
On Testing Computability by Small Width OBDDs

Oded Goldreich∗

Department of Computer Science

Weizmann Institute of Science

Rehovot, Israel.

oded.goldreich@weizmann.ac.il

June 19, 2010

Abstract

We take another step in the study of the testability of small-width OBDDs, initiated by Ron
and Tsur (Random’09). That is, we consider algorithms that, given oracle access to a function
f : {0, 1}n → {0, 1}, need to determine whether f can be implemented by some restricted class
of OBDDs or is far from any such function.

Ron and Tsur showed that testing whether a function f : {0, 1}n → {0, 1} is implementable
by a width-2 OBDD has query complexity Θ(log n). Thus, testing width-2 OBDD functions is
significantly easier than learning such functions (which requires Ω(n) queries). We show that
such exponential gaps do not hold for several related classes. Specifically:

1. Testing whether f : {0, 1}n → {0, 1} is implementable by a width-4 OBDD requires Ω(
√

n)
queries.

2. Testing whether f : GF(3)n → GF(3) is a linear function with 0-1 coefficients requires
Ω(
√

n) queries. Note that this class of functions is a subset of the class of all linear
functions over GF(3), and that each such linear function can be implemented by a width-3
OBDD.

3. There exists a subclass C of the linear functions from GF(2)n to GF(2) such that testing
membership in C has query complexity Θ(n). Note that each linear function over GF(2)
can be implemented by a width-2 OBDD.

Recall that each of these classes has a proper learning algorithm of query complexity O(n).

Keywords: Property Testing, Small Width OBDDs,

∗Partially supported by the Israel Science Foundation (grants No. 1041/08).

i

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 61 (2010)

Contents

1 Introduction 1

1.1 Testing membership in complexity classes . 1
1.2 Subclasses of linear and quadratic functions . 2
1.3 Techniques . 3
1.4 Discussion . 3
1.5 Preliminaries: OBDDs and Property Testing . 4

1.5.1 OBDDs: Ordered Binary Decision Diagrams 4
1.5.2 Property testing . 5

2 Testing Subclasses of Width 2 OBDDs 5

2.1 A hierarchy of classes of linear functions . 5
2.1.1 Linear functions with coefficients from a small-bias space 5
2.1.2 The Hierarchy . 6
2.1.3 Linear functions in a fixed linear space . 8

2.2 Linear functions with at most ρn influential variables 8
2.2.1 Linear lower bound for non-adaptive testers 9
2.2.2 A square root lower bound for adaptive testers 11

3 Hardness of Testing a Subclass of Width 3 OBDDs 16

4 Hardness of Testing the Class of Width 4 Realizable Functions 20

Bibliography 23

Appendix: Technical Background 25

A.1 The bias of the Mod 3 Sample Space . 25
A.2 The Information Theoretic XOR-Lemma . 26
A.3 Yao’s XOR Lemma for OBDDs . 28

ii

1 Introduction

In the last couple of decades, the area of property testing has attracted much attention (see, e.g., a
couple of recent surveys [18, 19]). Loosely speaking, property testing typically refers to super-fast
probabilistic algorithms for deciding whether a given object has a predetermined property or is far
from any object having this property. Such algorithms, called testers, obtain local views of the
object by making suitable queries. The current work belongs to the study of property testing, but
pursues what we perceive as somewhat different themes than the standard ones.

1.1 Testing membership in complexity classes

In the foregoing description, objects are viewed as functions, and so properties are sets of functions.
Given this perspective, it is most natural to ask whether various traditional complexity classes are
testable. Arguably, this question was not addressed till [20].1 Instead, whenever (before [20])
standard computational devices were referred to in the context of property testing, the perspective
was that each fixed computational device defines a set of strings and the testing problem studied
was of membership of the input string in this set (cf. [2, 16, 14]). In contrast, following Ron and
Tsur [20], we fix a complexity class and study the testing problem that refers to whether the input
function is in this class.

To illustrate the difference recall that Alon et al. [2] fix any regular set, and study the problem
of testing whether a given (input) string is in the set. In contrast, Ron and Tsur [20] consider the
complexity class of width-2 OBDDs,2 and study the problem of testing whether a given (input)
function belongs to this complexity class.

The main result of [20] is that testing width-2 OBDD has query complexity Θ(log n), where
n denotes the length of the argument to the function being tested (i.e., the question is whether
f : {0, 1}n → {0, 1} can be implemented by a width-2 OBDD). This should be compared to the
query complexity of learning this very class, which is Θ(n). Thus, testing this complexity class is
significantly easier than learning this class. Two natural questions arise:

1. What about width-w OBDDs, for any fixed w > 2?

That is, is testing width-w OBDDs significantly easier (i.e., (poly)logarithmically easier)
than learning width-w OBDDs? (Recall that learning width-w OBDDs requires Ω(n) queries,
whereas proper learning is possible with O(n) queries.)

2. What about testing subclasses of width-w OBDDs, for any fixed w ≥ 2 (i.e., testing whether a
given function belongs to a fixed subclass of width-w OBDDs)? Specifically, is every subclass
of width-2 OBDDs testable in query complexity O(log n) or poly(log n)?3

1Indeed, this is a controversial statement, which relies on not viewing the classes of dictatorship functions, juntas,
monomials, and constant-term DNFs as traditional complexity classes. The testability of these classes was studied in
various works; see, for example [17, 9, 6]. Some readers have expressed strong disagreement with our views, claiming
that the foregoing classes are not that different from constant-width OBDDs. We remain unconvinced by their
objections, and argue that traditional complexity classes refer to natural computing devices (ruling out polynomials)
and furthermore to computing devices that at the very least can scan their entire input (ruling out constant-size
decision trees, etc).

2OBDDs are ordered binary decision diagrams, which are a restricted type of read-once branching programs in
which the variables are read in a fixed order (across all possible computation paths). See definition in Section 1.5.

3Note that the query complexity of testing such a subclass need not be smaller that the query complexity of testing
the class.

1

We provide rather gloomy answers to both questions: We prove that even at low computational
complexity levels such as constant-width OBDDs, testing may not be significantly easier than
learning; that is, the complexities of these two tasks are polynomially related rather than being
exponentially related. Specifically:

Theorem 1 (see Theorem 4.2): Testing width-4 OBDD requires Ω(
√

n) queries.

We conjecture that the actual query complexity is Θ(n).

Theorem 2 (see Theorem 2.1): There exists a subclass of width-2 OBDDs such that testing this

subclass requires Ω(n) queries. Furthermore, this subclass is a class of linear functions (over GF(2)).

1.2 Subclasses of linear and quadratic functions

A different perspective on our results is best illustrated by a question of Shafi Goldwasser, who asked
whether there is more to algebraic property testing than testing low degree. (Needless to say, this
was a rhetorical question; she meant to advocate such studies.) We mention that a clear example
of such a study was provided by Rubinfeld [22] in the mid 1990s, and that various properties of
polynomials (e.g., dictatorship functions [17], juntas [9, 4], sparse polynomials [6, 7]) were studied
in the last decade (although these studies were not viewed from this perspective).

In any case, taking this perspective, we view Theorem 2 as saying that a certain property of
linear functions (from GF(2)n to GF(2)) cannot be tested significantly faster than learning (i.e.,
cannot be tested with o(n) queries). More generally, we present a full hierarchy of properties (or
classes) of linear functions arranged by their query complexity:

Theorem 3 (see Theorem 2.3): For every function t : N → N that is at most linear, there exists

a property of linear functions (over GF(2)) such that testing this property has query complexity

Θ(t + ǫ−1). Furthermore, learning each of the corresponding concept classes requires Ω(n) queries.

This leads to the question of how natural are these properties, which build on the property used in
the proof of Theorem 2. Since the property is not very natural, we also prove the following.

Theorem 4 (see Theorem 2.7): Testing the set of linear functions from GF(2)n to GF(2) with at

most n/2 influential variables requires Ω(
√

n) queries.

Here too, we conjecture that the actual query complexity is Θ(n). Another natural property of
linear functions is the subject of the following result.

Theorem 5 (see Theorem 3.2): Testing the class of linear functions from GF(3)n to GF(3) that

have 0-1 coefficients requires Ω(
√

n) queries.

Again, we conjecture that the actual query complexity is Θ(n). (Note that the foregoing class
is implemented by width-3 OBDDs.) Lastly, we mention that the proof of Theorem 1 actually
establishes also the following.

Theorem 6 (see end of Section 4): Testing the class of linear functions from GF(2)n to GF(2)
that have no consecutive influential variables requires Ω(

√
n) queries.

And, again, we conjecture that the actual query complexity is Θ(n).

2

1.3 Techniques

The proofs of all the foregoing lower bounds, with the exception of Theorem 2, follow a common
theme and cope with a similar difficulty. The common theme is that in all these cases the analysis
reduces to upper-bounding the ability of query-bounded observers to distinguish two specific distri-
butions of linear functions. In each case, these two distributions are very natural, and the difficulty
is in analyzing the corresponding answer distributions (i.e., the distributions of the sequence of
answers obtained by querying each function distribution).

To illustrate the difficulty, consider the set of linear functions from GF(2)n to GF(2), denoted
L. It is well known that if f is uniformly distributed in L, then its values on a sequence of t linearly
independent vectors are uniformly distributed over GF(2)t. But it is less clear what happens when
f is uniformly distributed in some natural subset L′ ⊂ L. In particular, what happens when L′ is
the set of all linear functions that depend on exactly n/2 variables? Furthermore, what if these t
strings are selected adaptively?

Our proofs deal with these types of problems. For example, in the case of the set of linear
functions that depend on either (n− 1)/2 or (n + 1)/2 variables, we prove that the deviation from
uniform of the answers to t non-adaptive queries is at most t/n (cf. Proposition 2.10). For t adaptive
queries we only prove an upper bound of O(t2/n) (cf. Lemma 2.8 and the proof of Theorem 2.7).

1.4 Discussion

In response to comments of some anonymous reviewers, we further articulate what we perceive to
be the main conceptual messages of this work.

As stated in Section 1.1, most works in property testing that mention standard notions of
computational complexity refer to the complexity of the properties being tested (i.e., the complexity
of determining whether a given object has the said property). In contrast, following Ron and
Tsur [20], we consider the complexity of evaluating (or implementing) single functions that have
the tested property. We ask how simple may such functions be as to form a class that is relatively
hard to test in the sense that testing membership in the class has almost the same query complexity
as learning functions in the class.

We note that the hardness result of [10, 11] can be interpreted as addressing this question.
For example, one may obtain a class of functions such that each function can be evaluated by a
polynomial-size circuit, while testing membership in this class requires essentially as many queries
as learning functions in this class. A closer look at these constructions reveals that the functions
can be implemented by a poly(ℓ)-sized circuit, where ℓ is logarithmic in the query complexity of
testing.4

The results of this paper indicate that such hardness (of testing) results may hold for classes
of functions that are implementable by computing devices of very low complexity. We mention
that this assertion holds in two different senses. The first (and weaker) sense is that there exist
hard-to-test properties that consist of functions that are all implementable by computing devices
of very low complexity (i.e., width-2 OBDDs). The second (and stronger) sense is that there exists
a natural low complexity class (i.e., width-4 OBDDs) such that the property of belonging to that

class is hard to test.

4Recall that [11] uses a “blow-up” of a pseudorandom property that is defined on q-bit strings, where q is the
desired query complexity. These pseudorandom properties can be viewed as consisting of functions f : [q] → {0, 1}
that each has a polynomial-size (i.e., poly(log q)-size) circuit, and the blow-up function F : {0, 1}n → {0, 1} associated
with a function f satisfies F (x1, ..., xn) = f(x1, ..., xℓ), where ℓ = log2 q.

3

The gap between the two aforementioned senses is demonstrated by contrasting the tester of
the class of width-2 OBDDs obtained in [20] with the lower bound stated in Theorem 2. We also
note that, while it seems that almost every natural class of functions has a subclass that is hard
to test,5 our results regarding the hardness of testing subclasses of linear functions refer to natural

subclasses (i.e., natural properties).

1.5 Preliminaries: OBDDs and Property Testing

In this section we review the quite standard definitions used in this paper. We merely stress that
when we talk of OBDDs, we assume (as in [20]) that the order of the variables is fixed (and known).

1.5.1 OBDDs: Ordered Binary Decision Diagrams

Several different definitions of this notion appear in the literature, and we adopt the one that calls
for a fixed ordering of the variables (knows as “strict”). That is, an ordered binary decision diagram

(OBDD) is a read-once branching program in which the order in which the variables are read is fixed
for all computing devices in the model. Specifically, we shall assume, without loss of generality,
that the ith variable is always read at the ith level. This yields the following definition.

Definition 7 An OBDD is a directed acyclic graph with labeled edges and marked sinks that satisfies

the following conditions:

1. The graph contains a single source vertex.

2. Each sink vertex in the graph is marked either 0 or 1.

3. Each non-sink vertex has two out-going edges (which may be parallel) one labeled 0 and the

other labeled 1.

4. The graph edges connect vertices in consecutive levels, where the level of a vertex is its distance

from the source.

5. All sinks have the same level, called the graph length.

The width of an OBDD is the maximum number of vertices that have the same level. An OBDD

of length n computes the function f : {0, 1}n → {0, 1} such that, for every x ∈ {0, 1}n it holds that

the sink that is reached from the source by following the path with edge labels x is marked f(x).

Indeed, we may view x = x1 · · · xn as a sequence of variables, and observe that in the ith step (i.e.,
when moving from the i− 1st level to the ith level) the OBDD branches according to the value of
xi.

We mention that in a subsequent work, Ron and Tsur [21] considered OBDDs with a variable
ordering of the variables. Indeed, in such a case, one should specify the ordering, and in more
general models that allow different variables to be queried along different computation paths it is
necessary to specify the variable queried at each non-sink vertex (by marking the non-sink vertices
with variable names).

5A notable exception is provided by the class of dictatorship functions. Recall that f : {0, 1}n → {0, 1} is called
a dictatorship if there exists i ∈ [n] such that f(x) = xi for all x ∈ {0, 1}n, and in this case we say that f is the
dictatorship of i function. Note that for every I ⊆ [n], the subclass of functions that are dictatorships of some i ∈ I
is easily testable. Specifically, given access to an arbitrary function f , we first test that f is a dictatorship, and next
test if the self-corrected version of f at vI evaluates to 1, where vI is an n-bit string that is 1 in location i iff i ∈ I .

4

1.5.2 Property testing

We merely recall the standard definition.

Definition 8 Let Π =
⋃

n∈N Πn, where Πn contains functions defined over the domain Dn (and
range Rn). A tester for a property Π is a probabilistic oracle machine T that satisfies the following

two conditions:

1. The tester accepts each f ∈ Π with probability at least 2/3; that is, for every n ∈ N and

f ∈ Πn (and every ǫ > 0), it holds that Pr[T f (n, ǫ)=1] ≥ 2/3.

2. Given ǫ > 0 and oracle access to any f that is ǫ-far from Π, the tester rejects with probability

at least 2/3; that is, for every ǫ > 0 and n ∈ N, if f : Dn → Rn is ǫ-far from Πn, then

Pr[T f (n, ǫ)=0] ≥ 2/3, where f is ǫ-far from Πn if, for every g ∈ Πn, it holds that |{e ∈ Dn :
f(e) 6= g(e)}| > ǫ · |Dn|.

If the tester accepts every function in Π with probability 1, then we say that it has one-sided error;

that is, T has one-sided error if for every f ∈ Π and every ǫ > 0, it holds that Pr[T f (n, ǫ)=1] = 1.
A tester is called non-adaptive if it determines all its queries based solely on its internal coin tosses

(and the parameters n and ǫ); otherwise it is called adaptive.

Almost all our results are lower bounds on the query complexity of property testing tasks, and they
are obtained for fixed values of the proximity parameter ǫ (i.e., ǫ = 1/16 will do in all). In these
cases we omit mention of the proximity parameter.

2 Testing Subclasses of Width 2 OBDDs

We consider various subclasses of linear functions over GF(2), which in particular are realizable
by width-2 OBDDs. For a set of strings S ⊆ {0, 1}n we denote by LS the set of linear functions

{fv : v ∈ S}, where fv : {0, 1}n → {0, 1} satisfies fv(x)
def
= 〈v, x〉 =

∑n
i=1 vixi mod 2.

We present a hierarchy of properties of linear functions arranged according to the query com-
plexity of testing them. Our starting point is a property of linear functions having maximal query
complexity, and the hierarchy can be derived using any such property. (This is indeed reminiscent
of [11].) After establishing the said hierarchy (and since it refers to somewhat unnatural properties),
we also consider the natural property of linear function having a bounded number of influential
variables.

2.1 A hierarchy of classes of linear functions

We start by presenting a class of linear functions that is hard to test, and then exhibit the full
hierarchy by combining any such class with the class of all linear functions.

2.1.1 Linear functions with coefficients from a small-bias space

Let S ⊂ {0, 1}n be a small bias sample space [15, 1], say, of size 20.99n and bias 2−0.3n. Then, testing
LS requires Ω(n) queries, even if we allow two-sided error and adaptive testers. More generally, we
have the following.

Theorem 2.1 (Theorem 2, restated): Let S ⊂ {0, 1}n be a δ-bias sample space; that is, for every

c ∈ {0, 1}n\{0n}, it holds that |Prv∈S [〈c, v〉 = 1]−0.5| ≤ δ. Then, testing LS requires log2((1−ρ)/3δ)
queries, where ρ = |S|/2n.

5

Typically (e.g., in the following example), ρ is small (i.e., ρ ≤ 1/2), and so the lower bound simplifies
to log2(1/6δ). An appealing example consists of the set of all n-bit long strings having a number
of 1 that is a multiple of 3 (i.e., S = {v ∈ {0, 1}n :

∑n
i=1 vi ≡ 0 (mod 3)}), which has exponentially

small bias and density ≈ 1/3 (see Proposition A.1). Thus, we get

Corollary 2.2 Let S be the set of all n-bit strings having a number of 1-entries that is divisible by

three. Then, testing LS requires Ω(n) queries.

Proof of Theorem 2.1: The theorem follows by combining the following two observations.

1. A random linear function is unlikely to be in LS, and thus is 0.5-far from LS. Specifically,
with probability 1− ρ, a random linear function is 0.5-far from LS .

2. A random linear function and a function uniformly selected in LS cannot be distinguished
with log2(1/δ) −O(1) queries. Specifically, distinguishing these two distributions with a gap
of δ′ requires log2(δ

′/δ) queries. This holds because for every sequence of queries and every
sequence of potential answers, the probability that this specific answer sequence occurs under
a function selected uniformly in LS deviates by at most δ from the corresponding probability
that refers to a random linear function (see Item 1 of Lemma A.4).

Now, on the one hand, the probability that a tester accepts a random linear function is at most
ρ · µ + (1 − ρ) · 1

3 , where µ ≥ 2
3 denotes the probability that the test accepts a function uniformly

distributed in LS . (Indeed, we assume here that ǫ < 1/2, which implies that the tester accepts
linear functions that are not in LS with probability at most 1/3). On the other hand, if the test
distinguishes random linear functions from functions in LS with gap at most δ′, then it must accept
a random linear function with probability at least µ − δ′. We infer that (1 − ρ)(µ − (1/3)) ≤ δ′,
which implies δ′ ≥ (1 − ρ)/3. Combing this with the query lower bound of log2(δ

′/δ), the claim
follows.

2.1.2 The Hierarchy

The following hierarchy theorem follows by combining any set of hard-to-test linear functions (from
GF(2)t to GF(2)) with the class of all linear functions (from GF(2)n−t to GF(2)).

Theorem 2.3 (Theorem 3, restated): For every function t : N → N that is at most linear, there

exist sets S ⊆ {0, 1}n such that testing LS has query complexity Θ(t + ǫ−1). Furthermore, learning

LS requires Ω(n) queries.

Proof: Letting t = t(n), we start with an arbitrary set H ⊂ {0, 1}t such that LH is a property
of linear functions from GF(2)t to GF(2) that requires Ω(t) queries for testing. Indeed, such a
property is provided by Corollary 2.2. Next, we consider an arbitrary set G ⊆ {0, 1}n−t such that
LG is a property of linear functions from GF(2)n−t to GF(2) that can be tested in O(1/ǫ) queries
(with one-sided error) but requires Ω(n − t) queries for learning. Indeed, the set S = {0, 1}n−t

will do (and other alternatives are provided by Theorem 2.4). Combining these two properties, we
consider the set S = H × G, and the corresponding property LS. Note that each f ∈ LS can be
written as the sum of some h ∈ LH and some g ∈ LG such that

f(x1, ..., xt, xt+1,, xn) = h(x1, ..., xt) + g(xt+1,, xn). (1)

Learning LS requires Ω(n) queries, since recovering f requires recovering both h and g. Formally, we
can reduce learning h (resp., g) to learning f , by fixing g (resp., h). Similarly (i.e., by fixing g (resp.,

6

h)), we can reduce testing LH (resp., LG) to testing LS, and conclude that the query complexity of
the latter task is Ω(t+ǫ−1). It is thus left to show that LS can be tested in O(t+ǫ−1) queries. This
is shown by presenting an algorithm that, on input n and proximity parameter ǫ > 0, proceeds as
follows.

1. Testing if f is linear: The algorithm repeats the basic BLR Test for O(1/ǫ) times, where in
each repetition the algorithm selects uniformly a, b ∈ GF(2)n, and rejects if f(a) + f(b) 6=
f(a + b). The algorithm continues to the next steps only if none of these checks has rejected,
and so we will assume in these steps that f is ǫ-close to linear.

Let h : GF(2)t → GF(2) and g : GF(2)n−t → GF(2) be linear functions such that h(x1..., xt)+
g(xt+1, ..., xn) is the linear function closest to f(x1..., xt, xt+1, ..., xn).

2. Reconstructing the function h: Using O(t) queries, the algorithm reconstructs h; by using
self-correction, see details bellow. The algorithm rejects if h 6∈ LH .

For starters, consider a naive algorithm that recovers each coefficient of h with success prob-
ability at least 1 − (1/10t) by making O(log t) queries. Specifically, for every i ∈ [t], the ith

coefficient is reconstructed by taking a majority vote of O(log t) experiments, where in each
experiment we select uniformly a ∈ GF(2)n, and compute f(a)+f(a+0i−110n−i). Below, we
shall describe a more efficient reconstruction procedure, which uses O(t) queries rather than
O(t log t) queries.

3. Testing the residual function g: Actually, for a random a = (a1, ..., at) ∈ GF(2)t, the algorithm
tests whether the residual function fa defined as fa(xt+1, ..., xn) = f(a1, ..., at, xt+1, ..., xn)−
h(a) belongs to LG. This is done by using the tester of LG.

We first observe that this algorithm accepts any f ∈ LS with probability 1, since f = h + g passes
the linearity test (of Step 1) with probability 1, Step 2 always reconstructs h, and Step 3 always
accepts g (assuming that the tester of LG has one-sided error). Thus, we turn to analyze the
behavior of this algorithm when f is ǫ-far from LS .

We may assume that f is ǫ-close to being linear, since otherwise Step 1 rejects with high constant
probability (say, probability at least 2/3). Considering h and g as defined at the end of Step 1,
we note that either h 6∈ LH or g 6∈ LG. In the first case (i.e., h 6∈ LH) Step 2 rejects with high
probability, since (with high probability) the reconstructed function will be h. In the second case,
we consider for every a = (a1, ..., at) ∈ GF(2)t, the linear function that is closest to fa (where
fa(xt+1, ..., xn) = f(a1, ..., at, xt+1, ..., xn)−h(a)), and note that for at least 1− 4ǫ of the choices of
a ∈ GF(2)t this linear function equals g (since f is ǫ-close to h + g).6 Assuming that ǫ ≤ 0.01 (or
else we reset ǫ← 0.01), we infer that Step 3 rejects with probability at least 0.96 · 0.9 > 2/3, where
we assume (without loss of generality) that the LG-tester has error probability at most 0.1.

It is left to provide a more efficient implementation of Step 2. Indeed, instead of recovering
each coefficient of h with error probability of 1/10t, we recover each bit in the “encoding of h’s
coefficients” (via a good linear error-correcting code) with probability at least 0.9, and obtain h
by using an error-correcting decoder. Specifically, we use a good linear error-correcting code C :
GF(2)t → GF(2)T , where T = O(t), and let ℓ1, ..., ℓT : GF(2)t → GF(2) denote the corresponding
linear functions; that is, C(z) = ℓ1(z) · · · ℓT (z). Viewing each ℓi as an element of GF(2)t, we obtain
h(ℓi) via self-correction; that is, we select uniformly a ∈ GF(2)n, and compute f(a)+f(a+ ℓi0

n−t).

6For a uniformly distributed a, the expected relative distance of fa from g is at most ǫ. If fa is closer to some
linear function other than g, then its relative distance to g must be at least 1/4.

7

Thus, we obtain each h(ℓi), which is a linear combination of h’s coefficients, with probability at
least 1−2ǫ > 0.9, and by using error correction this yields the values of h(10t−1), ..., h(0t−11) (with
overwhelmingly high probability).7

2.1.3 Linear functions in a fixed linear space

Recall that the standard linearity property (i.e., the set of all linear functions over GF(2)) is
testable by O(1/ǫ) non-adaptive queries. Here we point out that this is not the only property of
linear functions having Θ(1/ǫ) testing complexity, but is merely a special case of a larger class of
properties. Specifically, we consider arbitrary classes LS such that S is a linear space. That is, let
S = {Gs : s ∈ {0, 1}k}, where G is an k-dimensional generator matrix. Thus, for every s ∈ {0, 1}k ,
we define the function gs ∈ LS as gs(x) = fGs(x) = 〈Gs, x〉, and note that 〈Gs, x〉 = 〈s,G⊤x〉.

Theorem 2.4 Let S ⊆ {0, 1}n be a linear space, and LS = {fv : v ∈S}. Then, LS can be tested

with O(1/ǫ) non-adaptive queries.

Proof: The case of S = {0, 1}n corresponds to linearity testing, which is handled by the BLR
linearity test [5], and so we focus on the case that S ⊂ {0, 1}n. We actually present a proximity-
oblivious tester (cf. [13]). When given oracle access to a function for f , we perform the following
two checks.

1. BLR Linearity Check: Uniformly select a, b ∈ {0, 1}n, and reject if f(a) + f(b) 6= f(a + b).

2. Checking (via self correcting) that the kernel of G⊤ evaluates to zero: Uniformly select a ∈
{0, 1}n and b ∈ {x : G⊤x = G⊤a}, and reject if f(a) 6= f(b). (This is a self-correction of
checking for a random c ∈ {x : G⊤x = 0} whether f(c) = 0.)

The test accept only if none of the foregoing checks rejected. Clearly, any f ∈ LS passes both
checks with probability 1. Thus, we focus on analyzing the probability that a function f 6∈ LS is
rejected, denoting by δ the distance of f to the set of all linear functions.

We first note that f is rejected by the first check with probability at least δ (cf. [3]). Denoting
the linear function closest to f by g, we note that if g 6∈ LS then there exists x such that G⊤x = 0

and g(x) 6= 0, since otherwise g is constant on each set Sα
def
= {x : G⊤x = α} and it follows that

g(x) is linear in G⊤x (since g is linear and only depends on G⊤x). Furthermore, at most half of
the kernel of G evaluates to 0 under g, since these vectors form a subgroup. Thus, in this case (i.e.,
g 6∈ LS), the second check rejects with probability at least 0.5 − 2 · δ. It follows that if f is ǫ-far
from LS , then it is rejected with probability at least min(ǫ, 1/6) ≥ ǫ/6, where the first term is due
to the case that g ∈ LS (since in this case f is rejected with probability at least δ ≥ ǫ) and the
second term is due to the case that g 6∈ LS (since in this case f is rejected with probability at least
max(δ, 0.5 − 2δ) ≥ 1/6).

2.2 Linear functions with at most ρn influential variables

For any constant ρ > 0, let Wρ denote the class of linear functions with at most ρn influential
variables. That is, Wρ = LS for S = {v : wt(v) ≤ ρn}, where wt(v) = |{i : vi = 1}|.

7Indeed, our reasoning interchanges the roles of function and argument between h and its argument, but recalling
that h is linear it is actually the case that the roles of function and argument are ficticious, when we associated the
linear function h with its coefficient sequence, denoted u. Indeed, if h(z) = 〈u, z〉 =

∑t

i=1
uizi mod 2, then u and

z actually play the same role. Our reconstruction of the bits of u, viewed as h(10t−1), ..., h(0t−11), by obtaining a
noisy version of C(u) = ℓ1(u) · · · ℓT (u), where each ℓi(u) equals 〈u, ℓi〉 = h(ℓi).

8

Conjecture 2.5 Testing W0.5 requires Ω(n) queries, even when allowing adaptive testers of two-

sided error.

If true, then (by using techniques as in the proof of Theorem 2.3) it will follow that, for any function
ρ : N→ [0, 1], testing Wρ requires Ω(ρ(n) · n) queries. We present two partial results that support
Conjecture 2.5: the first is an Ω(n) lower bound for non-adaptive testers and the second is an
Ω(
√

n) lower bound for general (adaptive) testers. In particular, this establishes Theorem 4.

2.2.1 Linear lower bound for non-adaptive testers

We show that Conjecture 2.5 holds when restricted to non-adaptive testers.

Proposition 2.6 Testing W0.5 requires Ω(n) non-adaptive queries, even when allowing two-sided

error.

Proof: We consider two classes of linear functions, denoted good and bad, such that good ⊂
W0.5, whereas bad ∩W0.5 = ∅, which implies that every function in bad is 0.5-far from W0.5. For
m = n/2, each of these functions will be specified by an index j0 ∈ [m] and a sequence of m bits
σ1, ..., σm ∈ {0, 1}, Specifically, we let gj0,σ1,...,σm denote the linear function fv such that

v = σ1σ1 · · · σj0−1σj0−100σj0+1σj0+1 · · · σmσm, (2)

and let good = {gj0,σ1,...,σm : j0 ∈ [m], σ1, ..., σm ∈ {0, 1}}. Similarly, we let bj0,σ1,...,σm denote the
linear function fv such that

v = σ1σ1 · · · σj0−1σj0−111σj0+1σj0+1 · · · σmσm, (3)

and let bad = {bj0,σ1,...,σm : j0 ∈ [m], σ1, ..., σm ∈ {0, 1}}. Note that

gj0,σ1,...,σm(x) =
∑

j 6=j0

(σjx2j−1 + (1− σj)x2j) (4)

bj0,σ1,...,σm(x) = x2j0−1 + x2j0 +
∑

j 6=j0

(σjx2j−1 + (1− σj)x2j) (5)

and that each term in these sums equals (x2j−1 + x2j)σj + x2j. That is, the value of a generic
gj0,σ1,...,σm at a query q ∈ {0, 1}n equals

∑

j 6=j0(q2j−1 + q2j)σj +
∑

j 6=j0 q2j .
Note that elements of good can be distinguished from elements of bad by using O(log n)

adaptive queries. Specifically, every query of the form q1 · · · qn ∈ {00, 11}m is answered by
∑

j 6=j0 q2j ,
which allows finding j0 by a binary search (since j0 ∈ {j ∈ [m] : q2j = 1} if and only if the answer
to the query q1 · · · qn ∈ {00, 11}m differs from

∑

j∈[m] q2j). Needless to say, once j0 is found, we

distinguish any gj0,· from any bj0,· by the query q = 02j0−110n−2j0 (since gj0,σ(q) = 0 whereas
bj0,σ(q) = 1).

Our aim is to prove that Ω(n) non-adaptive queries are required in order to distinguish, with
constant probability gap, between a uniformly selected element of good and a uniformly selected
element of bad. Recall that an element in either sets is selected by specifying an index j0 ∈ [m]
and an m-bit string. Fixing any sequence of queries q = (q(1), ..., q(t)), we shall show that for
most choices of j0 ∈ [m] the answers to q are distributed identically in the two distributions. The
exceptional indices j0 are called special and defined next.

9

Definition 2.6.1 An index j ∈ [m] is called special with respect to a sequence of queries q =
(q(1), ..., q(t)) if there exists a linear combination of these queries that yields an n-bit string q such

that q ∈ {00, 11}j−1 × {01, 10} × {00, 11}m−j .

It will be convenient to use matrix notation in our analysis. We present q as a matrix, denoted Q,
such that the ith row of Q equals q(i). The condition in Definition 2.6.1 asserts that there exists a
t-vector v such that q = vQ is in {00, 11}j−1 × {01, 10} × {00, 11}m−j . Denoting by I2 an n-by-m
binary matrix in which the (i, j) entry is 1 if and only if j = ⌈i/2⌉ (i.e., I2 maps the row vector
q1 · · · qn to p1 · · · pm such that pk = q2k−1 + q2k), the latter condition means that qI2 is the jth unit
vector (i.e., the vector 0j−110m−j). Using this observation, we immediately get

Claim 2.6.2 For any sequence of t queries, q, there exists at most t indices that are special with

respect to q.

Proof: For every special index j, there exists a t-vector v such that vQI2 = 0j−110m−j . Thus, the
number of special indices is a lower bound on the rank of the matrix Q, which is upper bounded
by t. 2

Claim 2.6.3 Suppose that j0 is not special with respect to q = (q(1), ..., q(t)). Then, when σ =
(σ1, ..., σm) is selected uniformly in {0, 1}m, the t-tuple (gj0,σ(q(1)), ..., gj0 ,σ(q(t))) is distributed iden-

tically to the t-tuple (bj0,σ(q(1)), ..., bj0,σ(q(t))).

Proof: Let I ′2 be as I2 except that the jth
0 column is all zeros. Then the value of gj0,σ at any query q

(i.e.,
∑

j 6=j0(q2j−1 + q2j)σj +
∑

j 6=j0 q2j) can be written as 〈qI ′2, σ〉+ 〈qI ′1, 1m〉, where I ′1 is an n-by-m
binary matrix in which the (i, j) entry is 1 if and only if i = 2j and j 6= j0. Likewise, the value
of bj0,σ at q is written as 〈qI ′2, σ〉+ 〈qI ′1, 1m〉+ q2j0−1 + q2j0, where q2j0−1 + q2j0 = 〈q(I2 − I ′2), 1

m〉.
That is, in both cases, the randomness comes from the first term; that is, 〈qI ′2, σ〉 = qI ′2σ

⊤, since
q is fixed and only σ is random (i.e., it is uniformly distributed in {0, 1}m). Looking at the entire
vector of answers, we have

(gj0,σ(q(1)), ..., gj0,σ(q(t)))⊤ = QI ′2σ
⊤ + QI ′11

m (6)

(bj0,σ(q(1)), ..., bj0,σ(q(t)))⊤ = QI ′2σ
⊤ + Q(I ′1 + I2 − I ′2)1

m (7)

where, again, the first term is random and the second term is fixed (but different in the two cases).
Our goal is to show that these two vectors of answers are identically distributed.

Considering the matrix Q, we fix an arbitrary maximal set of rows such that for corresponding
(generalized) submatrix Q′ it holds that Q′I ′2 is of full rank, denote t′. (For simplicity, suppose that
Q′ consists of the first t′ rows of Q.) Note that QI ′2 has rank t′, whereas Q may have rank t ≥ t′.

We first observe that in both distributions, the corresponding t′ answers are uniformly dis-
tributed in {0, 1}t′ , since Q′I ′2σ

⊤ ∈ {0, 1}t′ is uniformly distributed. As for each of the other rows,
denoted q, it holds that qI ′2 is a linear combination of the rows of Q′I ′2; that is, qI ′2 = u′Q′I ′2 for
some t′-vector u′. (Again, note that q need not equal u′Q′.) The key observation (to be proved
below) is that 〈q(I2 − I ′2), 1

m〉 = q2j0−1+q2j0 is obtained by the same linear combination (i.e., u′) of

the corresponding (q
(i)
2j0−1 + q

(i)
2j0

)i∈[t′]; that is, 〈q(I2 − I ′2), 1
m〉 equals 〈u′Q′(I2 − I ′2), 1

m〉. It follows
that

gj0,σ(q) = qI ′2σ
⊤ + qI ′11

m (8)

= u′Q′I ′2σ
⊤ + qI ′11

m (9)

= u′(gj0,σ(q(1)), ..., gj0,σ(q(t′)))⊤ − u′Q′I ′11
m + qI ′11

m (10)

10

where the second equality uses qI ′2 = u′Q′I ′2. Similarly,

bj0,σ(q) = qI ′2σ
⊤ + qI ′11

m + q(I2 − I ′2)1
m (11)

= u′Q′I ′2σ
⊤ + u′Q′(I2 − I ′2)1

m + qI ′11
m (12)

= u′(bj0,σ(q(1)), ..., bj0 ,σ(q(t′)))⊤ − u′Q′I ′11
m + qI ′11

m (13)

where the second equality uses both qI ′2 = u′Q′I ′2 and u′Q′(I2−I ′2) = q(I2−I ′2). Thus, both gj0,σ(q)
and bj0,σ(q) are obtained by the same linear transformation (i.e., x⊤ 7→ u′x⊤ + 〈(q − u′Q′)I ′1, 1

m〉)
on the corresponding (gj0,σ(q(1)), ..., gj0,σ(q(t′))) and (bj0,σ(q(1)), ..., bj0,σ(q(t′))), which in turn are
identically distributed.

Thus, it is left to prove that u′Q′(I2 − I ′2) = q(I2 − I ′2). Assume, towards the contradiction
that q(I2 − I ′2) 6= u′Q′(I2 − I ′2), which implies (q − u′Q′)(I2 − I ′2) 6= 0m. On the other hand, recall
that qI ′2 = u′Q′I ′2 (i.e., (q − u′Q′)I ′2 = 0m), which implies that (q − u′Q′)I2 = (q − u′Q′)(I2 − I ′2) is
non-zero and hence equals 0j0−110m−j0 (since the image of I2− I ′2 is in {0j0−1σ0m−j0 : σ ∈ {0, 1}}).
Denoting by i (i > t′) the row index of q in Q, note that v = u′0i−t′−110t−i satisfies vQ = u′Q′ + q
and so vQI2 = (q − u′Q′)I2 = 0j0−110m−j0 . But this (i.e., the fact that QI2 spans 0j0−110m−j0)
contradicts the hypothesis that j0 is not special with respect to q. 2

Combining the claims, we conclude that the probability gap observed by a query sequence q is
upper-bounded by the probability that j0 is special with respect to q.

2.2.2 A square root lower bound for adaptive testers

For general (adaptive) testers, we prove a lower bound that is weaker than the one in Conjecture 2.5.

Theorem 2.7 (Theorem 4, restated): Testing W0.5 requires Ω(
√

n) queries, even when allowing

adaptive testers of two-sided error.

Recalling that the (structured) distributions used in the proof of Proposition 2.6 can be distin-
guished by O(log n) adaptive queries, we consider instead random permutations of the strings in
both distributions. This destroys the structure used by the aforementioned adaptive distinguisher,
and yields a proof of Theorem 2.7. The key to the proof is provided by the following lemma, which
is of independent interest.

Lemma 2.8 Let t <
√

n/6 and let Q be a t-by-n full rank matrix such that its rows do not span

the vector 1n. Suppose that v is uniformly distributed among all n-bit binary vectors having weight

m = n/2. Then, with probability at least 1− (18t2/n), the vector Qv is uniformly distributed over

{0, 1}t; that is, there exists a set G that is a subspace of the probability space Ω that underlies the

choice of v (i.e., v = v(ω) ∈ {0, 1}n for every ω ∈ Ω) such that

1. |G| ≥ (1− (18t2/n)) · |Ω|.

2. For every α ∈ {0, 1}t, it holds that Prω∈G[Qv = α] = 2−t, where v = v(ω).

Furthermore, if G′ is a set as guaranteed for the matrix Q′ obtained by omitting a row of Q, then

there exists a set G ⊆ G′ that satisfies the foregoing conditions with respect to Q.

Note that the requirement that Q is full rank and does not span 1n is essential; specifically, for any
v of weight m it holds that 〈1n, v〉 = m mod 2.

Proof: We view the uniform distribution over {v ∈ {0, 1}n : wt(v) = m} as generated by the
following two-step random process:

11

1. Select uniformly a partition π of [n] into m ordered pairs, let π(j) denote the jth pair, and π1(j)
(resp., π2(j)) denote the first (resp., second) element of the jth pair (i.e., π(j) = (π1(j), π2(j))).

2. Select uniformly a string v = (v1, ..., vn) ∈ {0, 1}n such that vπ1(j) = 1− vπ2(j) holds for every
j ∈ [m]. That is, we select uniformly σ = (σ1, ..., σm) ∈ {0, 1}m and determining v such that
vπ1(j) = σj (and vπ2(j) = 1− σj).

For π as selected in Step 1 (and the corresponding π1, π2), we let I ′π (resp., I ′′π) be an n-by-m binary
matrix such that entry (i, j) in I ′π (resp., I ′′π) equals 1 if and only if i = π1(j) (resp., i = π2(j)).
Then, for v and σ as above, it holds that v = I ′πσ + I ′′π(1m + σ), which implies that

Qv = QIπσ + QI ′′π1m (14)

where Iπ = I ′π + I ′′π . Noting that QI ′′π1m is a fixed vector, it follows that the deviation of Qv from
the uniform distribution over {0, 1}t equals the deviation of QIπσ from the uniform distribution.
Lastly, the latter distance is upper-bounded by the probability that QIπ is not full rank. The rest
of the proof is devoted to upper-bounding this probability.

We upper-bound the probability that QIπ is not full rank by the sum taken over all c ∈
{0, 1}t \{0t} of the probability that cQIπ equals the all-zero vector. Recall that, by the hypothesis,
the vector cQ is neither the all-zero vector nor the all-one vector. Furthermore, when we vary c
in {0, 1}t \ {0t} and consider any t linearly independent columns of Q, we see all possible 2t − 1
non-zero patterns. It follows that, for every k ∈ [t], the cardinality of {c∈{0, 1}t\{0t} : wt(cQ)≤k}
is upper-bounded by

∑

i∈[k]

(t
i

)

. Similarly, for every k ∈ [t], the cardinality of {c ∈ {0, 1}t \ {0t} :

n− wt(cQ)≤k} is upper-bounded by 1 +
∑

i∈[k]

(t
i

)

, where the added 1 is due to the case that the

pattern 1t appears in these k columns (but even then cQ 6= 1n). Hence, for every k ∈ [t]:

|{c∈{0, 1}t \ {0t} : min(wt(cQ), n − wt(cQ))≤k}| ≤ 1 + 2
∑

i∈[k]

(

t

i

)

;. (15)

Next, fixing any c ∈ {0, 1}t \ {0t}, we upper-bound the probability that cQIπ is all-zeros. Note
that cQIπ is all-zeros if and only if all pairs in the partition π are “monochromatic” (i.e., for
every j ∈ [m] it holds that the π1(j)

th and π2(j)
th positions in cQ have the same value, where

π(j) = (π1(j), π2(j))). Letting w = wt(cQ), and denoting by #pairs(x) the number of partitions
of x elements to pairs, we have

Prπ[cQIπ = 0n] =
#pairs(w) ·#pairs(n− w)

#pairs(n)
=

(n/2
w/2

)

(n
w

) (16)

Indeed, if w is odd, then this probability equals zero. Using Eq. (16), we get

Prπ[∃c 6= 0t s.t cQIπ = 0n] ≤
∑

c 6=0t

Prπ[cQIπ = 0n] (17)

≤
∑

w∈[m]∩{2i:i∈N}

∑

c : wt(cQ)∈{w,n−w}

(n/2
w/2

)

(n
w

) (18)

< 3
∑

k∈[t]∩{2i:i∈N}

((

t

k − 1

)

+

(

t

k

))

·
(n/2
k/2

)

(n
k

) (19)

12

where the last inequality optimizes the contribution of the various c’s according to the weight of

cQ, while using Eq. (15). Next, using
(n/2
k/2

)2
= o(

(n
k

)

), we upper-bound Eq. (19) by

t
∑

k=2

(

t

k

)

·
(

n

k

)−1/2

<
t
∑

k=2

(3t/k)k · (k/n)k/2 (20)

=
t
∑

k=2

(9t2/nk)k/2 (21)

Finally, using t <
√

n/6, we upper-bound Eq. (21) by 2 · (9t2/n), and the lemma follows.

Proof of Theorem 2.7: Again, we consider two classes of linear functions, denoted good and
bad, such that good ⊂ W0.5, whereas bad ∩W0.5 = ∅, which implies that every function in bad

is 0.5-far from W0.5. This time, however, the partition of [n] to blocks is not fixed but is rather
random.

That is, for m = n/2, we consider a uniformly chosen matching of [n] into m ordered pairs, and
denote the jth pair in π by π(j) = (π1(j), π2(j)). For every such π and j0 ∈ [m], we let gπ,j0,σ1···σm

denote the linear function fv such that v = (v1, ..., vn) satisfies (1) vπ1(j0) = vπ2(j0) = 0 and (2) for
every j ∈ [n] \ {j0} it holds that vπ1(j) = 1 − vπ2(j) = σj. The function bπ,j0,σ1···σm is defined
similarly, except that condition (1) is replaced by vπ1(j0) = vπ2(j0) = 1. Now, good consists of all
the functions gπ,j0,σ1···σm , whereas bad consists of all the functions bπ,j0,σ1···σm .

The foregoing description corresponds to the description of the distribution of (n− 2)-bit long
strings of weight m− 1 = (n− 2)/2 provided in the proof of Lemma 2.8. Indeed, the distributions
described there correspond to setting the coordinates π1(j0) and π2(j0) to zero, which indeed fits
the definition of gπ,j0,σ. Here, however, it will be more convenient to consider the subclasses
goodi1,i2 and badi1,i2 defined by conditioning the distribution over all (π, j0, σ)-indexed functions
on π(j0) = (i1, i2). We thus consider the following generic randomized process:

1. Select i1 6= i2 uniformly in [n].

2. Uniformly select j0 ∈ [m] and an m-way partition into ordered pairs, π, such that π(j0) =
(i1, i2). Uniformly select σ ∈ {0, 1}m. Output gπ,j0,σ (resp., bπ,j0,σ).

Indeed, depending on the case used in the last step (i.e., outputting gπ,j0,σ or bπ,j0,σ), this process
outputs a function uniformly distributed in either good or bad. It will be instructive to think
of this selection as consisting of two steps: First, a pair (i1, i2) is selected, and next we select a
function uniformly in goodi1,i2 (resp., badi1,i2).

We consider the sequence of queries in the order they were issued, and evaluate the situation
after each query. For each prefix of the sequence of queries, q = (q(1), ..., q(t)), and every fixed pair
(i1, i2) selected as above, we say that the pair (i1, i2) is special w.r.t q if q(1), ..., q(t) spans a vector

of weight in {0, 1, 2, n − 2, n − 1, n} with the exceptional positions belonging to {i1, i2}. That is, if
(i1, i2) is special w.r.t q then q(1), ..., q(t) span a vector q that satisfies the following condition: there

exists a τ ∈ {0, 1} such that for every i ∈ [n] \ {i1, i2} it holds that qi = τ .
We may assume that the vectors in q are linearly independent, because all functions consid-

ered are linear and so their values at any linear combination of the q(j)’s is determined by the
corresponding answers. Likewise, we may assume that the vectors in q do not span 1n, since all
functions that we consider evaluate to (m − 1) mod 2 at 1n. Thus, if (i1, i2) is special w.r.t q,
then it is the case that q spans a vector q such that wt(q) ∈ {1, 2, n − 2, n − 1} (i.e., qi = τ for
every i ∈ [n] \ {i1, i2} and qi = 1 − τ for some i ∈ {i1, i2}). We upper-bound the number, M ,

13

of special pairs (w.r.t q = (q(1), ..., q(t))) as follows. We consider a graph in which these pairs are
vertices and edges connect pairs that have non-empty intersection. Then, each vertex has degree at
most 4n, and hence the graph contains an independent set of size M/4n. Considering the vectors
corresponding to these pairs (i.e., or each pair (i1, i2) we consider a vector q such that qi = τ for
every i ∈ [n] \ {i1, i2} and qi = 1 − τ for some i ∈ {i1, i2}), we obtain at least M/8n independent
vectors (i.e., vectors that use the same value τ and correspond to disjoint pairs). Thus, M/8n ≤ t,
and it follows that the number of special pairs is at most 8tn.

Fixing a pair (i1, i2) and letting Q+ denote the t-by-n matrix obtained by using the q(i)’s as
rows in a matrix, we let Q denote the t-by-(n − 2) matrix obtained from Q+ when omitting the
columns i1 and i2. Note that if (i1, i2) is not special w.r.t q, then Q is full rank and its rows do not

span 1n−2, because cQ = τn−2 (for c 6= 0t) implies that (i1, i2) is special w.r.t q. Thus, in this case,
the conditions of Lemma 2.8 hold (except that here the number of columns is n− 2 rather than n).

Our analysis proceeds in iterations corresponding to the queries made by the adaptive tester. For
every t, we denote the corresponding t-by-n matrix of queries by Q(t), and denote the corresponding
set of non-special pairs of indices by P (t). Starting with t = 1, we invoke Lemma 2.8 on the matrices
Q obtained from Q(1) = q(1) by dropping each (i1, i2) ∈ P (1), where q(1) is oblivious of everything

(since it is the first query issued by the tester). We obtain corresponding sets G
(1)
i1,i2

that satisfy the

two conditions of the lemma, which means that for every (i1, i2) ∈ P (1) conditioned on ω ∈ G
(1)
i1,i2

the answer seen by the tester is uniformly distributed (regardless of whether the answer is obtained
from a random function in goodi1,i2 or in badi1,i2). We stress that, for any (i1, i2) ∈ P (1), the
second query of the tester will be distributed identically, when considering the executions that

correspond to a uniformly selected ω ∈ G
(1)
i1,i2

. Focusing only on these executions, we let q(2)

describe the distribution of the second query, which is oblivious of (i1, i2) ∈ P (1), and consider the
corresponding set P (2). (Indeed, q(2) as well as P (2) are random variables, but we shall treat them
as if they were fixed, while noting that their distribution is independent of (i1, i2) ∈ P (1).)8

Likewise, in the tth iteration, we invoke Lemma 2.8 on the matrices Q obtained from Q(t) by

dropping each (i1, i2) ∈ P (t), and obtain sets G
(t)
i1,i2
⊆ G

(t−1)
i1,i2

. The fact that the sets G
(t)
i1,i2

satisfy

the two conditions of the lemma means that, for every (i1, i2) ∈ P (t), conditioned on ω ∈ G
(t)
i1,i2

the
answer seen by the tester is uniformly distributed (regardless of whether the answer is obtained
from a random function in goodi1,i2 or in badi1,i2). So again, for any (i1, i2) ∈ P (t), the next query
(i.e., t+1st query) of the tester will be distributed identically, when considering the executions that

correspond to a uniformly selected ω ∈ G
(t)
i1,i2

.

This foregoing process makes sense as long as the sets P (t) and G
(t)
i1,i2

are not empty. Actually,

we wish the sets P (t) and G
(t)
i1,i2

to be relatively large (i.e., have high density with respect to
[n] × [n] and Ω, respectively), so that the probability mass of the executions that we consider is
large. Recalling the upper bound on the number of special pairs, we have |P (t)| = (1 − o(1)) · n2

as long as t = o(n), whereas Lemma 2.8 guarantees that |G(t)
i1,i2
| ≥ (1 − (18t2/n)) · |Ω|. Thus, for

t =
√

n/9, with probability at least (1 − o(1)) · 7/9 > 2/3, a random pair (i1, i2) is in P (t) and

ω ∈ G
(t)
i1,i2

. In this case, the answers to the t adaptively chosen queries are distributed identically
regardless of whether the answers are from a random function in good or from a random function
in bad. Thus, the statistical gap between random functions in good and in bad that can be
observed by t adaptive queries is smaller than 1/3, and the theorem follows.

8Actually, also q(1) and P (1) are random variables, but their independence of (i1, i2) introduced later is trivial.

14

On the tightness of the analysis. As we show next (in Proposition 2.9), Lemma 2.8 provides
an accurate picture of the deviation (from the uniform distribution) of the answers to individual

queries (i.e., the case of t = 1). Thus, improvements are possible only with respect to the handling
of t > 1, where the hope is to reduce the deviation upper bound from its current value of O(t2/n)
to a possible value of O(t/n).

Proposition 2.9 Suppose that v is uniformly distributed among all n-bit binary vectors having

weight m = n/2. Then, for any q ∈ {0, 1}n \ {0n, 1n}, the value of 〈q, v〉 equals 1 with probability

1

2
+ χ2(wt(q)) · (1− 2χ4(wt(q))) ·

(n/2
wt(q)/2

)

(n
wt(q)

) (22)

where χi(w)
def
= 1 if w ≡ 0 (mod i) and χi(w)

def
= 0 otherwise.

Note that for odd w = wt(q) the value of Eq. (22) equals 1/2 (since χ2(w) = 0), whereas for even w
the value of Eq. (22) deviates from 1/2 (since χ2(w) = 1 and 1− 2χ4(wt(q) = ±1). Specifically, for
w ≡ 2 (mod 4) the value of Eq. (22) is strictly larger than 1/2 (since χ2(w) · (1− 2χ4(w)) = 1).9

Recall that
(n/2

w/2)
(n

w)
is Θ(w−1/2) · (nw

)−1/2
(and always smaller than

(n
w

)−1/2
).

Proof: We use the same random process used in the proof of Lemma 2.8. Referring to the m-way
partition π (selected in the first step), we call π good if it matches some 1-entry of q with a 0-entry
of q (i.e., if there exists j ∈ [m] such that {qπ1(j), qπ2(j)} = {0, 1}). Note that every π is good if
wt(q) is odd, and that if π is good then for a random v (selected in the second step) the value
〈q, v〉 is uniformly distributed (because the case in which vπ1(j) = 1 6= vπ2(j) is matched with the
case in which vπ1(j) = 0 6= vπ2(j), where j satisfies {qπ1(j), qπ2(j)} = {0, 1}). On the other hand,
if π is not good, then the value 〈q, v〉 equals (wt(q)/2) mod 2 (because for every j ∈ [m] it holds
that qπ1(j) = qπ2(j) whereas vπ1(j) 6= vπ2(j)).

10 Thus, it remains to compute the probability that
π is not good, which was essentially done in the proof of Lemma 2.8 (cf., Eq. (16)). Recall that
letting w = wt(q), and denoting by #pairs(x) the number of partitions of x elements to pairs, the
probability that π is not good equals

#pairs(w) ·#pairs(n− w)

#pairs(n)
=

(n/2
w/2

)

(n
w

) . (23)

The claim follows.

An alternative proof of a linear lower bound for non-adaptive testers. Building on
Proposition 2.9, one can derive an alternative proof of Proposition 2.6. The key new component is
the following Proposition 2.10, which seems of independent interest.

Proposition 2.10 Let t < n/2 and let Q be a t-by-n full rank matrix such that its rows do not

span the vector 1n. Suppose that v is uniformly distributed among all n-bit binary vectors having

weight m = n/2. Then, the variation distance between Qv and the uniform distribution over t-bit
strings is at most t/n.

9Likewise, for w ≡ 0 (mod 4) the value of Eq. (22) is strictly smaller than 1/2 (since χ2(w) · (1− 2χ4(w)) = −1).
10Indeed, it follows that

∑

i
qivi =

∑

j
qπ1(j) = wt(q)/2.

15

Considering the random process presented in the proof of Theorem 2.7 (which starts by selecting
a random pair (i1, i2)), and defining special pairs as in that proof, we establish Proposition 2.6 by
considering the case that (i1, i2) is not special, and then invoking Proposition 2.10 on the residual
matrix. Thus, it is left to prove the latter.

Proof: By using a variant of the XOR Lemma (i.e., Item 2 of Lemma A.4), we upper-bound the
variation distance by the square root of the sum of the square of the corresponding biases. That
is, we use the upper-bound

∑

α∈{0,1}t

∣

∣

∣Prv[Qv = α]− 2−t
∣

∣

∣ ≤ 1

2
·
√

∑

c∈{0,1}t\{0t}
|Prv[cQv = 1]− Prv[cQv = 0]|2 (24)

=
1

2
·

√

√

√

√

√

∑

c∈{0,1}t\{0t}





(n/2
wt(cQ)/2

)

(n
wt(cQ)

)





2

(25)

where the equality is due to Proposition 2.9. Using the same reasoning as in the justification of
Eq. (19) (in the the proof of Lemma 2.8), we upper bound Eq. (25) by

1

2
·

√

√

√

√

√

√

3
∑

k∈[t]∩{2i:i∈N}

((

t

k − 1

)

+

(

t

k

))

·




(n/2
k/2

)

(n
k

)





2

<

√

√

√

√

√

t
∑

k=2

(

t

k

)

·




(n/2
k/2

)

(n
k

)





2

(26)

<

√

√

√

√

1

2
·

t
∑

k=2

(t
k

)

(n
k

) (27)

where the last inequality uses
(n/2
k/2

)2
= o(

(n
k

)

). Hence, we obtain an upper bound of t/n, and the

claim follows.

3 Hardness of Testing a Subclass of Width 3 OBDDs

We shall consider the class of linear functions over GF(3), consisting of all such functions that have
binary coefficients. That is, for every v ∈ {0, 1}n, we consider the function fv : GF(3)n → GF(3)
defined by fv(x) =

∑n
i=1 vixi, where the arithmetic is modulo 3. Let BL3 = {fv : v ∈ {0, 1}n}.

Conjecture 3.1 Testing BL3 requires Ω(n) queries, even when allowing adaptive testers of two-

sided error.

Theorem 3.2 (Theorem 5, restated): Testing BL3 requires Ω(
√

n) queries, even when allowing

adaptive testers of two-sided error.

Proof: We consider the class bad = {bj0,v : j0 ∈ [n], v ∈ {0, 1}n} such that bj0,v(x)
def
= fv(x)+xj0 .

Note that all functions in bad are linear and that exactly half of bad is not in BL3 (since bj0,v ∈ BL3

if and only if vj0 = 0). Hence, with probability 1/2, a uniformly selected function in bad is 2/3-far
from BL3. Our goal is to prove that distinguishing a uniformly selected function in BL3 from a
uniformly selected function in bad requires Ω(

√
n) queries.

Recall that an element in either sets is selected by specifying an index j0 ∈ [n] and an n-bit
string. Fixing any sequence of queries q = (q(1), ..., q(t)), we shall show that if this sequence has a
certain feature with respect to j0, then the answers are distributed almost identically in the two
distributions. This feature is defined next, where w is an integer (i.e., we shall use w =

√
n).

16

Definition 3.2.1 An index j ∈ [n] is called w-special with respect to a sequence of queries q =
(q(1), ..., q(t)) if there exists a linear combination of these queries that yields an n-bit string q such

that j ∈ supp(q) and |supp(q)| ≤ w, where supp(q)
def
= {i : qi 6= 0}.

It will be convenient to use matrix notation in our analysis. Presenting q as a matrix, denoted Q,
such that the ith row of Q equals q(i), the foregoing condition asserts that there exists a t-vector c
such that supp(cQ) contains j as well as at most w − 1 other indices. Thus, we get:

Claim 3.2.2 For any sequence of t queries, q, there exists at most w · t indices that are w-special

with respect to q.

Proof: Let S denote the set of w-special indices with respect to q. For every j ∈ S, there exists a
t-vector c(j) such that supp(c(j)Q) contains j as well as at most w − 1 other elements of S. Using
a greedy strategy, we can obtain a set I of at least |S|/w elements of S such that for every j ∈ I it
holds that supp(c(j)Q) ∩ I = {j}. Thus, the rank of Q is lower bounded by |S|/w, and the claim
follows. 2

Claim 3.2.3 Suppose that j0 is not w-special with respect to q = (q(1), ..., q(t)). Then, for every

α ∈ {0, 1, 2}t, when v = (v1, ..., vn) is selected uniformly in {0, 1}n, it holds that

Prv[(fv(q
(1)), ..., fv(q

(t))) = α] = Prv[(bj0,v(q
(1)), ..., bj0,v(q

(t))) = α]± 2−(w−1) . (28)

Proof: For every α ∈ {0, 1, 2}n, we denote by Dj0,q(α) the difference between the two probabilities
in Eq. (28); that is,

Dj0,q(α)
def
= Prv[(fv(q

(1)), ..., fv(q
(t))) = α] − Prv[(bj0,v(q

(1)), ..., bj0,v(q
(t))) = α]. (29)

Our aim is to prove that the max-norm of Dj0,q(·) is at most 2−(w−1). By using the relation between
bases (cf. Lemma A.5 (Part 2)),11 it suffices to show that for every c ∈ {0, 1, 2}t it holds that

∑

τ∈{0,1,2}

∣

∣

∣

∣

∣

∣

∑

α∈Sc,τ

Dj0,q(α)

∣

∣

∣

∣

∣

∣

≤ 2−(w−1), (30)

where Sc,τ
def
= {α ∈ {0, 1}t :

∑t
i=1 ciαi = τ} denotes the set of all t-bit vectors that have 3k + τ

non-zero entries (for some k). The l.h.s of Eq. (30) equals

∑

τ∈{0,1,2}

∣

∣

∣

∣

∣

Prv

[

t
∑

i=1

cifv(q
(i)) = τ

]

− Prv

[

t
∑

i=1

cibj0,v(q
(i)) = τ

]∣

∣

∣

∣

∣

.

(31)

Using the linearity of both functions, and moving to matrix notation, each term in Eq. (31) equals

Prv[fv(cQ) = τ] − Prv[bj0,v(cQ) = τ], (32)

which equals Prv[cQv = τ]− Prv[cQ(v + uj0) = τ], where uj0 = 0j0−110n−j0 is the jth
0 unit vector.

Thus, Eq. (31) equals

∑

τ∈{0,1,2}

∣

∣

∣Prv

[

cQv = τ] − Prv[cQv + cQuj0 = τ
]∣

∣

∣

.
(33)

11Specifically, letting ω denote the third root of unity, it suffices to upper-bound |
∑

τ∈GF(3)
ωτ
∑

α∈Sc,τ

Dj0,q(α)|,

where Sc,τ = {α :
∑

i
ciαi = τ}. Instead, we upper-bound each of the three terms of the outer summation (and use

|ω| = 1).

17

To upper-bound Eq. (33), we consider two cases (regarding the value of cQuj0). If cQuj0 = 0,
then Eq. (33) equals zero. On the other hand, if cQuj0 6= 0, then supp(cQ) contains j0, and it
follows that |supp(cQ)| > w (because otherwise j0 would have been w-special w.r.t q). But in this
case, it follows that

∑

τ∈{0,1,2} |Prv[cQv = τ] − 1
3 | < 2−w (see Eq. (58)) and the same holds for

Prv[cQv = τ − cQuj0]. Thus, Eq. (33) is upper-bounded by 2 · 2−w, and the claim follows. 2

Armed with Claims 3.2.2 and 3.2.3, we prove the theorem by considering the sequence of queries
in the order they were issued. Setting w =

√
n, we evaluate the situation after each additional

query. Using Claim 3.2.3, we note that as long as j0 is not special with respect to the queries made,
the answers are almost oblivious of whether the function is uniformly selected in bad or in BL3 in
the sense that the probabilistic deviation on each possible sequence of answers (i.e., α) is at most
2−(w−1). Recalling that the functions in BL3 are oblivious of j0, it follows that the answers obtained
from a random function in bad are also almost oblivious of j0 (as long as j0 is not special with
respect to the queries made). Noting that the answers determine the next query, we infer that this
query is also almost oblivious of the currently non-special value of j0, and so the probability that
j0 is special with respect to the augmented sequence of queries can be bounded using Claim 3.2.2.
Details follow.

We may assume, (as usual and) without loss of generality, that the tester is deterministic, and
so the query sequence is determined adaptively by the previous answers. Intuitively, we consider
the 3t−1 possible t-query sequences that arise from each possible sequence of t answers. For each
such sequence, we first dispose of the case that j0 is special with respect to it, which by Claim 3.2.2
happens with probability at most tw/n. Assuming that j0 is not special with respect to that
sequence, we conclude (by Claim 3.2.3) that the corresponding sequence of answers occurs with
about the same probability in both distributions. Over all, the statistical distance between the
observed answers is at most (tw/n)+3t−1 ·2−(w−1), and the theorem follows. Formally, let X = X(v)
be a random variable representing the sequence of answers that the tester sees when querying a
uniformly distributed function in BL3 (i.e., the function fv, where v is uniformly distributed in
{0, 1}n). Likewise, let Yj = Yj(v) be a random variable representing the sequence of answers
that the tester sees when querying bj,v, where v is uniformly distributed in {0, 1}n. Then, we are
interested in

∆
def
=

1

2
·

∑

α∈{0,1,2}t

∣

∣

∣

∣

∣

∣

Pr[X =α]− 1

n
·
∑

j∈[n]

Pr[Yj =α]

∣

∣

∣

∣

∣

∣

(34)

≤ 1

2n
·

∑

α∈{0,1,2}t

∑

j∈[n]

∆α,j , (35)

where ∆α,j
def
= |Pr[X =α]− Pr[Yj =α]|. (36)

For every i ∈ [t] and α ∈ {0, 1, 2}t, we let Si
α denote the set of indices that are w-special with

respect to the first i queries induced by the answer sequence α (or rather the (i−1)-trit long prefix
of α), and define S0

α = ∅. Then, ∆ is upper-bounded by

1

2n
·

∑

α∈{0,1,2}t

t
∑

i=1

∑

j∈Si
α\Si−1

α

∆α,j +
1

2n
·

∑

α∈{0,1,2}t

∑

j∈[n]\St
α

∆α,j . (37)

The second large sum in Eq. (37) is easily bounded by using Claim 3.2.3; specifically, in this case
each ∆α,j is upper-bounded by 2−(w−1), and we have at most 3t · n such terms. Thus we focus on

18

upper-bounding the first large sum; that is, we seek to upper-bound

∑

α∈{0,1,2}t

t
∑

i=1

∑

j∈Si
α\Si−1

α

∆α,j =
t
∑

i=1

∑

α∈{0,1,2}t

∑

j∈Si
α\Si−1

α

∆α,j . (38)

The key observation is that Si
α only depends on the (i − 1)-long prefix of α, denoted α′, and so

(abusing notation) we may write Si
α = Si

α′ . Thus, we write Eq. (38) as
∑t

i=1 ∆(i), where

∆(i) def
=

∑

α′∈{0,1,2}i−1

∑

j∈Si
α′
\Si−1

α′

∑

α′′∈{0,1,2}t−(i−1)

∆α′α′′,j , (39)

and upper-bound each ∆(i) as follows

∆(i) ≤
∑

α′∈{0,1,2}i−1

∑

j∈Si
α′
\Si−1

α′

∑

α′′∈{0,1,2}t−(i−1)

(

Pr[X =α′α′′] + Pr[Yj =α′α′′]
)

(40)

=
∑

α′∈{0,1,2}i−1

∑

j∈Si
α′
\Si−1

α′

(

Pr[X ′=α′] + Pr[Y ′
j =α′]

)

(41)

where X ′ (resp., Y ′
j) represents the (i−1)-long prefix of X (resp., Yj). By Claim 3.2.3, for j 6∈ Si−1

α′ ,

we have |Pr[X ′=α′]− Pr[Y ′
j =α′]| ≤ 2−(w−1), and so Eq. (41) is upper-bounded by

∑

α′∈{0,1,2}i−1

∑

j∈Si
α′
\Si−1

α′

(

2 · Pr[X ′=α′] + 2−(w−1)
)

(42)

=
∑

α′∈{0,1,2}i−1

(

|Si
α′ | − |Si−1

α′ |
)

·
(

2 · Pr[X ′=α′] + 2−(w−1)
)

(43)

<
∑

α∈{0,1,2}t

(

|Si
α| − |Si−1

α |
)

·
(

2 · Pr[X =α] + 2−(w−1)
)

, (44)

where the inequality is due to the 2−(w−1) terms (i.e., we used the fact that Pr[X ′ = α′] equals
∑

α′′∈{0,1,2}t−(i−1) Pr[X =α′α′′]). Combining Eq. (38)–(44), we obtain

t
∑

i=1

∑

α∈{0,1,2}t

∑

j∈Si
α\Si−1

α

∆α,j <
t
∑

i=1

∑

α∈{0,1,2}t

(

|Si
α| − |Si−1

α |
)

·
(

2 · Pr[X =α] + 2−(w−1)
)

(45)

= 3t · 2−(w−1) + 2 ·
∑

α∈{0,1,2}t

Pr[X =α] ·
t
∑

i=1

(

|Si
α| − |Si−1

α |
)

(46)

= 3t · 2−(w−1) + 2 ·
∑

α∈{0,1,2}t

Pr[X =α] · |St
α| (47)

≤ 3t · 2−(w−1) + 2wt ·
∑

α∈{0,1,2}t

Pr[X =α] , (48)

and so Eq. (37) is upper-bounded by 1
2n · ((3t · 2−(w−1) + 2wt) + 3t · n · 2−(w−1)), which equals

3t·2−(w−1)

n + wt
n . For w = 2t =

√
δn, the statistical distance between the answer sequences is at most

δ + o(1), and the theorem follows.

19

4 Hardness of Testing the Class of Width 4 Realizable Functions

In this section we establish Theorems 1 and 6.

Conjecture 4.1 Testing the class of functions that are implementable by width-4 OBDDs requires

Ω(n) queries, even when allowing adaptive testers of two-sided error.

Theorem 4.2 (Theorem 1, restated): Testing the class of functions that are implementable by

width-4 OBDDs requires Ω(
√

n) queries, even when allowing adaptive testers of two-sided error.

Proof: We consider Boolean functions of 4n-bit long strings, which are quadratic polynomials
over GF(2). Specifically, these functions are linear combinations of n quadratic expressions, where
each quadratic expression refers to a distinct block of four variables. A generic block, containing
the variables x1, x2, x3, x4, will contribute a linear combination of x1x3 and x2x4, where the combi-
nation x1x3 + x2x4 is considered bad because the expression x0 + x1x3 + x2x4 cannot be computed
by a width-4 OBDDs. Specifically, letting f0(x1, x2, x3, x4) = 0, f1(x1, x2, x3, x4) = x1x3, and
f2(x1, x2, x3, x4) = x2x4, we will consider the class good that consists of functions of the form
gσ1,...,σn such that

gσ1,...,σn(x1, ..., x4n) =
∑

j∈[n]

fσj(x4(j−1)+1, ..., x4(j−1)+4), (49)

where σ1, ..., σn ∈ {0, 1, 2}. Note that each such function can be computed by a width-4 OBDD,
which uses one “bit” to store the accumulated sum and another “bit” to compute the value of the
current block. In contrast, the class bad consists of functions of the form bj0,σ1,...,σn such that

bj0,σ1,...,σn(x1, ..., x4n) =
∑

j∈[n]\{j0}
fσj (x4(j−1)+1, ..., x4(j−1)+4)

+ x4(j0−1)+1x4(j0−1)+3 + x4(j0−1)+2x4(j0−1)+4 (50)

Since, except when σ1 · · · σj0−1 = 0j0−1, the jth
0 block can not be computed by a width-4 OBDD

(while maintaining the accumulated sum), it follows that such functions are 1/16-far from the set
of functions that are computable by width-4 OBBDs (see Lemma A.6, which is a simple version of
Yao’s XOR Lemma for OBDDs, which is also an over-kill).

Our goal is to prove that a random function in good is hard to distinguish from a random
function in bad, where “random” does not necessarily refer to the uniform distribution over the
corresponding set (but rather any two distributions will do). Specifically, we consider a distribution
over good, in which each σi is set to 0 with probability 1/2 and is uniformly distributed in {1, 2}
otherwise. (This random selection process determines a function gσ1,...,σn ∈ good.) We consider a
related distribution over good∪bad, where σ1, ..., σn are selected as above, the index j0 is selected
uniformly in [n], and the function being determined is gσ1,...,σn + aj0 , where aj0(x1, ..., x4n) =
x4(j0−1)+1x4(j0−1)+3 + x4(j0−1)+2x4(j0−1)+4. Note that the resulting function is in bad if and only

if both σ1 · · · σj0−1 6= 0j0−1 and σj0 = 0, which means that it is in bad with probability 1
2 − o(1).

Our analysis reduces to analyzing related families of linear functions defined over variables
y1, ..., y2n such that y2(j−1)+1 = x4(j−1)+1x4(j−1)+3 and y2(j−1)+2 = x4(j−1)+2x4(j−1)+4. Specifically,
we first show that distinguishing the foregoing two distributions (of quadratic functions) leads to
distinguishing the two corresponding distributions of linear functions, where in both the latter
distributions σ1, ..., σn and j0 are selected as above (i.e., j0 is distributed uniformly in [n] and
each σi is set to 0 with probability 1/2 and is uniformly distributed in {1, 2} otherwise). Letting

20

f ′
0(y1, y2) = 0, f ′

1(y1, y2) = y1, and f ′
2(y1, y2) = y2, the linear functions in these two distributions

are:

g′σ1,...,σn
(y1, ..., y2n) =

∑

j∈[n]

f ′
σj

(y2(j−1)+1, y2(j−1)+2) (51)

b′j0,σ1,...,σn
(y1, ..., y2n) = g′σ1,...,σn

(y1, ..., y2n) + y2(j0−1)+1 + y2(j0−1)+2 (52)

The reduction between these distinguishing problems is quite straightforward: Given a distinguisher
D for the original distinguishing problem (i.e., regarding quadratic functions), we obtain a distin-
guisher D′ for the distinguishing problem regarding linear functions. The new distinguisher (i.e., D′)
invokes D and serves each query q = (q1, ..., q4n) that it issues (to its quadratic oracle) by forwarding
the query q′ = (q′1, ..., q

′
2n) to the actual (linear function) oracle, where q′2(j−1)+1 = q4(j−1)+1q4(j−1)+3

and q′2(j−1)+2 = q4(j−1)+2q4(j−1)+4 for every j ∈ [n]. Thus, when given oracle access to g′σ1,...,σn
,

we emulate an execution of D with gσ1,...,σn, whereas when given oracle access to b′j0,σ1,...,σn
, we

emulate an execution of D with bj0,σ1,...,σn.
We now turn to prove that distinguishing the two aforementioned distributions on linear func-

tions requires Ω(
√

n) queries. Our proof follows the structure of the proof of Theorem 3.2. Specif-
ically, in analogy to Definition 3.2.1, we say that j ∈ [n] is w-special with respect to a sequence
of queries q if there exists a linear combination of these queries that yields a 2n-bit string q such
that {2j − 1, 2j} ∩ supp(q) 6= ∅ and |supp(q)| ≤ w. Analogously to Claim 3.2.2, the number of
w-special indices with respect to a sequence of t queries is bounded by w · t. Next, analogously to
Claim 3.2.3 we upper-bound the deviation of the answers whenever j0 is not w-special with respect
to the sequence of queries.

Claim 4.2.1 Suppose that j0 is not w-special with respect to q = (q(1), ..., q(t)) ∈ ({0, 1}2n)t. Then,

for every α ∈ {0, 1}t, when σ = (σ1, ..., σn) is selected as above, it holds that

Pr[(g′σ(q(1)), ..., g′σ(q(t))) = α] = Pr[(b′j0,σ(q(1)), ..., bj0,σ(q(t))) = α]± 2−Ω(w) . (53)

Proof: Like in the proof of Claim 3.2.3, it suffices to show that, for every c ∈ {0, 1}t,
∣

∣

∣Prσ
[

g′σ(cQ) = 1
] − Prσ

[

b′j0,σ(cQ) = 1
]∣

∣

∣ ≤ 2−Ω(w), (54)

where Q is the matrix with the q(i)’s as rows. Let q = cQ and recall that b′j0,σ(q) = g′σ(q)+ q2j0−1 +
q2j0. We consider two cases. If q2j0−1 = q2j0 = 0, then the l.h.s of Eq. (54) equals zero. Otherwise
(i.e., {2j0−1, 2j0}∩ supp(q) 6= ∅), since j0 is not w-special, it holds that |supp(q)\{2j0−1, 2j0}| ≥
w − 1. Hence, there exists at least (w − 1)/2 indices j in [n] \ {j0} such that (q2j−1, q2j) 6= (0, 0),
which means that for each such j the value of f ′

σj
(q2(j−1)+1, q2(j−1)+2) is not fixed when σj is random

as above. Specifically, for each such j (i.e., j such that (q2j−1, q2j) 6= (0, 0)), it holds that

Prσj

[

f ′
σj

(q2(j−1)+1, q2(j−1)+2) = 1
]

=

{

1
4 if q2(j−1)+1 + q2(j−1)+2 = 1
1
2 otherwise (i.e., q2(j−1)+1 = q2(j−1)+2 = 1)

(55)

and these events, which refer to different j’s, are independent. Recalling Eq. (51)&(52), we conclude
that each of the two probabilities in the l.h.s of Eq. (54) is 1

2 ± 2−Ω(w), and the claim follows. 2

The rest of the analysis mimics the proof of Theorem 3.2.

21

Establishing Theorem 6. In the course of the proof of Theorem 4.2 we actually established a
lower bound on the complexity of testing the set of linear functions defined in Eq. (51). Letting
g′′σ(z1, ..., z3n) equal g′σ(z1, z2, z4, z5, ..., z3n−2, z3n−1) we obtain a set of linear functions in which
there are no consecutive influential variables. Theorem 6 follows by observing that the argument
establishing the hardness of testing the former property also establishes the hardness of testing the
latter property.

Acknowledgments

Part of this work is based on joint research with Dana Ron, who refused to co-author it.

22

References

[1] N. Alon, O. Goldreich, J. H̊astad, R. Peralta. Simple Constructions of Almost k-wise
Independent Random Variables. Journal of Random Structures and Algorithms, Vol. 3,
No. 3, pages 289–304, 1992. Preliminary version in 31st FOCS, 1990.

[2] N. Alon, M. Krivelevich, I. Newman, and M Szegedy. Regular languages are testable with
a constant number of queries. SIAM Journal on Computing, pages 1842–1862, 2001.

[3] M. Bellare, D. Coppersmith, J. H̊astad, M. Kiwi, and M. Sudan. Linearity testing in
characteristic two. In 36th FOCS, pages 432–441, 1995.

[4] E. Blais. Testing juntas almost optimally. In 41st STOC, pages 151–158, 2009.

[5] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to Nu-
merical Problems. JCSS, Vol. 47, No. 3, pages 549–595, 1993. Extended abstract in 22nd

STOC, 1990.

[6] I. Diakonikolas, H. K. Lee, K. Matulef, K. Onak, R. Rubinfeld, R. A. Servedio, and
A. Wan. Testing for concise representations. In 48th FOCS, pages 549–557, 2007.

[7] I. Diakonikolas, H. K. Lee, K. Matulef, , R. A. Servedio, and A. Wan. Efficient testing of
sparse GF(2) polynomials. In 35th ICALP, pages 502–514, 2008.

[8] G. Even. Construction of Small Probabilistic Spaces for Deterministic Simulation. M.Sc.
Thesis, Computer Science Dept., Technion – Israel Institute of Technology, Aug. 1991. (In
Hebrew, abstract in English).

[9] E. Fischer, G. Kindler, D. Ron, S. Safra, and S. Samorodnitsky. Testing Juntas. JCSS,
Vol. 68 (4), pages 753–787, 2004.

[10] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. Journal of the ACM, pages 653–750, July 1998. Extended abstract
in 37th FOCS, 1996.

[11] O. Goldreich, M. Krivelevich, I. Newman, and E. Rozenberg. Hierarchy Theorems for
Property Testing. ECCC, TR08-097, 2008. Extended abstract in the proceedings of
RANDOM’09.

[12] O. Goldreich, N. Nisan and A. Wigderson. On Yao’s XOR-Lemma. ECCC, TR95-050,
1995.

[13] O. Goldreich and D. Ron. On Proximity Oblivious Testing. ECCC, TR08-041, 2008.
Extended abstract in the proceedings of the 41st STOC, 2009.

[14] O. Lachish, I. Newman, and A. Shapira. Space Complexity vs. Query Complexity. Com-

putational Complexity, Vol. 17, pages 70–93, 2008.

[15] J. Naor and M. Naor. Small-bias Probability Spaces: Efficient Constructions and Ap-
plications. SICOMP, Vol 22, 1993, pages 838–856. Preliminary version in 22nd STOC,
1990.

23

[16] I. Newman. Testing membership in languages that have small width branching programs.
SIAM Journal on Computing, 31(5):1557–1570, 2002.

[17] M. Parnas, D. Ron, and A. Samorodnitsky. Testing basic boolean formulae. SIDMA,
Vol. 16 (1), pages 20–46, 2002.

[18] D. Ron. Property Testing: A Learning Theory Perspective. Foundations and Trends in

Machine Learning, Vol. 1 (3), pages 307–402, 2008.

[19] D. Ron. Algorithmic and Analysis Techniques in Property Testing. Foundations and

Trends in TCS, to appear.

[20] D. Ron and G. Tsur. Testing Computability by Width Two OBDDs. In 12th RANDOM,
Springer, LNCS 5687, pages 686–699, 2009.

[21] D. Ron and G. Tsur. Testing Computability by Width Two OBDDs where the Variable
Order is Unknown. In 7th CIAC, to appear.

[22] R. Rubinfeld. On the Robustness of Functional Equations. SIAM Journal on Computing,
Vol. 28 (6), pages 1972–1997, 1999. Extended abstract in 35th FOCS, 1994.

[23] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SIAM Journal on Computing, Vol. 25 (2), pages 252–271, 1996.

24

Appendix: Technical Background

This appendix contains background material that is known, but may not be easily accessible oth-
erwise. In particular, Section A.1 reproduces Guy Even’s upper bound on the bias of random n-bit
strings of weight that is a multiple of 3 (cf. [8]); Section A.2 reproduces a known proof of Umesh
Vazirani’s Information Theoretic XOR Lemma (as well as its generalization to GF(p) for any prime
p); and Section A.3 provides a simple proof of Yao’s XOR Lemma for OBDDs (and other related
models of computation).

A.1 The bias of the Mod 3 Sample Space

Referring to the uniform distribution over n-bit strings having weight that is a multiple of 3, we
present a proof that this distribution has an exponentially vanishing bias, where the bias of a
distribution is as defined in Eq. (60).

Proposition A.1 [8]: Let S be the set of all n-bit strings having a number of 1-entries that is

divisible by three. Then, S is an 2−O(n)-bias sample space.

Proof: We let X = X1 · · ·Xn denote a uniformly distributed n-bit string. We first consider the

distribution of
∑n

i=1 Xi mod 3. Letting pσ(n)
def
= Pr[

∑n
i=1 Xi ≡ σ (mod 3)], we note that

pσ(n) =
1

2
· pσ(n− 1) +

1

2
· pσ−1(n− 1) =

1

2
− pσ+1(n− 1)

2
(56)

and it follows that |pσ(n)− 1
3 | = 1

2 · |pσ+1(n− 1)− 1
3 |. Thus, we get

∑

σ∈{0,1,2}

∣

∣

∣

∣

pσ(n)− 1

3

∣

∣

∣

∣

=
1

2
·

∑

σ∈{0,1,2}

∣

∣

∣

∣

pσ(n− 1)− 1

3

∣

∣

∣

∣

(57)

and similarly for maxσ∈{0,1,2}{|pσ(n − 1) − 1
3 |}. Recalling that p0(1) = p1(1) = 1

2 , it follows that

pσ(n) = 1
3 ± 2−n. We also mention (for use in the proof of Claim 3.2.3) that

∑

σ∈{0,1,2}

∣

∣

∣

∣

pσ(n)− 1

3

∣

∣

∣

∣

=
2

3
· 2−(n−1) (58)

We now turn to analyze the bias of the various XORs. That is, for any fixed non-zero string
q ∈ {0, 1}n, we consider the probability

Pr

[

〈q,X〉=0

∣

∣

∣

∣

n
∑

i=1

Xi ≡ 0 (mod 3)

]

=
Pr[〈q,X〉=0 ∧∑n

i=1 Xi ≡ 0 (mod 3)]

Pr[
∑n

i=1 Xi ≡ 0 (mod 3)]

We know that the denominator is 1
3 ± 2−n, and so we focus on the numerator. We distinguish two

cases, according to the weight of q, where we assume (w.l.o.g.) that q = 1wt(q)0n−wt(q).

Case 1: w
def
= wt(q) ≤ n/2. In this case, we have

Pr

[

〈q,X〉=0 ∧
n
∑

i=1

Xi ≡ 0 (mod 3)

]

= Pr

[

w
∑

i=1

Xi ≡ 0 (mod 2) ∧
n
∑

i=1

Xi ≡ 0 (mod 3)

]

=
1

2
· Pr

[

n
∑

i=1

Xi ≡ 0 (mod 3)

∣

∣

∣

∣

w
∑

i=1

Xi ≡ 0 (mod 2)

]

25

We note that, for any fixing of values to X1, ...,Xw and every σ ∈ {0, 1, 2}, it holds that

Pr





n
∑

i=w+1

Xi ≡ σ (mod 3)



 = pσ(n− w) =
1

3
± 2−(n−w)

and using w ≤ n/2 we get that Pr[〈q,X〉=0 ∧∑n
i=1 Xi ≡ 0 (mod 3)] = 1

6 ± 2−n/2.

Case 2: w
def
= wt(q) ≥ n/2. In this case, we use

Pr

[

〈q,X〉=0 ∧
n
∑

i=1

Xi ≡ 0 (mod 3)

]

= Pr

[

n
∑

i=1

Xi ≡ 0 (mod 6)

]

and observe that
∑n

i=1 Xi ≡ 0 (mod ℓ) represents a random walk on a directed ℓ-cycle where
we traverse an edge with probability 1/2 and otherwise remain in place. It can be easily seen
that the corresponding Markov Chain has a second eigenvalue of 1 − Θ(ℓ−2), and so the
probability of reaching any fixed node in an n-step random walk is 1

ℓ ± 2−Ω(n/ℓ2).

The claim follows.

A.2 The Information Theoretic XOR-Lemma

The Information Theoretic XOR-Lemma, commonly attributed to Umesh Vazirani (see also [1,
Apdx]), relates two measures of the “randomness” of distributions over n-bit long strings.

• The statistical difference from uniform; namely, the statistical difference (variation difference)
between the “target” distribution and the uniform distribution.

• The maximum bias of the xor of certain bit positions; namely, the bias of a 0-1 random
variable obtained by taking the exclusive-or of certain bits in the “target” distribution.

The Information Theoretic XOR-Lemma asserts that the statistical difference from uniform is
upper-bounded by

√
2n times the maximum bias of the XOR’s.

Formal setting. Let π be a an arbitrary probability distribution over {0, 1}n and let µ denote
the uniform distribution over {0, 1}n (i.e., µ(x) = 2−n for every x ∈ {0, 1}n). Let x = x1 · · · xn and

N
def
= 2n. The XOR-Lemma relates two “measures of closeness” of π to µ.

• The statistical difference (“variation difference”) between π and µ; namely,

stat(π)
def
=

1

2
·
∑

x

|π(x)− µ(x)| (59)

• The “maximum bias” of the exclusive-or of certain bit positions in strings chosen according
to the distribution π; namely,

maxbias(π)
def
= max

S 6=∅
{|π({x : ⊕i∈Sxi = 0})− π({x : ⊕i∈Sxi = 1})|} (60)

The XOR-Lemma states that stat(π) ≤
√

N · maxbias(π). Its proof is based on viewing distribu-
tions as elements in an N -dimensional vector space and observing that the two measures considered
by the lemma are merely two norms taken with respect to two different orthogonal bases. Hence,
the XOR-Lemma follows from a (more general and quite straightforward) technical claim that
relates norms taken with respect to different orthonormal bases.

26

The XOR-Lemma and vector spaces. Probability distributions over {0, 1}n are functions
from {0, 1}n to the reals. Such functions form a N -dimensional vector space. The standard basis,
denoted K, for this space is the orthonormal basis defined by the “Kroniker functions” (i.e., the
Boolean functions {kα : α ∈ {0, 1}n} where kα(x) = 1 if x = α). The statistical difference
between two distributions equals (half) the norm L1 of their difference taken in the above K
basis. On the other hand, the maxbias of a distribution equals the maximum “Fourier coefficient”
of the distribution, which in turn corresponds to the max-norm (norm L∞) of the distribution
taken in a different basis. The basis is defined by the functions {bS : S ⊆ {1, 2, ..., n}}, where
bS(x) = (−1)Σi∈Sxi . Note that bS(x) = 1 if the exclusive-or of the bits {xi : i ∈ S} is 0 and
bS(x) = −1 otherwise. The new basis is orthogonal but not orthonormal. We hence consider the
normalized basis, denoted F , consisting of the functions fS = 1√

N
· bS.

Notation: Let B be an orthonormal basis and r an integer. We denote by NB
r (v) the norm Lr

of v with respect to the basis B. Namely, NB
r (v) = (

∑

e∈B〈e, v〉r)(1/r), where 〈e, v〉 is the absolute
value of the inner product of the vectors e and v. We denote by NB

∞(v) the limit of NB
r (v) when

r →∞ (i.e., NB
∞(v) is maxe∈B〈e, v〉).

Clearly, stat(π) = 1
2 · NK

1 (π − µ), whereas maxbias(π) =
√

N · NF
∞(π − µ). Following is

a proof of the second equality. Let δ(x) = π(x) − µ(x). Clearly, maxbias(µ) = 0, and hence
maxbias(π) = maxbias(δ). Also

∑

x δ(x) = 0, and so
∑

x f∅(x) · δ(x) = 0. We get

maxbias(δ) = max
S 6=∅
{|δ({x : bS(x)=1}) − δ({x : bS(x)=−1})|} (61)

= max
S 6=∅

{∣

∣

∣

∣

∣

∑

x

bS(x) · δ(x)

∣

∣

∣

∣

∣

}

(62)

=
√

N ·max
S

{∣

∣

∣

∣

∣

∑

x

fS(x) · δ(x)

∣

∣

∣

∣

∣

}

(63)

=
√

N · NF
∞(δ) (64)

The proof of the XOR-Lemma. The XOR-Lemma follows from the following technical claim

Claim A.2 (on bases and norms): For every two orthogonal bases A and B and every vector v

NA
1 (v) ≤ N · NB

∞(v) (65)

This technical claim has a three line proof:

1. For every orthogonal basis A, NA
1 (v) ≤

√
N · NA

2 (v).

2. For every pair of orthonormal bases A and B, NA
2 (v) = NB

2 (v).

3. For every orthogonal basis B, NB
2 (v) ≤

√
N · NB

∞(v).

Using Claim A.2, we get

Lemma A.3 (The XOR-Lemma): stat(π) ≤ 1
2 ·
√

N · maxbias(π).

Proof: By the above stat(π) = 1
2 · NK

1 (π − µ) and maxbias(π) =
√

N · NF
∞(π − µ), whereas

NK
1 (π − µ) ≤ N · NF

∞(π − µ).

27

Variants. Using small variations on the proof of the Claim A.2, we obtain the following.

Lemma A.4 (variants of the XOR-Lemma):

1. maxx∈{0,1}n{|π(x)− µ(x)|} ≤ maxbias(π).

2. stat(π) ≤ 1
2 ·
√

∑

S 6=∅ biasS(π)2, where biasS(π) =
∑

x bS(x) · π(x).

Proof: The first part follows by using NA
∞(v) ≤ NA

2 (v) (instead of NA
1 (v) ≤

√
N · NA

2 (v)), and
obtaining NK

∞(π − µ) ≤
√

N · NF
∞(π − µ). The second part follows by using NA

1 (v) ≤
√

N · NB
2 (v)

and NF
2 (π − µ) =

√

∑

S 6=∅ biasS(π)2. In both parts we also use bias∅(π − µ) = 0.

Generalization to GF(p), for any prime p. The entire treatment can be generalized to dis-

tributions over GF(p)n. In this case, we redefine N
def
= pn, and stat(π) denote the statistical

difference between π and the uniform distribution over GF(p)n (cf. Eq. (59)). Letting ω denote the
pth root of unity, we generalize Eq. (60) to

maxbias(π)
def
= max

β∈GF(p)n\{0}n







∣

∣

∣

∣

∣

∣

∑

e∈GF(p)

ωe · π
({

x :
∑

i∈[n]βixi ≡ e (mod p)
})

∣

∣

∣

∣

∣

∣







(66)

The Fourier basis is generalized analogously: The new basic consists of the functions {bβ : β ∈
GF(p)n}, where bβ(x) = ωΣi∈[n]βixi . The normalized basis, denoted F , consists of the functions
fβ = N−1/2 · bβ. Note that, in the case of p = 2, these definitions coincides with the definitions
presented before. By following exactly the same manipulations as in the case of p = 2, we obtain
the following generalization.

Lemma A.5 (The XOR-Lemma, generalized to GF(p)): Let π be an arbitrary distribution over

GF(p)n, and let µ denote the uniform distribution over GF(p)n.

1. stat(π) ≤ 1
2 ·
√

N · maxbias(π).

2. maxx∈{0,1}n{|π(x)− µ(x)|} ≤ maxbias(π).

3. stat(π) ≤ 1
2 ·
√

∑

S 6=∅ biasS(π)2, where biasS(π) =
∑

x bS(x) · π(x).

A.3 Yao’s XOR Lemma for OBDDs

Loosely speaking, Yao’s Lemma asserts that unpredictability is amplified by taking the exclusive-or
of values that are individually hard to predict. The lemma holds in various computational models
(cf., e.g., [12]), and essentially says that if the predicates f1 and f2 cannot be approximated by
algorithms of a certain class any better than with success probability 1+ǫ1

2 and 1+ǫ2
2 , respectively,

then f(y, z) = f1(y) ⊕ f2(z) cannot be approximated by algorithms of a certain class any better
than with success probability 1+ǫ1ǫ2

2 . In this appendix we provide a simple proof of this result for
the case of OBDDs.

Actually, the phrasing of the following lemma avoids reference to any complexity class. It
only assumes (unidirectional) on-line access to the input in the sense that the value of F (y, z) =
f1(y) ⊕ f2(z) is predicted by a function of the form G(y, z) = g2(g1(y), z), which means that the
algorithm first processes y, producing g1(y), and outputs its final verdict based solely on g1(y) and

28

z. Indeed, the reader should consider the case that |g1(y)| ≪ |y|. This applies, in particular, to the
bounded-width OBDD model. The actual statement is in terms of a reducibility argument. It says
that G might as well have the form π(g1(y)) ⊕ g2(a, z), where π : {0, 1}∗ → {0, 1} and a ∈ {0, 1}∗
are fixed. This presupposes that computing π ◦ g1 is not more complex that computing g1, and
that hardwiring constants is for free. Both assumptions holds in the bounded-width OBDD model.

As is usually the case with the XOR Lemma, it is more convenient to work with the ±1 notation.
Thus, σ ∈ {0, 1} is replaced by (−1)σ , and ⊕ is replaced by multiplication.

Lemma A.6 Let f1, f2 : {0, 1}∗ → {±1}, and g1 : {0, 1}∗ → {0, 1}∗, g2 : {0, 1}∗ ×{0, 1}∗ → {±1}.
Then, there exists π : {0, 1}∗ → {±1} and a ∈ {0, 1}∗ such that

Ey,z[(f1(y)f2(z))g2(g1(y), z)] ≤ Ey,z[f1(y)f2(z)π(g1(y))g2(a, z)] (67)

= Ey[f1(y)π(g1(y))] ·Ez[f2(z)g2(a, z)] (68)

where y and z are arbitrarily distributed in {0, 1}∗, but are independent of one another.

In particular, it follows that if f1 and f2 cannot be correlated by a width-w OBDD better than p1

and p2, respectively, then f(y, z) = f1(y)f2(z) cannot be correlated by this class better than p1p2.
For our purposes, it suffices to have the (even simpler) special case in which either p1 or p2 equals 1.

Proof: The equality is obvious, and so we focus on the inequality. Let p1 = maxπ{Ey[f1(y)π(g1(y))}
and p2 = maxa,s∈{±1}{s · Ez[f2(z)g2(a, z)]}.

Define ρ : {0, 1}∗ → R such that ρ(x)
def
= Ez[f2(z)g2(x, z)]/p2. Note that by the definition of p2

we have ρ(x) ∈ [−1,+1] for every x (because otherwise |Ez[f2(z)g2(x, z)]| > p2). Combining the
definition of p1 and a simple probabilistic fact12, we have

Ey[f1(y)ρ(g1(y))] ≤ p1. (69)

Substituting ρ(g1(y)) in Eq. (69), we get

Ey[f1(y)Ez[f2(z)g2(g1(y), z)]/p2] ≤ p1 (70)

which implies
Ey,z[f1(y)f2(z)g2(g1(y), z)] ≤ p1p2 (71)

Plugging in the definitions of p1 and p2, we get

Ey,z[f1(y)f2(z)g2(g1(y), z)] ≤ max
π,a,s
{s ·Ey[f1(y)π(g1(y))] · Ez[f2(z)g2(a, z)]} (72)

= max
π,a
{Ey[f1(y)π(g1(y))] ·Ez[f2(z)g2(a, z)]} (73)

and the lemma follows.

12The fact is that if for every π : {0, 1}∗ → {±1} it holds that E[Y π(Z)] ≤ p, then the same holds for π :
{0, 1}∗ → [−1, +1]. The proof follows by the counterpositive. Assuming that E[Y π(Z)] > p holds for some π :
{0, 1}∗ → [−1, +1], we first define a random process Π such that Π(x) = 1 with probability (1 + π(x))/2 and
Π(x) = −1 otherwise. Then, E[Y Π(Z)] = E[Y π(Z)] > p, because E[Π(z)] = π(z), and it follows that there exists a
π : {0, 1}∗ → {−1, +1} (in the support of Π) that contradicts the hypothesis.

29

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

