
Tight Bounds on the Approximability of

Almost-satisfiable Horn SAT and Exact Hitting Set

Venkatesan Guruswami∗ Yuan Zhou∗

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213.

Abstract

We study the approximability of two natural Boolean constraint satisfaction problems: Horn
satisfiability and exact hitting set. Under the Unique Games conjecture, we prove the following
optimal inapproximability and approximability results for finding an assignment satisfying as
many constraints as possible given a near-satisfiable instance.

1. Given an instance of Max Horn-3SAT that admits an assignment satisfying (1 − ε) of its
constraints for some small constant ε > 0, it is hard to find an assignment satisfying more
than (1 − 1/O(log(1/ε))) of the constraints. This matches a linear programming based
algorithm due to Zwick [Zwi98], resolving the natural open question raised in that work
concerning the optimality of the approximation bound.
Given a (1−ε) satisfiable instance of Max Horn-2SAT for some constant ε > 0, it is possible
to find a (1 − 2ε)-satisfying assignment efficiently. This improves the algorithm given in
[KSTW00] which finds a (1 − 3ε)-satisfying assignment, and also matches the (1 − cε)
hardness for any c < 2 derived from vertex cover (under UGC).

2. An instance of Max 1-in-k-HS consists of a universe U and a collection C of subsets of U of
size at most k, and the goal is to find a subset of U that intersects the maximum number of
sets in C at a unique element. We prove that Max 1-in-k-HS is hard to approximate within
a factor of O(1/ log k) for every fixed integer k. This matches (up to constant factors) an
easy factor Ω(1/ log k) approximation algorithm for the problem, and resolves a question
posed in [GT05].
It is crucial for the above hardness that sets of size up to k are allowed; indeed, when
all sets have size k, there is a simple factor 1/e-approximation algorithm. Moreover,
the hardness applies when the instance admits a solution satisfying 1 − 1/k0.99 of the
constraints. In contrast, for instances which are (1− 1

1.01k)-satisfiable, we give a constant
factor approximation algorithm.

Our hardness results are proved by constructing integrality gap instances for a semidefinite
programming relaxation for the problems, and using Raghavendra’s result [Rag08] to conclude
that no algorithm can do better than the SDP assuming the UGC. The algorithmic results are
based on rounding appropriate linear programming relaxations.

∗Supported in part by a Packard Fellowship, NSF CCF 0953155, and US-Israel BSF grant 2008293. Email:
guruswami@cmu.edu, yuanzhou@cs.cmu.edu.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 63 (2010)

1 Introduction

Schaefer proved long ago that there are only three non-trivial classes of Boolean constraint satis-
faction problems (CSPs) for which satisfiability is polynomial time decidable [Sch78]. These are
LIN-mod-2 (linear equations modulo 2), 2-SAT, and Horn-SAT. An instance of Horn-SAT is a CNF
formula where each clause consists of at most one unnegated literal.1 The maximization versions
of these problems (where the goal is to find an assignment satisfying the maximum number of con-
straints) are NP-hard, and in fact APX-hard, i.e., NP-hard to approximate within some constant
factor bounded away from 1. An interesting special case of the maximization version is the following
problem of “finding almost-satisfying assignments”: Given an instance which is (1 − ε)-satisfiable
(i.e., only ε fraction of constraints need to be removed to make it satisfiable for some small constant
ε), can one efficiently find an assignment satisfying most (say, 1− f(ε)− o(1) where f(ε)→ 0 as
ε→ 0) of the constraints? 2

The problem of finding almost-satisfying assignments was first suggested and studied in a beauti-
ful paper by Zwick [Zwi98]. This problem seems well-motivated, as even if a Max CSP is APX-hard
in general, in certain practical situations instances might be close to being satisfiable (for example,
a small fraction of constraints might have been corrupted by noise). An algorithm that is able to
satisfy most of the constraints of such an instance could be very useful. In fact, finding such an
algorithm for the Unique Games problem is equivalent to refuting the Unique Games conjecture!
(One direction of this claim is trivial, and the other follows via the stronger parallel repetition
theorem for projection games [Rao08].)

As pointed out in [KSTW00], Schaefer’s reductions together with the PCP theorem imply that
the previous goal is NP-hard to achieve for any Boolean CSP for which the satisfiability problem
is NP-complete. Indeed, all but the above three tractable cases of Boolean CSPs have a “gap
at location 1,” which means that given a satisfiable instance it is NP-hard to find an assignment
satisfying α fraction of the constraints for some constant α < 1. This result has been extended to
CSPs over arbitrary domains recently [JKK09].

The natural question therefore is whether for the three tractable Boolean CSPs, LIN-mod-2, 2-
SAT, and Horn-SAT, one can find almost-satisfying assignments in polynomial time. Effectively, the
question is whether there are “robust” satisfiability checking algorithms that can handle a small
number of inconsistent constraints and still produce a near-satisfying assignment. As remarked
above, the Unique Games conjecture holds if and only if there is no such robust satisfiability
algorithm for the Unique Games CSP.

With respect to the feasibility of finding almost-satisfying assignments, LIN-mod-2, 2-SAT, and
Horn-SAT behave rather differently from each other. For LIN-mod-2, H̊astad in his breakthrough
paper [H̊as01] showed that for any ε, δ > 0, finding a solution satisfying 1/2 + δ of the equations
of a (1 − ε)-satisfiable instance is NP-hard. In fact, this result holds even when each equation
depends on only 3 variables. Since just picking a random assignment satisfies 1/2 the constraints
in expectation, this shows, in a very strong sense, that there is no robust satisfiability algorithm

1The dual variant dual-Horn-SAT which is an instance of SAT where each clause has at most one negated literal
is also polynomial time solvable.

2Throughout the paper, constraints could have weights, and by a “fraction α of constraints” we mean any subset
of constraints whose total weight is a fraction α of the sum of the weights of all constraints. For CSPs with no unary
constraints, the approximability of the weighted and unweighted versions are known to be the same [CST01].

1

for LIN-mod-2.

In sharp contrast to this extreme hardness for linear equations, Zwick [Zwi98] proved that for 2-
SAT and Horn-SAT one can find almost-satisfying assignments in polynomial time. For Max 2SAT,
Zwick gave a semidefinite programming (SDP) based algorithm that finds a (1−O(ε1/3))-satisfying
assignment (i.e., an assignment satisfying a fraction (1−O(ε1/3)) of the constraints) given as input
a (1 − ε)-satisfiable instance. This algorithm was later improved to one that finds a 1 − O(

√
ε)-

satisfying assignment by Charikar, Makarychev, and Makarychev [CMM09]. The 1−O(
√
ε) bound

is known to be best possible under the Unique Games conjecture (UGC) [Kho02, KKMO07]. In
fact, this hardness result for Max 2SAT was the first application of the UGC and one of the main
initial motivations for its formulation by Khot [Kho02].

For Max Horn-SAT, Zwick gave a linear programming (LP) based algorithm to find an assignment
satisfying (1 − O(log log(1/ε)/ log(1/ε))) of constraints of a (1 − ε)-satisfiable instance. For Max
Horn-3SAT where each clause has at most three literals, the algorithm finds a (1−O(1/ log(1/ε)))-
satisfying assignment. Note that the fraction of unsatisfied constraints is exponentially worse for
Max Horn-SAT compared to Max 2SAT.

Horn-SAT is a fundamental problem in logic and artificial intelligence. Zwick’s robust Horn
satisfiability algorithm shows the feasibility of solving instances where a small number of constraints
are faulty and raises the following natural question, which was also explicitly raised in [Zwi98]. Is
this 1/ log(1/ε) deficit inherent? Or could a more sophisticated algorithm, say based on an SDP
relaxation instead of the LP relaxation used in [Zwi98], improve the deficit to something smaller
(such as εb for some constant b as in the case of the SDP based algorithm for Max 2SAT)? It is
known that for some absolute constant c < 1, it is NP-hard to find a (1− εc)-satisfying assignment
given a (1− ε)-satisfiable instance of Max Horn-SAT [KSTW00].

In this work, we address the above question and resolve it (conditioned on the UGC), showing
the 1/ log(1/ε) deficit to be inherent. We also investigate another problem, the “exact hitting set”
problem for set sizes bounded by k, which has a very peculiar approximation behavior [GT05]. It
admits a much better approximation algorithm on satisfiable instances, as well as when sets all have
size exactly (or close to) k. We prove that these restrictions are inherent, and relaxing these rules
out a constant factor approximation algorithm (again, under the UGC). We describe our results in
more detail below in Section 2.

Remark 1. For (1−ε)-satisfiable instances of Max 2-SAT, even the hardness of finding a (1−ωε(1)ε)-
satisfying assignment is not known without assuming the UGC (and the UGC implies the optimal
1−Ω(

√
ε) hardness bound). For Max Horn-SAT, as mentioned above, we know the NP-hardness of

finding a (1− εc)-satisfying assignment for some absolute constant c < 1. Under the UGC, we are
able to pin down the exact asymptotic dependence on ε.

2 Our results and previous work

2.1 Horn-SAT

We prove the following hardness result concerning finding almost-satisfying assignments for Max
Horn-SAT (in fact for the arity 3 case). In the sequel, we use the terminology “UG-hard” to mean
at least as hard as refuting the Unique Games conjecture.

2

Theorem 1. For some absolute constant C > 0, for every ε > 0, given a (1−ε)-satisfiable instance
of Max Horn-3SAT, it is UG-hard to find an assignment satisfying more than a fraction

(
1− C

log(1/ε)

)
of the constraints.

Zwick gave a polynomial time algorithm that finds a 1 − O(log k
log(1/ε))-satisfying assignment on

input a (1 − ε)-satisfiable instance of Max Horn-kSAT. Our inapproximability bound is therefore
optimal up to the constant C, and resolves Zwick’s question on whether his algorithm can be
improved in the negative. (For arbitrary arity Horn-SAT, Zwick’s algorithm has the slightly worse
1−O(log log(1/ε)/ log(1/ε)) performance ratio; we do not show this to be tight.)

Theorem 1 shows that Max Horn-SAT has a very different quantitative behavior compared to
Max 2SAT with respect to approximating near-satisfiable instances: the fraction of unsatisfied
clauses Ω(1/ log(1/ε)) is exponentially worse than the O(

√
ε) fraction that can be achieved for Max

2SAT.

A strong hardness result for Min Horn Deletion, the minimization version for Horn-SAT, was
shown in [KSTW00]. It follows from their reduction that for some absolute constant c < 1, it is
NP-hard to find a (1−εc)-satisfying assignment given a (1−ε)-satisfiable instance of Max Horn-SAT.
The constant c would be extremely close to 1 in this result as it is related to the soundness in Raz’s
parallel repetition theorem. While our inapproximability bound is stronger and optimal, we are
only able to show UG-hardness and not NP-hardness.

In light of our strong hardness result for Max Horn-3SAT, we also consider the approximability
of the arity two case. For Max Horn-2SAT, given a (1 − ε)-satisfiable instance, an approximation
preserving reduction from vertex cover shows that it is UG-hard to find a (1− cε)-satisfying assign-
ment for c < 2. It is also shown in [KSTW00] that one can find a (1 − 3ε)-satisfying assignment
efficiently. We improve the algorithmic bound (to the matching UG-hardness) by proving the
following theorem, based on half-integrality of an LP relaxation for the problem.

Theorem 2. Given a (1−ε)-satisfiable instance for Max Horn-2SAT, it is possible to find a (1−2ε)-
satisfying assignment in polynomial time.

2.2 Exact hitting set

We consider the “exact hitting set” problem where the goal is to find a subset that intersects a
maximum number of sets from an input family at exactly one element. Formally,

Definition 1. Let k > 2 be a fixed integer. An instance of Max 1-in-k-HS consists of a universe
U = {x1, x2, . . . , xn} and a collection C of subsets of U each of size at most k. The objective is to
find a subset S ⊆ U that maximizes the number of sets T ∈ C for which |S ∩ T | = 1. When all sets
in C have size equal to k, we refer to the problem as Max 1-in-Ek-HS.

In addition to being a natural CSP, the exact hitting set problem arises in many contexts where
one has to make unique choices from certain specified subsets. The complexity of this problem
was investigated in [GT05] and [DFHS08], where applications of the problem to pricing, computing
ad-hoc selective families for radio broadcasting, etc. are also discussed.

Our interest in this problem stems in part from the following peculiar approximability behavior
of Max 1-in-k-HS, as pointed out in [GT05]. The Max 1-in-k-HS problem appears to be much easier

3

to approximate on “satisfiable instances” (where a hitting set intersecting all subsets exactly once
exists) or when all sets have size exactly equal to k (instead of at most k). In both these cases,
there is a factor 1/e-approximation algorithm, and obtaining a (1/e+ ε)-approximation is NP-hard
even when both restrictions hold simultaneously [GT05].

For Max 1-in-k-HS itself, the best approximation factor known to be possible in polynomial time
is Ω(1/ log k). This is based on partitioning the collection C into O(log k) parts based on geometric
intervals [2i, 2i+1) of set sizes, and running a simple randomized algorithm (that handles the case
where all sets have sizes within a factor of two) on the sub-collection which has the most sets.
Despite the simplicity and seeming naiveness of this algorithm, no factor ω(1/ log k) algorithm is
known for the problem. No hardness factor better than the 1/e bound (which holds even for Max
1-in-Ek-HS) is known either. Improving the gap in our understanding of the approximability of
Max 1-in-k-HS was posed as an open question in [GT05].

For the case when k is not fixed but can also grow with the universe size n, a factor (log n)−Ω(1)

hardness was shown in [DFHS08], under the assumption NP 6⊆ TIME(2n
γ
) for some γ > 0. However,

their method does not seem to be applicable to the case of bounded set size.

In this work, we prove the following tight result, establishing the difficulty of improving the
simple Ω(1/ log k)-approximation algorithm. This shows that it is hard to simultaneously do well
on two different “scales” of set sizes.

Theorem 3. For some absolute constant C ′ > 0, for every α > 0, given a (1− 1/k1−α)-satisfiable
instance of Max 1-in-k-HS, it is UG-hard to find a subset intersecting more than a fraction C′

α log k
of the sets exactly once.

The gap in the above hardness result is also located at the “correct” satisfiability threshold,
as we show the following complementary algorithmic result. Our algorithm in fact works for the
more general Max 1-in-k-SAT problem where negated literals are allowed and the goal is to find
an assignment for which a maximum number of clauses have exactly one literal set to true. For
satisfiable instances of Max 1-in-k-SAT, a factor 1/e approximation algorithm was given in [GT05].

Theorem 4. For every constant B > 1, the following holds. There is a polynomial time algorithm
that, given a (1− 1

Bk)-satisfiable instance of Max 1-in-k-SAT, finds a truth-assignment on variables

satisfying exactly one literal in a fraction λ of the clauses, where λ =
(

1−1/
√
B

e

)2
.

3 Proof method

We construct integrality gap instances for the semidefinite programming relaxation given in [Rag08],
and then use Raghavendra’s theorem [Rag08] to conclude that assuming the Unique Games con-
jecture, no algorithm can achieve an approximation ratio better than the SDP integrality gap.

For the algorithm for Max 1-in-k-HS (in fact Max 1-in-k-SAT), we use the natural LP relaxation,
and show that randomized rounding gives a good approximation.

4

3.1 The canonical SDP for Boolean CSPs and UG-Hardness

For Boolean CSP instances, we write C as the set of constraints over variables x1, x2, · · · , xn ∈ {0, 1}.
The SDP relaxation from [Rag08], which we call the canonical SDP, sets up for each constraint
C ∈ C a local distribution πC on all the truth-assignments {σ : XC → {0, 1}}, where XC is the set
of variables involved in the constraint C. This is implemented via scalar variables πC(σ) which are
required to be non-negative and satisfy

∑
σ:XC→{0,1} πC(σ) = 1. For each variable x, two orthogonal

vectors v(x,0) and v(x,1), corresponding to the events x = 0 and x = 1, are set up. The SDP requires
for each variable x, v(x,0) · v(x,1) = 0 and v(x,0) + v(x,1) = I where I is a global unit vector. (In the
integral solution, one of the vectors v(x,1),v(x,0) — based on the x’s Boolean value — is intended
to be I and the other one to be 0.)

Then, as constraint (5), the SDP does a consistency check: for two variables x, y (that need not
be distinct) involved in the same constraint C, and for every b1, b2 ∈ {0, 1}, the SDP insists that
the inner product v(x,b1) · v(y,b2) equals Prσ∈πC [(σ(x) = b1) ∧ (σ(y) = b2)].

Maximize EC∈C [Prσ∈πC [C(σ) = 1]] (1)
Subject to v(xi,0) · v(xi,1) = 0 ∀i ∈ [n] (2)

v(xi,0) + v(xi,1) = I ∀i ∈ [n] (3)

‖I‖2 = 1 (4)
Prσ∈πC [σ(xi) = b1 ∧ σ(xj) = b2] = v(xi,b1) · v(xj ,b2) ∀C ∈ C, xi, xj ∈ C, b1, b2 ∈ {0, 1}

(5)

Note that if we discard all the vectors by removing constraints (2)∼(4), and changing constraints (5)
to Prσ∈πS [σ(xi) = b1∧σ(xj) = b2] = X(xi,b1),(xj ,b2), the SDP becomes a lifted LP in Sherali-Adams
system. We call this LP scheme the lifted LP in this paper.

The following striking theorem (Theorem 1.1 in [Rag08]) states that once we have an integrality
gap for the canonical SDP, we also get a matching UG-hardness. Below and elsewhere in the paper,
a c vs. s gap instance is an instance with SDP optimum at least c and integral optimum at most s.

Theorem 5. Let 1 > c > s > 0. If a constraint satisfaction problem Λ admits a c vs. s integrality
gap instance for the above canonical SDP, then for every constant η > 0, given an instance of Λ
that admits an assignment satisfying (c − η) of constraints, it is UG-Hard to find an assignment
satisfying more than (s+ η) of constraints.

To make our construction of integrality gaps easier, we notice the following simplification of the
above SDP. Suppose we are given the global unit vector I and a vector vx for each variable x in
the CSP instance, subject to the following constraints:

(I − vx) · vx = 0 ∀ variables x (6)
Prσ∈πC [σ(xi) = 1 ∧ σ(xj) = 1] = vxi · vxj ∀C ∈ C, xi, xj ∈ C . (7)

Defining v(x,1) = vx and v(x,0) = I − vx, it is easy to check that all constraints of the above SDP
are satisfied. For instance, for variables x, y belonging to a constraint C,

v(x,0) · v(y,1) = (I − v(x,1)) · v(y,1) = ‖v(y,1)‖2 − v(x,1) · v(y,1)

5

= Prσ∈πC [σ(y) = 1]−Prσ∈πC [(σ(x) = 1) ∧ (σ(y) = 1)]
= Prσ∈πC [(σ(x) = 0) ∧ (σ(y) = 1)] ,

and other constraints of (5) follow similarly.

Henceforth in this paper, we will work with this streamlined canonical SDP with vector variables
I, {vx}, scalar variables corresponding to the local distributions πC , constraints (6) and (7), and
objective function (1).

3.2 Overview of construction of SDP gaps

Horn-3SAT. In the concluding section of [Zwi98], Zwick remarks that there is an integrality gap
for the LP he uses that matches his approximation ratio. Indeed such a LP gap is not hard to
construct and we start by describing one such instance. The instance begins with clause x1, and
in the intermediate (k − 1) clauses, the i-th clause x1 ∧ · · · ∧ xi → xi+1 makes xi+1 true if all the
previous clauses are satisfied. Then the last clause xk generates a contradiction. Thus the optimal
integral solution is at most (1 − 1/k). On the other hand, one possible fractional solution starts
with x1 = (1− ε) for some ε > 0. Then for 1 6 i < k, by letting (1− xi+1) =

∑i
j=1(1− xj), all the

intermediate (k − 1) clauses are perfectly “satisfied” by the LP, while the gap (1 − xi+1) = 2i−1ε
increase exponentially. Thus by letting ε = 1/2k−2, we get xk = 0 and the LP solution is at least
(1− 1/2Ω(k)). The instance gives a (1− 2−Ω(k)) vs. (1− 1/k) LP integrality gap.

Now we convert this LP gap instance into an SDP gap instance in two steps. First, we reduce
the arity of the instance from k to 3. Then, we find a set of vectors for the LP solution to make it
an SDP solution.

For the first step, to get an instance of Max Horn-3SAT, we introduce yi which is intended to
be x1 ∧ · · · ∧ xi−1. For 1 6 i < k, we replace the intermediate clauses by xi ∧ yi → xi+1, and add
xi∧yi → yi+1 to meet the intended definition of yi. We call each of these two clauses as comprising
one step (the exact instance IHorn

k , which is slightly different for technical reasons mentioned below,
can be found in Section 4.1.1). It is easy to show that for this instance there is a solution of value
(1− 1/2Ω(k)) even for the lifted LP.

Finding vectors for the SDP turns out to be more challenging. Note that if we want to perfectly
satisfy all the intermediate clauses in SDP, we need to obey vxi · vyi 6 ‖vxi+1‖2 and vxi · vyi 6
‖vyi+1‖2 for 1 6 i < k. Thus to make the norms ‖vxi+1‖2 and ‖vyi+1‖2 decrease fast (since we
want ‖vxk‖2 = ‖vyk‖2 = 0), we need to make the inner product vxi · vyi decrease fast as well. But
technically it is hard to make both kinds of quantities decrease at a high rate for all intermediate
clauses. Our solution is to decrease the norms and inner products alternately. More specifically,
we divide the intermediate clauses into blocks, each of which contains two consecutive steps. In
the first step of each block, we need that the inner product is much smaller than the norms so that
we can decrease the norms quickly, but we preserve the value of inner product. Thus we cannot
do this step repeatedly, and we need the second step, where we decrease the inner product (while
preserving the norms) in preparation to start the first step of the next block.

1-in-k Hitting Set. We use a simple symmetric instance as our gap instance. Ideally, the instance
includes all subsets of the universe with size at most k and we put uniform weights on sets of
geometrically varying sizes (see Section 5.1 for our real gap instance which is slightly different).

6

We first show that every subset intersects at most a (weighted) fraction O(1/ log k) of the sets
exactly once. Then, to prove a much better SDP solution, in contrast to Max Horn-3SAT, the
main effort is in finding a good solution for lifted LP. Once we get a good solution for lifted LP,
because of symmetry, the norms for all variables are defined to be the same value, and the pairwise
inner products are also defined to be the same value. Then we only need to find vectors for a
highly symmetric inner-product matrix, a step which is much easier than the counterpart of Max
Horn-3SAT.

For the lifted LP, for each set in the instance, we place overwhelming weight on singleton
subsets (only one variable is selected to be true) in all local distributions. This guarantees a good
fractional solution. If we put all the weight on singletons though, the consistency check fails even
for single-variable marginal distributions, whereas we need to ensure consistency of all pairwise-
variable marginal distributions. Thus, for a feasible LP solution, we need to place some small
weight on other subsets in order to obtain consistent marginal distributions. Indeed, we manage to
generate a valid solution by giving an appropriate probability mass to the full set and all subsets
of half the size in each local distribution.

3.3 Overview of algorithmic results

Our algorithmic results for Max Horn-2SAT and Max 1-in-k-SAT (Theorems 2 and 4 respectively)
are obtained by rounding fractional solutions of appropriate linear programming (LP) relaxations.

The algorithm for Max Horn-2SAT is indeed a 2-approximation algorithm for Min Horn-2SAT
Deletion problem (refer to Section 4.2 for the definition of Min Horn-2SAT Deletion). We prove a
half-integrality property of the optimal solution to the natural LP relaxation of the problem, which
can be viewed as an generalization of half-integrality property of (the natural LP for) Vertex Cover.
We take the optimal solution of the natural LP relaxation, iteratively make every variable move
towards half-integral values (0, 1, and 1/2), while never increasing the value of the solution. This
yields an optimal half-integral solution which can then be trivially rounded to obtain an integral
solution that gives a factor 2 approximation.

For almost-satisfiable instances of Max 1-in-k-SAT, we prove that randomized rounding (accord-
ing to the fractional value of any optimal LP solution) gives a constant factor approximation. This
gives a robust version of the algorithm in [GT05] which achieved a factor 1/e-approximation for
(perfectly) satisfiable instances.

7

4 Approximability of Max Horn-3SAT

4.1 SDP gap and UG hardness for Max Horn-3SAT

4.1.1 Instance

We consider the following Max Horn-3SAT instance IHorn
k parameterized by k > 1.

Start point: x0, y0

Block i (0 6 i 6 k − 1) Step i.1 : x2i ∧ y2i → x2i+1, x2i ∧ y2i → y2i+1

Step i.2 : x2i+1 ∧ y2i+1 → x2i+2, x2i+1 ∧ y2i+1 → y2i+2

End point: x2k ∧ y2k → x2k+1, x2k ∧ y2k → y2k+1

x2k+1, y2k+1

It is easy to see this instance contains (4k + 6) clauses, and cannot be completely satisfied. Thus
we have:

Lemma 6. Every Boolean assignment satisfies at most a fraction 1− 1/(4k + 6) of the clauses of
IHorn
k .

4.1.2 Construction of a good SDP solution

We will work with the SDP in simplified form described at the end of Section 3.1. Recall that the
SDP requires a local distribution for each clause, and uses vectors to check the consistency on every
pair of variables that belong to the clause. To construct a good solution for the SDP, we want to
first find a good solution in the scalar part (i.e., local distributions), and then construct vectors
which meet the consistency requirement. But it is difficult to construct a lot of vectors which meet
all the requirements simultaneously. Thus, we break down the whole construction task into small
pieces, each of which is easy to deal with. As long as there are solutions to these small pieces, and
the solutions agree with each other on some interfaces, we can coalesce the small solutions together
and come up with a global solution. The following definition and claim formally help us bring down
the difficulty, and focus on one local block of variables at a time.

Definition 2 (partial solution). Let C′ ⊆ C be a subset of clauses. f = {πC = πC(f),vx =
vx(f), I = I(f) | ∀C ∈ C′, x ∈ C} is said to be a partial solution on C′, if all constraints of the
SDP restricted to the subset of variables defined in f are satisfied.

Claim 7. Let C1, C2 ⊆ C be two disjoint set of clauses. Given f and g are partial solution on C1, C2

respectively. If for all v1,v2 (not necessarily distinct) defined in both f and g, v1(f) · v2(f) =
v1(g) ·v2(g), then there exists a partial solution, namely h, for C1∪C2, such that ∀C1 ∈ C1, C2 ∈ C2,
πC1(h) = πC1(f), πC2(h) = πC2(g).

Proof. Let X be the set of variables x for which vx(f) and vx(g) are both defined. Denote Vf =
{vx(f) | x ∈ X} ∪ {I(f)} and Vg = {vx(g) | x ∈ X} ∪ {I(g)}. Since the dot products of every pair
of vectors in Vf exactly equals the dot product between the corresponding pair in Vg, there is a
rotation (orthogonal transformation) T such that I(f) = TI(g) and for all x ∈ X, vx(f) = Tvx(g).

8

Now define the partial solution g′ as πC(g′) = πC(g) for all C ∈ C2 and vx(g′) = Tvx(g),
I(g′) = TI(g) for all x ∈ C ∈ C2. Obviously f and g′ agree on all the scalar and vector variables
that are defined in both f and g′. Letting

vx(h) =
{

vx(f) x ∈ C ∈ C1

vx(g′) x ∈ C ∈ C2
, πC(h) =

{
πC(f) C ∈ C1

πC(g′) C ∈ C2
,

it is easy to see h is a partial solution on C1 ∪ C2.

By the above lemma, if we establish the following lemma which constructs a good partial
solution on each block (the proof of which is deferred to Section 4.1.3), it is then easy to get a good
global solution.

Lemma 8. For each Block i (0 6 i 6 k − 1), each 0 < c 6 0.2, let rc = 1.5(1 + c)/(1.5 + c), and
for each 0 < p 6 1

(1+c)rc
, there is a partial solution f which completely satisfies all the clauses in

Block i (by local distributions), and with following properties,

‖vx2i(f)‖2 = ‖vy2i(f)‖2 = 1− p
vx2i(f) · vy2i(f) = 1− (1 + c)p

‖vx2i+2(f)‖2 = ‖vy2i+2(f)‖2 = 1− rcp
vx2i+2(f) · vy2i+2(f) = 1− (1 + c)rcp.

Together with Claim 7, we immediately get the following corollary.

Corollary 9. For the union of Block 0 to Block k′ (0 6 k′ 6 k − 1), given parameters 0 < c 6 0.2
and 0 < p 6 1

(1+c)rk
′+1
c

, there is a partial solution g which completely satisfies all the clauses, and

with following properties,

‖vx0(g)‖2 = ‖vy0(g)‖2 = 1− p
vx0(g) · vy0(g) = 1− (1 + c)p

‖vx2k′+2
(g)‖2 = ‖vy2k′+2

(g)‖2 = 1− rk′+1
c p

vx2k′+2
(g) · vy2k′+2

(g) = 1− (1 + c)rk
′+1
c p.

Proof. Apply induction on k′. The basis case k′ = 0 is exactly Lemma 8. For k′ > 0, by induction
hypothesis there is a partial solution g′ satisfying all the clauses of the union of Blocks 0 to k′ − 1
with the same parameter c, p. By Lemma 8, there is a partial solution f satisfying all the clauses of
Block k′ with parameter c, rk

′
c p. Since g′ and f agree on pairwise inner-products over the definition

of {vx2k′ ,vy2k′}, by Claim 7, there is a partial solution g on the union of Blocks 0 to k′ completely
satisfying all the clauses.

With the above pieces in place, we now come to the final SDP solution.

Lemma 10. The optimal SDP solution for the instance IHorn
k has value at least 1− 1

(2k+3)1.05k
.

9

Proof. By Corollary 9, for any 0 < c 6 0.2, by setting p = 1
(1+c)rkc

. There is a partial solution g

completely satisfying all the clauses of all the blocks, with

‖vx0(g)‖2 = ‖vy0(g)‖2 = 1− 1
(1 + c)rkc

‖vx2k
(g)‖2 = ‖vy2k(g)‖2 = c/(1 + c)

vx2k
(g) · vy2k(g) = 0.

Based on g, we define a local distribution on two “Start point” clauses by making x0 (or y0) equal
1 with probability 1−p. At “End point”, we define the local distribution on clause x2k∧y2k → x2k+1

as

Prπ[x2k = 1 ∧ y2k = 0 ∧ x2k+1 = 0] = c/(1 + c)
Prπ[x2k = 0 ∧ y2k = 1 ∧ x2k+1 = 0] = c/(1 + c)
Prπ[x2k = 0 ∧ y2k = 0 ∧ x2k+1 = 0] = (1− c)/(1 + c) .

And a similar distribution for the clause x2k ∧ y2k → y2k+1 can be defined (by replacing x2k+1

by y2k+1 in the equations above). The distribution on clauses x2k+1 and y2k+1 never picks the
corresponding variable to be 1. By defining vx2k+1

and vy2k+1
to be zero vectors, we note that the

distributions are consistent with vectors. Thus the solution we construct is valid.

On the other hand, note that all the distributions locally satisfy the clauses, except for the
distributions at “Start point” satisfy the corresponding clause with probability 1 − 1

(1+c)rkc
, thus

the SDP solution is 1− 2
(4k+6)(1+c)rkc

= 1 > 1− 1
(2k+3)rkc

. By setting c = 0.2, we get rc > 1.05. Thus

the best SDP solution is better than 1− 1
(2k+3)1.05k

.

Combining Lemma 6 and Lemma 10, we get the following theorem.

Theorem 11. IHorn
k is a (1 − ε) vs. (1 − Ω(1/ log(1/ε))) gap instance of Max Horn-3SAT for the

canonical SDP relaxation.

Together with Theorem 5, Theorem 11 implies our main result, Theorem 1, on Max Horn-SAT.

4.1.3 Proof of the Key Lemma 8

For Block i, denote the clauses in Step i.1 by C1x and C1y, and the clauses in Step i.2 by C2x and
C2y. We first construct partial solutions on Step i.1 and Step i.2 separately, as follows.

Partial solution on Step i.1 We first define a local distribution on C1x as follows, and C1y in a
similar way (by replacing x2i+1 by y2i+1 in following equations).

PrπC1x
[x2i = 1 ∧ y2i = 1 ∧ x2i+1 = 1] = 1− (1 + c)p

PrπC1x
[x2i = 1 ∧ y2i = 0 ∧ x2i+1 = 0] = cp

PrπC1x
[x2i = 0 ∧ y2i = 1 ∧ x2i+1 = 0] = cp

PrπC1x
[x2i = 0 ∧ y2i = 0 ∧ x2i+1 = 1] = (1 + c− rc)p =

(1 + c)c
1.5 + c

· p

10

PrπC1x
[x2i = 0 ∧ y2i = 0 ∧ x2i+1 = 0] = (rc − 2c)p =

1.5− 1.5c− 2c2

1.5 + c
· p.

Recall rc = 1.5(1+c)/(1.5+c). Note that all the probabilities are defined to be non-negative values
by the range of c and p, and they sum up to 1.

We observe the following inner-product matrix A over I,vx2i ,vy2i ,vx2i+1 ,vy2i+1 is consistent
with the local distributions on C1x and C1y.

A =


1 1− p 1− p 1− rcp 1− rcp

1− p 1− p 1− (1 + c)p 1− (1 + c)p 1− (1 + c)p
1− p 1− (1 + c)p 1− p 1− (1 + c)p 1− (1 + c)p

1− rcp 1− (1 + c)p 1− (1 + c)p 1− rcp 1− (1 + c)p
1− rcp 1− (1 + c)p 1− (1 + c)p 1− (1 + c)p 1− rcp


By Claim 22 in Appendix A we know that A is positive semidefinite, and therefore there is a set of
vectors consistent with our local distributions, i.e., we get a partial solution on Step i.1.

Partial solution on Step i.2 We define the local distribution on C2x as follows. The distribution
C2y is defined in a similar way (by replacing x2i+2 with y2i+2 in the following equations). Let
q = rcp and ε = c/1.5.

PrπC2x
[x2i+1 = 1 ∧ y2i+1 = 1 ∧ x2i+2 = 1] = 1− (1 + ε)q

PrπC2x
[x2i+1 = 1 ∧ y2i+1 = 0 ∧ x2i+2 = 0] = εq

PrπC2x
[x2i+1 = 0 ∧ y2i+1 = 1 ∧ x2i+2 = 0] = εq

PrπC2x
[x2i+1 = 0 ∧ y2i+1 = 0 ∧ x2i+2 = 1] = εq

PrπC2x
[x2i+1 = 0 ∧ y2i+1 = 0 ∧ x2i+2 = 0] = (1− 2ε)q.

Note that all the probabilities are defined to be non-negative values by the range of c and p,
and they sum up to 1.

Then note that the following inner-product matrix B over I,vx2i+1 ,vy2i+1 ,vx2i+2 ,vy2i+2 is con-
sistent with the local distribution.

B =


1 1− q 1− q 1− q 1− q

1− q 1− q 1− (1 + ε)q 1− (1 + ε)q 1− (1 + ε)q
1− q 1− (1 + ε)q 1− q 1− (1 + ε)q 1− (1 + ε)q
1− q 1− (1 + ε)q 1− (1 + ε)q 1− q 1− (1 + 1.5ε)q
1− q 1− (1 + ε)q 1− (1 + ε)q 1− (1 + 1.5ε)p 1− q


Again by Claim 22 in Appendix A, B is positive semidefinite, and therefore there is a set of vectors
consistent with local distributions – we have constructed a partial solution on Step i.2.

Combining the two partial solutions. It is easy to check with our parameter setting, partial
solutions on Step i.1 and Step i.2 agree on pairwise inner-products between their shared vectors
I,vx2i+1 ,vy2i+1 . Thus, there is a partial solution on Block i, with

‖vx2i(f)‖2 = ‖vy2i(f)‖2 = 1− p
vx2i(f) · vy2i(f) = 1− (1 + c)p

‖vx2i+2(f)‖2 = ‖vy2i+2(f)‖2 = 1− q = 1− rcp
vx2i+2(f) · vy2i+2(f) = 1− (1 + 1.5ε)q = 1− (1 + c)rcp. �

11

4.2 Algorithm for Min Horn-2SAT Deletion and Max Horn-2SAT

In the Min Horn-2SAT Deletion problem, we are given a Horn-2SAT instance, and the goal is to find
a subset of clauses of minimum total weight whose deletion makes the instance satisfiable. A factor
3 approximation algorithm for Min Horn-2SAT Deletion is given in [KSTW00]. Here we improve
the approximation ratio to 2. By a simple reduction from vertex cover, this is optimal under the
UGC. Our motivation to study Min Horn-2SAT Deletion in the context of this paper is to pin down
the fraction of clauses one can satisfy in a (1− ε)-satisfiable instance of Horn-2SAT: we can satisfy
a fraction (1− 2ε) of clauses (even in the weighted case), and satisfying a (1− cε) fraction is hard
for c < 2 assuming that vertex cover does not admit a c-approximation for any constant c < 2.

In this section, we prove the following theorem by showing half-integrality of a natural LP
relaxation for the problem.

Theorem 12. There is a polynomial-time 2-approximation algorithm for Min Horn-2SAT Deletion
problem.

A direct corollary of Theorem 12 is the following result for approximating near-satisfiable in-
stances of Max Horn-2SAT.

Theorem 2 (restated). Given a (1 − ε)-satisfiable instance for Max Horn-2SAT, it is possible to
find a (1− 2ε)-satisfying assignment efficiently.

4.2.1 LP Formulation

We find it slightly more convenient to present the algorithm for dual Horn-2SAT where each clause
has at most one negated literal. (So the clauses are of the form x, x̄, x ∨ y, or x→ y, for variables
x, y.) Let w(D)

ij > 0 be the weight imposed on the disjunction constraint xi ∨ xj (for each pair of

i, j such that i < j), and w
(I)
ij > 0 be the weight imposed on the implication constraint xi → xj

(for each pair of i, j such that i 6= j). For each variable xi, let w(T)
i be the weight on xi being true

(i.e. xi = 1), and w
(F)
i be the weight on xi being false (i.e. xi = 0). Then we write the following

LP relaxation, where each real variable yi corresponds to the integer variable xi.

Minimize
∑
i∈V

w
(T)
i (1− yi) +

∑
i∈V

w
(F)
i yi +

∑
i<j

w
(D)
ij z

(D)
ij +

∑
i 6=j

w
(I)
ij z

(I)
ij

Subject to z
(D)
ij > 1− yi − yj ∀i < j

z
(I)
ij > yi − yj ∀i 6= j

z
(D)
ij > 0 ∀i < j

z
(I)
ij > 0 ∀i 6= j

yi ∈ [0, 1] ∀i ∈ V

Let OPT be the optimal value of the integral solution, and OPTLP be the optimal value of the
LP solution. We have OPTLP 6 OPT.

12

4.2.2 Half-integrality and rounding

Given a LP solution f = {z(D)
ij , z

(I)
ij , yi}, we can assume z(D)

ij = max{1 − yi − yj , 0} and z
(I)
ij =

max{yi − yj , 0} to minimize Val(f). Thus, we only need f = {yi} to characterize a solution, and
we have

Val(f) =
∑
i∈V

w
(T)
i (1− yi) +

∑
i∈V

w
(F)
i yi +

∑
i<j

w
(D)
ij max{1− yi − yj , 0}+

∑
i 6=j

w
(I)
ij max{yi − yj , 0}.

Lemma 13. There is a polynomial-time algorithm that, given a solution f = {yi} to the above LP,
converts f into another solution f∗ = {y∗i } such that each y∗i is half-integral, i.e. y∗i ∈ {0, 1, 1/2},
and Val(f∗) 6 Val(f).

Proof. We run Algorithm 1 whose input is the LP formulation and one of the solutions f = {yi},
and whose output is the desired f∗.

Algorithm 1 Round any LP solution f = {yi} to a half-integral solution f∗, with Val(f∗) 6 Val(f)
1: while ∃i ∈ V : yi 6∈ {0, 1, 1/2} do
2: choose k ∈ V , such that yk 6∈ {0, 1, 1/2} (arbitrarily)
3: if yk < 1/2 then
4: p← yk
5: else
6: p← 1− yk
7: end if
8: S ← {i : yi = p}, S′ ← {i : yi = 1− p}
9: a← max{yi : yi < p, 1− yi : yi > 1− p, 0}, b← min{yi : yi > p, 1− yi : yi < 1− p, 1/2}

10: f (a) ← {y(a)
i = a}i∈S ∪ {y(a)

i = 1− a}i∈S′ ∪ {y
(a)
i = yi}i∈V \(S∪S′)

11: f (b) ← {y(b)
i = b}i∈S ∪ {y(b)

i = 1− b}i∈S′ ∪ {y
(b)
i = yi}i∈V \(S∪S′)

12: if Val(f (a)) 6 Val(f (b)) then
13: f ← f (a)

14: else
15: f ← f (b)

16: end if
17: end while
18: return f (as f∗)

It’s easy to see that Algorithm 1 always maintains a valid solution f to the LP (i.e., all variables
yi’s are within the [0, 1] range). Then we only need to prove the following two things to show
the correctness of Algorithm 1, 1) the while loop terminates (in linear steps), 2) in each loop,
min{Val(f (a)),Val(f (b))} 6 Val(f), so that Val(f) never increases in the whole algorithm.

To prove the first point, we consider the set Wf = {0 < y < 1/2 : ∃i ∈ V, s.t. y = yi∨y = 1−yi}.
In each loop, the algorithm picks a p from Wf . At the end of the loop, we see that p is wiped from
Wf while no new elements are added. Thus, after linear steps of the loop, Wf becomes ∅ and the
loop terminates.

13

For the second point, we define f (t) = {y(t)
i = t}i∈S∪{y(t)

i = 1− t}i∈S′ ∪{y
(t)
i = yi}i∈V \(S∪S′) for

t ∈ [a, b] at Line 9 in the algorithm. Then if we can show Val(f (t)) is a linear function within t ∈ [a, b],
together with the fact p ∈ [a, b], we shall conclude that min{Val(f (a)),Val(f (b))} 6 Val(f (p)) =
Val(f). To prove the linearity of Val(f (t)), we only need to show that g1(t) = max{1− y(t)

i − y
(t)
j , 0}

and g2(t) = max{y(t)
i − y

(t)
j , 0} are linear with the respect to t ∈ [a, b], for any possible i, j. Thus

we discuss the following five cases.

• i, j ∈ V \ (S ∪ S′). In this case, g1 and g2 are constant functions.

• i ∈ V \ (S ∪ S′), j ∈ S ∪ S′. In this case, the only “non-linear point” is at t = 1 − yi for g1

and t = yi for g2. But these two points are away from [a, b].

• i ∈ S ∪ S′, j ∈ V \ (S ∪ S′). Similar argument works as the previous case.

• i ∈ S, j ∈ S′ (or i ∈ S′, j ∈ S). In this case, 1− y(t)
i − y

(t)
j = 0 always holds for t ∈ [a, b] and

therefore g1 is constant function. On the other hand, since y(t)
i 6 y

(t)
j (or y(t)

i > y
(t)
j) , we also

have g2(t) = 0 (or g2(t) = y
(t)
i − y

(t)
j = 1− 2t) being linear.

• i, j ∈ S (or i, j ∈ S′). In this case, y(t)
i = y

(t)
j always holds for t ∈ [a, b] and therefore g2 is

constant function. On the other hand, since y(t)
i + y

(t)
j 6 1 (or y(t)

i + y
(t)
j > 1), we also have

g1(t) = 1− y(t)
i − y

(t)
j = 1− 2t (or g1(t) = 0) being linear.

A direct corollary of Lemma 13 is the following.

Corollary 14. There is a polynomial-time algorithm to get a solution f such that Val(f) = OPTLP

and the variables in f are half-integral (i.e. being one of 0, 1, and 1/2).

Now we are ready for the proof of Theorem 12.

Proof of Theorem 12. Apply Corollary 14 to get an optimal LP solution f = {yi} which has half-
integral values. Then define fint = {xi} as follows. For each i ∈ V , let xi = 1 when yi > 1/2, and
xi = 0 when yi = 0. We observe that

• xi 6 2yi and 1− xi 6 1− yi for each i ∈ V .

• For each i < j, we have max{1− xi − xj , 0} 6 max{1− yi − yj , 0} since xi > yi and xj > yj .

• For each i 6= j, we see that when max{yi − yj , 0} = 0 ⇒ yi 6 yj , we always have xi 6 xj ⇒
max{xi− xj , 0} = 0. On the other hand, when max{yi− yj , 0} > 0⇒ max{yi− yj , 0} > 1/2,
we have max{xi − xj , 0} 6 1 6 2 max{yi − yj , 0}.

Altogether, we have

Val(fint) =
∑
i∈V

w
(T)
i (1− xi) +

∑
i∈V

w
(F)
i xi +

∑
i<j

w
(D)
ij max{1− xi − xj , 0}+

∑
i 6=j

w
(I)
ij max{xi − xj , 0}

14

6
∑
i∈V

w
(T)
i (1− yi) +

∑
i∈V

w
(F)
i 2yi +

∑
i<j

w
(D)
ij max{1− yi − yj , 0}+

∑
i 6=j

w
(I)
ij 2 max{yi − yj , 0}

6 2Val(f) = 2OPTLP 6 2OPT.

5 Inapproximability and approximation algorithm for Max 1-in-k-
HS

5.1 SDP gap and UG-hardness for Max 1-in-k-HS

In this section, we construct an SDP gap for Max 1-in-k-HS, and prove Theorem 3, which is restated
as follows.

Theorem 3 (restated). For some absolute constant C ′ > 0, for every α > 0, given a (1−1/k1−α)-
satisfiable instance of Max 1-in-k-HS, it is UG-hard to find a subset intersecting more than a fraction
C′

α log k of the sets exactly once.

We start by constructing the gap instance.

Instance. We define the (weighted) instance of Max 1-in-k-HS, denoted IEHS(m,n, ε), parameter
0 < ε < 1, m > 2 and n > εm · 22dm(1+ε)e as follows.

• The universe U = [n] = {1, 2, . . . , n}.

• Define the sets C by choosing t ∈ m+ 1,m+ 2, · · · , dm(1 + ε)e uniform randomly, and picking
a subset S ⊆ U with size 2t by random, then letting S ∈ C and the weight of S be the
corresponding probability.

Note that in such an instance, the size of Si is at most k = 2dm(1+ε)e.

5.1.1 Upper bound of optimal integral solution

In this section, we prove the following Lemma showing that the above instance does not have a
good exact hitting set.

Lemma 15. There is a constant C1 such that for all 0 < ε < 1, m > 2 and n > εm · 22dm(1+ε)e,
the optimal solution to IEHS(m,n, ε) has value at most C1/(ε log k).

We begin with the following two statements that will be useful in bounding the value of any
integral solution to IEHS(m,n, ε).

Lemma 16. Suppose the hitting set V ⊆ U is of size l. Then the probability that a size-z (2 6 z 6

l/2) set is hit exactly once by V , is at most 2z
n · l ·

(
1
e

)zl/4n
.

15

Proof.

PrS∈C [|S ∩ V | = 1
∣∣|S| = z] =

l
(
n−l
z−1

)(
n
z

)
= l · (n− l)!(n− z)!z!

(n− l − z + 1)!(z − 1)!n!

= zl · (n− l)!
(n− l − z + 1)!

· (n− z)!
n!

6 zl · (n− l)z−1

(n− z)z

=
z

n− z
· l ·
(

1− l − z
n− z

)z−1

6
z

n− z
· l ·
(1
e

)(z−1)(l−z)/(n−z)

6
z

n− z
· l ·
(1
e

)zl/4(n−z)
(2 6 z 6 l/2)

6
2z
n
· l ·
(1
e

)zl/4n
(z 6 l/2 6 n/2)

Claim 17. For all x > 0 and m ∈ N+, we have

m∑
i=1

2ixe−2ix 6 2/ ln 2.

Proof.

m∑
i=1

2ixe−2ix 6
+∞∑
i=−∞

2ixe−2ix

=
[log2 1/x]∑
i=−∞

2ixe−2ix +
+∞∑

i=[log2 1/x]+1

2ixe−2ix

6
∫ [log2 1/x]+1

−∞
2yxe−2yxdy +

∫ +∞

[log2 1/x]
2yxe−2yxdy (monotonicity)

6 2
∫ +∞

−∞
2yxe−2yxdy

=
2

ln 2
.

We can now prove Lemma 15.

16

Proof of Lemma 15. Set C1 = max{32/ ln 2, 12}. Given a solution V , let l = |V |. If l > 2·2dm(1+ε)e,
then l > 2|S|,∀S ∈ C. In this case, the probability that S ∈ C is hit exactly once, is

PrS∈C [|S ∩ V | = 1] =
dm(1+ε)e∑
t=m+1

PrS∈C [|S| = 2t] ·PrS∈C [|S ∩ V | = 1
∣∣|S| = 2t]

=
1
εm

dm(1+ε)e∑
t=m+1

PrS∈C [|S ∩ V | = 1
∣∣|S| = 2t]

6
1
εm

dm(1+ε)e∑
t=m+1

2 · 2t

n
· l ·
(1
e

)2tl/4n
(by Lemma 16)

6
1
εm
· 16

ln 2
(by Claim 17)

6 C1/(ε log k).

On the other hand, if l < 2 · 2dm(1+ε)e, then

PrS∈C [|S ∩ V | = 1] 6 PrS∈C [|S ∩ V | > 1]

6 PrS∈C [|S ∩ V | > 1
∣∣∣|S| = 2dm(1+ε)e]

= 1−
(

n− l
2dm(1+ε)e

)
/

(
n

2dm(1+ε)e

)
= 1− (n− l)!

(n− l − 2dm(1+ε)e)!
· (n− 2dm(1+ε)e)!

n!

6 1−
(n− l − 2dm(1+ε)e

n

)l
6 1−

(n− 3 · 2dm(1+ε)e

n

)2·2dm(1+ε)e

(l < 2 · 2dm(1+ε)e)

6
6 · 22dm(1+ε)e

n
(∀0 6 x 6 1, y > 0, (1− x)y > 1− xy)

6 6/εm 6 C1/(ε log k).

And this proves the lemma.

5.1.2 Construction of good SDP solution

We prove that the canonical SDP has a solution with value close to 1.

Lemma 18. For the Max 1-in-k-HS instance IEHS(m,n, ε), the optimal solution to the canonical
SDP has value at least 1− 4/2m > 1− 4/k1−ε.

To prove Lemma 18, recall the canonical SDP for Max 1-in-k-HS as follows.

17

Maximize ES∈C [Prσ∈πS [|σ−1(1)| = 1]]
Subject to vi · I = ‖vi‖2 ∀i, j ∈ U

‖I‖2 = 1 ∀i ∈ U
Prσ∈πS [σ(i) = 1] = ‖vi‖2 ∀S ∈ C, i ∈ S

Prσ∈πS [σ(i) = 1 ∧ σ(j) = 1] = vi · vj ∀S ∈ C, i 6= j ∈ S

Now, we exhibit an SDP solution for the instance IEHS(m,n, ε) that has value close to 1. We
first construct the scalars, and then the vectors.

Constructing the solution – scalars. Let M = 2m, p = 2/M, q = 1/M . p and q will be the
marginal probability for single element pairs. and For each S ∈ C, and each σ : S → {0, 1}, define
the local distribution πS as follows:

πS(σ) =



|S|
|S|−2 ·

(
|S|
|S|−1 −

3|S|−2
|S|−1 · p+ 2q

)
/
(|S|

1

)
|σ−1(1)| = 1

4
|S|−2 ·

(
(|S| − 1)(p− q)− (1− p)

)
/
(|S|
|S|/2

)
|σ−1(1)| = |S|

2

1−
(|S|

1

)
πS(σ)||σ|=1 −

(|S|
|S|/2

)
πS(σ)||σ−1(1)|=|S|/2

= 1
|S|−1 −

|S|
|S|−1 · p+ 2q |σ−1(1)| = |S|

0 otherwise

Given M < |S| for all S ∈ C, it is easy to check πS is always non-negative. And it can be checked
that

∑
σ⊆S πS(σ) = 1. Thus, πS is a valid probability distribution.

Then we calculate the following values which are related to the SDP.

• For all i ∈ S ∈ C,

Prσ∈πS [σ(i) = 1] = 1− |S| − 1
|S|

· |S|
|S| − 2

·
(|S|
|S| − 1

− 3|S| − 2
|S| − 1

· p+ 2q
)

−1
2
· 4
|S| − 2

·
(

(|S| − 1)(p− q)− (1− p)
)

= p.

• For all i 6= j ∈ S ∈ C,

Prσ∈πS [σ(i) = 1 ∧ σ(j) = 1] =
(1
|S| − 1

− |S|
|S| − 1

· p+ 2q
)

+
(

1− |S|/2− 1
2(|S| − 1)

)
· 4
|S| − 2

·
(

(|S| − 1)(p− q)− (1− p)
)

= q.

Constructing the solution – vectors. Now we need to show there exists a set of vectors passing
the consistency check on local distributions we defined above. In fact, we show there exists set of
vectors satisfying even stricter requirements, where the inner-product between every pair of vectors
is defined, as follows,

‖vi‖2 = p ∀i ∈ U

18

vi · vj = q ∀i 6= j ∈ U
vi · I = ‖vi‖2 ∀i ∈ U
‖I‖2 = 1

Thus we only need to show the corresponding inner-product matrix is positive semidefinite. The
matrix is in the form of

A =
[

1 pbT

pb (p− q)I + qJ

]
where b is n× 1 all-one vector, J is the n× n all-one matrix, and I is the identity matrix.

Given x = (x0, x1, · · · , xn) ∈ Rn,

xTAx = (x0, x1, · · · , xn)
[

1 pbT

pb (p− q)I + qJ

]
(x0, x1, · · · , xn)T

= x2
0 + 2px0(

n∑
i=1

xi) + q(
n∑
i=1

xi)2 + (p− q)
n∑
i=1

x2
i

Note that this quadratic form is always non-negative when p > q and 4p2 − 4q 6 0⇔ q > p2. Our
p = 2/M and q = 1/M satisfies these conditions. Therefore the inner-product matrix is positive
semidefinite and the vectors exist.

Now we can prove Lemma 18, which says the optimal SDP solution has value close to 1.

Proof of Lemma 18. The value of the solution we exhibited above is

ES∈C [Prσ∈πS [|σ−1(1)| = 1]] = ES∈C

[∑
σ:S→{0,1},|σ|−1(1)=1

πS(σ)
]

= ES∈C

[|S|
|S| − 2

·
(|S|
|S| − 1

− 3|S| − 2
|S| − 1

· p+ 2q
)]

> ES∈C

[|S|
|S| − 1

− 3|S| − 2
|S| − 1

· p+ 2q
]

= ES∈C [1− 3p+ 2q + (1− p)/(|S| − 1)]
> ES∈C [1− 3p+ 2q]
= 1− 3p+ 2q = 1− 4/M .

Together with Theorem 5, Lemmas 15 and 18 imply Theorem 3.

5.2 A robust algorithm for almost-satisfiable Max 1-in-k-SAT

In this section, we prove the following theorem.

19

Theorem 4 (restated). For every constant B > 1, the following holds. There is a polynomial
time algorithm that given a (1− 1

Bk)-satisfiable instance of Max 1-in-k-SAT, finds a truth-assignment

on variables satisfying exactly one term for a fraction λ of the clauses, where λ =
(

1−1/
√
B

e

)2
.

The algorithm is based on rounding an LP relaxation for the problem, and gives a robust version
of the algorithm in [GT05] which achieved a factor 1/e-approximation for (perfectly) satisfiable
instances.

Given a truth-assignment σ and a clause C, we denote σ ∩C by the set of terms in C satisfied
by σ. Our algorithm first solves the following LP relaxation of the problem.

Maximize EC∈C [Prσ∈πC [|σ ∩ C| = 1]]
Subject to Prσ∈πC [σ(i) = 1] = xi ∀C ∈ C, i ∈ C

Given a solution {πC} and {xi} to the LP, we generate an assignment τ by for each i ∈ U
letting τ(xi) = 1 with probability xi. Then we prove the following lemma which directly implies
Theorem 4.

Lemma 19. For every constant B > 1, when OPTLP > 1− 1
Bk , we have

Eτ [PrC∈C [|τ ∩ C| = 1]] >
(1− 1/

√
B

e

)2
.

Proof. Given EC∈C [Prσ∈πC [|σ ∩C| = 1]] > 1− 1
Bk , by an averaging argument, we know that for at

least (1− 1/
√
B) fraction of C ∈ C are “good”, i.e., for these C clauses, we have

Prσ∈πC [|σ ∩ C| = 1] > 1− 1√
Bk

.

For each good C ∈ C, and for each term t ∈ C, let p(t) = xi if t = xi, or p(t) = 1− xi if t = xi,
i.e. p(t) is the probability that t is satisfied by τ . Then we know that∑

t∈C
p(t) = Eσ∈πC [|σ ∩ C|] > Prσ∈πC [|σ ∩ C| = 1] > 1− 1√

Bk
.

On the other hand,∑
t∈C

p(t) = Eσ∈πC [|σ ∩ C|] 6 Prσ∈πC [|σ ∩ C| = 1] + (1−Prσ∈πC [|σ ∩ C| = 1])|C| 6 1 + 1/
√
B. (8)

We now lower bound the probability that τ satisfies C, using the Lemma 20 proved at the end
of the section. We discuss the following two cases to establish the lower bound.

Case 1. If all the terms in C depend on distinct variables, then

Prτ [|τ ∩ C| = 1] =
∑
t∈C

p(t)
∏

t′∈C,t6=t′
(1− p(t′)). (9)

20

For good C we know that
∑

t∈C p(t) ∈ [1− 1√
Bk
, 1 + 1/

√
B] ⊆ [1− 1/

√
B, 1 + 1/

√
B], By Lemma

20 given right after this proof, we know that (9) > (1− 1/
√
B)/e2.

Case 2. If some terms in C depend on the same variable, i.e. ∃i : xi, xi ∈ C, then by (8) we
know that

∑
t∈C\{xi,xi} 6 1/

√
B < 1. Thus terms in C \ {xi, xi} depend on distinct variables, and

also by Lemma 20, we know that

Prτ [|τ ∩ C| = 1] = 1 ·
∏

t∈C\{xi,xi}

(1− p(t)) > (1− 1/
√
B)/e2.

Combining the two cases above, we get

Eτ [PrC∈C [|τ ∩ C| = 1]] = EC∈C [Prτ [|τ ∩ C| = 1]]
> (1− 1/

√
B)EC∈C [Prτ [|τ ∩ C| = 1]|C is good]

>
(1− 1/

√
B

e

)2
.

It remains to prove the following inequality which was used in the above proof.

Lemma 20. Given x1, x2, · · · , xn ∈ [0, 1], and 1− ε 6
∑

i xi 6 1 + ε where ε < 1 then∑
i

xi
∏
j 6=i

(1− xj) >
1− ε
e2

.

Proof. We use the following claim to prove this lemma.

Claim 21. For n > 2, given a set of n numbers {xi} as described in the lemma, the objective
function

∑
i xi
∏
j 6=i(1− xj) is minimized when

• All the xi’s are the same, or

• ∃i : xi = 0 or ∃i : xi = 1.

Proof. Suppose the first condition doesn’t hold, we prove the second one holds. Without loss of
generality assume that x1 6= x2. Then rewrite the objective function as∑

i

xi
∏
j 6=i

(1− xj)

= (1− x1)(1− x2)
(∑
i>3

xi
∏

j 6=i,j>3

(1− xj)
)

+
(
x1(1− x2) + x2(1− x1)

)∏
j>3

(1− xj)

Let C1 =
∑

i>3 xi
∏
j 6=i,j>3(1− xj) and C2 =

∏
j>3(1− xj), we have∑

i

xi
∏
j 6=i

(1− xj) = C1 + (C2 − C1)(x1 + x2) + (C1 − 2C2)x1x2

21

Note that when fixing the sum x1 + x2, we can change individual values of x1 and x2 within [0, 1]
while still {xi} still being a valid solution. By the perturbing, only the term (C1− 2C2)x1x2 in the
objective function might have value changed. Since x1 6= x2, we know that C1−2C2 > 0 or making
x′1 = x′2 = (x1 + x2)/2 gets no larger objective function value. When C1 − 2C2 > 0, x1 and x2

should be “apart from” each other, thus one of x1 and x2 must touch their bound, i.e., 0 or 1.

Now we use this claim and induction on n to prove the lemma. The lemma trivially holds in
the base case when n = 1. When n = k > 1, supposing the lemma holds for all n < k, we discuss
the three cases proposed by Claim 21 (splitting the second case in the claim into two).

• When all xi’s are the same, we know that xi = S/n where S =
∑

i xi. Then∑
i

xi
∏
j 6=i

(1− xj) = S
(

1− S

n

)n−1
> Se−S >

1− ε
e2

• When ∃i : xi = 0, with out loss of generality, suppose x1 = 0. Then this reduces to the same
problem with (n−1) variables and the induction hypothesis gives us a (1−ε)/e2 lower bound.

• When ∃i : xi = 1, again with out loss of generality, suppose x1 = 1. Now the objective
function becomes

∏
i>2(1 − xi) while

∑
i>2 xi is at most ε. It is easy to see the product is

lower bounded by (1− ε). (All but one of xi are 0.)

6 Concluding remarks on finding almost-satisfying assignments
for CSPs

In the world of “CSP dichotomy” (see [HN08] for a recent survey), the tractability of LIN-mod-2, 2-
SAT, and Horn-SAT is explained by the existence of non-trivial polymorphisms which combine many
satisfying assignments to produce a new satisfying assignment. The Boolean functions which are
polymorphisms for LIN-mod-2, 2-SAT, and Horn-SAT are xor (of odd size), majority, and minimum
respectively. The existence of algorithms to find almost-satisfying assignments to 2-SAT and Horn-
SAT can be attributed to the “noise stability” of the majority and minimum functions. The xor
function of many variables, on the other hand, is highly sensitive to noise. This distinction seems to
underly the difficulty of solving near-satisfiable instances of LIN-mod-2 and H̊astad’s tight hardness
result for the problem.

For Boolean CSPs, we understand the complexity of finding almost-satisfying assignments for
all the cases where deciding satisfiability is tractable: it is possible in polynomial time for 2-SAT and
Horn-SAT, and NP-hard for LIN-mod-2. Further, under the UGC, the exact approximation threshold
as a function of the gap ε to perfect satisfiability is also pinned down for both 2-SAT and Horn-SAT.
What about CSPs over larger domains? For any CSP Π that can “express linear equations” (this
notion is formalized in the CSP dichotomy literature, but we can work with the intuitive meaning
for this discussion), H̊astad’s strong inapproximability result for near-satisfiable linear equations
over abelian groups [H̊as01] implies hardness of finding an almost satisfying assignment for (1− ε)-
satisfiable instances of Π. A recent breakthrough [BK09] established that every other tractable CSP

22

(i.e., a polynomial time decidable CSP that cannot express linear equations) must be of “bounded
width,” which means that a natural local propagation algorithm correctly decides satisfiability of
every instance of that CSP.

We end this paper with the appealing conjecture that every bounded width CSP admits a robust
satisfiability algorithm that can find a (1 − g(ε))-satisfying assignment given a (1 − ε)-satisfiable
instance for some function g() such that g(ε) → 0 as ε → 0. By the preceding discussion, this
would imply that bounded width characterizes the existence of robust satisfiability algorithms for
CSPs.

References

[BK09] Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width. In
Proceedings of the 50th IEEE Symposium on Foundations of Computer Science, pages
595–603, October 2009. 22

[CMM09] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algo-
rithms for maximum constraint satisfaction problems. ACM Transactions on Algo-
rithms, 5(3), 2009. 2

[CST01] Pierluigi Crescenzi, Riccardo Silvestri, and Luca Trevisan. On weighted vs un-
weighted versions of combinatorial optimization problems. Information and Computa-
tion, 167(1):10–26, 2001. 1

[DFHS08] Erik D. Demaine, Uriel Feige, MohammadTaghi Hajiaghayi, and Mohammad R.
Salavatipour. Combination can be hard: Approximability of the unique coverage prob-
lem. SIAM J. Comput., 38(4):1464–1483, 2008. 3, 4

[GT05] Venkatesan Guruswami and Luca Trevisan. The complexity of making unique choices:
Approximating 1-in- k sat. In Proceedings of the 8th International Workshop on Ap-
proximation Algorithms for Combinatorial Optimization Problems (APPROX), pages
99–110, 2005. 0, 2, 3, 4, 7, 20

[H̊as01] Johan H̊astad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–
859, 2001. 1, 22

[HN08] Pavol Hell and Jaroslav Nesetril. Colouring, constraint satisfaction, and complexity.
Computer Science Review, 2(3):143–163, 2008. 22

[JKK09] Peter Jonsson, Andrei A. Krokhin, and Fredrik Kuivinen. Hard constraint satisfaction
problems have hard gaps at location 1. Theor. Comput. Sci., 410(38-40):3856–3874,
2009. 1

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
34th Annual ACM Symposium on Theory of Computing, pages 767–775, 2002. 2

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inap-
proximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput.,
37(1):319–357, 2007. 2

23

[KSTW00] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The ap-
proximability of constraint satisfaction problems. SIAM J. Comput., 30(6):1863–1920,
2000. 0, 1, 2, 3, 12

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP?
In Proceedings of the 40th ACM Symposium on Theory of Computing, pages 245–254,
2008. 0, 4, 5

[Rao08] Anup Rao. Parallel repetition in projection games and a concentration bound. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 1–
10, 2008. 1

[Sch78] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th
ACM Symppsium on Theory of Computing, pages 216–226, 1978. 1

[Zwi98] Uri Zwick. Finding almost-satisfying assignments. In Proceedings of the 30th Annual
ACM Symposium on the Theory of Computing, pages 551–560, 1998. 0, 1, 2, 6

A Two positive semidefinite matrices

We now establish the positive semidefiniteness of the matrices encountered in Section 4.1.3.

Claim 22. Given 0 < c 6 0.2, 0 < p 6 1
1+crc, q = rcp, ε = c/1.5, the following two matrices are

positive semidefinite.

A =


1 1− p 1− p 1− rcp 1− rcp

1− p 1− p 1− (1 + c)p 1− (1 + c)p 1− (1 + c)p
1− p 1− (1 + c)p 1− p 1− (1 + c)p 1− (1 + c)p

1− rcp 1− (1 + c)p 1− (1 + c)p 1− rcp 1− (1 + c)p
1− rcp 1− (1 + c)p 1− (1 + c)p 1− (1 + c)p 1− rcp

 ,

B =


1 1− q 1− q 1− q 1− q

1− q 1− q 1− (1 + ε)q 1− (1 + ε)q 1− (1 + ε)q
1− q 1− (1 + ε)q 1− q 1− (1 + ε)q 1− (1 + ε)q
1− q 1− (1 + ε)q 1− (1 + ε)q 1− q 1− (1 + 1.5ε)q
1− q 1− (1 + ε)q 1− (1 + ε)q 1− (1 + 1.5ε)p 1− q

 .

Proof. Let J be the all 1 matrix, E1 be the matrix with 1 in entry (1, 1) as the only one non-zero
entry. We also define Ei,j , Fi,j and Gi,j as matrices with only four non-zero entries located in the
intersections of Column i, j and Row i, j. The sub-matrices of Ei,j , Fi,j and Gi,j on Column i, j
and Row i, j are defined as

(for Ei,j)
[

1 1
1 1

]
, (for Fi,j)

[
2 1
1 0.5

]
and (for Gi,j)

[
1 −1
−1 1

]
.

Clearly, all of J , E1, Ei,j , Fi,j and Gi,j are positive semidefinite matrices.

Then we can write A as

A = (1− (1 + c)p)J + cp(E1,2 + E1,3) + (1 + c− rc)p(E1,4 + E1,5) + (2rc − 1− 3c)pE1

24

= (1− (1 + c)p)J + cp(E1,2 + E1,3) +
(1 + c)c
1.5 + c

· p(E1,4 + E1,5) +
1.5− 2.5c− 3c2

1.5 + c
· pE1,

Note that all the coefficient before matrices are non-negative within the range of c. Since A can be
written as the sum of several positive semidefinite matrices, A is positive semidefinite.

For matrix B, note that

B = (1− (1 + ε)q)J + εq(E1,2 + E1,3 + F1,4 + F1,5) + 0.5εqG4,5 + (1− 5ε)E1,

Clearly, as long as 5ε = 5c/1.5 < 1, B can be expressed as sum of positive semidefinite matrices,
and hence B is positive semidefinite.

25

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

