
Testing of exponentially large codes, by a new extension to Weil

bound for character sums

Tali Kaufman ∗

The Weizmann Institute of Science
kaufmant@mit.edu

Shachar Lovett †

The Weizmann Institute of Science
shachar.lovett@weizmann.ac.il

April 13, 2010

Abstract

In this work we consider linear codes which are locally testable in a sublinear number of
queries. We give the first general family of locally testable codes of exponential size. Previous
results of this form were known only for codes of quasi-polynomial size (e.g. Reed-Muller codes).
We accomplish this by showing that any affine invariant code C over Fpn of size ppΩ(n)

is locally
testable using poly(logp |C|/n) queries. Previous general result for affine invariant codes were
known only for sparse codes, i.e. codes of size pO(n). The main new ingredients used in our proof
are a new extension of the Weil bound for character sums, and a Fourier-analytic approach for
estimating the weight distribution of affine invariant codes.

∗Research supported in part by a Koshland Fellowship.
†Research supported by the Israel Science Foundation (grant 1300/05).

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 65 (2010)

Contents

1 Introduction 3
1.1 Character sums . 4
1.2 Connection between character sums and affine invariant codes 5
1.3 New extension to the Weil bound . 8
1.4 Paper organization . 9

2 Testing of affine invariant codes 9
2.1 Basic codes definitions . 9
2.2 Trace codes . 10
2.3 Characterization of affine invariant codes by trace codes 12
2.4 Weight distribution of affine invariant codes . 13
2.5 Trace codes of exponential size are generated by a single orbit 17

3 Extension of the Weil bound 20
3.1 Technical claims . 20

3.1.1 The trace operator . 21
3.1.2 Reduced forms . 21
3.1.3 Properties of derivatives . 23
3.1.4 Additional claims . 26

3.2 The case of high weight g . 26
3.3 The case of low weight g . 27

2

1 Introduction

We study in this work families of locally testable codes. Let FN = Fpn be a finite field, where we
think of p as either constant or small. A code is a family of functions C = {f : Fpn → Fp}. All
codes we consider in this work are linear1. The dimension of a code is dim(C) = logp(|C|).

A code is locally testable if there is a randomized algorithm, which when given as input a function
f : Fpn → Fp, probes f in a small number of locations and determines (with high probability)
whether f ∈ C or f is far2 from all codewords of C. A code is q-locally testable if the number of
probes is at most q, where q is sublinear in the code length, i.e. q = o(N).

Most of the study of locally testable codes has been focused on codes testable with constant
query complexity (i.e. q = O(1)) or with poly-logarithmic query complexity (i.e. q = (logN)O(1)).
They appear as low-degree tests in the IP = PSPACE, MIP = NEXP and PCP = NP
theorems, and indeed the work of [15] (which was later partly derandomized by [8]) elucidates their
role as the “combinatorial heart” of PCPs.

In general, there is a tradeoff between the rate of the code dim(C)/N and the query complexity
of testing this code. A major open problem in this field is whether one can enjoy the best of both
worlds: a code of constant rate which is locally testable with a constant query complexity.

One line of research focuses on constructing explicit codes which try to approach this optimal
tradeoff. The best results to date are by Ben-Sasson and Sudan [6] and Dinur [13] (see also Meir [25])
which achieve an explicit binary code of rate 1

(logN)O(1) which is testable using a constant number
of probes.

A second line of research focuses on characterization of general families of codes that are locally
testable [9, 26, 1, 16, 19, 21, 17, 20, 14, 22]. Many results in this field apply only to sparse
codes over binary fields F2n , which are codes of dimension O(logN) [17, 20, 14, 22]. Another
example is Generalized Reed-Muller codes which are the family of polynomials f : Fpn → Fp

of total degree at most d. These codes are testable using p
d
p−1 = exp(d) queries, while having

dimension O(nd) [1, 16, 19]. Such codes can be locally testable with sublinear number of queries
for d ≤ O(log n), which gives codes of quasi-logarithmic dimension dim(C) ≤ (logN)log logN .

Our work falls into the latter line of research. We exhibit a general family of codes of almost
optimal dimension dim(C) = NΩ(1) which are locally testable with sublinear query complexity. We
achieve this by studying affine invariant codes. A code C = {f : Fpn → Fp} is affine invariant if it
is invariant under affine transformation of the coordinates of input space. That is, if f(x) ∈ C then
also g(x) = f(ax+ b) ∈ C for any a, b ∈ Fpn , a 6= 0. Previous results [14] showed that sparse affine
invariant codes (i.e., codes of size pO(n)) are locally testable. We significantly extend this to codes
of up to exponential size, i.e. of size at most pp

Ω(n)
.

Theorem 1 (Main result). Let C = {f : Fpn → Fp} be a linear code which is affine invariant of
dimension dim(C) ≤ pαn, where α > 0 is an absolute constant. Then C is locally testable with query
complexity q = poly(dim(C)/n) = o(pn). In particular, any sparse affine invariant code (i.e. with
dim(C) = O(n)) is locally testable with constant query complexity q = O(1). The parameter α can
be chosen to be any α < 1/32 for large enough n.

This generalizes previous works in several aspects: our result applies to codes of exponential size
exp(Nα), while previous results apply only to codes of polynomial size NO(1) or quasi-polynomial

1A code C = {f : Fpn → Fp} is linear if for any f(x), g(x) ∈ C also h(x) = αf(x) + βg(x) ∈ C where α, β ∈ Fp.
2If f has distance ε from C, i.e. if ming∈C Prx∈Fpn [f(x) 6= g(x)] = ε, we require the local test to reject f with

probability at least Ω(ε).

3

size exp(logN log logN). Previous results on sparse codes applied only to binary fields F2n , while
our result applies to any field of small characteristic. Note that a recent result of Ben-Sasson and
Sudan [7, 27] shows that affine invariant codes that are testable with constant number of queries
can not have exponential rate. Thus, our testing result of exponentially large codes can not be
improved to testing with constant locality.

The main new ingredients in our work is a Fourier-analytic approach for estimating the weight
distribution of affine invariant codes, and a new extension of the Weil bound for character sums
of low-degree polynomials. We start by describing our new result for character sums for polyno-
mials, and then discuss its relation to proving local testability of affine invariant codes. The proof
of our new extension for the Weil bound relies on techniques borrowed from additive combina-
torics. This demonstrates yet another connection between additive combinatorics and theoretical
computer science. Such connections were used before to establish results regarding pseudorandom
generators [10, 23, 28] and list-decoding of codes [18].

1.1 Character sums

Let F be a finite field. An additive character is a function χ : F→ C for which χ(x+y) = χ(x)χ(y)
(and which is not the identically zero function). For example, if F = Fq is a prime finite field then

the additive characters are given by χa(x) = e
2πi
q
ax for a ∈ Fq. In the general case of F = Fpn ,

the additive characters are given by χa(x) = e
2πi
p

Tr(ax), where a ∈ Fpn and the Trace operator
Tr : Fpn → Fp is defined as Tr(x) =

∑n−1
i=0 x

pi .
The Weil bound for character sums [29] is a general result regarding character sums of low-

degree polynomials over a finite field F. Let f(x) ∈ F[x] be a univariate polynomial of degree k.
Let χ : F→ C be any additive character. Weil’s bound states that either χ(f(x)) is constant, or is
distributed close to uniform when x ∈ F is uniformly chosen.

Theorem 2 (Weil bound [29]). Let f(x) be a univariate polynomial over F of degree ≤ |F|1/2−δ.
Let χ : F→ C be any additive character. Then either χ(f(x)) is constant for all x ∈ F, or

|Ex∈F[χ(f(x))]| ≤ |F|−δ.

The Weil bound is very effective to polynomials of degree k �
√
|F|, however it fails for

polynomials of degree k ≥
√
|F|. We establish a general result in fields of small characteristics Fpn

which allows to extend polynomials by a small number of monomials of larger degree, as long as
they have small weight degree.

Definition 3 (Weight degree). Let t ∈ {0, . . . , pn − 1}. The weight degree of t is the hamming
weight of the digits of t in base p. That is, let t =

∑n−1
i=0 tip

i be the representation of t in base p,
where 0 ≤ ti ≤ p− 1. The weight degree of t is

wt(t) =
n−1∑
i=0

ti.

The weight degree of a monomial xt is the weight degree of t, and the weight degree of a univariate
polynomial f(x) is the maximal weight degree of a monomial in it with a nonzero coefficient.

We prove the following extension of the Weil bound in case f(x) is the sum of a low degree
polynomial and a small number of monomials of bounded weight degree (but of arbitrary degree).

4

Theorem 4 (Extension of the Weil bound). Let f(x) = g(x) + h(x) be a univariate polynomial
over Fpn, where g(x) is a polynomial of degree ≤ |F|1/2−δ and h(x) is the sum of at most k ≥ 1
monomials, each of weight degree at most d. Let χ : Fpn → C be an additive character. Then either
χ(f(x)) is constant for all x ∈ Fpn, or

|Ex∈F[χ(f(x))]| ≤ |Fpn |−
δ

2d22dk .

Note that in order to get a meaningful bound, we need our parameters to obey kd22d ≤ O(n).
Note that for d ≤ (1−ε) log2(n) we may have k = nO(1). This can be compared to a relatively recent
result of Bourgain [4] of a similar flavor. We state it below informally, as the exact formulation is
somewhat complex, and we will not require it in the paper.

Theorem 5 (Bourgain’s extension of Weil bound [4]). Let f(x) = g(x) + h(x) be a univariate
polynomial over a prime finite field Fq, where g(x) is a polynomial of degree ≤ |Fq|1/2−δ and h(x)
is the sum of at most k = O(1) monomials, each of degree at most |Fq|1−ε. Let χ : Fq → C be an
additive character. Then either χ(f(x)) is constant for all x ∈ Fq, or∣∣Ex∈Fq [χ(f(x))]

∣∣ ≤ |Fq|−Ω(1).

Comparing our result with the result of Bourgain, we note two important advantages of our
work: first, we can handle non-prime finite fields; second, when d ≤ O(log n) is small enough, we
may have k = poly(n) monomials of high degree, while in the result of Bourgain one can take at
most k = O(1) such monomials. In contrast, the result of Bourgain does not assume a bound on the
weight degree of the monomials. The two advantages of our work are crucial for the application to
locally testing of exponentially large affine invariant codes. Bourgain’s result was used in a similar
fashion by Grigorescu, Kaufman and Sudan [14] to establish a similar result which holds only for
sparse affine invariant codes, i.e. codes of polynomial size. Our new character sum result allows us
to extend their techniques to handle exponentially large affine invariant codes.

1.2 Connection between character sums and affine invariant codes

Affine invariant codes can be characterized by trace codes. Let S ⊆ {0, . . . , pn − 1}. The S-trace
code over Fpn is defined as the family of functions f : Fpn → Fp given by

T (S) =

{(
Tr(
∑
e∈S

aex
e) : Fpn → Fp

)
: ae ∈ Fpn

}
.

where we recall that the Trace function Tr : Fpn → Fp is given by Tr(x) =
∑n−1

i=0 x
pi . For example,

Generalized Reed-Muller codes RM(n, d), which are the family of functions f : Fnp → Fp where f is
an n-variate polynomial of total degree at most d, can be equivalently characterized as

RM(n, d) = T ({e ∈ {0, . . . , pn − 1} : wt(e) ≤ d}).

We define two important properties of trace codes.

Definition 6 (Shift closed). Let S ⊆ {0, . . . , pn − 1}. The set S is said to be shift closed if, for
every e ∈ S, we also have that ep` (mod pn) ∈ S for all ` = 1, . . . , n.

The term shift closed comes from viewing elements e ∈ S as vectors in Fnp , given by the repre-
sentation of e in base p. In this case, ep` (mod pn) corresponds to a cyclic shift of the vector by `
coordinates.

5

Definition 7 (Shadow closed). Let S ⊆ {0, . . . , pn − 1}. The set S is said to be shadow closed if
the following holds. For any e ∈ S, let e =

∑n−1
i=0 eip

i be the representation of e in base p. Define
the support of e to be the set of nonzero digits of e,

support(e) = {0 ≤ i ≤ n− 1 : ei 6= 0}.

Let e′ be obtained from e by changing some of the non-zero digits of e, i.e.

e′ =
∑

i∈support(e)

e′ip
i.

Then we should have that also e′ ∈ S. That is, S is shadow closed if ∑
i∈support(e)

e′ip
i : e ∈ S, (e′i)i∈support(e) ∈ Fp

 ⊆ S.
A set S is said to be affine closed if it is both shift closed and shadow closed. The following

general result was established by Kafuman and Sudan [21]. They show that the class of affine
invariant linear codes is equivalent to the class of trace codes of affine closed sets.

Theorem 8 (Monomial extraction [21]). Let C = {f : Fpn → Fp} be an affine invariant linear
code. Then there exists an affine closed set S ⊆ {0, . . . , pn − 1} such that C = T (S). Moreover, for
any affine closed set S the code T (S) is linear and affine invariant.

Thus, to study affine invariant codes, we need to study trace codes. We now introduce two
notions. The dual of a code C = {f : Fpn → Fp} is defined as

C⊥ =

(g : Fpn → Fp) :
∑
x∈Fpn

f(x)g(x) = 0 ∀f ∈ C

 .

The affine closure of a function g : Fpn → Fp is the set of functions obtained by applying affine
transformations on the coordinates of the input space of f , that is

affine(g) =
{

(g(ax+ b) : Fpn → Fp) : a, b ∈ Fpn
}
.

It is easy to verify that if C is an affine invariant code, and g ∈ C⊥, then in fact affine(g) ⊆ C⊥. An
important case is when in fact affine(g) spans the entire code C⊥.

Definition 9 (Single orbit property). Let g ∈ C⊥. We say that C has the single orbit property for
g if the affine closure of g is a spanning set for C⊥, that is if

C = Span(affine(g))⊥.

We will shortly see that the single orbit property is tightly connected to locally testing properties
of the code C. First, define the weight of g : Fpn → Fp to be the number of coordinates where g
evaluates to a nonzero value,

wt(g) = |{x ∈ Fpn : g(x) 6= 0}|.
The following result was established by Kaufman and Sudan [21]. If C is an affine invariant code
which has the single orbit property for a codeword g ∈ C⊥ of small weight, then C can be locally
tested3.

3In fact, the local test for C is performed by computing
∑
f(ax+ b)g(x) for a small random subset of a, b ∈ Fpn .

Note that to perform each such test, we only need to query f(x) only on x ∈ Fpn for which g(x) 6= 0.

6

Theorem 10 (Theorem 2.9 in [21]). Let C = {f : Fpn → Fp} be a linear code which is affine
invariant. Assume there exists g ∈ C⊥ such that C has the single orbit property for g. Then C can
be locally tested with O(wt(g)2) queries.

Hence, to show that C can be locally tested, it is sufficient to demonstrate that C⊥ is spanned
by the orbit of a short codeword under the affine group.

Let C = T (S) for some affine closed set S ⊆ {0, . . . , pn − 1}. The dual code of C is a dual-trace
code dT (S), which can be verified (Claim 15) to be

dT (S) =
{

(f : Fpn → Fp) :
∑
x∈Fpn

f(x)xe = 0 ∀e ∈ S
}
.

We need to establish that there exists f ∈ dT (S) of small weight such that Span(affine(f)) =
dT (S). Assume that this is false, i.e. that Span(affine(f)) (dT (S). Using the fact that S is affine
invariant, we show (Corollary 32) that in fact f ∈ dT (S ∪ {e}) where e ∈ {0, . . . , pn − 1} \ S has
small weight.

Hence, in order to conclude the proof, we will show that for a suitably chosen weight `, there
exist codewords on weight ` in dT (S) which are not in any of dT (S ∪ {e}) for any e /∈ S which has
small weight.

The main tool we develop in order to do so, is a tight estimate on the number of codewords of
weight ` in dual-trace codes. We show the following result.

Lemma (Lemma 25, informal statement). Let S ⊆ {0, . . . , pn − 1} be affine closed of size |S| ≤
pΩ(n). Then there exists `min = poly(|S|) and `max = pΩ(n) , such that for any `min ≤ ` ≤ `max the
following holds. The number of codewords in dT (S) of weight exactly ` is given by

C(p, `)
`!

pn`−|S
′|(1 + o(1))

where S′ = {e ∈ S : (p, e) = 1} is the set of elements in S which are co-prime to p, and where
C(p, `) is given by

C(p, `) =
∣∣∣∣{(v1, . . . , v`) ∈ (Fp \ {0})` : v1 + . . .+ v` = 0

}∣∣∣∣.
Similar results were previously obtained over binary fields F2n using properties of Krawtchouk

polynomials [17, 20]. Our technique is different, and relies on methods from additive combinatorics
and Fourier analysis. In particular it allows us to extend the result to arbitrary fields and allows to
obtain bounds for a wider range of values of `. The proof of this lemma relies on the new extension
of the Weil bound we establish.

Given the lemma, the proof of Theorem 1 can be easily concluded. Recall that we showed that
in order to prove local testability of an affine invariant code T (S), we need to show that there is
a short codeword whose affine closure linearly spans dT (S). We showed that any f ∈ dT (S) for
which this does not occur, is in fact contained in some dT (S ∪{e}) for some e /∈ S of small weight.
Thus, to conclude the proof we need to show that there exist small weight codewords in

dT (S) \
⋃

e/∈S:e has small weight

dT (S ∪ {e}).

To this end we apply the tight bounds we obtain for the number of codewords of weight ` in dual-
trace codes. We first show that if C is affine invariant of size |C| ≤ pp

O(n)
then in fact C = dT (S)

7

where S is affine invariant of size |S| ≤ pO(n) , so our estimates for the number of codewords apply
for dT (S). Fix a suitable weight `. The number of codewords of weight ` in dT (S) is given by

W` =
C(p, `)
`!

pn(`−|S′|)(1 + o(1)),

where we recall that S′ = {e ∈ S : (e, p) = 1}. On the other hand, as S is affine closed and e /∈ S,
we can bound the number of codewords of weight ` in any of the codes dT (S ∪ {e}) by

≤ C(p, `)
`!

pn(`−|S′|−1)(1 + o(1)) ≈ p−nW`.

Thus to conclude we just need to verify that the number of distinct e of small weight is� pn. This
then can be verified by a routine calculation.

1.3 New extension to the Weil bound

We sketch in high level how we achieve the new extension to the Weil bound. Let f(x) = g(x)+h(x)
be a univariate polynomial over Fpn , where deg(g) ≤ |Fpn |1/2−δ and h(x) is the sum of k monomials,
each of weight degree at most d. We need to prove that either Tr(f) : Fpn → Fp is a constant
function, or that it is highly unbiased (note that proving the result for the Trace operator implies
it immediately for all additive characters).

The analysis divides into two cases: either g has high weight-degree wt(g) ≥ d + 1, or g
has low weight-degree wt(g) ≤ d. The first case is the easier one, and both cases rely on an
analysis of directional derivatives of polynomials. The directional derivative of a polynomial f(x)
in direction y ∈ Fpn is given by fy(x) = f(x + y) − f(x), and iterated derivatives are defined as
fy1,...,yk(x) = (fy1,...,yk−1

)yk(x).

The case of high weight g The first case, where wt(g) ≥ d + 1 is easy to analyze by taking
enough derivatives that eliminate h(x), and reducing to a theorem of Deligne [12], which is a
multivariate analog of Weil’s bound. Specifically, For any y1, . . . , yd+1 one can verify that since
wt(h) ≤ d then

hy1,...,yd+1
≡ 0,

hence fy1,...,yd+1
≡ gy1,...,yd+1

. An iterated application of the Cauchy-Schwarz inequality yields that∣∣∣∣Ex∈Fpn [ωTr(f(x))]
∣∣∣∣2d+1

≤
∣∣∣∣Ex,y1,...,yd+1∈Fpn [ωTr(fy1,...,yd+1

(x))]
∣∣∣∣

where ω = e
2πi
p . Hence to prove that Tr(f(x)) in unbiased for uniform x, it is sufficient to prove that

Tr(fy1,...,yd+1
(x)) is unbiased for uniform x, y1, . . . , yd+1. We then verify that as g is of weight degree

at least d+ 1, it is not eliminated by taking generic d+ 1 derivatives, and we get that fy1,...,yd+1
(x)

is a nonzero polynomial in the variables x, y1, . . . , yd+1 of total degree at most deg(g) ≤ |Fpn |1/2−δ.
Moreover, we can prove that Tr(fy1,...,yd+1

(x)) is not a constant function; hence by Deligne’s theorem
we deduce that ∣∣∣∣Ex,y1,...,yd+1∈Fpn [ωTr(fy1,...,yd+1

(x))]
∣∣∣∣ ≤ |F|−δ

and the bound on the bias of Tr(f(x)) follows.

8

The case of low weight g The harder case is handling g of small weight wt(g) ≤ d, since h cannot
simply be eliminated by taking enough iterated derivatives, without eliminating f altogether. We
solve this problem by taking a smaller number of derivatives, such that f is not eliminated, but
instead is transformed into a special class of polynomials (p-multilinear polynomials). We then
proceed to study this family of polynomials, and are able to bound the bias of such polynomials,
given that they came from a polynomial f = g + h where g has low degree and h is the sum of a
small number of low weight degree monomials. Most of the technical challenges of the proof are in
this part.

1.4 Paper organization

We prove our main result, Theorem 1, on the local testing properties of affine invariant codes in
Section 2. The proof uses our new extension to the Weil bound, which we prove in Section 3. Both
sections are written in a self-contained manner, so that readers that are interested in the details of
only one of these results can read only the relevant section. We note that throughout the paper we
do not attempt to optimize constants.

2 Testing of affine invariant codes

We study affine invariant codes in this section. We begin with some definitions and stating our
main theorem formally. We then proceed to prove some properties of affine invariant codes, and
then apply those to prove our main result, Theorem 1.

2.1 Basic codes definitions

Let F = Fpn be a finite field. A code is a set of functions C = {f : Fpn → Fp}. A code is called
linear if it forms a linear space, i.e. if f(x), g(x) ∈ C then also h(x) = αf(x) + βg(x) ∈ C where
α, β ∈ Fp. We will only consider linear codes in this paper. For a linear code C, its dual is the set
functions which are normal to all codewords of C.

Definition 11 (Dual code). Let C = {f : Fnp → Fp} be some linear code over Fp. The dual code
C⊥ is defined as

C⊥ =
{

(g : Fnp → Fp) :
∑
x∈Fnp

f(x)g(x) = 0 ∀f ∈ C
}
.

Note that the dual of the dual is the original code, i.e. (C⊥)⊥ = C. We next define the weight
and support of a codeword.

Definition 12 (Weight and support of codeword). The support of a codeword f : Fnp → Fp is the
set of x ∈ Fnp for which f(x) 6= 0,

support(f) = {x ∈ Fpn : f(x) 6= 0}.

The weight of a codeword is the size of its support,

wt(f) = |support(f)| = |{x ∈ Fpn : f(x) 6= 0}|.

9

2.2 Trace codes

Definition 13 (trace codes). Let S ⊆ {0, . . . , pn−1}. The S-trace code is a code whose codewords
are evaluations of functions f : Fpn → Fp given by

T (S) =

{(∑
e∈S

Tr(αexe) : Fpn → Fp

)
: αe ∈ Fp

}
,

where the Trace function Tr : Fpn → Fp is given by Tr(x) =
∑n−1

i=0 x
pi .

For example, dual-BCH codes of weight t correspond to the special case

dBCH(t) = T ({1, 2, . . . , t}).

Generalized Reed-Muller codes over Fnp of total degree d are equivalent to

RM(n, d) = T ({e ∈ {0, . . . , pn − 1} : wt(e) ≤ d}).

The following fact gives some simple properties of the Trace operator. For a proof, see any
standard Algebra textbook, e.g. [5].

Fact 14 (Facts on the trace operator). Let Tr(x) =
∑n−1

i=0 x
pi be the trace operator over Fpn. Then

1. For any x ∈ Fpn, Tr(x) ∈ Fp. That is, Tr : Fpn → Fp.

2. The trace operator is linear. That is, for any x, y ∈ Fpn and a, b ∈ Fp we have

Tr(ax+ by) = aTr(x) + bTr(y).

3. The trace operator is invariant under the Frobenius map. That is, for any x ∈ Fpn and
0 ≤ i ≤ n− 1 we have

Tr(xp
i
) = Tr(x).

4. Let x ∈ Fpn, and assume that for any α ∈ Fpn we have Tr(αx) = 0. Then x = 0.

We denote the dual codeword to T (S) by dT (S) = T (S)⊥. The following claim characterizes
dual-trace codes.

Claim 15 (Characterization of dual-trace codes). Let S ⊆ {0, . . . , pn − 1}. Then

dT (S) =
{

(g : Fpn → Fp) :
∑
x∈Fpn

g(x)xe = 0 ∀e ∈ S
}
.

Proof. Let g : Fpn → Fp be a function such that
∑
g(x)xe = 0 for all e ∈ S. We first verify

that g ∈ dT (S). To do so, we need to show that
∑

x f(x)g(x) = 0 for any f ∈ T (S). Let
f =

∑
e∈S Tr(αexe) ∈ T (S). Then we have∑

x∈Fpn
f(x)g(x) =

∑
x∈Fpn

∑
e∈S

Tr(αexe)g(x)

=
∑
e∈S

Tr(αe
∑
x∈Fpn

xeg(x)) = 0,

10

where we used the fact that Trace is a linear operator over Fpn , thus Tr(ax+by) = aTr(x)+bTr(y) for
any a, b ∈ Fp and x, y ∈ Fpn . Thus, to prove the claim we need to establish that for any g ∈ dT (S)
and any e ∈ S we have

∑
g(x)xe = 0. Note that for any αe ∈ Fpn we have f(x) = αex

e ∈ T (S),
thus we have ∑

x∈Fpn
Tr(αexeg(x)) = 0.

Let z =
∑

x∈Fpn g(x)xe. We obtained that for any αe ∈ Fpn we have

Tr(αez) = 0.

This can only hold if z = 0, thus we conclude that we must have that
∑

x g(x)xe = 0 for all
e ∈ S.

The next claim shows that if S1 ⊆ S2 then T (S1) ⊆ T (S2) and dT (S1) ⊇ dT (S2).

Claim 16 (Monotonicity of trace codes). Let S1 ⊆ S2 ⊆ {0, . . . , pn−1}. Then we have the following
inclusions

1. T (S1) ⊆ T (S2).

2. dT (S1) ⊇ dT (S2).

Proof. The claim follows immediately from the definition of trace codes and of dual codes.

We will consider in the following few claims only trace codes for S ⊆ {1, . . . , pn − 1}, i.e. we
disallow 0 ∈ S. We will later also deal with sets containing 0. We now define irreducible degrees
and reduced forms. We will see that it is enough to study trace codes over reduced form sets.

Definition 17 (Irreducible degrees and reduced form). We define R as the set of co-prime elements
to p,

R = {1 ≤ e ≤ pn − 1 : (e, p) = 1}.

For 1 ≤ e ≤ pn − 1 define its reduced form e′ ∈ R as follows. Let e = pkm where (p,m) = 1. Then
the reduced form of e is e′ = m. For a subset S ⊆ {1, . . . , pn − 1} define its reduced form S′ ⊆ R
as S′ = {e′ : e ∈ S}.

Claim 18 (Trace codes are defined over reduce form sets). Let S ⊆ {1, . . . , pn − 1}. Let S′ ⊆ R be
the reduced form of S. Then dT (S) = dT (S′) and T (S) = T (S′).

Proof. By Claim 15 we have that g ∈ dT (S) iff
∑
g(x)xe = 0 for all e ∈ S. For any 0 ≤ k ≤ n− 1

we have (∑
g(x)xe

)pk
=
∑

g(x)xep
k

=
∑

g(x)xep
k (mod pn),

where we used the facts that x → xp
k

is a linear map over Fpn , and that for any x ∈ Fpn we
have xp

n
= x. Hence we get that

∑
g(x)xe = 0 iff

∑
g(x)xe

′
= 0 for any e′ such that e′ = epk

(mod pn). This shows that dT (S) = dT (S′), since for every element e ∈ S there is some e′ = epk

(mod pn) ∈ S′ and vice versa. Since dT (S) = dT (S′) we also get by the uniqueness of dual codes
that T (S) = dT (S)⊥ = dT (S′)⊥ = T (S′).

The next claim establishes the size of trace codes defined over reduced form sets S ⊆ R.

Claim 19 (Size of trace codes). Let S ⊆ {1, . . . , pn − 1}. Let S′ ⊆ R be the reduced form of S.
Then |T (S)| = pn|S

′|.

11

Proof. By Claim 18 we know that T (S) = T (S′). The codewords of T (S′) are functions of the
form

f(x) =
∑
e∈S′

Tr(αexe),

where αe ∈ Fpn . The number of combinations of {αe : e ∈ S′} is |Fpn ||S
′| = pn|S

′|. Hence to
conclude we need to show any two such settings are distinct. Since the code is linear, it is enough
to show that if the coefficients αe are not all zero, then the codeword is not the all zeros codeword,
i.e. there is some x ∈ Fpn such that ∑

e∈S′
Tr(αexe) 6= 0.

Let p(x) =
∑

e∈S′ Tr(αexe), and note that

p(x) =
∑
e∈S′

n−1∑
i=0

αp
i

e x
epi

=
∑
e∈S′

n−1∑
i=0

αp
i

e x
epi (mod pn),

where we used the facts that Tr(x) =
∑n−1

i=0 x
pi as well as the identity xt = xt (mod pn) which holds

for any t. Since S′ ⊆ R is a set of
all the monomials xep

i
for e ∈ S′ are disjoint. Hence p(x) is not the all zeros polynomial. As

deg(p) ≤ pn − 1 there must exist some x ∈ Fpn such that p(x) 6= 0, and the codeword defined by f
is not the all zeros codeword.

2.3 Characterization of affine invariant codes by trace codes

We start by recalling affine invariant codes, which are codes that are closed under an affine trans-
formation of the input space coordinates.

Definition 20 (Affine closure, and affine invariant codes). Let f : Fpn → Fp be a function. The
affine closure of f is the set of functions

affine(f) =
{

(f(ax+ b) : Fpn → Fp) : a, b ∈ Fpn
}
.

A code C = {f : Fpn → Fp} is called affine invariant if for any f ∈ C, we have affine(f) ⊆ C. A
codeword f ∈ C affinely generates C if

C = Span(affine(f)).

We can characterize linear codes which are affine invariant as a special subfamily of trace codes.
To this end we will require some definitions. We first define shift closure of a set, which is tightly
related to the reduced form we previously defined.

Definition 21 (Shift closed). Let e ∈ {0, . . . , pn − 1}. The shift closure of e is defined as the set

shift(e) = {ep` (mod pn) : ` = 1, . . . , n}.

The shift closure of a set S ⊆ {0, . . . , pn − 1} is defined as the union of the shift closures of its
elements,

shift(S) = ∪e∈Sshift(e).

A set S ⊆ {0, . . . , pn − 1} is said to be shift closed if S = shift(S).

12

The term shift closed comes from viewing elements e ∈ S as vectors in Fnp , given by the repre-
sentation of e in base p. In this case, ep` (mod pn) corresponds to a cyclic shift of the vector by `
coordinates. The following claim shows that trace codes are invariant under shift closure.

Claim 22. Let S ⊆ {0, . . . , pn − 1}. Then

dT (S) = dT (shift(S)), T (S) = T (shift(S)).

Proof. The proof is identical to the proof of Claim 18.

We next define the notion of shadow closed sets.

Definition 23 (Shadow closed). Let S ⊆ {0, . . . , pn − 1}. The set S is said to be shadow closed if
the following holds. For any e ∈ S, let e =

∑n−1
i=0 eip

i be the representation of e in base p. Define
the support of e to be the set of nonzero digits of e,

support(e) = {0 ≤ i ≤ n− 1 : ei 6= 0}.

Let e′ be obtained from e by changing some of the non-zero digits of e, i.e.

e′ =
∑

i∈support(e)

e′ip
i.

Then we should have that also e′ ∈ S. That is, S is shadow closed if ∑
i∈support(e)

e′ip
i : e ∈ S, (e′i)i∈support(e) ∈ Fp

 ⊆ S.
Definition 24 (Affine closed). A set S ⊆ {0, . . . , pn − 1} is affine closed if it is both shift closed
and shadow closed.

We recall the following theorem of Kaufman and Sudan [21] that we presented in the intro-
duction. It shows that affine invariant linear codes are equivalent to trace codes over affine closed
sets.

Theorem (Theorem 8: Equivalence of affine invariant codes and trace codes of affine closed sets).
Let C = {f : Fpn → Fp} be an affine invariant linear code. Then there exists an affine closed set
S ⊆ {0, . . . , pn − 1} such that C = T (S). Moreover, for any affine closed set S the code T (S) is
linear and affine invariant.

2.4 Weight distribution of affine invariant codes

Theorem 8 tells us that in order to study affine invariant codes, it suffices to study trace codes of
affine closed sets. In this subsection we establish the following lemma, which gives a tight estimate
on the number of codewords in dT (S) for affine closed sets S. For the statement of the lemma
recall that R = {1 ≤ e ≤ pn − 1 : (e, p) = 1} is the set of elements co-prime to p.

Lemma 25 (Weight distribution of dual trace affine closed codes). There exist absolute constants
c, c′ > 1 such that the following is true. Let S ⊆ {0, . . . , pn−1} be affine closed of size |S| ≤ 1

c′ p
n/c.

13

Then there exists `min = c′|S ∩ R|c and `max = 1
c′ p

n/c, such that for any `min ≤ ` ≤ `max the
following holds. The number of codewords in dT (S) of weight exactly ` is given by

C(p, `)
`!

pn`−|S∩R|(1 + ε)

where C(p, `) is defined as

C(p, `) =
∣∣∣∣{(v1, . . . , v`) ∈ (Fp \ {0})` : v1 + . . .+ v` = 0

}∣∣∣∣.
and |ε| ≤ p−n/2 � 1. In particular, one can take c = 8 and c′ = 16.

We start by showing a general bound on the weight degree of elements of affine closed sets, in
terms of the size of the set.

Claim 26 (Weight degree bound on affine closed sets). Let S ⊆ {0, . . . , pn− 1} such that S is affine
closed. Then for any e ∈ S,

wt(e) ≤ logp |S ∩R|+ 1.

Proof. Let S′ = S ∩ R. Let e ∈ S be of weight k ≥ 1. By taking some shift of e we may assume
e ∈ R (that is, 0 ∈ support(e)), hence e ∈ S′ = S ∩R. Consider the set

E′ =
{ ∑
i∈support(e)

e′ip
i : e′i ∈ Fp, e′0 6= 0

}
.

Note that as S is shadow closed, we have E′ ⊆ S. Moreover since e′0 6= 0 we have E′ ⊆ R, hence
E′ ⊆ S′ = S ∩R. Thus |E′| ≤ |S′|. On the other hand,

|E′| = (p− 1)pwt(e)−1.

Hence we conclude that wt(e) ≤ logp(
p
p−1 |S

′|) ≤ logp |S′|+ 1.

We will need the following simple claim.

Claim 27 (Trace is not constant). Let f(x) =
∑

e∈R αex
e be a nonzero polynomial. Then Tr(f(x)) :

Fpn → Fp is not a constant function.

Proof. Assume for contradiction that Tr(f(x)) = a for all x ∈ Fpn . Let q(x) = Tr(f(x)) − a. We
have

q(x) = −a+
n−1∑
i=0

(
∑
e∈R

αex
e)p

i
= −a+

n−1∑
i=0

∑
e∈R

(αe)p
i
xep

i (mod pn).

Since e ∈ R all the degrees epi (mod pn) are distinct and different from 0. Thus q(x) is not the
zero polynomial. Since deg(q) ≤ pn − 1 we have that there must be x such that q(x) 6= 0, hence
Tr(f(x)) 6= a.

The next lemma is a general lemma, which estimates the number of elements in dT (S) where
S is a relatively small set of elements of small weight degree. We will then show that the lemma
can be applied to any affine invariant set S which is not too large.

14

Lemma 28 (Weight distribution of dual trace codes of reduced form sets). There exists an absolute
constant c > 1 such that the following is true. Let S ⊆ R be such that for any e ∈ S its weight
degree is at most wt(e) ≤ d. There exist `min = c|S|2d22d and `max = pn/c, such that for any
`min ≤ ` ≤ `max the following holds.

1. The number of codewords in dT (S) of weight exactly ` is given by

(p− 1)`

`!
pn`−|S|(1 + ε).

where |ε| ≤ p−n/2 � 1.

2. The number of codewords in dT (S ∪ {0}) of weight exactly ` is given by

C(p, `)
`!

pn`−|S|(1 + ε).

where |ε| ≤ p−n/2 and C(p, `) is defined as

C(p, `) =
∣∣∣∣{(v1, . . . , v`) ∈ (Fp \ {0})` : v1 + . . .+ v` = 0

}∣∣∣∣.
In particular, one can take c = 8.

Proof. We start by proving the estimate for dT (S). For any v = (v1, . . . , v`) ∈ {1, . . . , p−1}` define
the sets

A`(v) = {(α1, . . . , α`) ∈ F`pn :
∑̀
i=1

viα
e
i = 0 ∀e ∈ S}

and
B`(v) = {(α1, . . . , α`) ∈ A`(v) : α1, . . . , α` are all distinct}.

Let f : Fnp → Fp be a function f ∈ dT (S), such that f has weight exactly `. Equivalently, there are
distinct points α1, . . . , α` ∈ Fpn such that

∑
f(αi)αei = 0 for all e ∈ S. We can identify f uniquely

by the list of points (α1, . . . , α`) and the evaluation of f on these points v = (f(α1), . . . , f(α`)) ∈
{1, . . . , p − 1}`. Since the order of α1, . . . , α` does not matter, and they are all distinct, there are
`! elements in ·∪B`(v) which correspond to f , (i.e. these elements correspond to all orderings of
α1, . . . , α`). Thus we obtain the following identity,

Number of codewords in dT (S) of weight ` =
1
`!

∑
v∈{1,...,p−1}`

|B`(v)|.

Hence, to conclude the proof we will show that |B`(v)| ≈ pn(`−|S|). In fact, we will first show that
|A`(v)| ≈ pn(`−|S|) and then deduce the estimate for |B`(v)|.

Fix some v ∈ {1, . . . , p− 1}`. We will now show an estimate on |A`(v)|, where the main tool we
use is Fourier analysis. Let α = (αe : e ∈ S) ∈ FSpn , and define φα : Fpn → Fp by

φα(x) = Tr(
∑
e∈S

αex
e).

Take any tuple (x1, . . . , x`) ∈ F`pn , and consider

µ(x1, . . . , x`) = Eα∈FSpn

[
ωv1φα(x1)+...+v`φα(x`)

]
,

15

where ω = e
2πi
p is a p-root of unity. We claim that if (x1, . . . , x`) ∈ A`(v) then µ(x1, . . . , x`) = 1,

and if (x1, . . . , x`) 6∈ A`(v) then µ(x1, . . . , x`) = 0. To see that,

µ(x1, . . . , x`) = Eα∈FSpn

[
ωTr(

∑
e∈S αe(v1xe1+...+v`x

e
`))
]

=
∏
e∈S

Eαe∈Fpn
[
ωTr(αe(v1xe1+...+v`x

e
`))
]

=
∏
e∈S

1v1xe1+...+v`x
e
`=0 = 1(x1,...,x`)∈A`(v).

Hence we have

|Fpn |−`|A`(v)| = Ex1,...,x`∈Fpn [µ(x1, . . . , x`)]

= Ex1,...,x`∈FpnEα∈FSpn

[
ωTr(

∑
e∈S αe(v1xe1+...+v`x

e
`))
]

= Eα∈FSpn

∏̀
i=1

Exi∈Fpn
[
ωTr(

∑
e∈S αevix

e
i)
]

We partition the expectation to the cases where α = 0S and α 6= 0S . When α = 0S then for all
i = 1, . . . , ` we have that

Exi∈Fpn
[
ωTr(

∑
e∈S αevix

e
i)
]

= 1.

Consider now any α 6= 0S and any i = 1, . . . , `. As vi ∈ Fp \ {0} then also αvi 6= 0S . We will show
that Tr(

∑
e∈S αevix

e
i) has small bias . To this end we apply Theorem 4. Let f(x) = g(x) + h(x)

for g(x) = 0 and h(x) =
∑

e∈S αevix
e
i . As S ⊆ R and not all αe = 0, we have by Claim 27 that

Tr(f) is not constant. Our condition on the set S was that wt(e) ≤ d for any e ∈ S. Hence we get
by Theorem 4 (for δ = 1/2) that∣∣∣Ex∈Fpn

[
ωTr(

∑
e∈S αevix

e)
]∣∣∣ ≤ |Fpn |− 1

4|S|d22d .

Hence we deduce that
|A`(v)| = |Fpn |`−|S|(1 + ε)

where |ε| ≤ |Fpn |
|S|−`· 1

4|S|d22d . Thus, if we take ` ≥ 8|S|2d22d we get that |ε| ≤ p−n|S| ≤ p−n � 1.
To conclude, we need to derive an estimate on |B`(v)|. Let C`(v) = A`(v) \ B`(v). We will

show that |C`(v)| � |B`(v)|, and hence |B`(v)| ≈ |A`(v)|. To derive this, note that if (α1, . . . , α`) ∈
C`(v), then α1, . . . , α` are not all distinct, that is, αi = αj for some distinct i < j. Define
v(i,j) ∈ {1, . . . , p − 1}`−1 by ”joining” αi and αj , i.e. v

(i,j)
a = va for 1 ≤ a < i and i < a < j,

v
(i,j)
i = vi + vj , v

(i,j)
a = va+1 for a > j. Then we can identify uniquely (α1, . . . , α`) ∈ C`(v) with

α(i,j) = (α1, . . . , αj−1, αj+1, . . . , α`) ∈ A`−1(v(i,j)). Hence we get

|C`(v)| ≤
∑
i<j

|A`−1(vi,j)| ≤
(
`

2

)
|A`−1(·)| ≤ `2|Fpn |`−1−|S|(1 + ε) =

`2

pn
|A`(v)|(1 + ε).

Hence we get that
|B(v)| = |Fpn |`−|S|(1 + ε′)

where ε′ = `2

pn + ε. Thus if ` ≤ pn/8 we get that `2

pn � p−n/2. Hence we finished the proof of the
first claim.

16

The proof of the second claim is completely analogous, except if we consider dT (S ∪ {0}), we
have that additional requirement that v1 + . . .+ v` = 0. Thus one should not consider A`(v) for all
v ∈ (Fp \ {0})`, but only those corresponding to v ∈ C(p, `). Thus we have

Number of codewords in dT (S ∪ {0}) of weight ` =
1
`!

∑
v∈C(p,`)

|B`(v)|.

and the proof follows by the estimates we proved on |B`(v)|.

We can now deduce Lemma 25 from Claim 26 and Lemma 28.

Proof of Lemma 25. Let S ⊆ {0, . . . , pn − 1} be affine closed. We have that

dT (S) = dT ((S ∩R) ∪ {0}).

By Claim 26 the maximal weight of elements in S is at most

d ≤ logp |S ∩R|+ 1.

Applying Lemma 28, we get that for `min = 16 · |S ∩R|4 ≥ 8|S ∩R|2d22d and `max = 1
16p

n/4, we get
that for every `min ≤ ` ≤ `max the number of codewords of weight ` in dT (S) = dT ((S ∩R) ∪ {0})
is

C(p, `)
`!

pn`−|S∩R|(1 + ε)

where |ε| ≤ p−n/2.

2.5 Trace codes of exponential size are generated by a single orbit

We prove in this subsection that any affine invariant linear code of up to exponential size is generated
by a single orbit of a dual codeword. Combining this with Theorem 10 we get that any such code
is locally testable, which prove our main result, Theorem 1. We now state the main theorem we
prove in this subsection.

Theorem 29 (Affine invariant codes are generated by a single orbit). There exist absolute constants
0 < α < 1 and c, c′ ≥ 1 such that the following is true. Let C = {f : Fpn → Fp} be an affine invariant
linear code, such that dim(C) ≤ 1

c′ p
αn. Then there exists f ∈ C⊥ such that

affine(f)⊥ = C

and of weight
wt(f) ≤ c′(dim(C)/n)c.

In particular, one may choose α = 1/16, c = 4 and c′ = (2p)8.

Let C = T (S) be an affine invariant code where S ⊆ {0, . . . , pn − 1} is affine closed. We start
by showing that if some f ∈ C⊥ = dT (S) does not generate dT (S), then in fact f ∈ dT (S ∪ {e})
where e ∈ {1, . . . , pn − 1} \ S has small weight (Corollary 32). From this and the exact estimates
for the weight distribution for dual trace codes we derive Theorem 29. Before proving Corollary 32
we will require two technical claims.

17

Claim 30. Let S ⊆ {0, . . . , pn−1} be affine closed. Let f ∈ dT (S) be a codeword which does not
affinely generate dT (S), i.e.

affine(f) (dT (S).

Then
affine(f) = dT (T)

for some affine closed T) S.

Proof. The code affine(f) is an affine invariant code which is a proper subset of dT (S). By
Theorem 8 we know that affine(f) = dT (T) for some affine closed T ⊆ {0, . . . , pn − 1}. Since
dT (T) (dT (S) we must have that T) S.

Claim 31. Let S (T ⊆ {0, . . . , pn − 1} such that both S and T are affine closed. Then there exist
an element e ∈ (T \ S) ∩R such that

wt(e) ≤ logp |S ∩R|+ 2.

Proof. Let S′ = S ∩ R and T ′ = T ∩ R. We have S′ (T ′ as otherwise, if S′ = T ′, we would have
S = affine(S′) = affine(T ′) = T .

Let k = blogp |S′|c + 2. We argue there is e ∈ T ′ \ S′ of weight at most k. Otherwise, let
e ∈ S′ \ T ′ such that wt(e) > k. Consider the set

E = shadow(e) ∩R =

 ∑
i∈support(e)

e′ip
i : e′i ∈ Fp, e′0 6= 0

 ,

where we use the fact that since e ∈ R then 0 ∈ support(e). Note that by definition, E ⊆ T ′, since
T is affine closed hence in particular shadow closed.

Let e′ ∈ E ⊆ T ′ such that wt(e′) = k (by setting wt(e) − k digits of e in base p to zero).
Consider the set

E′ = shadow(e′) ∩R =

 ∑
i∈support(e′)

e′′i p
i : e′′i ∈ Fp, e′′0 6= 0

 .

Note that since |E′| = (p− 1)pwt(e′)−1 = (p− 1)pk−1 > |S′| we cannot have that e′ ∈ S′. Hence we
found an element e′ ∈ T ′ \ S′ such that wt(e′) ≤ k.

Corollary 32. Let S ⊆ {0, . . . , pn−1} be affine closed. Let f ∈ dT (S) be a codeword which does
not affinely generate dT (S), i.e.

affine(f) (dT (S).

Then there must exist e ∈ R \ S of weight wt(e) ≤ logp |S ∩R|+ 2 such that

f ∈ dT (S ∪ {e}).

Proof. By Claim 30 we have affine(f) = dT (T) where T) S. By Claim 31 there is e ∈ (T \S)∩R ⊆
R \ S such that wt(e) ≤ logp |S ∩R|+ 2. Hence we conclude sicne

f ∈ dT (T) ⊆ dT (S ∪ {e}).

18

We are now ready to prove Theorem 29.

Proof of Theorem 29. Let C be a linear affine invariant code. By theorem 8 we have C = T (S)
where S ⊆ {0, . . . , pn − 1} is affine closed. By Claims 16, 18 and 19 we have that

|C| = T ((S ∩R) ∪ {0}) ≤ |T (S ∩R)| = pn|S∩R|.

Hence we need to prove there is a codeword f ∈ dT (S) of weight |S ∩ R|c whose affine closure
spans dT (S). Let ` be an appropriate weight to be determined later. We now count the number
of codewords in dT (S) of weight exactly `. To this end we apply Lemma 25. The number of
codewords in dT (S) of weight ` (as long as ` is in the permissible range) is given by

W` =
C(p, `)
`!

pn`−|S∩R|(1 + p−Ω(n)).

Let f ∈ dT (S) be such that affine(f) (dT (S). By Corollary 32 we know that there exists
some e ∈ R \ S of weight wt(e) ≤ k, where k ≤ logp(|S ∩ R|) + 2, such that f ∈ dT (S ∪ {e}). Let
E be the set of all such possible e,

E = {e ∈ R \ S : wt(e) ≤ k}.

Fix some e ∈ E. Let Se = affine(S∪{e}). Note that as e ∈ R\S we have |Se∩R| ≥ |S∩R|+1.
Hence for ` in the permissible range for Se we get that the number of codewords of weight ` in
dT (Se) is given by

C(p, `)
`!

pn`−|Se∩R|(1 + p−Ω(n)) ≤ p−nW`(1 + p−Ω(n)),

So, as long as |E| � pn, we can deduce that there must exist some f ∈ dT (S) of weight ` which
is not in any of dT (S ∪ {e}) for any e ∈ E (in fact, almost all f ∈ dT (S) of weight ` will do). This
will establish the theorem. Thus, we need to bound |E|. The following is a simple bound which is
sufficient for our needs.

|E| ≤
k∑
i=1

(
n

i

)
pi ≤ p3n/4

as long as k ≤ n/4.
To conclude we need to show that we can choose ` such that ` ≤ |S ∩ R|c for some absolute

constant c > 0, as long as |S∩R| ≤ pαn for some absolute constant α > 0. The bounds on `min and
`max that are required for the application Lemma 25 are stricter for Se than for S, and are given
by

|Se| ≤ 1
16p

n/4,

`min ≥ 16|Se ∩R|4,
`max ≤ 1

16p
n/4.

To verify them we need to give an upper bound on |Se| and |Se ∩ R|. As Se = S ∪ affine({e}) we
have

|Se| ≤ |S|+ |affine({e})| = |S|+ npk,

|Se ∩R| ≤ |S ∩R|+ |affine({e}) ∩R| ≤ |S ∩R|+ pk.

19

Note that pk = p2|S ∩ R|. Thus, the bounds for applying Lemma 25 are satisfied if we make sure
that

|S| ≤ 1
32p2n

pn/4,

`min ≥ (2p)8|S ∩R|4,
`max ≤ 1

16p
n/4.

Notice that as long as |S| ≤ 1
16p3 p

n/16 we have that all the conditions are satisfied (for large enough
n) and that `min ≤ `max. Hence we may choose ` = `min to conclude the proof.

3 Extension of the Weil bound

In this section we prove our new extension to the Weil bound for character sums, which is one of
the key technical ingredients in our proof of the local testability of affine invariant codes. As this
result may be of independent interest, this section is self-contained, and the interested reader may
read this section without relying on Section 2.

We recall several definitions and theorems from the introduction, for the sake of self containment.
Let F = Fpn be a finite field. An additive character χ : F→ C is a mapping such that χ(x+ y) =
χ(x)χ(y) and χ is not identically zero. The following is a classical result by Weil.

Theorem (Weil bound - Theorem 2). Let f(x) be a univariate polynomial over F of degree |F|1/2−δ.
Let χ : F→ C be an additive character. Then either χ(f(x)) is constant or

|Ex∈F[χ(f(x))]| ≤ |F|−δ.

The weight degree of a monomial xt is defined as follows. Let t =
∑n−1

i=0 aip
i be the representation

of t in base p, where 0 ≤ ai ≤ p− 1. The weight degree of xt is defined to be wt(xt) =
∑
ai. The

weight degree of a polynomial f(x) is the maximal weight of a monomial in f .

Note 33. We note that the weight degree of a polynomial can be equivalently defined also as
a derivative degree, defined as follows. The directional derivative of f(x) in direction y ∈ Fpn
is defined as fy(x) = f(x + y) − f(x). Define iterative derivatives in directions y1, . . . , yk as
fy1,...,yk = (fy1,...,yk−1

)yk . The derivative degree of f is the minimal d such that for any d + 1
derivatives y1, . . . , yd+1 ∈ F, fy1,...,yd+1

(x) ≡ 0. It can be verified that the derivative degree of a
polynomial is exactly its weight degree. We do not prove this here, and will not require this fact
in the proof.

We prove an extension of the Weil bound in case f is the sum of a low degree polynomial and
a small number of monomials of bounded weight (but of arbitrary degree).

Theorem (Extension of the Weil bound - Theorem 4). Let f(x) = g(x) + h(x) be a univariate
polynomial over Fpn, where g(x) is a polynomial of degree |F|1/2−δ and h(x) is the sum of at most
k ≥ 1 monomials, each of weight degree at most d. Let χ : Fpn → C be an additive character. Then
either χ(f(x)) is constant or

|Ex∈F[χ(f(x))]| ≤ |F|−
δ

2kd22d .

3.1 Technical claims

In this subsection we provide some technical claims that will be needed for the proof of Theorem 4.

20

3.1.1 The trace operator

The trace operator Tr : Fpn → Fp is defined as Tr(x) =
∑n−1

i=0 x
pi . We give in this subsection some

simple properties of the Trace operator.

Claim 34 (Characterization of additive characters). Let χ : Fpn → C be an additive character.
Then there exists a ∈ Fpn such that χ(x) ≡ ωTr(ax) where ω = e2πi/p.

Proof. We first prove that χ(x) = ω`(x) where ` : Fpn → Fp is a linear map. Note that we must
have χ(0) = 1 since χ(0) = χ(0 + 0) = χ(0)2, and we cannot have χ(0) = 0 as this will imply that
χ ≡ 0. Thus, we get that the image of χ is a p-th root of unity since χ(x)p = χ(px) = χ(0) = 1.
Thus we can write χ(x) = ω`(x) for some mapping ` : Fpn → Fp. The mapping ` is linear since

ω`(x+y) = χ(x+ y) = χ(x)χ(y) = ω`(x)+`(y).

Now we argue that any linear mapping ` : Fpn → Fp can be represented as `(x) ≡ Tr(ax) for
some a ∈ Fpn . This is proved by a counting argument. Each linear map ` : Fpn → Fp can be
uniquely identified by its image on a basis for Fpn as a linear space over Fp. Thus, the number of
such linear mappings is at most pn. On the other hand, for each a ∈ Fpn the mapping x→ Tr(ax)
is linear (since Trace is a linear mapping), and the total number of theses mappings is the number
of distinct a ∈ Fpn , that is pn. To conclude we just need to show that for any distinct a 6= b ∈ Fpn
the mappings Tr(ax) and Tr(bx) are distinct. Equivalently, since Trace is a linear mapping, we need
to show that Tr((a− b)x) 6≡ 0. This is clear however because the Trace mapping is not identically
zero and a− b 6= 0 is invertible.

Claim 35 (Trace of a p-power is unbiased). For every c 6= 0 and 0 ≤ L ≤ n− 1 we have

Ex∈Fpn [ωTr(cxp
L

)] = 0.

Proof. We have Tr(cxp
L
) = Tr(cp

n−L
x), so it suffices to prove the claim for L = 0. Let ` : Fpn → Fp

defined as `(x) = Tr(cx). The mapping ` is linear, and as it is not identically zero, its output is
uniform over Fp. Thus we have that Ex∈Fpn [ω`(x)] = 0.

3.1.2 Reduced forms

We define in this subsection reduced forms of polynomials. We show that for studying character
sums it is the sufficient to restrict to reduced polynomials. We start by considering univariate
polynomials, and then generalize the definitions and claims to multivariate polynomials.

Definition 36 (Reduced form: univariate polynomials). Let m(x) = axt be a monomial. We say m
is reduced if p - t. If t = pkr for p - r we define the reduced form of m(x) to be m(x)p

n−k ≡ apn−kxr.
A constant term c ∈ Fpn is reduced if c ∈ Fp, otherwise its reduced form is Tr(c) ∈ Fp. We say a
polynomial is reduced if all its monomials are reduced, and the reduced form of a polynomial is the
sum of the reduced forms of its monomials.

Claim 37 (Equivalence of reduced form: univariate polynomials). Let f(x) be a univariate polyno-
mial over F. Let f ′(x) be its reduced form. Then

1. Tr(f(x)) ≡ Tr(f ′(x)).

2. deg(f ′) ≤ deg(f).

21

3. wt(f ′) ≤ wt(f).

Proof. For a monomial m(x) = axt with t = pkr, p - r, let m′(x) = ap
n−k

xr be its reduced
form. Note that m′(x) = m(x)p

n−k
. Since Tr(x) = Tr(xp) we have that Tr(m(x)) = Tr(m′(x))

for all x ∈ F. Note that wt(m′) = wt(m) and deg(m′) = r ≤ t = deg(m). For a general
polynomial f(x) =

∑
mi(x) we have that f ′(x) =

∑
m′i(x). Hence we get that Tr(f) ≡ Tr(f ′),

and since cancelations among the m′i can only reduce the degree and weight degree of f ′, we get
that deg(f ′) ≤ deg(f) and wt(f ′) ≤ wt(f).

Claim 38 (Trace of reduced non-constant polynomial is non-constant: univariate polynomials). Let
f(x) be a non-constant reduced univariate polynomial. Then Tr(f(x)) is not constant.

Proof. Assume for contradiction that Tr(f(x)) ≡ c for some c ∈ Fp. Let f(x) = a0 +
∑

i∈I aix
i

where a0 ∈ Fp, ai ∈ Fpn for i ∈ I and I ⊆ {0, . . . , pn − 1} is nonempty such that p - i for all i ∈ I.
Define g(x) = Tr(f(x))− c. We have that

g(x) = −c+ Tr(f(x)) = (a0 − c) +
∑
i∈I

n−1∑
j=0

ap
j

i x
ipj = (a0 − c) +

∑
i∈I

n−1∑
j=0

ap
j

i x
ipj (mod pn).

Notice that all the monomials in this representation are distinct, since all i ∈ I are not divisible by
p. Thus this is a non-zero polynomial of degree at most pn − 1, and so it cannot evaluate to zero
on all elements of Fpn .

We now generalize some of the definitions and claims to multivariate polynomials. When we refer
to the degree of a multivariate polynomial we always mean is its total degree. The weight degree
of a monomial xe11 . . . xess is the sum of the weight degrees of the variables, that is wt(xe11 . . . xess) =
wt(xe11) + . . . + wt(xess). The weight degree of a multivariate polynomial is the maximal weight
degree of its monomials.

Note 39. As in the univariate case, the weight degree of a multivariate degree is equivalent to its
derivative degree, which is defined in an analogous way to the univariate case.

Definition 40 (Reduced form: multivariate polynomials). Let m(x1, . . . , xs) = axe11 . . . xess be a
monomial. We say m is reduced if p - gcd(e1, . . . , es) (that is, at least one ei is co-prime to p). If ei =
pkri where p - gcd(r1, . . . , rs) we define the reduced form of m(x1, . . . , xs) to be ap

n−k
xr11 . . . xrss . We

say a polynomial is reduced if all its monomials are reduced, and the reduced form of a polynomial
is the sum of the reduced forms of its monomial.

Claim 41 (Equivalence of reduced form: multivariate polynomials). Let f(x1, . . . , xs) be a multi-
variate polynomial over F. Let f ′(x1, . . . , xs) be its reduced form. Then

1. Tr(f(x1, . . . , xs)) ≡ Tr(f ′(x1, . . . , xs)).

2. deg(f ′) ≤ deg(f).

3. wt(f ′) ≤ wt(f).

Proof. The proof is identical to the proof of Claim 41 for the univariate case.

Claim 42 (Trace of reduced non-constant polynomial is non-constant: multivariate polynomials).
Let f(x1, . . . , xs) be a non-constant reduced multivariate polynomial. Then Tr(f(x1, . . . , xs)) is not
constant.

22

Proof. The proof is very similar to the proof of Claim 38 for the univariate case. If f is not a constant
polynomial, that is if I is not empty, then for any c ∈ Fp the polynomial Tr(f(x1, . . . , xs)) − c is
a non-zero polynomial of individual degree at most pn − 1 in each variable, and such a polynomial
cannot evaluate to zero on all points in (Fpn)s.

3.1.3 Properties of derivatives

Let f(x) be a univariate polynomial. For every s ≥ 1 define the s-iterated derivative polynomial
of f , ∆f(x; y1, . . . , ys), to be the multivariate polynomial in variables x, y1, . . . , ys ∈ F defined as

∆f(x; y1, . . . , ys) = fy1,...,ys(x) =
∑
I⊆[s]

(−1)|I|+sf(x+
∑
i∈I

yi).

Derivatives play a crucial role in the proof of Theorem 4. We study in this subsection some of
their properties, and prove some structural results on polynomials of the form ∆f(x; y1, . . . , ys).

Claim 43 (Derivation maintains degree). Let m(x) = xt be a monomial. Then for any k, all the
monomials appearing in ∆m(x; y1, . . . , yk) have total degree t (or ∆m(x; y1, . . . , yk) ≡ 0).

Proof. The polynomial ∆m(x; y1, . . . , yk) is a linear combination of (x+
∑

i∈I yi)
t for subsets I ⊆ [k],

each of which is homogeneous of degree t.

We show that the character sum of a polynomial can be bounded by a character sum of its
iterated derivatives polynomial.

Claim 44 (Bias can be bounded by bias of derivatives). For any univariate polynomial f(x) and
s ≥ 1 ∣∣∣Ex∈F[ωTr(f(x))]

∣∣∣ ≤ (Ex,y1,...,ys∈F[ωTr(∆f(x;y1,...,ys))]
)1/2s

Proof. Consider first the case s = 1. We have∣∣∣Ex∈F[ωTr(f(x))]
∣∣∣2 = Ex,x′∈F[ωTr(f(x))ωTr(f(x′))] =

Ex,x′∈F[ωTr(f(x))−Tr(f(x′))] = Ex,y∈F[ωTr(f(x+y))−Tr(f(x))] =

Ex,y∈F[ωTr(f(x+y)−f(x))] = Ex,y∈F[ωTr(∆f(x;y))].

Hence ∣∣∣Ex∈F[ωTr(f(x))]
∣∣∣ ≤ (Ex,y∈F[ωTr(∆f(x;y))]

)1/2
.

For s > 1 we prove the result by induction. By the base case of s = 1 and the Cauchy-Schwartz
inequality, we have that∣∣∣Ex∈F[ωTr(f(x))]

∣∣∣2s ≤ (Ex,y1∈F[ωTr(∆f(x;y1))]
)2s−1

≤ Ey1∈F

[(
Ex∈F[ωTr(∆f(x;y1))]

)2s−1
]
.

For every value of y1 ∈ F we have by the s− 1 case that(
Ex∈F[ωTr(∆f(x;y1))]

)2s−1

≤ Ex,y2,...,ys∈F[ωTr(∆f(x;y1,...,ys))],

hence we get that ∣∣∣Ex∈F[ωTr(f(x))]
∣∣∣2s ≤ Ex,y1,y2,...,ys∈F[ωTr(∆f(x;y1,...,ys))].

23

We now define a special family of multivariate polynomials that will play an important role in
the proof. Such polynomials arise when taking d-iterated derivatives from a polynomial of weight
degree d.

Definition 45 (p-multilinear polynomials). A multivariate polynomial f(x1, . . . , xs) over Fpn is
p-multilinear if all its monomials are of the form xp

i1

1 . . . xp
is

s . In particular, if it is nonzero it has
weight degree s.

Claim 46 (Structure of derivatives of monomials). Let m(x) = xt be a monomial of weight degree d.
The d-iterated derivatives polynomial ∆m(x; y1, . . . , yd) ofm is given as follows. Let t =

∑k
j=1 a`jp

`j

where 1 ≤ a`1 , . . . , a`k ≤ p− 1 and
∑
a` = d. Let S be the family of all partitions of {1, . . . , d} into

k subsets of sizes a`1 , . . . , a`s , that is

S = {(S1, . . . , Sk) : S1 ·∪ . . . ·∪Sk = {1, . . . , d}, |S1| = a`1 , . . . , |Sk| = a`k}.

Then we have

∆m(x; y1, . . . , yd) = c
∑

(S1,...,Sk)∈S

k∏
j=1

∏
i∈Sj

(yi)p
`j
.

where c =
∏k
j=1 a`j ! 6= 0 in F. In particular, ∆m is a non-zero p-multilinear polynomial in y1, . . . , yd

which does not depend on x.

Proof. We have

∆m(x; y1, . . . , yd) =
∑
I⊆[d]

(−1)d+|I|m(x+
∑
i∈I

yi) =
∑
I⊆[d]

(−1)d+|I|(x+
∑
i∈I

yi)t.

Substituting t =
∑
a`jp

`j , and using the linearity of the Frobenius map x→ xp
`j we get that

∆m(x; y1, . . . , yd) =
∑
I⊆[d]

(−1)d+|I|
k∏
j=1

(xp
`j +

∑
i∈I

(yi)p
`j)a`j .

Since
∑
a`j = d we get that ∆m is a degree-d polynomial in the Frobenius images of x, y1, . . . , yd,

i.e. in the monomials {xpj , (y1)p
j
, . . . , (yd)p

j
: 0 ≤ j ≤ n− 1}.

We first claim that ∆m does not depend on x, and is p-linear in y1, . . . , yd. That is, all the
monomials of ∆m consist of a product (y1)p

j1 . . . (yd)p
jd , where 0 ≤ j1, . . . , jd ≤ n− 1. Otherwise,

there exists some monomial in ∆m which does not depend on at least one of y1, . . . , yd. This
is because all monomials of ∆m are products of d Frobenius images of x, y1, . . . , yd, and by the
pigeonhole principle, if either a single variable yi has two images appearing, or an image of x appears
in the monomial, then there must exists a variable yj not participating in the monomial.

Assume w.l.o.g that ∆m contains monomials in which y1 does not participate. Substituting
y1 = 0 in the definition of ∆m, since ∆f(x; 0) = f(x)− f(x) ≡ 0 for any polynomial f , we get that

∆m(x; 0, y2, . . . , yd) ≡ 0.

Hence, if there exist monomials in ∆m(x; y1, . . . , yd) which do not depend on y1, they are left
intact by the substitution y1 = 0, while all monomials depending on y1 vanish. Thus since
∆m(x; 0, y2, . . . , yd) ≡ 0 all the monomials in ∆m(x; y1, . . . , yd) must depend on y1.

24

We have thus proved that ∆m(x; y1, . . . , yd) does not depend on x, and is p-linear in y1, . . . , yd.
To conclude we need to compute the exact form of ∆m(x; y1, . . . , yd). Any monomial depending
on all y1, . . . , yd must come from the term corresponding for I = {1, . . . , d},

(x+
∑
i∈[d]

yi)t =
k∏
j=1

(xp
`j +

∑
i∈[d]

(yi)p
`j)a`j .

The individual degree of each yi is some p`j , and there are exactly a`j variables among y1, . . . , yd
which has individual degree p`j . Since the number of variables d is exactly the sum

∑
a`j ,

all the monomials depending on all of y1, . . . , yd must be of the form
∏k
j=1

∏
i∈Sj (yi)

p`j , where
(S1, . . . , Sk) ∈ S is a partition of {1, . . . , d} into sets of sizes a`1 , . . . , a`k . The coefficient of the
monomial

∏k
j=1

∏
i∈Sj (yi)

p`j is equal to the number of times this monomial appears in the last

term, which is exactly
∏k
j=1 a`j !.

Claim 47 (Derivative of reduced monomial is nonzero). Let m(x) be a nonzero reduced monomial
of weight degree d. Then ∆m(x; y1, . . . , yd) is a nonzero reduced polynomial.

Proof. Let m(x) = xt for t =
∑
a`jp

`j . Since m is reduced we must have a0 6= 0. By Claim 46 we
know that

∆m(x; y1, . . . , yd) = c
∑

(S1,...,Sk)∈S

k∏
j=1

∏
i∈Sj

(yi)p
`j
.

Thus any monomial of ∆m(x; y1, . . . , yd) contains at least one variable of degree 1, thus it is
reduced.

Claim 48 (Derivative of distinct reduced monomials is distinct). Let m′(x),m′′(x) be two distinct
monomials of weight degree d. Then ∆m′(x; y1, . . . , yd) and ∆m′′(x; y1, . . . , yd) are nonzero poly-
nomials which do not share any common monomial.

Proof. Let m′(x) = xt
′

and m′′(x) = xt
′′

for t′ 6= t′′. By Claim 46 we have that ∆m′(x; y1, . . . , yd)
is a nonzero polynomial such that all its monomials have total degree exactly t′. Similarly
∆m′′(x; y1, . . . , yd) is a nonzero polynomial such that all its monomials have total degree exactly
t′′. Since t′ 6= t′′ the polynomials ∆m′(x; y1, . . . , yd) and ∆m′′(x; y1, . . . , yd) contain no common
monomial.

Claim 49 (High derivative vanishes). Let f(x) be a polynomial of weight degree at most d − 1.
Then ∆m(x; y1, . . . , yd) ≡ 0.

Proof. It is enough to prove the claim for monomials. Let m(x) = xt be some monomial, and let
d′ = wt(m) ≤ d − 1 be its weight degree. By Claim 46 we have that ∆m(x; y1, . . . , yd′) does not
depend on x, thus

∆m(x; y1, . . . , yd′ , yd′+1) = ∆m(x+ yd′+1; y1, . . . , yd′)−∆m(x; y1, . . . , yd′) ≡ 0.

Lemma 50 (Highest non-vanishing derivative). Let f(x) be a nonzero reduced polynomial of weight
degree d. Then ∆f(x; y1, . . . , yd) is a nonzero reduced polynomial which does not depend on x and
is p-linear in y1, . . . , yd.

25

Proof. Let f(x) =
∑
ctx

t. Let m(x) = ctx
t be some monomial of f . If wt(m) ≤ d − 1 then

by Claim 49 we have ∆m(x; y1, . . . , yd) ≡ 0. Thus it is enough to consider just the monomials
of weight degree exactly d. By Claim 47 the derivative polynomial of each reduced monomial
of weight degree d is a reduced polynomial, and these polynomials for two distinct monomials
contain no shared monomials, and so cannot cancel each other. Thus the derivative polynomial
∆f(x; y1, . . . , yd) is a nonzero reduced polynomial. By Claim 46 is does not depend on x, and it is
p-linear in y1, . . . , yd.

Lemma 51 (General non-vanishing derivatives). Let f(x) be a nonzero reduced polynomial of
weight degree d. For any k ≤ d the polynomial ∆f(x; y1, . . . , yk) is a nonzero reduced polynomial
in x, y1, . . . , yk.

Proof. Let f(x) =
∑
ctx

t. Let m(x) = ctx
t be some monomial of f . Observe that all monomials

in the polynomial ∆m(x; y1, . . . , yk) have the same total degree t. Thus, if m(x) is reduced then so
is ∆m(x; y1, . . . , yk), since if xe0ye11 . . . yekk is a monomial of ∆m(x; y1, . . . , yk) which is not reduced,
then p | gcd(e0, . . . , ek). However t = e0 + . . . + ek and since m(x) is reduced we have that
p - t. Contradiction, hence ∆m(x; y1, . . . , yk) must be reduced. Hence, we get that if f(x) is a
reduced polynomial, then ∆f(x; y1, . . . , yk) is also reduced. To conclude we need to prove that
∆f(x; y1, . . . , yk) is nonzero. Assume by contradiction it is zero; then so is ∆f(x; y1, . . . , yd) =∑

I⊆{k+1,...,d}(−1)|I|+d−k∆f(x+
∑

i∈I yi; y1, . . . , yk). However by Lemma 50 we know that if f is a
nonzero reduced polynomial, then ∆f(x; y1, . . . , yd) is nonzero. Hence also ∆f(x; y1, . . . , yk) must
be nonzero.

3.1.4 Additional claims

We give in this subsection some more claims we will require. The first is the Schwarz-Zippel lemma.

Claim 52 (Schwarz-Zippel). Let f(x1, . . . , xs) be a polynomial over F of total degree e. Then

Pr
x1,...,xs∈F

[f(x1, . . . , xs) = 0] ≤ e

|F|
.

The second result we will need is a theorem of Deligne [12] which is a multivariate analog of
Weil’s bound.

Theorem 53 (Deligne theorem [12]). Let f(x1, . . . , xs) be a multivariate polynomial over F of
degree |F|1/2−δ. Let χ : F → C be an additive character. Then either χ(f(x1, . . . , xs)) is constant
or

|Ex1,...,xs∈F[χ(f(x))]| ≤ |F|−δ.

3.2 The case of high weight g

In this subsection we prove Theorem 4 in the case that g has high weight degree, wt(g) ≥ d + 1.
This is captured by the following lemma, which we prove in this subsection. This is the easier case
for Theorem 4.

Lemma 54 (The case of high weight g). Let f(x) = g(x) + h(x) be a nonzero reduced univariate
polynomial over Fpn, where g(x) is a polynomial of degree |F|1/2−δ and weight degree at least d+ 1,
and h(x) has weight degree at most d. Then∣∣∣Ex∈F[ωTr(f(x))]

∣∣∣ ≤ |F|− δ

2d+1 .

26

Proof. The polynomial f is nonzero reduced and of weight degree at least d + 1. By Lemma 51
we know that ∆f(x; y1, . . . , yd+1) is nonzero and reduced. However, since wt(h) ≤ d we have that
∆h(x; y1, . . . , yd+1) ≡ 0 by Claim 49, hence we get that ∆f(x; y1, . . . , yd+1) = ∆g(x; y1, . . . , yd+1).
Also, since derivation cannot increase total degree, we have that deg(∆f(x; y1, . . . , yd+1)) ≤
deg(g) ≤ |F|1/2−δ.

So, we have that f ′(x, y1, . . . , yd+1) = ∆f(x; y1, . . . , yd+1) is a nonzero reduced polynomial of
degree at most |F|1/2−δ. By Claim 42 we have that Tr(f ′) is a non-constant function. Thus by
Deligne’s Theorem (Theorem 53) we get that is must be highly unbiased, that is∣∣∣Ex,y1,...,yd+1∈F[ωTr(f ′(x,y1,...,yd+1))]

∣∣∣ ≤ |F|−δ.
To conclude we apply Claim 44 to get that∣∣∣Ex∈F[ωTr(f(x))]

∣∣∣ ≤ ∣∣∣Ex,y1,...,yd+1∈F[ωTr(f ′(x,y1,...,yd+1))]
∣∣∣ 1

2d+1 ≤ |F|−
δ

2d+1 .

3.3 The case of low weight g

In this subsection we prove Theorem 4 in the case that g has low weight degree, wt(g) ≤ d. This
is captured by the following lemma, which we prove in this subsection. This is the harder case for
Theorem 4.

Lemma 55 (The case of low weight g). Let f(x) = g(x) + h(x) be a nonzero reduced univariate
polynomial over Fpn, where g(x) is a polynomial of degree |F|1/2−δ and weight degree at most d,
and h(x) has weight degree d and is the sum of k monomials. Then

Ex∈F[ωTr(f(x))] ≤ |F|−
δ

d22dk
+O(1/n)

.

To prove Lemma 55 we require some claims.

Claim 56 (Structure of derivative of g). Let g(x) be a polynomial of degree at most |F|1/2−δ and
weight degree at most d. For L = dn(1/2− δ)e there exists a p-multilinear polynomial u(y2, . . . , yd)
such that

Tr(∆g(x; y1, . . . , yd)) ≡ Tr(yp
L

1 · u(y2, . . . , yd)).

and such that deg(u) ≤ p2L ≤ |F|1−2δ+2/n.

Proof. By linearity, it suffices to show that for every monomial m(x) appearing in g, there exists a
p-multilinear polynomial um(y2, . . . , yd) such that Tr(∆m(x; y1, . . . , yd)) ≡ Tr(yp

L

1 · um(y2, . . . , yd))
and deg(um) ≤ p2L.

Let m(x) = cxt be such a monomial. If wt(m) < d we have by Claim 49 that ∆m(x; y1, . . . , yd) ≡
0. Otherwise assume that wt(m) = d. By Claim 46 we know that ∆m(x; y1, . . . , yd) does not depend
on x and is p-multilinear in y1, . . . , yd. Moreover, if t =

∑k
j=1 a`jp

`j where 1 ≤ a`j ≤ p− 1 we know
that

∆m(x; y1, . . . , yd) =
k∑
j=1

yp
`j

1 wj(y2, . . . , yd)

27

where wj(y2, . . . , yd) is a homogeneous p-multilinear polynomial of total degree t − p`j . Since
t ≤ |F|1/2−δ we have that `1, . . . , `k ≤ n(1/2− δ) ≤ L. Thus, taking um(y2, . . . , yd) to be

um(y2, . . . , yd) =
k∑
j=1

wj(y2, . . . , yd)p
L−`j

we get that

Tr(yp
L

1 · um(y2, . . . , yd)) ≡
k∑
j=1

Tr(yp
L

1 wj(y2, . . . , yd)p
L−`j) ≡

k∑
j=1

Tr(yp
`j

1 wj(y2, . . . , yd)) = Tr(∆m(x; y1, . . . , yd)).

To conclude we need to bound deg(um). Since deg(wj) ≤ deg(m) ≤ pn(1/2−δ) and L − `j ≤ L we
get that deg(um) ≤ deg(m) · pL ≤ p2L.

Claim 57 (Structure of derivative of h). Let h(x) be a polynomial of weight degree d which is the
sum of k monomials. For every 0 ≤ L ≤ n− 1 there exists a p-multilinear polynomial v(y2, . . . , yd)
such that

Tr(∆h(x; y1, . . . , yd)) ≡ Tr(yp
L

1 · v(y2, . . . , yd)).

and the number of distinct total degrees of monomials appearing in v is at most kd.

Proof. By linearity, it suffices to show that for every monomial m(x) appearing in h, there exists a
p-multilinear polynomial vm(y2, . . . , yd) such that Tr(∆m(x; y1, . . . , yd)) ≡ Tr(yp

L

1 · vm(y2, . . . , yd))
and the monomials appearing in vm have at most d distinct total degrees.

Let m(x) = cxt be such a monomial. If wt(m) < d we have by Claim 49 that ∆m(x; y1, . . . , yd) ≡
0. Otherwise assume that wt(m) = d. By Claim 46 we know that ∆m(x; y1, . . . , yd) does not depend
on x and is p-multilinear in y1, . . . , yd. Moreover, if t =

∑k
j=1 a`jp

`j where 1 ≤ a`j ≤ p− 1 we know
that

∆m(x; y1, . . . , yd) =
k∑
j=1

yp
`j

1 wj(y2, . . . , yd)

where wj(y2, . . . , yd) is a homogeneous p-multilinear polynomial of total degree t− p`j . Let

vm(y2, . . . , yd) =
k∑
j=1

wj(y2, . . . , yd)p
L−`j+n

where we reduce individual powers of y2, . . . , yd modulo pn (that is, we replace each yei with ye mod pn

i ,
which are equivalent as functions over the field Fpn). Thus we get that

Tr(yp
L

1 · vm(y2, . . . , yd)) ≡
k∑
j=1

Tr(yp
L

1 wj(y2, . . . , yd)p
L−`j+n

) ≡

k∑
j=1

Tr(yp
`j

1 wj(y2, . . . , yd)) = Tr(∆m(x; y1, . . . , yd)).

28

To conclude we need to bound the number of distinct total degrees of monomials appearing in vm.
Each polynomial wj is homogeneous, and so also wp

L−`j+n

j is homogenous, hence contributing a
unique total degree to monomials in vm. As the number of distinct wj is bounded by k ≤ d we get
the required bound.

Claim 58 (Covering argument for a single element). Let 0 ≤ e ≤ pn − 1 such that wt(e) = d. For
0 ≤ s ≤ n− 1 define es = e · ps mod pn, such that also 0 ≤ es ≤ pn − 1. For a ≤ n let

S = {0 ≤ s ≤ n− 1 : es ≥ pn−a}.

Then |S| ≤ a · d.

Proof. For every 0 ≤ e ≤ pn − 1 let ~e ∈ {0, . . . , p − 1}n denote the vector corresponding to the
base-p representation of e, that is e =

∑n−1
i=0 ~e(i)p

i. Observe that ~es is just the cyclic shift of ~e by s
coordinates, that is ~es(i) = ~e(i− s (mod n)). Note that the weight of e is just the hamming weight
of ~e, and that es ≥ pn−a if and only if the vector ~es contains some nonzero entry in the indices
n− a ≤ i ≤ n− 1. As ~e contains only d nonzero entries, there are at most a · d cyclic shift of ~e such
that some of these entries moves to indices i ∈ {n− a, . . . , n− 1}. Thus we get that |S| ≤ a · d.

Claim 59 (Covering argument for sum of monomials). Let h(y1, . . . , yb) be a polynomial over Fpn
of weight degree at most d, such that the number of distinct total degrees of its monomial is z. Let
hs(y1, . . . , yb) = h(y1, . . . , yb)p

s
reducing each individual degree of y1, . . . , yb modulo pn. Then for

every a there exists 0 ≤ s ≤ a such that

deg(hs) < pn−b
a
dz
c.

Proof. Let q = b adz c. Let {e1, . . . , ez} be the set of total degrees occurring in monomials of h. The
number of 0 ≤ s ≤ n− 1 such that (ei · ps mod pn) ≥ pn−q is bounded by d · q ≤ a/z by Claim 58.
Thus, there are at most a values for s such that for some ei we have ei · ps mod pn ≥ pn−q. Since
there are a + 1 possible values for 0 ≤ s ≤ a, by the pigeonhole principle there exists a value for
which for all i = 1, . . . , k,

(ei · ps mod pn) < pn−q

hence we get that deg(hs) < pn−q.

Claim 60 (Structure of derivative of f). Let f(x) = g(x) + h(x) be a nonzero reduced univariate
polynomial over Fpn , where g(x) is a polynomial of degree |F|1/2−δ and weight degree at most d,
and h(x) has weight degree d and is the sum of k monomials. Then there exists M ∈ {0, . . . , n−1}
and a p-multilinear polynomial r(y2, . . . , yd) such that

Tr(∆f(x; y1, . . . , yd)) ≡ Tr(yp
M

1 · r(y2, . . . , yd))

and deg(r) ≤ |F|1−
2δ

d2k+1
+3/n.

Proof. Let L = dn(1/2 − δ)e. By Claim 56 there is a p-multilinear polynomial u(y2, . . . , yd) such
that Tr(∆g(x; y2, . . . , yd)) ≡ Tr(yp

L

1 · u(y2, . . . , yd)) and deg(u) ≤ p2L. By Claim 57 there is a
p-multilinear polynomial v(y2, . . . , yd) such that Tr(∆h(x; y2, . . . , yd)) ≡ Tr(yp

L

1 · v(y2, . . . , yd)) and
the number of distinct total degrees of monomials in v is bounded by kd.

29

For s define rs(y2, . . . , yd) = ps(u(y2, . . . , yd) + v(y2, . . . , yd)) where individual degrees of
y2, . . . , yd are reduced modulo pn, and set a = αn to be determined later. We will show there
exists 0 ≤ s ≤ n− 2L− a such that deg(rs) ≤ pn−a. This will establish the result as for every s,

Tr(∆f(x; y1, . . . , yd)) ≡ Tr(yp
L+s

1 rs(y2, . . . , yd)).

First, notice that since deg(u) ≤ p2L we have that for any 0 ≤ s ≤ n− 2L− a we have that

deg(up
s
) ≤ deg(u) · ps ≤ p2L+s ≤ pn−a.

We now move to consider v. By Claim 59 we have that there exists 0 ≤ s ≤ n− 2L− a such that
if we let vs(y2, . . . , yd) = v(y2, . . . , yd)p

s
reducing individual degrees modulo pn, we have that

deg(vs) ≤ pn−b
n−2L−a
d2k

c.

Combining the two bounds, we get that

deg(rs) ≤ max(pn−a, pn−b
n−2L−a
d2k

c).

Setting a = bn−2L−d2k
d2k+1

c to optimize the bound we get that

deg(rs) ≤ pn−a ≤ p
n(1− 2δ

d2k+1
)+3

.

We are now ready to prove Lemma 55.

Proof of Lemma 55. We will bound the bias of Tr(f(x)) by the bias of Tr(∆f(x; y1, . . . , yd)). By
Claim 44 we have that∣∣∣Ex∈F[ωTr(f(x))]

∣∣∣ ≤ ∣∣∣Ex,y1,...,yd∈F[ωTr(f(x;y1,...,yd))]
∣∣∣1/2d .

To bound the bias of Tr(∆f(x; y1, . . . , yd)), we apply Claim 60. We have

Tr(∆f(x; y1, . . . , yd)) ≡ Tr(yp
M

1 · r(y2, . . . , yd))

where deg(r) ≤ |F|1−
2δ

d2k+1
+3/n. Moreover since f is nonzero and reduced, then by Lemma 50

∆f(x; y1, . . . , yd) is nonzero, hence r(y2, . . . , yd) must also be nonzero.

Whenever y2, . . . , yd are such that r(y2, . . . , yd) 6= 0, we have that Ey1∈F[ωTr(yp
M

1 ·r(y2,...,yd))] = 0
by Claim 35. The probability that r(y2, . . . , yd) = 0 is bounded by Claim 52 by

Pr
y2,...,yd∈F

[r(y2, . . . , yd) = 0] ≤ deg(r)
|F|

≤ |F|−
2δ

d2k+1
+3/n

.

Combining the results, we get that∣∣∣Ex∈F[ωTr(f(x))]
∣∣∣ ≤ |F|− 2δ

(d2k+1)2d
+ 3

2dn ≤ |F|−
δ

d22dk
+O(1/n)

.

30

References

[1] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn and Dana Ron, Testing Low
Degree Polynomials Over GF(2), Proceedings of 7th International Workshop on Randomization
and Computation,(RANDOM), Lecture Notes in Computer Science 2764, 188-199, 2003. Also,
IEEE Transactions on Information Theory, Vol. 51(11), 4032-4039, 2005.

[2] Sanjeev Arora and Madhu Sudan. Improved low degree testing and its applications. Combina-
torica, 23(3): 365-426, 2003.

[3] L. Babai and L. Fortnow and C. Lund, Non-Deterministic Exponential Time has Two-Prover
Interactive Protocols, Computational Complexity, volume 1, number 1, 3–40, 1991.

[4] J. Bourgain, Mordell’s exponential sum estimate revisited, J. Amer. Math. Soc., 18(2):477-499
(electronic), 2005.

[5] G. Birkhoff and S. MacLane, A Survey of Modern Algebra. third edition, MacMillan, New
York, 1965.

[6] Eli Ben-Sasson, Madhu Sudan, Simple PCPs with poly-log rate and query complexity, STOC
2005: 266-275.

[7] Eli Ben-Sasson, Madhu Sudan, Limits on the rate of locally testable affine-invariant codes,
Manuscript, November 2009.

[8] E. Ben-Sasson, M. Sudan, S. Vadhan, A. Wigderson. Randomness-efficient Low Degree Tests
and Short PCPs via Epsilon-Biased Sets 35th Annual ACM Symposium, STOC 2003, pp.
612-621, 2003.

[9] Blum, M., Luby, M., Rubinfeld, R., Self-Testing/Correcting with Applications to Numerical
Problems, In J. Comp. Sys. Sci. Vol. 47, No. 3, December 1993.

[10] Andrej Bogdanov and Emanuele Viola, Pseudorandom bits for polynomials,In the Proceedings
of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’07), pages
41–51, 2007.

[11] L. Carlitz and S. Uchiyama, Bounds for exponential sums, Duke Math. J., 24:37-41, 1957.

[12] P. Deligne, Aplications de la formule des traces aux sommes trigonometriques, in SGA 41
2

Springer Lecture Notes in Math 569, 1978.

[13] Irit Dinur,The PCP theorem by gap amplification, J. ACM 54(3): 12 (2007).

[14] Elena Grigorescu, Tali Kaufman and Madhu Sudan, Succinct Representation of Codes with
Applications to Testing, manuscript.

[15] Oded Goldreich, Madhu Sudan, Locally testable codes and PCPs of almost-linear length, J.
ACM 53(4): 558-655 (2006).

[16] Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra and David Zukcerman , Testing low-degree
polynomials over prime fields, Proceedings of the 45th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 423-432, 2004.

31

[17] Tali Kaufman and Simon Litsyn, Almost Orthogonal Linear Codes are Locally Testable, FOCS
2005: 317-326.

[18] Tali Kaufman and Shachar Lovett, The List-Decoding Size of Reed-Muller Codes, ICS 2010.

[19] Tali Kaufman and Dana Ron, Testing polynomials over general fields, Proceedings of the 45th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 413-422, 2004.

[20] Tali Kaufman and Madhu Sudan, Sparse random linear codes are locally decodeable and
testable, FOCS 2007, pp. 590–600.

[21] Tali Kaufman and Madhu Sudan, Algebraic Property Testing: The Role of Invariance, Pro-
ceedings of the 40th ACM Symposium on Theory of Computing (STOC), 2008.

[22] Swastik Kopparty and Shubhangi Saraf, Local List-Decoding and Testing of Random Linear
Codes from High-Error, to appear in the Proceedings of STOC 2010.

[23] Shachar Lovett, Unconditional pseudorandom generators for low degree polynomials, In the
Proceedings of the 40th annual ACM symposium on Theory of computing (STOC ’08), pages
557–562, 2008.

[24] F. J. MacWilliams and N. J. A. Sloan, The Theory of Error Correcting Codes, North Holland,
Amsterdam, 1977.

[25] Or Meir, Combinatorial Construction of Locally Testable Codes, proceedings of STOC 2008,
pages 285-294.

[26] Ronitt Rubinfeld and Madhu Sudan, Robust characterizations of polynomials with applications
to program testing, SIAM Journal on Computing, 25(2):252-271, April 1996.

[27] Madhu Sudan Invariance in Property Testing ECCC, TR10-051, 2010.

[28] Emanuele Viola, The sum d of small-bias generators fools polynomials of degree d, Computa-
tional Complexity 18(2):209–217, 2009.

[29] A. Weil, Sur les courbes algebriques et les varietes qui s’en deduisent, Actualities Sci. et Ind.
no. 1041. Hermann, Paris, 1948.

32

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

