
A New Approach to Affine Extractors and Dispersers

Xin Li ∗

University of Texas at Austin
lixints@cs.utexas.edu

Abstract

We study the problem of constructing affine extractors over GF(2). Previously the only
known construction that can handle sources with arbitrarily linear entropy is due to Bourgain
(and a slight modification by Yehudayoff), which relies heavily on the technique of Van der
Corput differencing and a careful choice of a polynomial.

In this paper we give a new and arguably simpler construction of affine extractors for linear
entropy sources that outputs a constant fraction of the entropy with exponentially small error.
This matches the previous best result of Bourgain. The extractor can be pushed to handle affine
sources with entropy n/

√
log n log n. This slightly improves Bourgain’s result and matches the

recent result of Yehudayoff. We also give a zero-error disperser for affine sources with entropy
n/
√

log n that outputs nΩ(1) bits. This improves previous constructions of affine dispersers that
output more than 1 bit.

In contrast to Bourgain’s construction, our construction mainly uses extractor machinery
and basic properties of polynomials.

∗Supported in part by NSF Grant CCF-0634811 and THECB ARP Grant 003658-0113-2007. Part of this work
was done while the author was doing an internship at Microsoft Research New England.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 64 (2010)

1 Introduction

Randomness is a very useful resource in computer science. It has been successfully used in many
areas such as algorithm design, distributed computing and cryptography. These uses of randomness
generally either lead to simpler and more efficient solutions than can be done deterministically, or
give solutions where deterministic ones are simply impossible. However, most of these applications
typically require the random bits to be uniformly distributed, while it is unclear how to obtain
such high quality random bits in the real world. The only thing we can say for sure is that there
are phenomena in the natural world that exhibit some kind of randomness, but the probability
distribution could vary in arbitrary ways.

The broad area of randomness extraction deals with the problem of extracting nearly uniform
random bits from some probability distribution. A probability distribution with a certain amount
of entropy is called a weak random source. The idea is that if we have an algorithm such that given
any weak random source as the input, the output of the algorithm is statistically close to uniform,
then we can use any weak random source in any of the applications that typically require uniform
random bits. Such an algorithm is called a randomness extractor, and the problem of constructing
explicit randomness extractors has been studied for many years. We refer the reader to [FS02] for
a survey on this subject.

Unfortunately, it is not hard to show that if we don’t put any restrictions on the weak random
source (except the entropy requirement), then it is impossible to construct a deterministic extractor
even for weak sources on n bits with entropy n−1. Given this negative result, one natural direction
is to try to see if we can construct deterministic extractors for special classes of weak sources. Again,
it is not hard to show that for any class of weak sources on n bits s.t. the total number of sources is
bounded by 2poly(n), there exists a deterministic extractor for this class of sources. Moreover, this
extractor can even be computed by a polynomial-sized circuit. The hard part is to give a uniform
algorithm that is an extractor for the class of sources.

Over the past years several natural classes of sources have been studied. These include for exam-
ple samplable sources [TV00], bit-fixing sources [KZ07, GRS04] and small space sources [KRVZ06].
In this paper, we study the class of affine sources. Roughly speaking, an affine source with entropy
k is a distribution which is uniform over some k-dimensional affine subspace of a vector space Fn.

Definition 1.1. (affine source) Let Fq be the finite field with q elements. Denote by Fnq the n-
dimensional vector space over Fq. A distribution X over Fnq is an (n, k)q affine source if there
exist linearly independent vectors a1, · · · , ak ∈ Fnq and another vector b ∈ Fnq s.t. X is sampled by
choosing x1, · · · , xk ∈ F uniformly and independently and computing

X =
k∑
i=1

xiai + b.

An affine extractor is a deterministic function such that given any affine source as the input,
the output of the function is statistically close to the uniform distribution.

Definition 1.2. (affine extractor) A function AExt : Fnq → Fmq is a deterministic (k, ε)-affine
extractor if for every (n, k)q affine source X,

|AExt(X)− Um| ≤ ε.
Here Um is the uniform distribution over Fmq .

1

In this paper we focus on the case where q = 2. Using the probabilistic method, it is not hard
to show that there exists a deterministic affine extractor, as long as k > 2 log n and m < k−O(1).
The problem is to given an explicit construction of such a function.

A weaker version of the extractor, called an affine disperser, only requires the output to have a
large support size.

Definition 1.3. (affine disperser) A function ADisp : Fnq → Fmq is a deterministic (k, ε)-affine
disperser if for every (n, k)q affine source X,

|Supp(ADisp(X))| ≥ (1− ε)qm.

The function is called a zero-error disperser if ε = 0.

In this paper we focus on the case of zero-error affine dispersers.
The study of affine extractors and dispersers started with the work of Gabizon and Raz [GR05],

where they constructed explicit extractors for affine sources even with entropy 1. However, their
constructions require the field size to be much larger than n, i.e., q > nΩ(1). As the field size
gets smaller, the problem of constructing explicit affine extractors gets harder. Recently DeVos and
Gabizon [DG10] constructed explicit extractors for (n, k)q affine sources when q = Ω((n/k)2) and
the characteristic of the field Fq is Ω(n/k) .

In the hardest case where q = 2 and the field is F = GF(2), it is well known how to construct
extractors for affine sources with entropy rate greater than 1/2. However the problem becomes much
harder as the entropy rate drops to 1/2 and below 1/2. The best construction of affine extractors in
this case is due to Bourgain [Bou07], who gave an extractor for affine sources with arbitrarily linear
entropy that can output a constant fraction of the entropy with exponentially small error. Based
on Bourgain’s techniques, recently Yehudayoff [Yeh10] gave another construction in the same spirit
that is slightly simpler to analyze. The construction of [Yeh10] also slightly improves Bourgain’s
result. Rao [Rao09] constructed extractors for affine sources with entropy as small as polylog(n),
as long as the subspace of X has a basis of low-weight vectors.

The construction of [Bou07], and the slight modification of [Yeh10], are thus the only known
constructions for general affine sources over GF(2) with arbitrarily linear entropy. However, both
of these constructions rely heavily on the technique of Van der Corput differencing. Also, both
of these constructions need to choose a polynomial very carefully, so that eventually the Van der
Corput differencing would result in an estimate of exponential sums in finite fields. The polynomial
chosen thus determines the performance of the extractor. From our point of view the choice of the
polynomial is somewhat subtle and a bit unnatural. Thus one may ask the natural question of
whether there exist other constructions of affine extractors for arbitrarily linear entropy sources.

In this paper we give a new construction of affine extractors that matches the results of [Bou07]
and [Yeh10]. Our construction mainly uses tools from previous constructions of extractors and
produces the desired polynomial in a very natural way. This gives new insights into the nature
of affine extractors. We also believe that having two different constructions with the best known
parameters more than double the chances of achieving even better constructions.

In the case of constructing dispersers for affine sources over GF(2), Barak et al. [BKS+05] gave
an affine disperser for sources with arbitrarily linear entropy that outputs a constant number of bits.
Ben-Sasson and Kopparty [BSK09] constructed dispersers for affine sources with entropy Ω(n4/5).
However, their construction only outputs 1 bit. In this paper, we construct dispersers for slightly
sub-linear entropy affine sources that output nΩ(1) bits.

2

1.1 Our Results

Our first two results give affine extractors that match the constructions of Bourgain [Bou07] and
Yehudayoff [Yeh10]. Specifically, we have

Theorem 1.4. For every δ > 0 there exists an efficient family of functions AExt : {0, 1}n → {0, 1}m
such that m = Ω(n) and for every affine source X with entropy δn, |AExt(X)− Um| = 2−Ω(n).

Theorem 1.5. There exists a constant c > 1 and an efficient family of functions AExt : {0, 1}n →
{0, 1}m such that m = nΩ(1) and for every affine source X with entropy cn/

√
log logn, |AExt(X)−

Um| = 2−n
Ω(1)

.

Our third result gives a zero error affine disperser. Note that an affine extractor is also an
affine disperser. Our construction of affine dispersers improves the results of [BKS+05], [Bou07]
and [Yeh10]. Although the entropy that our affine disperser can handle is not as small as that
of [BSK09], our construction has the advantage of outputting nΩ(1) bits, while in [BSK09] the
construction only outputs 1 bit.

Theorem 1.6. There exists a constant c > 1 and an efficient family of functions ADisp : {0, 1}n →
{0, 1}m such that m = nΩ(1) and for every affine source X with entropy cn/

√
log n, |Supp(ADisp(X))| =

2m.

1.2 Overview of Our Constructions and the Analysis

In some sense, our construction is similar in the spirit to the construction of 2-source extractors
by Kalai et al. [KLR09]. There the authors constructed an extractor for two independent general
weak random sources with linear entropy, based on a computational assumption. The basic idea
is that, when a weak random source with linear entropy is divided into some constant number of
blocks, it becomes (up to a convex combination and a small error) a somewhere block source. If we
know the location of the first good block (a block that contains high entropy but not all the entropy
of the source), then it is fairly easy to extract random bits since we already have extractors for a
weak source and an independent block source. The problem is that we don’t know where the good
block is, thus we have to try all the possibilities and we get a constant number of outputs such
that one of them is close to uniform. We could now take the xor of these outputs but there is no
guarantee that the result is close to uniform since the outputs can be correlated. The authors then
modified this procedure by using computational assumptions to make the outputs “independent”
of each other in some sense, and thus the xor of the outputs is close to uniform.

In this paper, we would like to do something similar. It is still true that when we divide an affine
source with linear entropy into some constant number of blocks, it becomes an affine somewhere
block source. However, unlike in [KLR09], we now have two problems. First, we have only one
affine source. Second, we do not rely on any computational assumptions. Thus we need some new
techniques to deal with these problems.

1.2.1 Extractors for one affine block source

Our starting point is the nice structure that an affine source exhibits under a linear function.
Roughly speaking, if X is an affine source and L is a linear function, then there exist two indepen-
dent affine sources A and B such that X = A+B and ∀b ∈ Supp(B), L(b) = 0 (see Lemma 2.10).

3

To construct an extractor for an affine block source, we use special kinds of two-source extractors
and seeded extractors: strong linear two-source (or seeded) extractors. A two-source (or seeded)
extractor is strong if for most choices of one source (or the seed), the output is close to uniform.
It is linear if for any fixing of one source (or the seed), the output is a linear function of the other
source. There are known strong linear seeded and two-source extractors. For example, Trevisan’s
extractor [Tre01] is a strong linear seeded extractor, while the inner product function is a strong
linear two-source extractor when the sum of the entropy rates of the two sources is greater than 1.

Given these extractors, our extractor for an affine block source is simple. Assume (X1, X2) is
an affine block source with each block having entropy rate δ. We first use the condenser based on
sum-product theorems to convert X1 into a somewhere rate-(1−δ/2) source, which is a matrix that
has a constant number of rows such that one of the rows has entropy rate 1− δ/2. Next we apply
the inner product function to each row and X2. Although X1 and X2 might be correlated, note that
X1 is a linear function of the source (X1, X2). Thus the structure of affine sources (Lemma 2.10)
and the properties of strong linear two-source extractors guarantee that the output is close to a
convex combination of affine somewhere random sources.

Note the affine somewhere random source has very few rows (a constant number), thus we can
now use Rao’s extractor for such sources [Rao09]. Rao’s extractor uses the strong linear seeded
extractor, and reduces the number of rows in the affine somewhere random source by a half each
time, while keeping it to be a convex combination of affine somewhere random sources. Thus by
repeating a constant number of times we get an output R that is close to uniform.

In the real construction, we use the output R as a seed and apply the strong linear seeded
extractor again to the source to get another output U that is close to uniform. The purpose of
doing this is to make sure that the output is a linear function of the source (when conditioned on
the fixings of some random variables), thus we could use the structure result in Lemma 2.10.

Again, the problem is that we don’t know where the good block is. Thus we have to try all the
possibilities and get a constant number of outputs Ui such that one of them is close to uniform.

Remark 1.7. In this construction, the extractor for an affine somewhere random source in [Rao09]
needs to use an extractor for affine sources with entropy rate 1/2 as a black box. In this paper
we use the simple constructions in [Bou07]. There are two such constructions in [Bou07]. Roughly
speaking, if we divide X into 3 equal blocks X1, X2, X3 or 2 equal blocks X1, X2, and take the
first Ω(n) bits of X1X2X3 or (X1X2)3, then the output is exponentially close to uniform. Both
constructions work for affine sources with entropy rate slightly below 1/2.

This is the only place that our construction may rely on Van der Corput differencing and the
estimate of exponential sums in finite fields. Moreover, we only rely on them in a black box manner.
We note that there are other constructions of affine extractors that achieve entropy rate below 1/2.
For example, the authors of [BSK09] showed that Tr(x7) is an affine extractor for entropy rate
roughly 2/5. However, their construction seems to output just one bit and thus does not meet
our needs. On the other hand, since our construction uses such an extractor as a black box, any
construction of affine extractors for entropy rate 1/2 in the future can be used in our construction
to give new affine extractors for small entropy rate.

1.2.2 Obtain one output

Similar to the construction in [KLR09], we need to find a way to make the outputs somewhat
“independent” of each other, so that we can take the xor of them and get a string that is close to

4

uniform. To do this, we are going to use properties of polynomials over GF(2).
First of all, in the analysis we can fix the first good block Xg (though we don’t know which

block it is) and fix all random variables produced before this block. By restricting the size of the
random variables produced (so that they don’t steal much entropy), it is not hard to show that
conditioned on all these fixings, with very high probability Ug is still close to uniform (in fact, in
this case we can show that Ug is actually perfectly uniform). Thus in particular this means that
conditioned on (U1, · · · , Ug−1), Ug is still close to uniform. The problem is that Ug+1, · · · , Ut (t is
the number of blocks) could be correlated with Ug. Thus there’s no guarantee that the xor of these
random variables is close to uniform.

Our key observation is that, when we fix all the random variables produced before Xg and fix
(Xg, Rg), Ug is a linear function L of the source X. Lemma 2.10 thus tells us that there exists an
affine function Lg and an affine source Bg independent of Ug such that X = Lg(Ug)+Bg (intuitively,
Bg is the affine source whose support is Ker(L) ∩ Supp(X), and Lg is the inverse function of L).
Therefore, now conditioned on any fixing of Bg = b the source X is an affine function (degree 1
polynomial) of Ug!

Since the subsequent computations are all functions of X, the random variables Ug+1, · · · , Ut are
all functions of Ug. We note that any boolean function on {0, 1}n can be expressed as a polynomial
over GF(2), though the degree of the polynomial can be very high. On the other hand, if we can
ensure that each bit of Ug+1, · · · , Ut is a low degree (say degree d) polynomial of the bits of Ug, then
there is something natural to do–instead of just outputting Ui, we output a bit Zi, which is degree
di polynomial of the bits of Ui. Now Zg+1, · · · , Zt are polynomials of degree d · dg+1, · · · , d · dt of
the bits of Ug. As long as dg > max{d · dg+1, · · · , d · dt}, the xor of the Zi’s cannot be a constant.
Thus we get one bit that can take both values of {0, 1}. In other words, we get a one-bit disperser!
In fact, in the construction we are going to choose di > di+1 for all i. Thus as long as each bit of
Ug+1, · · · , Ut is a degree d polynomial of the bits of Ug, it suffices to have dg > d · dg+1. Since we
don’t know which block is the first good block, we take di > d · di+1 for all i.

In the construction for linear entropy affine sources, the degree d is a constant. Thus we can
take all the di’s to be constants. The polynomial Zi we take is simple too: just take di bits of
Ui (say the first di bits) and compute the product. We’ll show that each Ui has Ω(n) bits, thus
we can take Ω(n) different blocks of di bits. Therefore instead of just outputting one bit, we can
output Ω(n) bits. The only thing left now is to make sure each bit of Ug+1, · · · , Ut is a low degree
polynomial of the bits of Ug.

1.2.3 Extractors that are low-degree polynomials

Let us examine how Ui is computed. First we convert a block Xi of X into a somewhere rate-
(1 − δ/2) source Yi, using the condenser based on sum-product theorems. In this step we need to
apply the condenser a constant number of times, while each time the output is a degree 2 polynomial
of the inputs. Next we apply the inner product function to each row of Yi and X to obtain an affine
somewhere random source SRi. Again the output is a degree 2 polynomial of the inputs. We then
use the extractor for such a source from [Rao09] to get a random seed Ri. Finally we use Ri and
apply a strong linear seeded extractor to X to obtain Ui. In these two steps, the affine extractor
for entropy rate 1/2 used is a constant degree polynomial, but it may not be the case for the strong
linear seeded extractor.

We note that in the above discussion some of the polynomials are over a finite field Fq. However,
in this paper all the finite fields Fq we use have size q = 2s for some integer s. Thus by mapping a

5

string in {0, 1}s to an element in Fq using the standard binary expression, we see that whenever a
function is a degree d polynomial over Fq, each bit of the output is also a degree d polynomial (over
GF(2)) of the input bits. Therefore all we need now is to make sure in the strong linear seeded
extractor, each bit of the output is a constant degree polynomial of the input bits. Trevisan’s
extractor is a strong linear seeded extractor, however each bit of the output is a degree Ω(log n)
polynomial of the bits of the inputs. Thus it is not suitable for our application. In this paper we
construct a new strong linear seeded extractor, with the property that the output is a constant
degree polynomial of the inputs.

The starting point is the well-known leftover hash lemma [ILL89], which roughly says that if R
is uniformly distributed over a finite field F and X is a weak source over F, then the last several
bits of R ·X (the operation is in F) is a strong extractor. Note this is also a linear seeded extractor
and the output is a degree 2-polynomial of the inputs. The only bad thing about this extractor is
that it requires the seed to have as many bits as the source, which we cannot afford. Nevertheless,
we use this extractor as an ingredient in our construction.

Our actual construction of the strong linear seeded extractor consists of three steps. First, we
take a short seed and divide the source into many blocks with each block having the same number
of bits as the seed. We apply the extractor from the leftover hash lemma to the seed and every
block of the source, and concatenate the outputs. Thus we get a somewhere random source. Next,
we take another short seed and apply the strong linear merger from [LRVW03] to the somewhere
random source. We then get a short source with linear entropy. Finally, we take a short seed and
apply the extractor from the leftover hash lemma to the short source, and we obtain bits that are
close to uniform. It is easy to check that the extractor is a linear seeded extractor since in all three
steps, conditioned on any fixing of the seed the output is a linear function of the source. It is also
strong because in each step the extractor or merger is strong. It can be easily checked that the
output is a degree 4 polynomial of the inputs.

Once we use this extractor, it is fairly straight forward to check that each bit of Ui is a constant
degree polynomial of the bits of X, and thus the bits of Ug.

Remark 1.8. Actually, even if we use Trevisan’s extractor as the strong linear seeded extractor
in our construction, we still get an affine disperser for linear entropy sources. To see this, note
that in Trevisan’s extractor, each bit of the output is a degree O(log n) polynomial of the bits of
the inputs. In the extractor for an affine somewhere random source, we need to repeat Trevisan’s
extractor for a constant number of times. Thus each bit of Ui is a degree polylog(n) polynomial of
the bits of X, i.e., d = polylog(n). Therefore we can still take di > d ·di+1 for all i, but we can only
output n/polylog(n) bits. However, to get an affine extractor we cannot afford to use polynomials
of degree polylog(n). The reason is explained in the following discussions.

1.2.4 Affine Extractors

Above we discussed the techniques in our construction of affine dispersers. Next we discuss how to
get an affine extractor. Our affine extractor is a modification of our construction of affine dispersers.

Recall that in the above we take Zg to be a degree dg > d · dg+1 polynomial of the bits of
Ug (the product of the first dg bits) and we argue that Zg xored with Zg+1, · · · , Zt cannot be a
constant. The key observation here is that this is not only true for Zg+1, · · · , Zt, but also true for
any polynomial of degree at most dg − 1. In other words, let d′ = dg − 1 and let Pd′ stand for the
class of all polynomials of degree at most d′ of the bits of Ug, then the correlation between Zg and

6

Pd′ is at most 1− 1/2d
′
. Therefore if we take several independent blocks of Ug, each having dg bits,

and take the xor of the products of the bits in each block, the correlation with Pd′ will decrease
exponentially by the xor lemma from [VW08, BKS+09]. Since Ug has Ω(n) bits we can take Ω(n)
blocks and the correlation will decrease to 2−Ω(n). Thus we get an extractor that outputs one bit
with exponentially small error.

To output more bits, we divide the bits of Ug into Ω(n) blocks, each having dg bits. We next
take the generating matrix of a binary linear asymptotically good code, with the codeword length
equaling the number of blocks. For each row of the generating matrix we associate one bit. The
bit is computed by taking the xor of the products of the bits in the blocks that are indexed by the
1’s in this row. By the properties of the asymptotically good linear code, the xor of any non-empty
subset of these bits, will be the xor of the products of the bits from Ω(n) blocks. Thus it will be
2−Ω(n)-close to uniform. In other words, these bits form a 2−Ω(n)-biased space. Therefore we can
take Ω(n) bits that are 2−Ω(n)-close to uniform.

1.2.5 Constructions for Sub-Linear Entropy

Our constructions of affine extractors and dispersers can be easily extended to handle sources with
slightly sub-linear entropy. The main point is that in the constructions for sources with linear
entropy, the polynomials we use have constant degrees, while each Ui has Ω(n) bits. Therefore we
can deal with sub-linear entropy sources by using polynomials of higher degrees.

More specifically, for an affine source with entropy rate δ, we need to divide the source into
O(1/δ) blocks to ensure that it is a somewhere block source. We’ll show that each bit of Ui is roughly
a degree 2O(1/δ) polynomial of the bits of X. Thus if we choose di > d · di+1 with d = 2O(1/δ) for all
i = 1, · · · , O(1/δ), we get that the maximum degree of the polynomials is roughly 2O(1/δ2). Note
that we choose the polynomial Zi of Ui by taking the product of di different bits. Thus we need
to make sure that Ui has more than di bits. For the case of dispersers, we can take δ as small
as Ω(1/

√
log n), which gives a maximum degree of nΩ(1) and outputs nΩ(1) bits. For the case of

extractors, we can only choose the degree as large as log n since this is the largest degree for which
the xor lemma of [VW08, BKS+09] gives a non-trivial correlation bound. Therefore in this case we
can take δ as small as Ω(1/

√
log log n).

Remark 1.9. In our construction of a strong linear seeded extractor, we use the linear merger from
[LRVW03]. We can also use the curve merger from [DW08, DKSS09]. The curve merger is also a
linear function for any fixing of the seed, but each bit of the output is a degree r + 1 polynomial
of the input bits, where r is the number of rows in the somewhere random source. On the other
hand, the curve merger has shorter seed length.

If we use the curve merger, then for linear entropy affine sources it gives essentially the same
result, since the somewhere random sources always have a constant number of rows. For sub-linear
entropy sources the entropy it can handle is slightly worse: it gives affine extractors for entropy
roughly n/ 3

√
log log n and affine dispersers for entropy roughly n/ 3

√
log n. In fact, we can use other

mergers too. For example, we can first divide the rows of the somewhere random source into several
blocks, and apply the curve merger to each block. We can then apply the curve merger or the linear
merger to the outputs of the blocks. We can even repeat this procedure several times. This will
give us a merger that has degree and seed length between the linear merger and the curve merger.
Therefore, our construction actually produces a class of polynomials that are affine extractors for
arbitrarily linear (and slightly sub-linear) entropy sources.

7

1.3 Conclusions and Open Problems

In this paper we give new constructions of affine extractors and dispersers over GF(2) that match
(and slightly improve) previous best constructions that output more than 1 bit. There are several
natural open problems left.

The first and most obvious open problem is to construct affine extractors and dispersers for
sources with smaller entropy. We note that the limit of our affine extractors is due to the fact that
the xor lemma of polynomials in [VW08, BKS+09] can only handle polynomials of degree smaller
than log n. Thus an improvement of the xor lemma would improve our extractors too. For the
disperser case we don’t need the xor lemma, and we only need a function Zi of Ui that doesn’t have
correlation 1 with the xor of Zi+1, · · · , Zt. This gives some hope of further improvements. It is also
worthwhile to see if we can combine the techniques in this paper with the techniques of [Bou07],
[Yeh10] and [BSK09] to give better constructions of affine extractors and dispersers.

Second, it is interesting to compare the techniques in this paper to the techniques of the 2-source
extractor construction in [KLR09]. Both constructions first obtain a constant number of outputs
such that one of them is close to uniform, then find the right tools to remove the correlations
between these outputs, so that the xor of the outputs is close to uniform. In [KLR09], the authors
used one way permutations for weak random sources and reconstructive extractors. In this paper,
because of the special structure of affine sources, we use strong linear seeded extractors and xor
lemmas of polynomials. The results suggest that we may be able to apply these techniques to other
classes of sources too.

1.4 Organization of this Paper

The rest of the paper is organized as follows. In Section 2 we review some basic definitions and the
relevant background. In Section 3 we describe our construction of a constant degree strong linear
seeded extractor. Section 4 describes the extractor for affine somewhere random sources, using as
an ingredient our strong linear seeded extractor. In Section 5 we give our main constructions of an
affine disperser and an affine extractor for linear entropy sources. Finally in Section 6 we briefly
show how we can generalize the constructions to handle slightly sub-linear entropy.

2 Preliminaries

We use common notations such as ◦ for concatenation and [n] for {1, 2, · · · , n}. All logarithms are
to the base 2. We often use capital letters for random variables and corresponding small letters for
their instantiations.

2.1 Basic Definitions

Definition 2.1 (statistical distance). Let D and F be two distributions on a set S. Their statis-
tical distance is

|D − F | def= max
T⊆S

(|D(T)− F (T)|) =
1

2

∑
s∈S
|D(s)− F (s)|

If |D − F | ≤ ε we say that D is ε-close to F .

8

Definition 2.2. The min-entropy of a random variable X is defined as

H∞(X) = minx∈supp(X){− log2 Pr[X = x]}.

We say X is an (n, k)-source if X is a random variable on {0, 1}n and H∞(X) ≥ k. When n is
understood from the context we simply say that X is a k-source.

In the case of affine sources, the source is a uniform distribution over an affine subspace. Thus
the min-entropy is the same as the standard Shanon entropy, and we simply use H(X) to stand for
the entropy of an affine source.

2.2 Somewhere Random Sources, Mergers and Condensers

Definition 2.3 (Somewhere Random sources). A source X = (X1, · · · , Xt) is (r, t) somewhere-
random (SR-source for short) if each Xi takes values in {0, 1}r and there is an i such that Xi is
uniformly distributed.

Definition 2.4. An elementary somewhere-k-source is a vector of sources (X1, · · · , Xt), such that
some Xi is a k-source. A somewhere k-source is a convex combination of elementary somewhere-k-
sources.

Definition 2.5 (Merger). A function M : ({0, 1}n)s × {0, 1}d → {0, 1}n is called an (m, ε)-
merger (of (n, s)-somewhere-random sources), if for every (n, s)-somewhere random source X =
(X1, · · · , Xs), and for R being uniformly distributed over {0, 1}d, the distribution of M(X,R) is
ε-close to having min-entropy m. We say that the merger is strong if the average over r ∈ {0, 1}d
of the statistical distance between M(X, r) and an (n,m)-source is ≤ ε.

Definition 2.6. A function C : {0, 1}n × {0, 1}d → {0, 1}m is a (k → l, ε)-condenser if for every
k-source X, C(X,Ud) is ε-close to some l-source. When convenient, we call C a rate-(k/n→ l/m, ε)-
condenser.

Definition 2.7. A function C : {0, 1}n × {0, 1}d → {0, 1}m is a (k → l, ε)-somewhere-condenser
if for every k-source X, the vector (C(X, y)y∈{0,1}d) is ε-close to a somewhere-l-source. When
convenient, we call C a rate-(k/n→ l/m, ε)-somewhere-condenser.

2.3 Strong Linear Seeded Extractors

We need the following definition and property of a specific kind of extractors.

Definition 2.8. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong seeded extractor for
min-entropy k and error ε if for every min-entropy k source X,

Pr
u←RUd

[|Ext(X,u)− Um| ≤ ε] ≥ 1− ε,

where Um is the uniform distribution on m bits. We say that the function is a linear strong seeded
extractor if the function Ext(·, u) is a linear function over GF(2), for every u ∈ {0, 1}d.

Proposition 2.9 ([Rao09]). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a linear strong seeded extractor
for min-entropy k with error ε < 1/2. Let X be any affine source with entropy k. Then,

Pr
u←RUd

[|Ext(X,u)− Um| = 0] ≥ 1− ε

9

2.4 The Structure of Affine Sources

The following lemma explains the behavior of a linear function acting on an affine source.

Lemma 2.10. (Affine Conditioning). Let X be any affine source on {0, 1}n. Let L : {0, 1}n →
{0, 1}m be any linear function. Then there exist independent affine sources A,B such that:

• X = A+B.

• For every b ∈ Supp(B), L(b) = 0.

• H(A) = H(L(A)) and there exists an affine function L−1 : {0, 1}m → {0, 1}n such that
A = L−1(L(A)).

Proof. Without loss of generality, assume the support of X is a linear subspace (if not, we can do
the analysis for the corresponding linear subspace, and then add the affine shift). Consider the set
{x ∈ Supp(X) : L(x) = 0}. Note that this set is a linear subspace. Let B be the affine source
whose support is this subspace and let b1, ..., bt be a basis for this subspace. Next we complete the
basis to get a basis for the support of X. Let A be the affine source whose support is the span of
the basis vectors in the completed basis that are not in B. Thus X = A+B.

Note that H(A) ≤ H(L(A)) since L(a) 6= 0 for every a ∈ Supp(A). On the other hand, since L
is a deterministic function we have H(L(A)) ≤ H(A). Thus H(A) = H(L(A)). In other words, L
is a bijection between Supp(A) and Supp(L(A)). Let Y = L(A). Since A is an affine source there
exists a vector a ∈ {0, 1}n such that A = a + Ā where Ā is the uniform distribution over a linear
subspace. Thus

Y = L(A) = L(a) + L(Ā).

Let Ȳ = Y − L(a) = L(Ā). Since L is a linear function and Ā is uniform distributed over a
linear subspace, Ȳ is also uniformly distributed over a linear subspace. Note that H(Ȳ) = H(Y) =
H(L(A)) = H(L(Ā)), thus L is a linear bijection between the linear subspaces of Supp(Ā) and
Supp(Ȳ). Therefore there exists a linear function L′ such that Ā = L′(Ȳ). Thus

A = a+ Ā = a+ L′(Ȳ) = a+ L′(Y − L(a)) = L′(Y) + a− L′(L(a)).

Take L−1 to be the affine function L′ + a− L′(L(a)). Then A = L−1(L(A)).

Now we have the following lemma that exhibits a nice structure of affine sources.

Lemma 2.11. Let X be any affine source on {0, 1}n. Divide X into t arbitrary blocks X =
X1 ◦X2 ◦ ... ◦Xt. Then there exist positive integers k1, ..., kt such that,

• ∀j, 1 ≤ j ≤ t and ∀(x1, .., xj−1) ∈ Supp(X1, .., Xj−1), H(Xj |X1=x1,...,Xj−1=xj−1) = kj.

•
∑t

i=1 ki = H(X).

Proof. For any i, 1 ≤ i ≤ t, let Yi = X1◦X2◦ ...◦Xi. Note Yi is a linear function of X, thus Yi is also
an affine source. Now for any j, note that Yj−1 is a linear function Lj of Yj . Thus by Lemma 2.10,
there exist independent affine sources Aj , Bj such that Yj = Aj +Bj , H(Lj(Yj)) = H(Aj) and for
every b ∈ Supp(B), Lj(b) = 0. This implies that Yj−1 = Lj(Yj) = Lj(Aj + Bj) = Lj(Aj). Now

10

since H(Lj(Yj)) = H(Aj), we have that ∀(x1, .., xj−1) ∈ Supp(X1, .., Xj−1), there exists a unique
aj ∈ Supp(Aj) such that Lj(aj) = (x1, .., xj−1).

Let kj = H(Bj). Then,

H(Xj |X1=x1,...,Xj−1=xj−1) = H(Xj |Aj=aj) = H(Yj |Aj=aj) = H(Aj +Bj |Aj=aj) = H(Bj) = kj

where the last equality holds because Aj , Bj are independent.
Next, observe that H(Yj) = H(Aj) +H(Bj) = H(Lj(Yj)) +H(Bj) = H(Yj−1) + kj . A simple

induction thus gives that

t∑
i=1

ki = H(X).

This lemma essentially says that if we divide an affine source into several blocks, then a block
has the same entropy conditioned on any fixing of the previous blocks. Moreover, the sum of these
entropies equals the entropy of the original source. Thus we can view each block as carrying some
fixed additional entropy, regardless of what the previous blocks are. We note that this is very
different from general weak random sources.

2.5 Previous Work that We Use

Lemma 2.12. [ILL89][Leftover Hash Lemma] For any 0 < k < n, let X be an (n, k)-source and
R be the uniform distribution on {0, 1}n independent of X. Let l > 0 and m = k− 2l. Treat x and
r as elements in the field F2n and define the function Hash(x, r) to be the last m bits of x · r. Then
(Hash(X,R), R) is 2−l-close to uniform.

We are going to use a simple linear merger given in [LRVW03].

Construction 2.13. Let n, s be integers. Define the function

Merg : ({0, 1}n)s × {0, 1}d → {0, 1}n

in the following way: Let Fq be a finite field with q elements where q is a power of 2. Map each
element in {0, 1}n into F`q and each element in {0, 1}d into Fsq, using some injective mapping. Let

x = (x1, · · · , xs) ∈ (F`q)s and z = (z1, · · · , zs) ∈ Fsq. The value of Merg(x, z) is computed as

Merg(x, z) =
s∑
i=1

xi · zi

where the operations are performed in the vector space F`q.

The following theorem is proved in [LRVW03], by using a field of size O(1/ε) in the above
construction.

11

Theorem 2.14. [LRVW03] For every ε > 0 and integers n, s, there exists an explicit (m, ε)-merger
of (n, s)-somewhere-random sources Merg : ({0, 1}n)s×{0, 1}d → {0, 1}n with d = O(s log(1/ε)) and
m = n/2− O(d). Moreover, for any (n, s)-somewhere-random source X, with probability 1− O(ε)
over z ∈ {0, 1}d, Merg(X, z) is ε-close to having min-entropy m.

We are going to use condensers recently constructed based on the sum-product theorem. The
following construction is due to Zuckerman [Zuc07].

Construction 2.15. Let F = Fq be a field where q = 2p for p prime. Define the point-line
incidence graph as the bipartite graph G = (V,W,E) with vertices V = F 2 the set of points, and
W the set of lines over F , and (p, l) is an edge in G iff p and l are incident. Let the function
h : E → V ×W map an edge to its two endpoints. Equivalently, h is the map from F 3 to (F 2)2

such that h(a, b, c) = ((b, ab+ c), (a, c)).
The condenser C : F 3 × {0, 1} → F 2 is C(e, i) = h(e)i.

The following theorem is proved in [Zuc07].

Theorem 2.16. [Zuc07] Suppose δ < 0.9 and qδ = ω(1). The function C above is a rate-(δ →
(1 + α/2)δ, ε)-somewhere-condenser, where ε = q−αδ/20 for some constant α > 0.

Note that each bit of the output of the condenser is a degree 2 polynomial of the bits of the
input. Repeating the condenser for a constant number of times, we get the following theorem:

Theorem 2.17. [Zuc07] For any constant β, δ > 0, there is an efficient family of rate-(δ → 1 −
β, ε = 2−Ω(n))-somewhere condensers Zuc : {0, 1}n → ({0, 1}m)D where D = O(1) and m = Ω(n).
Moreover, each bit of the output is a constant degree polynomial of the bits of the input.

We now show that this condenser actually works even when the min-entropy of the source is
very high. First we need the following improved theorem about line point incidences in finite fields.

Theorem 2.18 (Incidence Theorem). [Vin07] Let F = Fq, where q is either prime or 2p for p
prime. Let P,L be sets of points and lines in F 2 and |P |, |L| ≤ N = qα with 1 + γ ≤ α ≤ 2− γ for
some γ > 0. Then the number of incidences

I(P,L) ≤ 2N
3
2
− γ

4 .

The following lemma is from [Zuc07].

Lemma 2.19. [Zuc07] If X,Y is not ε-close to a somewhere-k-source, then there exists sets S ⊆
supp(X), T ⊆ supp(Y), |S|, |T | < 2k+1/ε, such that

Pr[X ∈ S, Y ∈ T] > ε/2.

Theorem 2.20. Suppose 1
2 < δ ≤ 1 − γ for some γ > 0. The function C above is a rate-

(δ → (1 + γ/12)δ, ε) somewhere-condenser, where ε = q−γδ/20.

Proof. We essentially follow the proof in [Zuc07]. As in that proof, we analyze the equivalent
function h. We may assume that the input to h is uniform on a set of edges of size K = 2k = q3δ,
and set k′ = (1 + γ/12)(2k/3). Suppose the output (X,Y) of h is not ε-close to a somewhere-k′-
source. Let P = S and L = T be the sets of size less than K0 = 2k

′+1/ε given by Lemma 2.19.
Note that K0 ≤ 2q2δ(1+γ/12)+δ(γ/20) < q2−γ .

12

Now we calculate the number of incidences I(P,L) in two ways. On the one hand, since each
edge is an incident point-line pair, and at least ε/2 fraction of these pairs lie in P ×L, the number
of incidences I(P,L) ≥ εK/2. On the other hand, by Theorem 2.18,

I(P,L) ≤ 2K
3/2−γ/4
0 = O(K(1+γ/12)(3/2−γ/4)2/3/ε2) = O(K1−γ/12/ε2).

This gives a contradiction for ε = K−γ/60, and the theorem is proved.

Our affine extractor can use any affine extractor for entropy rate 1/2 as a black box, as long
as the extractor is a low degree polynomial. Currently, there are two such constructions, one is a
degree 3 polynomial and the other is a degree 6 polynomial. For example, we can use Bourgain’s
simple affine extractor for entropy rate slightly below 1/2.

Theorem 2.21. [Bou07] There is a polynomial time computable function BAExt : {0, 1}n →
{0, 1}m such that m = Ω(n) and for every affine source X of entropy n/2, BAExt(X) is 2−Ω(n)-close
to uniform. Moreover, each bit of the output is a degree 3 polynomial of the bits of the input.

We need one last ingredient, the simple inner product function as a two source extractor when
the sum of the entropy rates of the two independent sources is greater than 1. For a finite field F,
let Had : Fl × Fl → F be the inner product function, i.e., Had(x, y) = x · y.

Theorem 2.22. [CG88, Vaz85] For every constant δ > 0, there exists a polynomial time algorithm
Had : ({0, 1}n)2 → {0, 1}m such that if X is an (n, k1) source, Y is an independent (n, k2) source
and k1 + k2 ≥ (1 + δ)n, then

|(Y,Had(X,Y))− (Y,Um)| < ε

with m = Ω(n) and ε = 2−Ω(n).

To prove our construction is an extractor, we need the following definition and lemma.

Definition 2.23. (ε-biased space) A random variable Z over {0, 1} is ε-biased if |Pr[Z = 0]−Pr[Z =
1]| ≤ ε. A sequence of 0-1 random variables Z1, · · · , Zm is ε-biased for linear tests if for any
nonempty set S ⊂ {1, · · · ,m}, the random variable ZS =

⊕
i∈S Zi is ε-biased.

The following lemma is due to Vazirani. For a proof see for example [Gol95]

Lemma 2.24. Let Z1, · · · , Zm be 0-1 random variables that are ε-biased for linear tests. Then, the
distribution of (Z1, · · · , Zm) is ε · 2m/2-close to uniform.

3 Low Degree Strong Linear Seeded Extractors

In this section we describe our construction of a strong linear seeded extractor. The extractor has
the property that each bit of the output is a degree 4 polynomial of the bits of the input.

Theorem 3.1. There exists a constant 0 < β < 1 such that for every 0 < δ < 1 and any 1/
√
n <

α < 1 there exists a polynomial time computable function LSExt : {0, 1}n × {0, 1}d → {0, 1}m s.t.

• d ≤ αn,m ≥ βδαn.

13

• For any (n, δn)-affine source 1X, let R be the uniform distribution on {0, 1}d independent of
X. Then (LSExt(X,R), R) is 2−Ω(δα2n)-close to uniform.

• Each bit of the output is a degree 4 polynomial of the bits of the two inputs, and for any fixing
of r the output is a linear function of x.

Proof. The construction of the extractor consists of 3 steps:

Step 1: We take d1 = αn/3 random bits R1 and divide X into 3/α blocks of equal length2

X = X1 ◦ · · · ◦ Xt, where each Xi has αn/3 bits. We now apply the function Hash as in
Lemma 2.12 to every Xi and R1 and concatenate the output to be Y = Y1 ◦ · · · ◦ Yt, where
Yi = Hash(Xi, R1). We let each Yi output l1 = 0.9δαn/3 = 0.3δαn bits.

Claim 3.2. With probability 1 − 2−Ω(δαn) over R1, Y is 2−Ω(δαn)-close to being a (l1, 3/α)-
somewhere random source.

Proof of the claim. By Lemma 2.11 there exist integers k1, · · · , kt such that for any fixing of
the previous blocks, Xi has entropy ki. Note

∑t
i=1 ki = δn. Thus there exists 1 ≤ i ≤ t such

that ki ≥ δαn/3. Now by Lemma 2.12 we know that (Yi, R1) is 2−Ω(δαn)-close to (U,R1).
Therefore with probability 1 − 2−Ω(δαn) over R1, Yi is 2−Ω(δαn)-close to uniform. Thus Y is
2−Ω(δαn)-close to being a (l1, 3/α)-somewhere random source.

Step 2: Let ε = 2−cδα
2n for a constant 0 < c < 1 to be chosen later. We take d2 random bits R2

and apply the merger as in Theorem 2.14 with parameter ε. Let W = Merg(Y,R2).

Claim 3.3. d2 ≤ αn/3 and with probability 1 − 2−Ω(δα2n) over R2, W is 2−Ω(δα2n)-close to
having min-entropy 0.4l1.

Proof of the claim. By Theorem 2.14 the seed length d2 = O(cδα2n/α) = O(cδαn). Note
that l1 = 0.3δαn. Thus we can choose c s.t. d2 ≤ αn/3 and the output of the merger has
length m = l1/2 − O(d2) ≥ 0.4l1. Now by Theorem 2.14 we know that with probability
1− 2−Ω(δα2n) over R2, W is 2−Ω(δα2n)-close to having min-entropy 0.4l1.

Step 3: Now W is a random variable over l1 < αn/3 bits. Take d3 = l1 random bits R3 and apply
the function Hash as in Lemma 2.12 to W and R3 and output m = 0.3l1 bits. The final
output is Z = Hash(W,R3).

The number of random bits used is d = d1 + d2 + d3 ≤ αn. The number of bits of the output is
m = 0.3l1 ≥ βδαn for some constant 0 < β < 1. By Lemma 2.12 with probability 1−2−Ω(δαn) over
R3, Z is 2−Ω(δαn)-close to uniform. Thus with probability 1−2−Ω(δα2n) over R, Z is 2−Ω(δα2n)-close
to uniform, which implies that (LSExt(X,R), R) is 2−Ω(δα2n)-close to uniform.

In each of the 3 steps the degree of the polynomial goes up by 1. Thus each bit of the output
is a degree 4 polynomial of the bits of the two inputs. Now observe in each step for any fixing of

1Generally we don’t need the source to be affine. However the analysis is simpler if the source is an affine source
(mainly because in this case we don’t need to go into convex combinations as in the case where the source is a general
weak source).

2For simplicity, we assume that 3/α is an integer, this does’t affect the analysis.

14

Ri = r the output is a linear function, thus for any fixing of R = r the output is a linear function
of x.

In the special case where α and δ are constants, we get the following corollary:

Corollary 3.4. For all constants 0 < δ, α < 1 there exists a polynomial time computable function
LSExt : {0, 1}n × {0, 1}d → {0, 1}m and a constant 0 < β < 1 such that

• d ≤ αn,m ≥ βn.

• For any (n, δn)-affine source X, let R be the uniform distribution on {0, 1}d independent of
X. Then (LSExt(X,R), R) is 2−Ω(n)-close to uniform.

• Each bit of the output is a degree 4 polynomial of the bits of the two inputs, and for any fixing
of r the output is a linear function of x.

4 Extractors for Affine Somewhere Random Sources with Few
Rows

In this section we describe our extractor for an affine somewhere random source with few rows. The
construction is essentially the same as that in [Rao09], except that we use our low degree strong
linear seeded extractor in the construction.

We need the following definition about the slice of a concatenation of strings.

Definition 4.1. [Rao09] Given ` strings of length n, x = x1, · · · , x`, define Slice(x,w) to be the
string x′ = x′1, · · · , x′` such that for each i x′i is the prefix of xi of length w.

Algorithm 4.2 (AffineCondense(x)).

Input: x — a t× r matrix with t < 4
√
r.

Output: y — a dt/2e ×m matrix with m = Ω(r/t2).

Sub-Routines and Parameters:
Let w = r/(10t).
Let BAExt : {0, 1}n → {0, 1}d be the affine extractor from Theorem 2.21.
Let LSExt : {0, 1}n ×{0, 1}d → {0, 1}m be the strong linear seeded extractor from Theorem 3.1.

1. Let z be the dt/2e× 2w matrix obtained by concatenating pairs of rows in Slice(x,w), i.e.,
the i’th row zi is Slice(x,w)2i−1 ◦ Slice(x,w)min{2i,t}.

2. Let s be the dt/2e × d matrix whose i’th row is BAExt(zi).

3. Let y be the dt/2e ×m matrix whose i’th row is LSExt(x, si).

15

Algorithm 4.3 (AffineSRExt(x)).

Input: x — a t× r matrix.
Output: z — an m bit string with m = r/tO(log t).

Sub-Routines and Parameters:

1. If x has one row, output x.

2. Else, set y to be the output of AffineCondense(x).

3. Set x = y and go to the first step.

Lemma 4.4. For any t × r affine somewhere random source X with t < 4
√
r, AffineCondense(X)

is 2−Ω(r/t4)-close to a convex combination of dt/2e × m affine somewhere random sources, where
m = Ω(r/t2). Moreover, each bit of the output is a constant degree polynomial of the input bits.

Proof. We essentially follow the proof in [Rao09], except that we use the specific strong linear
seeded extractor LSExt.

Let Z = Slice(X,w) as in the algorithm. Note that Slice(X,w) is a linear function of X.
Thus by Lemma 2.10, there exist independent affine sources A and B s.t. X = A + B, H(A) =
H(Slice(A,w)) and for every b ∈ Supp(B), Slice(b, w) = 0. This implies that Z = Slice(X,w) =
Slice(A,w) + Slice(B,w) = Slice(A,w) is independent of B and H(B) = H(X)−H(A) = H(X)−
H(Slice(X,w)) ≥ r − wt.

Note that Z is a linear function of X, thus conditioned on any fixing Z = z, X|Z = z is an affine
source. Moreover, conditioned on any fixing Z = z, Y is a linear function of X|Z = z (because
LSExt is a linear seeded extractor). Thus conditioned on any fixing Z = z, Y |Z = z is affine. We
next show that with high probability over z ←R Z, Y |Z = z is somewhere random.

Since X is somewhere random, there exists an index h s.t. Zh is an affine source with entropy
rate 1/2. Therefore by Theorem 2.21, sh has Ω(w) bits and

|Sh − Ud| ≤ 2−Ω(w). (1)

Note that Sh is a deterministic function of Z and is thus independent of B. Also sh has
d = Ω(w) = Ω(r/t) = Ω(1/t2 · tr) bits. Note that B has tr bits and H(B) ≥ r − wt ≥ 0.9r. Let
Ud be the uniform distribution over d bits independent of B. Then by Theorem 3.1 we have that
LSExt(B,Sh) has m = Ω(1/t3 · tr) = Ω(r/t2) bits and

Pr
u←RUd

[|LSExt(B, u)− Um| > ε] < ε

where ε = 2−Ω(r/t4).
By Proposition 2.9 and equation 1 we thus have

Pr
s←RSh

[|LSExt(B, s)− Um| > 0] < ε+ 2−Ω(w) = 2−Ω(r/t4).

16

For any s ∈ {0, 1}d, we have LSExt(X, s) = LSExt(A+B, s) = LSExt(A, s) + LSExt(B, s). Note
that Sh is a deterministic function of Z, Z is a deterministic function of A and H(A) = H(Z).
Thus A is also completely determined by Z. Therefore whenever LSExt(B, s)|Z = z is uniform,
LSExt(X, s)|Z = z is also uniform.

Thus we get

Pr
z←RZ

[|LSExt(X|Z = z, sh)− Um| > 0] ≤ 2−Ω(r/t4).

This shows that Y is 2−Ω(r/t4)-close to being a convex combination of affine somewhere random
sources. Now note that both BAExt and LSExt are constant degree polynomials, thus each bit of
the output is a constant degree polynomial of the input bits

Repeating the condenser for log t times, we get the following theorem:

Theorem 4.5. For every affine t× r somewhere random source X, AffineSRExt(X) outputs m =

r/tO(log t) bits that are 2−Ω(r/tO(log t))-close to uniform. Moreover, each bit of the output is a degree
tO(1) polynomial of the bits of the input.

In the special case where t is a constant, we get the following corollary.

Corollary 4.6. For every affine t× r somewhere random source X with t = O(1), AffineSRExt(X)
outputs m = Ω(r) bits that are 2−Ω(r)-close to uniform. Moreover, each bit of the output is a
constant degree polynomial of the bits of the input.

5 The Main Construction

We now describe our main constructions. For simplicity we first describe our constructions for
affine sources with linear entropy, we then briefly show how we can generalize the constructions to
handle slightly sub-linear entropy.

First we describe our construction of an affine disperser.

5.1 Affine Dispersers for Linear Entropy Sources

Given an n-bit affine source X with entropy δn for some constant δ > 0, we first divide X into
10/δ blocks of equal size X = X1 ◦ · · · ◦ Xt, where t = 10/δ and each block has δn/10 bits. The
algorithm is described as follows.

17

Algorithm 5.1 (ADisp(x)).

Input: x — an n bit string.
Output: z — an m bit string with m = Ω(n).

Sub-Routines and Parameters:
Let Zuc : {0, 1}n → ({0, 1}Ω(n))O(1) be a rate-(δ/4→ 1−δ/4, 2−Ω(n))-somewhere-condenser form
Theorem 2.17.
Let Had : ({0, 1}n)2 → {0, 1}Ω(n) be the two-source extractor from Theorem 2.22, set up to
extract from two independent sources whose entropy rates sum up to more than 1 + δ/4.
Let LSExt : {0, 1}n×{0, 1}d → {0, 1}m′ be the strong linear seeded extractor from Theorem 3.1.
Let AffineSRExt be the extractor for affine somewhere random sources from Algorithm 4.3.

Divide x into 10/δ blocks x = x1 ◦ · · · ◦ xt where t = 10/δ and each block has δn/10 bits.
For every i, 1 ≤ i ≤ t do the following.

1. Let yi1 ◦ · · · ◦ yi`1 = Zuc(xi), where yij is the j’th row of the matrix obtained by applying
Zuc to xi. Note `1 = O(1) and each yij has Ω(n) bits.

2. Divide x into `2 blocks of equal size x = x′1 ◦ · · · ◦ x′`2 , with each block having the same
number of bits as yij . Note `2 = O(1). Apply Had to every pair of x′j2 and yij1 , and output

δ3n/(3000`1`2) bits. Let sri be the matrix obtained by concatenating all the outputs
Had(x′j2 , yij1), i.e., each row of sri is Had(x′j2 , yij1) for a pair (x′j2 , yij1).

3. Let ri = AffineSRExt(sri).

4. Let ui = LSExt(x, ri), set up to output at most δ3n/(3000`1`2) bits.

5. Divide the bits of ui into si = Ω(n) blocks of equal size, with each block having ci number
of bits, for some constant ci to be chosen later. For every j = 1, · · · , si, compute one bit
vij by taking the product of all the bits in the j’th block, i.e., vij = Πjci

`=(j−1)ci+1ui`.

Finally, output Ω(n) bits {zj =
⊕t

i=1 vij}.

Theorem 5.2. For every δ > 0 there exists an efficient family of functions ADisp : {0, 1}n →
{0, 1}m such that m = Ω(n) and for every affine source X with entropy δn, |Supp(ADisp(X))| = 2m.

Proof. We show that Algorithm 5.1 is an efficient family of such functions. First, by Lemma 2.11,
when we divide X into t = 10/δ blocks of equal size, there exist positive integers k1, · · · , kt s.t. for
any fixing of the previous blocks, H(Xi) = ki and

∑t
i=1 ki = δn. Thus there must exist an i s.t.

ki ≥ δn/3t. Let Xg be the first such block, i.e., g is the smallest i s.t. ki ≥ δn/3t.

Lemma 5.3. Conditioned on any fixing of (Xi = xi, SRi = sri, Ri = ri, Ui = ui)i∈{1,··· ,g−1}, X is
an affine source with H(Xg) ≥ δn/4t and H(X) ≥ 3δn/5.

Proof of the lemma. We first fix (Xi = xi)i∈{1,··· ,g−1}. Note since Xi is a linear function of X, after
this fixing X is still an affine source. Now by Lemma 2.11, after this fixing H(Xg) ≥ kg ≥ δn/3t
and H(X) ≥

∑t
i=g ki ≥ δn− t · δn/3t ≥ 2δn/3.

18

Note that conditioned on the fixing of (Xi = xi)i∈{1,··· ,g−1}, SRi is a linear function of X. Thus
we can further fix (SRi = sri)i∈{1,··· ,g−1} and X is still an affine source. Note that SRi has `1`2
rows and each row has δ3n/(3000`1`2) bits, thus SRi has a total number of δ3n/3000 bits. Let
SR = SR1 ◦ · · · ◦ SRg−1 and abuse notation to let SR(X) stand for the linear function of X that
computes SR. Note SR has at most δ3n/3000 · t = δ2n/300 bits. By Lemma 2.10, there exist
independent affine sources A and B s.t. X = A + B, SR(X) = SR(A) and H(SR(A)) = H(A).
Thus conditioned on any fixing of SR,

H(X) ≥ H(B) ≥ 2δn/3−H(A) = 2δn/3−H(SR(X)) ≥ 2δn/3− δ2n/300.

Next note that Xg is a linear function of X. Thus Xg(X) = Xg(A) + Xg(B). Therefore
H(Xg(B)) = H(Xg)−H(Xg(A)) ≥ H(Xg)−H(A) ≥ δn/3t− δ2n/300. Since SR(X) = SR(A) we
have that conditioned on any fixing of SR(X), H(Xg) ≥ H(Xg(B)) ≥ δn/3t− δ2n/300.

Note that after the fixing of (SRi = sri)i∈{1,··· ,g−1} , (Ri)i∈{1,··· ,g−1} is also fixed, and now
(Ui)i∈{1,··· ,g−1} is a linear function of X. Thus by the same analysis we have that conditioned on any
fixing of (Ui)i∈{1,··· ,g−1}, X is still an affine source. Moreover, H(X) ≥ 2δn/3−δ2n/300−δ2n/300 >
3δn/5 and H(Xg) ≥ δn/3t− δ2n/300− δ2n/300 > δn/4t.

Now consider X and Xg conditioned on any fixing of (Xi = xi, SRi = sri, Ri = ri, Ui =
ui)i∈{1,··· ,g−1}, we have the following lemma.

Lemma 5.4. With probability 1− 2−Ω(n) over the further fixings of Xg = xg, Rg is 2−Ω(n)-close to
uniform.

Proof of the lemma. First, note that H(Xg) ≥ δn/4t, thus Xg has entropy rate at least δ/4. There-
fore by Theorem 2.17 Zuc(Xg) is 2−Ω(n)-close to a somewhere-rate-(1− δ/4) source. Without loss
of generality assume that Yg1 has rate 1− δ/4. Since Xg is a linear function of X, by Lemma 2.10
there exist independent affine sources Ag and Bg such that X = Ag + Bg, Xg(X) = Xg(Ag) and
H(Ag) = H(Xg). Thus H(Bg) = H(X)−H(Ag) = H(X)−H(Xg) ≥ 3δn/5− δn/10 = δn/2. Note
that when we divide X into `2 blocks X = X ′1 ◦ · · · ◦X ′`2 , each X ′j is a linear function of X. Thus
X ′j(X) = X ′j(Ag) +X ′j(Bg). Let Agj = X ′j(Ag) and Bgj = X ′j(Bg). Since Bg is an affine source, by
Lemma 2.11 the sum of all H(Bgj) is at least H(Bg) ≥ δn/2. Thus at least one block must have
entropy rate at least δ/2. Let Bgj be such a block.

Note that Yg1 is a deterministic function of Xg, thus it is also a deterministic function of Ag and
is independent of Bgj . Note Yg1 has rate 1− δ/4 and Bgj has rate δ/2. Thus by Theorem 2.22 we
have that with probability 1−2−Ω(n) over the fixings of Yg1 (and thus Ag and Xg), Had(Bgj , Yg1) is
2−Ω(n)-close to uniform. Now note that for a fixed Yg1 = yg1, the function Had is a linear function.
Therefore

Had(X ′j , yg1) = Had(Agj , yg1) + Had(Bgj , yg1).

Note that once Ag (equivalently, Xg) is fixed, Had(Agj , yg1) is a fixed constant. Thus whenever
a fixed Ag makes Had(Bgj , yg1) uniform, it also makes Had(X ′j , yg1) uniform. Therefore we have

that with probability 1− 2−Ω(n) over the fixings of Ag (and thus Xg), Had(X ′j , Yg1) is 2−Ω(n)-close

to uniform. When this happens, we have that SRg is 2−Ω(n)-close to an affine somewhere random
source (it is affine since for a fixed Xg = xg, SRg is a linear function of X). Thus by Theorem 4.5
Rg is 2−Ω(n)-close to uniform.

19

Now consider X conditioned on any fixing of (Xi = xi, SRi = sri, Ri = ri, Ui = ui)i∈{1,··· ,g−1},
and the event that the property in Lemma 5.4 is satisfied. We have the following lemma.

Lemma 5.5. With probability 1 − 2−Ω(n) over the further fixings of SRg (and thus Rg), Ug is
uniform.

Proof of the lemma. First note that Xg is a linear function of X. Thus conditioned on any fixing
of Xg = xg, X is still an affine source. Now after we fix Xg = xg, SRg is a linear function of X.
Thus again by Lemma 2.10, there exist independent affine sources A′g and B′g s.t. X = A′g + B′g,
SRg(X) = SRg(A

′
g) and H(SRg) = H(A′g). Thus H(B′g) = H(X)−H(A′g) = H(X)−H(SRg) ≥

3δn/5− δn/10− δ3n/3000 > δn/3.
Next, note Rg is a deterministic function of SRg and is 2−Ω(n)-close to uniform by Lemma 5.4.

Thus Rg is independent of B′g. Note LSExt is a strong linear seeded extractor with error 2−Ω(n) by

Corollary 3.4. Thus by Proposition 2.9 with probability 1− 2−Ω(n) over the fixings of Rg (and thus
SRg), LSExt(B′g, Rg) is uniform.

Finally note that for any fixing of SRg (and thus Rg), LSExt(X,Rg) is a linear function of X.
Thus by the same analysis as in Lemma 5.4 we have that with probability 1 − 2−Ω(n) over the
fixings of SRg (and thus Rg), Ug is uniform.

Now consider X conditioned on any fixing of (Xi = xi, SRi = sri, Ri = ri, Ui = ui)i∈{1,··· ,g−1},
and the event that both properties in Lemma 5.4 and Lemma 5.5 hold. Note that even further
conditioned on the fixings of Xg = xg and SRg = srg, X is still an affine source. Now after this
fixing Ug is a linear function of X. Thus again by Lemma 2.10 there exist independent affine sources
A′′g and B′′g s.t. X = A′′g +B′′g , Ug(X) = Ug(A

′′
g) and H(Ug) = H(A′′g). To prove the function ADisp

is a disperser, it suffices to prove that for some B′′g = b, it is a disperser. We actually can prove
that for any B′′g = b, ADisp is a disperser.

Lemma 5.6. For any integer m > 0, let Z ′ = (Z ′1, · · · , Z ′m) where Z ′j =
⊕t

i=g Vij. Then condi-
tioned on any fixing of B′′g = b, |Supp(Z ′)| = 2m.

Proof of the lemma. We first show that Z ′1 can take both values in {0, 1}. To see this, notice that
Z ′1 =

⊕t
i=g Vi1 while Vg1 = Π

cg
`=1Ug` is a polynomial of degree cg over the bits of the uniform string

Ug. Next, since now (conditioned on all the fixings) Ug is a linear function of X, by Lemma 2.10
there exists an affine function Lg s.t. A′′g = Lg(Ug). Thus X = A′′g +B′′g = Lg(Ug) +B′′g . Note Ug =
Ug(X) = Ug(A

′′
g) is independent of B′′g . Now conditioned on any fixing of B′′g = b, X = Lg(Ug) + b

is an affine function (degree 1 polynomial) of Ug.
Given this observation, the following computations and the outputs V(g+1)1, · · · , Vt1 are all

functions of Ug. If we can show that
⊕t

i=g+1 Vi1 is a polynomial of degree less than cg over the bits

of Ug, then we know that Z ′1 = Vg1 ⊕
⊕t

i=g+1 Vi1 cannot be a constant and thus must take both
values of {0, 1}. In fact, that is exactly how we choose the constants ci’s.

Let us see what conditions ci’s must satisfy. First, it’s easy to see that we need to choose ci’s
s.t. ci > ci+1 for every i. Next, we compute the degrees of each Vi1 for i > g. First X is an affine
function of Ug. Then by Theorem 2.17, each bit of Zuc(Xi) is a constant degree polynomial of
the input bits. It’s easy to see the function Had is a degree 2 polynomial. Thus each bit of SRi
is a degree 2 polynomial of the input bits. By Corollary 4.6 each bit of Ri is a constant degree
polynomial of the input bits. By Theorem 3.1 each bit of Ui is a constant degree polynomial of
the input bits. Thus we conclude that for every i ≥ g + 1, each bit of Ui is a constant c(δ)-degree

20

polynomial of the bits of Ug. Note each Vi1 is a degree ci polynomial of the bits of Ui. Therefore
in order to make

⊕t
i=g+1 Vi1 a polynomial of degree less than cg, it suffices to take

ci > c(δ)ci+1

for every i. This ensures that Z ′1 can take both values in {0, 1}.
Now we consider outputting m > 1 bits. By induction it suffices to prove that for any fixing of

(Z ′1 = z1, · · · , Z ′i = zi), Z
′
i+1 can take both values in {0, 1}. For the sake of contradiction, suppose

for some (Z ′1 = z1, · · · , Z ′i = zi), Z
′
i+1 can only take the value zi+1. Then we have

Pg = (Z ′1 + z1 + 1)(Z ′2 + z2 + 1) · · · (Z ′i + zi + 1)(Z ′i+1 + zi+1) ≡ 0.

However, note that Z ′j = Vgj ⊕
⊕t

i=g+1 Vij and Vgj is a monomial of degree cg of the bits of Ug,
while all the other Vij ’s are monomials of degree less than cg of the bits of Ug. Also note that Vgj ’s
are monomials of different bits for different j’s. Thus Pg is a polynomial of the bits of Ug and has
one monomial of degree (i + 1)cg (the highest degree monomial) with coefficient 1. Therefore Pg
cannot always be 0.

Note that once (Xi = xi, SRi = sri, Ri = ri, Ui = ui)i∈{1,··· ,g−1} are fixed, (Vij)i∈{1,··· ,g−1} are
also fixed. The theorem now follows immediately from Lemma 5.3, Lemma 5.4 and Lemma 5.5.
Note that since t = O(1) we can satisfy the conditions ci > c(δ)ci+1 while keeping all ci’s to be
constants. Thus the disperser can output Ω(n) bits.

5.2 Affine Extractors for Linear Entropy Sources

With the affine disperser in hand, the affine extractor is just one step away. We first show how to
extract 1 bit that is 2−Ω(n)-close to uniform. For this we need the following definition and theorem.

Definition 5.7. For two functions f, p : {0, 1}n → {0, 1}, their correlation over the uniform
distribution is defined as

Cor(f, p) =
∣∣∣Pr
x

[f(x) = p(x)]− Pr
x

[f(x) 6= p(x)]
∣∣∣ ,

where the probability is over the uniform distribution. For a class C of functions, we denote by
Cor(f, C) the maximum of Cor(f, p) over all functions p ∈ C whose domain is D := dom(f).

Theorem 5.8. (XOR lemma for polynomials over GF(2)) [VW08, BKS+09] Let Pd stand for the
class of all polynomials of degree at most d over GF(2). Let f : {0, 1}n → {0, 1} be a function such
that Cor(f, Pd) ≤ 1− 1/2d and f×m be the XOR of the value of f on m independent inputs. Then

Cor(f×m, Pd) ≤ exp(−Ω(m/(4d · d))).

Theorem 5.9. Let Z = (Z1, · · · , Zm) be the output of the affine disperser in Algorithm 5.1, where
m = Ω(n) and Zi is the i’th bit. Take any integer 0 < s < m and take any subset S ⊆ [m] with
|S| = s. Compute W =

⊕
Zi,i∈S. Then

|W − U | = 2−Ω(s).

Remark 5.10. Note that if we take s = Ω(n) then we get 1 bit that is 2−Ω(n)-close to uniform.

21

Proof. Without loss of generality assume S = {1, · · · , s}. The proof for the other cases are essen-
tially the same. As in the proof of Theorem 5.2, we have Lemma 5.3, Lemma 5.4 and Lemma 5.5.
Now consider (U, V)g, · · · , (U, V)t conditioned on the fixings of (Xi = xi, SRi = sri, Ri = ri, Ui =
ui)i∈{1,··· ,g−1} and Xg = xg, SRg = srg. Let Wg =

⊕s
i=1 Z

′
i, where Z ′i =

⊕t
j=g Vji. Note that

Wg =
s⊕
i=1

Z ′i =
s⊕
i=1

(Vgi ⊕
t⊕

j=g+1

Vji) =
s⊕
i=1

Vgi ⊕
s⊕
i=1

(
t⊕

j=g+1

Vji).

We know that Ug is uniform and each Vgi is a degree cg monomial on cg bits of Ug. We also
know that Pg =

⊕s
i=1(

⊕t
j=g+1 Vji) is a degree at most d = cg − 1 polynomial of the bits of Ug.

Let Pd stand for the class of all polynomials of degree at most d = cg − 1 over GF(2). Then any
polynomial in Pd can equal Vgi with probability at most 1− 2−cg = 1− 2−(d+1). In other words,

Cor(Vgi, Pd) ≤ 1− 1/2d.

Note that Vgi’s are the same functions (degree cg monomial) on different and thus independent
bits of Ug (since Ug is uniform). The XOR lemma of Theorem 5.8 thus gives that

Cor(
s⊕
i=1

Vgi, Pd) ≤ 2−Ω(s).

In particular, we have

Cor(
s⊕
i=1

Vgi,
s⊕
i=1

(
t⊕

j=g+1

Vji)) ≤ 2−Ω(s).

Thus Wg is 2−Ω(s)-close to uniform. Now by Lemma 5.3, Lemma 5.4 and Lemma 5.5, the error
of W =

⊕s
i=1 Zi can go up by at most 2−Ω(n). Thus

|W − U | = 2−Ω(n) + 2−Ω(s) = 2−Ω(s)

since s = O(n).

We also need the following definition about asymptotically good binary linear codes:

Definition 5.11. A linear binary code of length n and rank k is a linear subspace C with dimension
k of the vector space Fn2 . If the distance of the code C is d we say that C is an [n, k, d]2 code. C is
asymptotically good if there exist constants 0 < δ1, δ2 < 1 s.t. k ≥ δ1n and d ≥ δ2n.

Note that every linear binary code has an associated generating matrix G ∈ Fk×n2 , and every
codeword can be expressed as vG, for some vector v ∈ Fk2.

It is well known that we have explicit constructions of asymptotically good binary linear code.
For example, the Justensen codes constructed in [Jus72].

Now we have the following construction and theorem:

22

Algorithm 5.12 (AExt(x)).

Input: x — an n bit string.
Output: z — an m bit string with m = Ω(n).

Sub-Routines and Parameters:
Let ADisp : {0, 1}n → {0, 1}m1 be the affine disperser in Algorithm 5.1, where m1 = Ω(n).
Let G be the generating matrix of an asymptotically good linear binary code with codeword
length m1. Thus G is an αm1 ×m1 matrix for some constant α > 0. Let Gi stand for the i’th
row of the matrix.

1. Run Algorithm 5.1 and let the output be Z = (Z1, · · · , Zm1) where Zi is the i’th bit.

2. For each codeword Gi, let Si = {j ∈ [m1] : Gij = 1} be the set of index s.t. the bit of the
codeword Gi at that index is 1. Define

Wi =
⊕

Zj,j∈Si

to be the bit associated with Gi, i.e., Wi is the XOR of the Zj ’s whenever the j’th index
of the codeword Gi is 1.

3. Take a constant 0 < β ≤ α to be chosen later. Output W = (W1, · · · ,Wβm1).

Theorem 5.13. For every δ > 0 there exists an efficient family of functions AExt : {0, 1}n →
{0, 1}m such that m = Ω(n) and for every affine source X with entropy δn, |AExt(X) − Um| =
2−Ω(n).

Proof. We show that Algorithm 5.12 is such a family of functions. First note that for any nonempty
set T ⊆ [αm1], the sum of the codewords Hi,i∈T is also a codeword CT . Let WT be the bit associated
with CT , i.e., WT is the XOR of the Zj ’s whenever the j’th index of the codeword CT is 1. Observe
that

WT =
⊕

Wi,i∈T .

Since T is nonempty, the codeword CT must have distance at least γm1 from the codeword
0, for some constant 0 < γ < 1. That is, CT must have at least γm1 1’s. Thus by Theorem 5.9
|WT − U | = 2−Ω(γm1). This implies that for every nonempty subset T ,∣∣∣⊕Wi,i∈T − U

∣∣∣ ≤ 2−c0γm1

for some constant c0 > 0. In other words, the random variables {Wi} form an ε-biased space for
ε = 2−c0γm1 . Thus by Lemma 2.24

|W − U | ≤ 2βm1/2 · 2−c0γm1 .

Choose 0 < β ≤ α s.t. β ≤ c0γ. Then

23

|W − U | ≤ 2−c0γm1/2.

Thus we have that (W1, · · · ,Wβm1) are Ω(n) bits that are 2−Ω(n)-close to uniform.

6 Affine Extractors and Dispersers for Sub-Linear Entropy Sources

In this section we briefly show how we can modify the affine extractors and dispersers above to
handle sources with slightly sub-linear entropy. The main observation is that in the construction
of affine extractors for linear entropy, the polynomials that we use only have constant degrees. For
an argument like the analysis of the extractor to hold, the degree of the polynomial can be as large
as log n by Theorem 5.8. For an argument like the analysis of the disperser to hold, the degree of
the polynomial can be close to n (the degree cannot be larger than n since we can get at most n
uniform random bits). We’ll show that this will lead to an affine extractor for entropy n/

√
log log n

and an affine disperser for entropy n/
√

log n.

Theorem 6.1. There exists a constant c > 1 and an efficient family of functions ADisp : {0, 1}n →
{0, 1}m such that m = nΩ(1) and for every affine source X with entropy cn/

√
log n, |Supp(ADisp(X))| =

2m.

Proof Sketch. We essentially use the same algorithm as Algorithm 5.1, except the entropy rate δ
now is sub-constant. We examine the analysis to see how small δ can be. We focus on the first
good block Xg.

First we want to use the somewhere condenser from Theorem 2.17 to convert a rate-δ/4 source
into a somewhere rate-(1−δ/4) source. Note that now δ is sub-constant, so we do this in two steps.
First, we repeatedly use Theorem 2.16 to convert the source into a somewhere rate-0.6 source.
This will take O(log 1

δ) times. Next, we repeatedly use Theorem 2.20 to convert the source into a
somewhere rate-(1 − δ/4) source. This will take O(1

δ) times. Thus in step 1 of Algorithm 5.1 we

get that `1 = 2O(1
δ

), and each Ygj has n/(2O(1
δ

)) bits. The error is 2−n/2
O(1

δ
)

.

Now in step 2 of Algorithm 5.1, we get `2 = 2O(1
δ

). Thus the total number of rows in the matrix
SRg is `1`2 = 2O(1

δ
), with each row having δ3n/(3000`1`2) = n/(2O(1

δ
)) bits. By Theorem 2.22 the

error is 2−n/2
O(1

δ
)

.
In step 3, we apply AffineSRExt. By Theorem 4.5 we get each Rg has n/(2O(1

δ2
)) bits, with error

2−n/2
O(1

δ2
)

. By Theorem 3.1 after applying LSExt, Ug has n/(2O(1
δ2

)) bits with error 2−n/2
O(1

δ2
)

.
The last thing to verify is that the degrees of the polynomials produced in step 5 satisfy the

requirements as in the analysis of Theorem 5.2. The analysis says that we need to have ci > c(δ)ci+1

for all i. To see how this can be satisfied, we first estimate the quantity c(δ).
As in the analysis of Theorem 5.2, first X is an affine function of Ug. Now by Theorem 2.16 and

Theorem 2.20, each bit of Zuc(Xi) is a degree 2O(1
δ

) polynomial of the input bits (since we repeat
the condenser O(1

δ) times). The function Had is a degree 2 polynomial. Thus each bit of SRi is
a degree 2 polynomial of the input bits. Now we apply AffineSRExt, and by Theorem 4.5 each bit
of the output is a degree 2O(1

δ
) polynomial of the input bits. Therefore each bit of Ri is a degree

2O(1
δ

) · 2O(1
δ

) = 2O(1
δ

) polynomial of the bits of Ug. By Theorem 3.1 in LSExt each bit of Ui is a
constant degree polynomial of the input bits. Thus we conclude that for every i ≥ g + 1, each bit
of Ui is a degree 2O(1

δ
) polynomial of the bits of Ug.

24

Therefore we have

c(δ) = 2O(1
δ

).

Note that we need ci > c(δ)ci+1 for every i, 1 ≤ i ≤ 10/δ. Thus the ci’s are bounded by

c(δ)10/δ = 2O(1
δ2

).

Since each Ui has n/(2O(1
δ2

)) bits, it suffices to have

n/(2O(1
δ2

)) > 2O(1
δ2

).

Thus by taking δ ≥ c/
√

log n for some constant c > 1 the disperser can output nΩ(1) bits.

Similarly, we get an affine extractor for sub-linear entropy sources. However, unlike in the
analysis of the affine disperser, the degree of the polynomial cannot be close to n, and can only be
close to log n by Theorem 5.8. Thus we only get δ = c/

√
log logn for some constant c > 1.

Theorem 6.2. There exists a constant c > 1 and an efficient family of functions AExt : {0, 1}n →
{0, 1}m such that m = nΩ(1) and for every affine source X with entropy cn/

√
log logn, |AExt(X)−

Um| = 2−n
Ω(1)

.

Proof Sketch. We essentially use the same algorithm as Algorithm 5.12, except the entropy rate δ
now is sub-constant. We examine the analysis to see how small δ can be. We focus on the first
good block Xg.

As in the analysis of the affine disperser above, we get that in step 4 of Algorithm 5.1, Ug has

n/(2O(1
δ2

)) bits, and the error is 2−n/2
O(1

δ2
)

. We also get that

c(δ) = 2O(1
δ

)

and thus the ci’s are bounded by

c(δ)10/δ = 2O(1
δ2

).

For the xor lemma of Theorem 5.8 to give a non-trivial bound, it suffices to have

2O(1
δ2

) ≤ α log n

for some constant 0 < α < 1. This gives that δ ≥ c/
√

log log n for some constant c > 1. Also, when

this happens, the XOR lemma of Theorem 5.8 gives a correlation upper bound of 2−n
Ω(1)

. The error
of Ug is 2−Ω(n/ logn). Thus by taking the generating matrix of a binary linear asymptotically good

code and choosing nΩ(1) rows, we see that the extractor outputs nΩ(1) bits that are 2−n
Ω(1)

-close to
uniform.

Acknowledgements

We thank David Zuckerman and Yael Tauman Kalai for helpful discussions.

25

References

[BKS+05] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simu-
lating independence: New constructions of condensers, Ramsey graphs, dispersers, and
extractors. In Proc. of 37th STOC, pages 1–10, 2005.

[BSK09] Eli Ben-Sasson and Swastik Kopparty. Affine dispersers from subspace polynomials. In
Proceedings of the 41th Annual ACM Symposium on Theory of Computing, 2009.

[BKS+09] Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and
David Zuckerman. Optimal testing of reed-muller codes. Electronic Colloquium on
Computational Complexity (ECCC), 2009.

[Bou07] Jean Bourgain. On the construction of affine-source extractors. Geometric and Func-
tional Analysis, 1:33–57, 2007.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261,
1988.

[DG10] Matt DeVos and Ariel Gabizon. Simple affine extractors using dimension expansion. In
Proceedings of the 25th Annual IEEE Conference on Computational Complexity, 2010.

[DKSS09] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the
method of multiplicities, with applications to kakeya sets and mergers. In Proceedings of
the 50th Annual IEEE Symposium on Foundations of Computer Science, pages 181–190,
2009.

[DW08] Zeev Dvir and Avi Wigderson. Kakeya sets, new mergers and old extractors. In Pro-
ceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science,
2008.

[FS02] Lance Fortnow and Ronen Shaltiel. Recent developments in explicit constructions of
extractors, 2002.

[GR05] Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over large fields.
In Proc. of 46th FOCS, 2005.

[GRS04] Ariel Gabizon, Ran Raz, and Ronen Shaltiel. Deterministic extractors for bit-fixing
sources by obtaining an independent seed. In Proc. of 45th FOCS, 2004.

[Gol95] Oded Goldreich. Three xor-lemmas - an exposition. Electronic Colloquium on Compu-
tational Complexity (ECCC), 2(56), 1995.

[ILL89] R. Impagliazzo, L. Levin, and M. Luby. Pseudo-random generation from one-way func-
tions. In Proc. of 21st STOC, pages 12–24, 1989.

[Jus72] J. Justensen. A class of constructive asymptotically good algebraic codes. IEEE Trans.
Info. Theory., 18:652656, 1972.

26

[KLR09] Yael Kalai, Xin Li, and Anup Rao. 2-source extractors under computational assump-
tions and cryptography with defective randomness. In Proceedings of the 50th Annual
IEEE Symposium on Foundations of Computer Science, 2009.

[KRVZ06] Jesse Kamp, Anup Rao, Salil Vadhan, and David Zuckerman. Deterministic extractors
for small space sources. In Proc. of 38th STOC, 2006.

[KZ07] Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM Journal on Computing, 36(5):1231–1247, 2007.

[LRVW03] C. J. Lu, Omer Reingold, Salil Vadhan, and Avi Wigderson. Extractors: Optimal up
to constant factors. In Proc. of 35th STOC, pages 602–611, 2003.

[Rao09] Anup Rao. Extractors for low-weight affine sources. In Proceedings of the 24nd Annual
IEEE Conference on Computational Complexity, 2009.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, pages
860–879, 2001.

[TV00] Luca Trevisan and Salil Vadhan. Extracting randomness from samplable distributions.
In Proc. of 41st FOCS, pages 32–42, 2000.

[Vaz85] Umesh Vazirani. Towards a strong communication complexity theory or generating
quasi-random sequences from two communicating slightly-random sources (extended
abstract). In Proceedings of the 17th Annual ACM Symposium on Theory of Computing,
pages 366–378, 1985.

[Vin07] Le Anh Vinh. Szemeredi-trotter type theorem and sum-product estimate in finite fields.
In Arxiv, 2007.

[VW08] Emanuele Viola and Avi Wigderson. Norms, xor lemmas, and lower bounds for poly-
nomials and protocols. Theory of Computing, 4(7):137–168, 2008.

[Yeh10] Amir Yehudayoff. Affine extractors over prime fields. Manuscript, 2010.

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. In Theory of Computing, pages 103–128, 2007.

27

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

