.3, the invariance condition does not imply the existence of a standard
tester of query complexity that only depends on the proximity parameter. (Note that the
non-existence of such testers implies the non-existence of proximity oblivious testers.) Fur-
thermore, this holds even if the invariance condition holds with respect to a group of domain
permutations that is 1-transitive.

Our feeling is that the fact that the invariance condition is not necessary for proximity oblivious
testing is less surprising than the fact that the former is insufficient for the latter. Giving up on
the necessity part, we wonder whether a reasonable strengthening of the invariance condition may
suffice for proximity oblivious testing.

A natural direction to consider is imposing additional restrictions on the group of domain
permutations. As indicated by Theorem 5.3, requiring this group to be 1-transitive does not suffice,
and so one is tempted to require this group to be 2-transitive9 (as indeed suggested in [10] w.r.t
standard testing). Recalling that if P is closed under a 2-transitive group (over the domain) then P
is self-correctable (and thus consists of functions that are pairwise far apart), one may also wonder
about only requiring 1-transitivity but restricting attention to properties that consists of functions
that are pairwise far apart. We mention that the property used in the proof of Theorem 5.3 contains
functions that are close to one another.

Actually, restricting attention to properties that are closed under a 1-transitive group of domain
permutations, we may return to the question of necessity and ask whether the existence of proximity
oblivious testers in this case implies the invariance condition. Note that our proof of Theorems 5.1
and 5.2 relies on the fact that the corresponding group is not 1-transitive (e.g., in the first case the
group action is trivial and in the second case it has a non-constant number of orbits).
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9A permutation group G over D is called 2-transitive if for every (e1, e2), (e
′
1, e

′
2) ∈

(

D

2

)

there exists a π ∈ G such

that π(e1) = e′1 and π(e2) = e′2.
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Appendix: Property testing and Proximity Oblivious Testers

We first recall the snatadard definition of propertyy testing.

Definition A.1 Let P =
⋃

n∈N Pn, where Pn contains functions defined over the domain Dn. A

tester for a property P is a probabilistic oracle machine T that satisfies the following two conditions:

1. The tester accepts each f ∈ P with probability at least 2/3; that is, for every n ∈ N and

f ∈ Pn (and every ǫ > 0), it holds that Pr[T f (n, ǫ)=1] ≥ 2/3.

2. Given ǫ > 0 and oracle access to any f that is ǫ-far from P, the tester rejects with probability

at least 2/3; that is, for every ǫ > 0 and n ∈ N, if f : Dn → Rn is ǫ-far from Pn, then

Pr[T f (n, ǫ)=0] ≥ 2/3, where g is ǫ-far from Pn if, for every g ∈ Pn, it holds that |{e ∈ Dn :
f(e) 6= g(e)}| > ǫ · n.

If the tester accepts every function in P with probability 1, then we say that it has one-sided error;

that is, T has one-sided error if for every f ∈ P and every ǫ > 0, it holds that Pr[T f (n, ǫ)=1] = 1.
A tester is called non-adaptive if it determines all its queries based solely on its internal coin tosses

(and the parameters n and ǫ); otherwise it is called adaptive.

The query complexity of a tester is measured in terms of the size parameter, n, and the proximity
parameter, ǫ. In this paper we focus on the case that the complexity only depends on ǫ (and is
independent of n).

Turning to the definition of proximity-oblivious testers, we stress that they differ from standard
testers in that they do not get a proximity parameter as input. Consequently, assuming these testers
have sublinear complexity, they can only be expected to reject functions not in P with probability
that is related to the distance of these functions from P. This is captured by the following definition.

Definition A.2 Let P =
⋃

n∈N Pn be as in Definition A.1. A proximity-oblivious tester for P is a

probabilistic oracle machine T that satisfies the following two conditions:

1. The machine T accepts each function in P with probability 1; that is, for every n ∈ N and

f ∈ Pn, it holds that Pr[T f (n)=1] = 1.

2. For some (monotone) function ρ : (0, 1] → (0, 1], each function f 6∈ P is rejected by T with

probability at least ρ(δP(f)), where δP(f)
def
= ming∈P{δ(f, g)} and δ(f, g)

def
= Prx∈Ω[f(x) 6=

g(x)].

The function ρ is called the detection probability of the tester T .

In general, the query complexity of a proximity-oblivious tester may depend on the size parameter,
n, but in this paper we focus on the case that this complexity is constant.

15

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


