
Learning Parities with Structured Noise∗

Sanjeev Arora
arora@cs.princeton.edu

Rong Ge
rongge@cs.princeton.edu

Department of Computer Science and
Center for Computational Intractability,

Princeton University

Abstract

In the learning parities with noise problem —well-studied in learning theory and cryptography—
we have access to an oracle that, each time we press a button, returns a random vector
a ∈ GF(2)n together with a bit b ∈ GF(2) that was computed as a ·u+η, where u ∈ GF(2)n

is a secret vector, and η ∈ GF(2) is a noise bit that is 1 with some probability p. Say
p = 1/3. The goal is to recover u. This task is conjectured to be intractable.

Here we introduce a slight (?) variation of the model: upon pressing a button, we receive
(say) 10 random vectors a1, a2, . . . , a10 ∈ GF(2)n, and corresponding bits b1, b2, . . . , b10, of
which at most 3 are noisy. The oracle may arbitrarily decide which of the 10 bits to make
noisy. We exhibit a polynomial-time algorithm to recover the secret vector u given such an
oracle.

We discuss generalizations of our result, including learning with more general noise pat-
terns. We can also learn low-depth decision trees in the above structured noise model. We
also consider the learning with errors problem over GF(q) and give (a) a 2Õ(

√
n) algorithm

in our structured noise setting (b) a slightly subexponential algorithm when the gaussian
noise is small.

1 Introduction

In the Learning parities with noise (LPN) problem we are given a set of data points (a1, b1), (a2, b2) . . . ,
where ai ∈ GF(2)n and bi ∈ GF(2). Each ai was chosen randomly, and bi was computed as
ai · u + ηi, where u ∈ GF(2)n is a secret vector, and ηi ∈ GF(2) is a noise bit that is 1 with
some probability p. (All ai’s and ηi’s are iid.) The goal is to recover u. All evidence suggests
that this problem is hard. The best algorithm runs in 2O(n/ logn) time (Blum et al. [4]), only
very slightly better than the trivial 2O(n).

This hardness has fundamental implications for machine learning, where it is a longstanding
goal to make learning algorithms resistant to noise in the data. If the noise is adversarial,
then learning is hard in many settings, and this is a consequence of work in PCPs. However,
in LPN the noise is fairly benign — white noise— and the data is also random. Kearns [7]
proposed a generic way to design noise-tolerant algorithms in this white noise setting using his
statistical query (SQ) model. This work led to noise tolerant algorithms for a variety of concept
classes, but parity is perhaps the simplest concept class for which the approach fails (and must
fail because parity has exponential SQ dimension). This is frustrating, because the algorithm
for learning parities in the noise-free setting is so simple and canonical: gaussian elimination
∗Research supported by NSF Grants CCF-0832797, 0830673, and 0528414

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 66 (2010)

(i.e., solving linear equations). If even this algorithm cannot be made noise-tolerant then the
prospects for more complicated learning algorithms seem bleak.

The LPN problem has also attracted interest in cryptography. Blum et al. [3] gave
a construction of one-way function and pseudorandom generator using the LPN problem.
Later Hopper and Blum [5] used the same problem to design efficient identification protocols.
Alekhnovich [2] proposed a public-key cryptosystem whose security assumes the hardness of
LPN with noise rates lower than 1/

√
n. More recently, inspired by lattice-based cryptography,

Regev introduced a generalization of the LPN problem to large fields called the Learning with
Errors problem (LWE) [9]. Here one tries to learn an unknown hyperplane over GF(q), and
the noise is iid (though with “low spread”). Since then the LWE problem has become a source
of many innovative ideas in cryptography, such as the oblivious transfer protocol by Peikert et
al. [8], and a crytosystem by Akavia et al. [1] that is secure even if almost the entire secret key
is leaked.

In this paper we propose a seemingly small change in the statement of the LPN problem
which we call the structured noise model, and show that the problem can then be solved fairly
efficiently. In the standard noise model, pushing an oracle button gives us a random a ∈ GF(2)n

and a corresponding noisy value b ∈ GF(2). In our model, pushing the oracle button returns m
random vectors a1, a2, . . . , am ∈ GF(2)n and m bits b1, b2, . . . , bm, of which at most p fraction
are noisy (in other words, for at least (1− p)m of the indices i, we are guaranteed ai · u = bi).
This may be viewed as a guarantee that the data errors, though still happening p fraction of the
time, are not arbitrarily bursty. Every sample returned by the oracle contains untainted data.
Our algorithm runs in time that is polynomial in nm, which is polynomial if m is a constant.
Interestingly, it works even if the oracle is allowed to look at ai’s while deciding where to add
noise. It also works for more general “noise patterns” as described later.

The idea in our algorithm is fairly simple: the above structured noise model implies that the
hidden secret u is the solution to a system of degree-m constraints. These degree-m constraints
are linearized by replacing monomials

∏
i∈S ui with a new variable yS , thus obtaining a linear

constraint in
(
n
m

)
variables. This linearization idea has been used before in practical attacks on

cryptosystems, except here we can theoretically prove it works.
We think that this linearization technique may prove useful in other settings. We generalize

it to learn low degree polynomials instead of parities, and also to design sub-exponential time
algorithms for learning with errors (LWE) problem.

Can something as simple as solving linear equations work for the original LPN problem?
Solving linear equations may seem like a very restricted class of algorithms, but we show that it
is difficult to rule out the possibility that this class of algorithms can solve LPN. Using standard
facts about algebraic computation we show that every algebraic algorithm for the problem (if
it exists) can be converted into one that solves linear systems of equations.

1.1 Our results

For LPN, the following is the most general kind of oracle our algorithm can work with. The
oracle has an associated polynomial P in m variables over GF(2). Any η ∈ GF(2)m such
that P (η) = 0 is an acceptable noise pattern. Each time a button is pressed the oracle picks
m random a1, a2, . . . , am ∈ GF(2)n, and then picks an arbitrary acceptable noise pattern η.
Then it outputs a1, a2, . . . , am together with m bits b1, b2, . . . , bm defined as bi = ai · u + ηi.
For example, the polynomial such that P (η) = 0 iff η is a vector of hamming weight at most
m/3 corresponds to the intuitive notion of “noise rate 1/3.” This polynomial also satisfies the
hypothesis of the main theorem below.

Note that this noise model is incomparable with the noise model in standard LPN. On the

2

one hand it is weaker because not all possible noise patterns are allowed, whereas in standard
LPN every noise pattern can occur (albeit with probability as low as pm). On the other hand
it is stronger because the oracle can look at the ai’s in choosing the noise pattern.

Theorem 1.1 (Main) Suppose P (·) is such that there is at least one ρ ∈ GF(2)m such that
ρ 6= η + η′ for all η, η′ satisfying P (η) = P (η′) = 0. Then there is an algorithm that learns the
secret u in time poly(nm) time.

The theorem is proved in Section 3. For simplicity we first describe in Section 2 the case where
the oracle is not allowed to look at the ai’s before picking the noise pattern η.

In Section 4 we generalize the algorithm so that it works even if the oracle uses, instead of
the linear function a → a · u, some degree d polynomial. The running time increases to nmd.
This algorithm can be used to learn low-depth decision trees in the structured noise model.

In Section 5 we generalize our results to the learning with errors (LWE) problem, which also
concerns learning an unknown linear function in n variables, albeit over GF(q) for q = poly(n).
The noise model of interest is the discrete gaussian noise model of Regev [9]. It is known that
this problem with σ parameter Ω(

√
n) is as hard as approximating worst case lattice problems.

We show an algorithm that solves the LWE problem in 2Õ(t2) time for σ parameter t. This result
appears to be new. We also introduce a structured noise variant of this model, and give a 2Õ(

√
n)

time algorithm to solve the problem in that model with σ parameter O(
√
n). Unfortunately,

algorithms in the structured noise model do not seem to have implications for lattice problems.
In Section 6 we show that the technique of solving linear equations is in principle capable

of implementing any algebraic algorithm.

2 LPN: Oracle with white noise

In this section we do a simpler version of the result where the oracle’s noise pattern η is not
allowed to depend upon the points a1, a2, . . . , am ∈ GF(2)n. The learning algorithm has access
to an oracle Q(u,m,P, µ), where u ∈ GF(2)n is the secret vector. Let m be an integer and
P (η1, η2, ..., ηm) be a multilinear polynomial over the vector η ∈ GF(2)m of degree d. Let µ
be a distribution over the values of η that satisfies P (η) = 0. The algorithm knows m and P ,
and tries to compute the secret u by querying the oracle. (The algorithm does not know the
distribution µ).

When queried by the algorithm, the oracle with secret u ∈ GF(2)n returns m random
vectors a1, a2, . . . , am ∈ GF(2)n together with m bits b1, b2, . . . , bm ∈ GF(2). The b values are
determined by first choosing a random vector η that satisfies P (η) = 0 using the distribution
µ, then computing bi = ai · u+ ηi.

Many structures can be expressed in this framework, for example, “at least one equation
ai · u = bi is satisfied” can be expressed by P (η) =

∏m
i=1 ηi. In fact, any “structure” within the

group of size m that excludes at least one value of η can be expressed by a non-zero polynomial.
Let z be an n dimensional vector, zi’s are considered to be variables. The algorithm uses

the sample returned by the oracle to write a polynomial constraint for the variables zi’s. Ideally
the solution to the equations will be z = u.

First write the formula for η that is known to be satisfied given the oracle Q:

P (η1, η2, ..., ηm) = 0. (1)

Then substitute ηi = ai · z + bi to obtain

P (a1 · z + b1, a2 · z + b2, . . . , am · z + bm) = 0, (2)

3

which is a degree d polynomial constraint in the variable vector z that is always satisfied by the
samples obtained from the oracle when z = u. Since z2

i = zi in GF(2), without loss of generality
such a polynomial is multilinear.

Now convert this polynomial constraint to a linear one by the obvious linearization: For
each S ⊆ [n] and |S| ≤ d replace the monomial

∏
i∈S zi by the new variable yS . Thus (2) turns

into a linear constraint in a vector y of N =
∑d

i=1

(
n
i

)
new variables. Ideally the solution should

have y being the “tensor” of u, that is, yS =
∏
i∈S ui, and this is what we will show.

Properties of this linearization process are important in our proof so we define it more
formally.

Definition 2.1 (linearization) Let p(z) =
∑

S⊆[n],|S|≤d cS
∏
i∈S zi, be a multilinear polyno-

mial of degree d in n variables where the coefficients cS’s are in GF(2). The linearization of p,
denoted L(p), is a linear function over the variables yS, where S ranges over subsets of [n] of
size at most d:

L(p) =
∑

S⊆[n],|S|≤d

cSyS .

We will assume there is a variable y∅ that is always 1, so the number of new variables is
N + 1 =

∑d
i=0

(
n
i

)
In this section z will denote a vector of variables, and y is the vector of all variables used in

linearizing degree d polynomials in z. Thus y has dimension N + 1, and is indexed by S ⊆ [n]
and |S| ≤ d.

Our learning algorithm will take poly(N, 2m+d) samples from the oracle, thus obtaining a
linear system in N variables and poly(N, 2m+d) constraints. Each constraint is the linearization
of equation (2):

L(P (a1 · z + b1, a2 · z + b2, . . . , am · z + bm)) = 0. (3)

Note that the set of constraints always has at least one solution, namely, the vector y obtained
from the hidden vector u. We will show that whp all solutions will reveal the hidden vector u.

Theorem 2.2 The linear system obtained by 10N2m+d samples always has at least one solution,
and with high probability (over the oracle’s random choices) all solutions to the system satisfy
y{i} = ui.

We will need the following version of Schwartz-Zippel Lemma, which is essentially the fact
that degree d Reed-Muller Codes over GF(2) have distance 2−d. We call it “Schwartz-Zippel”
because that is the name given to a similar lemma over GF(q).

Lemma 2.3 (Schwartz-Zippel) If p is a nonzero multilinear polynomial over GF(2) of degree
d, then

Prx∈U [p(x) 6= 0] ≥ 2−d

Recall that for any n-dimensional vector z the tensor product z⊗k is the vector in nk di-
mensions whose component corresponding to (i1, i2, i3, ..., ik) ∈ [n]k is zi1zi2 · · · zik . In the proof
we will be often interested in linearization of tensors of the vector (z + u), where u is the
secret of the oracle and z is a vector of variables. The components ui are considered to be
constants. Let Zk = (z + u)⊗k. Each component of Zk is a multilinear polynomial over z of
degree at most k. Let us linearize each component separately, and obtain vector Y k. Notice that
components of Y k form a subset of components in Y k+1, because for any index (i1, i2, ..., ik),

4

Zki1i2···ik =
∏k
j=1(zij + uij) = (zik + uik)

∏k
j=1(zij + uij) = Zk+1

i1i2···ikik , so it is equivalent to the
component corresponding to the vector (i1, ..., ik, ik) (the original index with last component
repeated) in Zk+1.

Each component of Y d is a linear combination of the coordinates of vector y. We represent
this linear transformation using a matrix Mu, in other words Y d = Muy. This linear transfor-
mation maps y to a higher dimensional vector, in the analysis we consider Y d as a new set of
variables. Sometimes we will also use Y k where k < d; these are replaced by variables in Y d

that have the same value.
In the next lemma, the ⊗ notation denotes tensor product. Note that every degree d

polynomial in variables z can be represented as c · z⊗d where c is the coefficient vector.

Lemma 2.4 Let a1, a2, ..., am be vectors of n variables each. Consider a linearized polynomial
constraint of the form ∑

S⊆[m],S 6=∅,|S|≤d

cS(⊗i∈Sai) · Y |S| = 0, (4)

where cS are coefficients in GF(2). This is a homogeneous linear constraint in terms of Y d

(here “homogeneous” means there’s no constant term, so the equation is satisfied when Y d = 0)
and a degree d polynomial constraint in terms of the variables in ai’s.

Let an assignment to Y d be such that equation (4) is satisfied for all possible values of ai’s.
If there is a subset S of size k such that cS = 1, then Y k = 0.

Proof: Assume towards contradiction that Y k 6= 0. Let I = {i1, i2, ..., ik} be the set of size k
with cI = 1, and let (j1, j2, ..., jk) be an index where Y k is nonzero. We use ai,j to denote the
j-th component of the vector ai. Consider the polynomial over {ai,j}∑

S⊆[m],S 6=∅,|S|≤d

cS(⊗i∈Sai) · Y |S|.

The monomial
∏k
t=1 ait,jt appears in the sum only when S = I, and it is the monomial in

the component of (⊗i∈Sai) whose index is (j1, j2, ..., jk). If the polynomial is represented as the
sum of monomials,

∏k
t=1 ait,jt has coefficient cIY k

j1,j2,...,jk
= 1. Therefore for this assignment of

Y d, the left hand side of Equation (4) is a polynomial over {ai,j} that is not identically 0, it
cannot be 0 for all possible values of ai’s. This contradicts with the hypothesis, so we must
have Y k = 0.

Now we are ready to prove Theorem 2.2:

Proof: The proof consists of inverting the viewpoint about what is a variable and what is a
constant. Constraint (2) is properly viewed as a polynomial constraint in the z’s as well as ai’s
and ηi’s.

It’s easy to see that if we set yS =
∏
i∈S ui then Equation (2) becomes P (η) = 0 and is

always satisfied. Now we show that every wrong vector yS results in a nonzero polynomial over
the ai’s, which is not satisfied for random choices of ai’s.

Substituting bi = ai · u+ ηi, Equation (2) becomes

P (η1 + a1 · (z + u), η2 + a2 · (z + u), ..., ηm + a1 · (z + u)) = 0. (5)

We observe there must be a value of η that get picked by distribution µ with probability at
least 1/2m. Let η∗ ∈ GF(2)m be this value, we have Pr[η = η∗] ≥ 1/2m and P (η∗) = 0. We

5

show that, incorrect y’s will have difficulty even restricting η to η∗. Assume the event η = η∗

happens, Equation (2) becomes

P (a1 · (z + u) + η∗1, ..., am · (z + u) + η∗m) = 0. (6)

The polynomial P (a1 · (z + u) + η∗1, ..., am · (z + u) + η∗m) is then expanded into a similar
form as Equation (4). In the expansion, ai · (z + u) are considered variables, η∗i are constants,
and when multiplying variables in a monomial we use tensor of ai’s:

P (a1 · (z + u) + η∗1, ..., am · (z + u) + η∗m) = P (η∗) +
∑

S⊆[m],S 6=∅,|S|≤d

cS(⊗i∈Sai) · Z |S|. (7)

Here the constant term is exactly P (η∗) (which is equal to 0), because if we express P as
the sum of monomials, each monomial of the form

∏
i∈S(ai · (z + u) + η∗i) has constant term∏

i∈S η
∗
i .

Now we linearize (7) by replacing Zk with Y k, and use the fact P (η∗) = 0 to get

∑
S⊆[m],S 6=∅,|S|≤d

cS(⊗i∈Sai) · Y |S| = 0. (8)

We can view this as a linear constraint over the variables Y d, and because (3) and (8) are
the same constraint (they are linearizations of the same polynomial), if y satisfies (3) then
Y d = Muy satisfies (8). The left hand side of Constraint (8) cannot be identically 0 because
Constraint (3) is not trivial. Let S be a subset such that cS = 1, and let its size be k. We claim
that with high probability all solutions will have Y k = 0.

For any nontrivial Y d = Muy such that Y k 6= 0, by Lemma 2.4, the left hand side of (8)
is a nonzero polynomial over the ai’s. This polynomial has degree at most d, by Schwartz-
Zippel Lemma it must be 1 with probability at least 2−d. The right hand side of Equation
(8) is always 0. Hence when η = η∗ a solution with Y k 6= 0 will violate the constraint with
probability at least 2−d. The probability that such a solution violates a random constraint is
at least 2−m−d because Pr[η = η∗] ≥ 2−m. Since constraints are independent the probability
that this assignment Y d satisfies all 10N2d+m constraints is at most

(1− 2−d−m)10N2d+m ≤ e−10N .

For any solution y such that Y d = Muy and Y k 6= 0, we know the probability that it satisfies
all constraints is at most e−10N . By union bound the probability that there exists a y′ such that
the corresponding Y k 6= 0 and it satisfies all constraints is at most e−10N2N � 1. Therefore
with high probability all solutions to the system of linear equations satisfy Y k = 0. When
Y k = 0, consider the component (i, i, ..., i) of Y k, by definition it is equal to y{i} + ui, and we
know it is 0, hence y{i} = ui.

Therefore with high probability, all solutions will have y{i} = ui.

3 Learning With Adversarial Noise

In the previous section, the noise vector η is chosen randomly from a distribution µ, and is
independent of the ai’s. Now we consider the more general model where the η is allowed to
depend on the ai’s. However, in this model the set of acceptable noise patterns is smaller.

6

The learning algorithm now has access to a new oracle Q(u,m,P). As before, u ∈ GF(2)n is
the secret of the oracle, P (η) is a multilinear polynomial such that all acceptable noise patterns
η satisfy P (η) = 0. When queried, the oracle picks m uniformly random vectors a1, a2, ...,
am ∈ GF(2)n, then it picks a noise pattern η that satisfies P (η) = 0. The oracle then returns
the vectors {ai} and bits b1, b2, ..., bm such that bi = ai · u+ ηi.

As we stated before one major difference here is that the oracle can pick η after looking
at the ai’s. Although oracle Q(u,m,P) still has no control over the randomness of {ai}, the
ability to pick η already gives it power to fool any learning algorithm for some choices of P .
For example, the polynomial representing “the noise vector has at most dm/2e ones” makes it
impossible for any algorithm to learn the secret.However, one can hope that if the polynomial
P merely represents “At most m/3 ones” (in other words, the noise rate is 1/3) then learning
should be possible. The next theorem shows that this is indeed the case. Later in Thm 3.3 we
will show this theorem is tight in the sense that all other polynomials allow the adversary to
fool any algorithm.

Theorem 3.1 Suppose the oracle polynomial P is such that there exists η ∈ GF(2)m, for any
α and β satisfying P (α) = P (β) = 0, η 6= α+β. Then the secret u can be learned in poly(N2m)
time.

The algorithm works as follows: first construct a multilinear polynomial R(η). Let R(η) = 1
if and only if η cannot be decomposed into α + β such that P (α) = P (β) = 0. In particular,
for all α and β that satisfy P (α) = P (β) = 0, we have R(α + β) = 0. By assumption R is
not identically 0. Let d be the degree of R, and let N =

∑d
i=1

(
n
i

)
. For each example returned

by the oracle, the algorithm adds additional noise vector β such that P (β) = 0. The effect is
that the final noise vector can be represented as α+ β, where α is the noise introduced by the
oracle and β is the noise introduced by the algorithm. Although this vector is more “noisy”,
it nevertheless satisfies R(α + β) = 0. For all β such that P (β) = 0, the algorithm defines a
constraint

R(a1 · z + b1 + β1, a2 · z + b2 + β2, ..., am · z + bm + βm) = 0. (9)

Then the algorithm linearizes it to obtain a linear constraint on the variables yS

L(R(a1 · z + b1 + β1, a2 · z + b2 + β2, ..., am · z + bm + βm)) = 0. (10)

We claim that solving a system of linear equations generated by enough samples will reveal
the secret vector.

Theorem 3.2 The linear system obtained by 10N2d samples (which contains at most 10N2m+d

equations) will always have at least one solution, and with high probability (over the random
choices of {ai}), all solutions to the system have the following property: the i-th bit of the secret
vector is just the value of y{i}.

Proof: When yS =
∏
i∈S ui, for any constraint, assume the noise vector that the oracle picked

is α, and the noise vector the algorithm picked is β, then the left hand side of Equation (10) is
equal to R(α+β), where P (α) = P (β) = 0. By definition of R we have R(α+β) = 0. Therefore
there’s always a solution to the system of linear equations, and it satisfies y{i} = ui.

Now we show that every incorrect y gets ruled out with high probability, and in fact by a
very small subset of the constraints. For any sample returned by the oracle, assume the noise

7

vector that the oracle picked is α, hence P (α) = 0. By the construction of linear equations,
there will be an equation that corresponds to β = α. Then bi + βi = bi + αi = ai · u. This
equation is

L(R(a1 · (z + u), a2 · (z + u), ..., am · (z + u))) = 0. (11)

Equation (11) is equivalent to (3) when η = 0. If we just consider these constraints, we can
view them as generated by an oracle Q(u,m,R, µ), where the distribution µ gives probability
1 to the 0 vector. Clearly R(0) = 0 because for any vector α such that P (α) = 0, we have
α+α = 0. ThusQ(u,m,R, µ) is a valid oracle, there are 10N2d such constraints, by Theorem 2.2
we know with high probability all solutions to the linear system with these constraints satisfy
y{i} = ui (here since η = 0 with probability 1 we save a 2m factor in Thm 2.2). Since this set
of constraints is only a subset of all the constraints, with high probability all solutions to the
entire linear system will also satisfy y{i} = ui.

Now we show if the algorithm does not work, then no algorithm can learn the secret with
probability better than 1/2 for all possible oracles.

Theorem 3.3 If for all η ∈ GF(2)m, there exist α, β ∈ GF(2)m such that P (α) = P (β) = 0
and η = α+ β, then for any algorithm Am,P there is an oracle Q(z,m, P), such that no matter
how many queries A makes, Pr[AQm,P = z] ≤ 1/2.

Proof: Assume towards contradiction that there exists an algorithm Am,P , for any oracle
Q(z,m, P) it satisfies Pr[AQm,P = z] > 1/2.

Pick u, v ∈ GF(2)n such that u 6= v. We will construct an oracle Q based on u and v. When
queried by the algorithm, the oracle Q first generates the vectors {ai} randomly (recall that
the oracle has no control over this process). Let M be a matrix in GF(2)m×n, the i-th row
vector of M is equal to ai. Compute b0 = Mu and b1 = Mv. Then the oracle constructs a set
S ⊆ GF(2)m, S = {b : P (b+ b0) = 0 and P (b+ b1) = 0} and returns {ai} and a random b ∈ S.
Thus it suffices to show S is not empty. The reason is that by hypothesis the vector η = b0 + b1

can be represented as α+ β, where P (α) = P (β) = 0. Thus b0 + α must be in S.
Notice that, u and v are symmetric in the construction. The above oracle Q is a valid

oracle for Q(u,m,P), and is also a valid oracle for Q(v,m, P). Let Q1(u,m,P) = Q and
Q2(v,m, P) = Q, by assumption Pr[AQ1

m,P = u] > 1/2 and Pr[AQ2

m,P = v] > 1/2. However Q1

and Q2 are actually the same oracle Q, therefore Pr[(AQm,P = u) or (AQm,P = v)] > 1. This is a
contradiction. Therefore such an algorithm cannot exist.

4 Learning Low Degree Polynomials

In this section we consider the problem of learning low degree polynomials in the “structured
noise” model. Our algorithm will work in both the white noise setting and the adversarial
noise setting, but here for simplicity we only show an algorithm in the white noise setting. The
algorithm for the adversarial noise setting follows from the same construction as in Section 3.
The algorithm has access to an oracle Q(U,m,P, µ), where m, P , µ are analogous to the
parameters as in Section 2. The new parameter U is the secret of the oracle. Unlike learning
parities with noise, here U is a degree d′ polynomial over GF(2)n. When queried, the oracle first
chooses uniformly random vectors a1, a2, ..., am from GF(2)n, then picks η from distribution µ
independent of ai’s. The oracle returns ai’s together with bi = U(ai) + ηi.

8

The algorithm tries to reduce this problem to learning parities with structured noise. We
express U in the monomial form:

U(ai,1, ai,2, ..., ai,n) =
∑

W⊆[n],|W |≤d′
uW

∏
j∈W

ai,j .

Here uW ’s are coefficients in GF(2). In the reduction we introduce variables zW , where W
is a subset of [n] with size at most d′. Notice that the set W has a different range from the
sets S we used before, and we will always use W for this kind of sets. Let Ω be the set of all
W ’s, that is, Ω = {W : W ⊆ [n] and |W | ≤ d′}. The vector z is also not similar to any of the y
vectors we used before. In particular z∅ is also a variable that can be either 0 or 1. Intuitively
zW satisfies all constraints written by the algorithm if zW = uW .

We define vector Ai based on the vector ai. The vector Ai is indexed by all sets W ∈ Ω, and
we have Ai,W =

∏
j∈W ai,j . Now we can think of the oracle’s secret as the vector uW , and the

oracle returns A1, A2, ..., Am and b. Then it looks like a learning parities with structured noise
problem because bi = Ai ·uW + ηi. We apply the algorithm in Section 2 to generate 10N2m+dd′

equations, and claim that with high probability the system of equations will have solutions that
reveal the secret u. Here N is the number of variables in the system and N = O(ndd

′
). After

linearization, we will have variables yS , where now S ⊆ Ω and |S| ≤ d.

Theorem 4.1 The system of equations with 10N2m+dd′ constraints always has a solution. With
high probability (over the oracle’s randomness) all solutions to the system will satisfy y{W} =
uW , and the secret U is

U(ai,1, ai,2, ..., ai,n) =
∑

W⊆[n],|W |≤d′
y{W}

∏
j∈W

ai,j .

Proof: (sketch) Notice that after reduction the problem is almost the same as learning parities
with noise, except that Ai is no longer a uniformly random vector. However, the only places
where we use properties of Ai’s in the proof for Theorem 2.2 are Lemma 2.4 and Schwartz-Zippel
Lemma. We will replace Lemma 2.4 with the following Lemma and claim that the rest of the
proof still works.

Lemma 4.2 Consider a polynomial constraint of the form

∑
S⊆[m],S 6=∅,|S|≤d

cS(⊗i∈SAi) · Y |S| = 0, (12)

where cS are coefficients in GF(2). This is a homogeneous linear constraint in terms of Y d

If there is a subset S of size k such that cS = 1, and Y k 6= 0, then the left hand side of (12)
is a multilinear polynomial over ai,j’s of degree at most dd′ and is not identically 0.

Proof: If we expand the tensor (⊗i∈SAi) and view each component as a monomial over ai,j ’s,
it’s clear the left hand side of (12) is a multilinear polynomial over ai,j ’s of degree at most dd′,
because in the tensor Ai,W cannot be multiplied with Ai,W ′ for any W and W ′.

Let the set S of size k and cS = 1 be {s1, s2, ..., sk}, and let (W1,W2, ...,Wk) be an in-
dex where Y k is nonzero(recall that Y k is now indexed by a vector in Ωk). The monomial∏k
i=1

∏
j∈Wi

asi,j can only appear in term cS(⊗i∈SAi) · Y |S|, its coefficient is cSY k
W1,...,Wk

= 1.
Therefore this polynomial is not identically 0.

9

Now everything in the proof for Thm 2.2 can go through, except that we now have a
polynomial of degree dd′, so the probability that a nonzero Y d violates a random constraint
with η = η∗ is at least 2−dd

′
.

5 Learning With Errors

In the learning with errors problem, all values are in GF(q), where q is a prime number that
is normally bounded by a polynomial of n. The algorithm has access to an oracle Q(u,Ψα) ,
where u ∈ GF(q)n is the secret vector, and Ψα is a distribution over GF(q) for the noise vector.
The distribution is called the discrete Gaussians, it is thought to be a gaussian distribution
with standard deviation αq. To sample a point in Ψα, first pick a random real number r
from Gaussian distribution with standard deviation σ = αq (the density function is given by
Dσ(r) = 1/σ exp(−(πr/σ)2)), then round it to the nearest integer bre and output bre(mod q).
Here we will rely on the following two well known facts about the distribution:

Lemma 5.1 For η ∈ [−(q − 1)/2, (q − 1)/2], we have

Prη∼Ψα [|η| > kαq] ≤ e−O(k2).

The probability that Ψα picks 0 is inversely proportional to αq, as stated in the next Lemma.

Lemma 5.2
Prη∼Ψα [η = 0] = Ω(1/αq).

The oracle first picks a ∈ GF(q)n uniformly at random. Then it picks η independent of a
from distribution Ψα, and returns a, b where b = a · u+ η. It is conjectured that no polynomial
time algorithm can learn the secret u for some specific parameters, and the best known algorithm
works in exponential time. In the “structured noise” setting, we change the oracle slightly and
show there is a subexponential time algorithm for some parameters in the new model, including
some of the parameters where the original problem is considered to be intractable.

In our model the algorithm has access to a different oracle Q(u,Ψα, d). The new parameter
d is an integer that is considered to be the “bound” of the error η and satisfies 4d < q. When
queried, the oracle first picks a ∈ GF(q)n randomly, then picks η from Ψα repeatedly until
|η| ≤ d (we always interpret η as an integer between −(q − 1)/2 and (q − 1)/2), and returns a
and b = a · u+ η.

The algorithm works similarly as the algorithms in previous sections. In this section we will
define a new way to do linearization to handle non-multilinear polynomials, and we will use
different sets of variables. However we will use the same notations (such as z, Y d, etc.).

We first write the polynomial P such that P (η) = 0 is always satisfied by η, notice that here
it is a single-variate polynomial and has degree 2d+ 1.

P (η) = η
d∏
i=1

(η + i)(η − i).

For some technical reasons that we’ll explain later the algorithm will pick a random vector
r ∈ GF(q)2d, and consider it as a degree 2d− 1 polynomial

R(η) =
2d−1∑
i=0

riη
i.

10

The randomness of vector r gives us the following useful property: each coefficient of ηi(1 ≤
i ≤ 4d) in P (η)R(η) is nonzero with probability 1− 1/q.

We use z (an n dimensional vector) as variables, and intuitively the system of equations
generated by the algorithm will have solution z = u. Then we substitute η = a · z + b in the
polynomial P (η)R(η) to obtain a degree 4d polynomial over the variables zi, and force it to be
0. (

(a · z + b)
d∏
i=1

(a · z + b+ i)(a · z + b− i).

)(
2d−1∑
i=0

ri(a · z + b)i
)

= 0.

This constraint is always satisfied if z = u. Let D = 4d, so D is the degree of the polynomial
P (η)R(η). Finally the algorithm linearizes this equation using variables yv. The vector y is
indexed by vectors v ∈ Zn such that 1 ≤

∑n
i=1 vi ≤ D. The variable yv corresponds to the

monomial
∏n
i=1 z

vi
i . We denote the degree of this monomial as deg(v) or deg(yv). It’s easy to

see deg(v) = deg(yv) =
∑n

i=1 vi. For simplicity we add one component y0, which always has
the value 1. The number of variables is N =

(
n+D
n

)
. We define yk to be the vector of all the

variables with degree k. Thus y = (1, y1, y2, ..., yD).
The new linearization operator L replaces each monomial in the polynomial with the corre-

sponding y variable. The linearized equation will be a linear constraint on the y variables,

L (P (a · z + b)R(a · z + b)) = 0. (13)

The algorithm queries the oracle O(Nαq2) times and generates a linear system of equations
over the variables y’s (the algorithm picks a different polynomial R for each constraint). We
will show that with high probability this system of equations has a unique solution.

Theorem 5.3 With high probability (over the randomness of both the oracle and the algorithm),
the system of linear equations generated by the algorithm will have a unique solution. Moreover,
yei = ui where ei is the vector that has 1 in the i-th coordinate and 0 elsewhere.

Proof: It’s easy to see when yv =
∏n
i=1 u

vi
i , constraint (13) is equivalent to P (η)R(η) = 0,

and is always satisfied. In this solution we have yei = ui. So now we only need to prove that
the system of equations has at most one solution.

The proof has a similar structure as the proof for Theorem 2.2. We will consider a new set
of variables ỹ that is indexed in the same way as the vector y. Define ỹk similarly to yk as the
degree k components of ỹ. The coordinate of ỹ that corresponds to vector v is defined as the
linearization of

∏n
i=1(zi+ui)vi . Thus each component of ỹ is a linear combination of coordinates

of y. We denote the linear transformation from y to ỹ by a matrix Mu, that is, ỹ = Muy. It’s
easy to see that Mu defines a bijection, because the linearization of

∏n
i=1(zi + ui)vi will only

contain variables with equal or smaller degree, and there’s exactly one variable with the same
degree as v which is yv. Hence when the order of y vector is (1, y1, y2, ..., yD) and the order of ỹ
vector is (1, ỹ1, ỹ2, ..., ỹD), the matrix Mu is a lower triangular matrix with 1’s in the diagonal.
Therefore Mu is invertible and defines a bijection between y and ỹ.

Let Ỹ k be a vector of dimension nk that is indexed by w ∈ [n]k. For any w ∈ [n]k, define the
corresponding vector v(w) ∈ Zn, where the i-th component of v(w) is the number of coordinates
in w that are equal to i (for example if w = (1, 2, 3, 2, 2, 3) then v = (1, 3, 2)). Each component
of Ỹ k is a variable in ỹk, and Ỹ k

w = ỹv(w). Now suppose we have a polynomial over ai’s of the
form

11

D∑
i=1

cia
⊗i · Ỹ i. (14)

Here ci ∈ GF(q) are coefficients that are considered to be constants. We prove something
similar to Lemma 2.4:

Lemma 5.4 The Polynomial (14) over the ai’s is identically 0 if and only if for all i ∈ [D]
such that ci 6= 0, we have ỹi = 0.

Proof: Assume that there is a k such that yk 6= 0 and ck 6= 0. Let v be a coordinate of yk

where ykv 6= 0. Using extended Binomial Theorem we know that there are exactly k!/(
∏n
i=1 vi!)

copies of the monomial
∏n
i=1 a

vi
i in the tensor a⊗k. By rule of inner product all these copies are

multiplied by ykv . Thus the coefficient of this monomial is ykv · k!/(
∏n
i=1 vi!) in GF(q). Here the

factorials in GF(q) are defined similarly as in Z, and division is done by multiplying the inverse.
Since q > D and q is a prime, this coefficient is nonzero. Clearly monomials cannot cancel each
other so the polynomial over ai’s is not identically 0.

The other direction is trivial, if for each i either ci = 0 or ỹi = 0 then the polynomial is
0.

Let P (η) =
∑2d+1

i=1 piη
i and R(η) =

∑2d−1
i=0 riη

i, represent P (η)R(η) as

P (η)R(η) =
D∑
i=1

ciη
i.

As we claimed before, we have the following Lemma.

Lemma 5.5 Each ci(1 ≤ i ≤ D) is nonzero with probability 1− 1/q.

Proof: Computing the product shows ci =
∑2d−1

j=0 rjpi−j , undefined coordinates of p are
assumed to be 0. Notice that, for each ci, either p1 or p2d+1 appears in the sum. We know
p1 =

∏d
i=1 i(−i) 6= 0 and p2d+1 = 1 6= 0. Since q is a prime, rjp1 and rjp2d+1 are distributed

uniformly for any j. Therefore each ci is distributed uniformly in GF(q) (over the randomness
of the vector r), and is nonzero with probability 1− 1/q.

For any ỹ 6= 0, assume ỹk 6= 0. For any constraint that the algorithm writes, with probability
at least αq we have η = 0 (this is by Lemma 5.2). Substitute b = a · u into Constraint (13), it
will have the form

L(P (a · (z + u))R(a · (z + u))) = 0.

We expand the polynomial, think of (z+u) as the variables, and do linearization by replacing
(z + u)⊗k with Ỹ k, the formula becomes

D∑
i=1

ci(a⊗i · Ỹ i) = 0.

Now the left hand side has the same form as Polynomial (14). By Lemma 5.4 when ck 6= 0
the left hand side is a nonzero polynomial of degree at most D. Here we use the canonical
version of Schwartz-Zippel Lemma which states a nonzero polynomial of degree D in GF(q) is 0
with probability at most D/q when the variables are chosen from uniformly random distribution.

12

Thus by D < q the left hand side is nonzero with probability at least 1/q. Therefore a nonzero ỹ
violates a random constraint with probability at least Ω(1/αq)1/q(1−1/q). The probability that
it satisfies all CNαq2 constraints is at most e−10N for sufficiently large constant C. Finally by
union bound we know the probability that the system of equations has more than one solution
is at most e−10N2N � 1.

Notice that the oracle Q′(u,Ψα, d) is very similar to Q(u,Ψα) when d is large enough because
Ψα concentrates around 0. We use this fact to prove the following theorem, which appears to
be the first nontrivial algorithm for LWE:

Theorem 5.6 When αq = nε where ε is a constant strictly smaller than 1/2, and q �
(αq log n)2, there is an 2Õ(n2ε) time algorithm algorithm that learns u when given access to
the oracle Q(u,Ψα).

Proof: We show this by a reduction to the structured noise model. Let d = C log n(αq)2 where
C is a large enough constant. We run the same algorithm for oracle Q′(u,Ψα, d) and claim that
the algorithm learns u with high probability even if we replace Q′(u,Ψα, d) by Q(u,Ψα). By
Lemma 5.1, the probability that |η| is greater than d is e−O((Cαq logn)2). When C is large enough
this is much smaller than 1/Nαq2. The statistical difference between outputs of oracle Q(u,Ψα)
and Q′(u,Ψα, d) is at most the probability that |η| is greater than d, and is much smaller than
1/Nαq2. It’s easy to see that O(Nαq2) independent queries will have statistical distance much
smaller than 1. Therefore even if we replace Q′(u,Ψα, d) by Q(u,Ψα), the algorithm can still
learn the secret u with high probability. The algorithm will run in time nO(d) = 2Õ(n2ε) time
which is subexponential for ε < 1/2.

6 Can LPN be Solved by Solving Linear Equations?

Since learning parities with structured noise looks very similar to learning parity with noise,
one might ask whether the same kind of technique can be applied to solve the LPN problem.
Unfortunately, all reductions from LPN to learning parities with structured noise that we have
tried only give 2O(n) algorithms, which is no better than the trivial algorithm. Such difficulties
might lead one to think that “solving linear equations” is too restricted as a computational
model and it is unable to solve the LPN problem. However in this section we will show that
any algebraic algorithm that solves the LPN problem can be transformed into solving a system
of linear equations, where the size of the linear system is quasipolynomial in the size of the
algebraic algorithm.

We formulate a decision version of the learning parities with noise problem. Instead of giving
the algorithm an oracle Q, we assume the queries to the oracle have already been made, and
the result is a matrix A (containing all ai’s as row vectors) and a vector b. Either b = Au + η
where ηi is 1 with probability strictly smaller than 1/2 or b is a uniformly random vector. The
algorithm will do algebraic computations over GF(2) using elements in A and b, and decide
whether there is a u such that b = Au+ η. If the running time of the algorithm is T (n) where
T is a non-decreasing function, we always make sure that A has at least T (n) rows so the
algorithm never runs out of examples. The decision version of the learning parities with noise
problem is defined as follows.

Definition 6.1 (Decision Version of Learning Parity With Noise) Given matrix A ∈ GF(2)m×n

and vector b ∈ GF(2)m, learning parities with noise ρ (DLPNρ) is the problem of distinguishing
the following two distributions:

13

Distribution D1: The matrix A and the vector b are uniformly random and independent.
Distribution D2: The matrix A is uniformly random, b is generated by first choose u uni-

formly random from GF(2)n, and let b = Au + η where ηi’s are independent and ηi is 1 with
probability ρ and 0 otherwise.

The decision version is closely related to the original problem by the following theorem:

Theorem 6.2 If there’s an algorithm M that runs in time T (n) and solves DLPNρ with prob-
ability at least 1−ε/n, then there exists an algorithm B that makes n calls to M and can recover
u in Distribution D2 with probability at least 1− ε− e−Ω(n).

Proof: Let Ai be the matrix A with i-th column vector removed. For every i ∈ [n] the
algorithm calls M using input (Ai, b). Let ui = 1−M(Ai, b) (M outputs 0 for distribution D1

and 1 for distribution D2), if Au+ b is a vector with at most (ρ+ 1/2)m/2 1’s, then B claims
the the input (A, b) comes from Distribution D2, and output u; otherwise B will conclude the
input comes from Distribution D1.

If the input really comes from Distribution D1, then with high probability (1−e−Ω(n)) there
is no vector u such that Au+ b has at most (ρ+1/2)m/2 1’s (by Chernoff Bound), so algorithm
B is correct with probability 1− e−Ω(n) in this case.

If the input comes from Distribution D2, then with probability at least 1 − ε, all the n
calls to M return the correct answer. Notice that if ui = 1, let ãi be i-th column vector of
A, and let x be the vector u with the i-th component removed. Since b = Au + η, we have
b = Aix + ãi + η. The vector ãi is uniformly random and independent of Ai. Therefore b is
also uniformly random and independent of Ai, and the input (Ai, b) is statistically equivalent
to the Distribution D1. Thus algorithm M will output 0 (recall that we assumed all answers
of M are correct). If ui = 0, then b = Aix+ η, the vector x is uniformly random in GF(2)n−1.
Therefore the input (Ai, b) is statistically equivalent to Distribution D2, and M will output 1.
When all calls to M return correct answer, the algorithm can reconstruct u correctly. For the
correct value of u , the vector Au+ b is a vector with at most (ρ+ 1/2)m/2 1’s with probability
at least 1− e−Ω(n), thus algorithm B is correct with probability at least 1− ε− e−Ω(n) in this
case.

Now we try to solve DLPN problem by mapping the problem to a large linear system
Py = q, as we did in previous sections. The components of the matrix P and the vector q are
polynomials over elements in the input (A, b). The vector y is a vector of variables. However,
here the variables y may not correspond to any linearization procedure as in our previous
algorithms. If the input (A, b) comes from Distribution D2, then Py = q has a solution with
high probability; if (A,b) comes from Distribution D1, then Py = q has no solution with high
probability. The size of the system is the dimension of matrix P , and the degree of the system is
the maximum degree of components of P and q when viewed as polynomials over the elements
in (A, b). Our algorithm in Section 2 can be viewed as a linear system with size poly(nd, 2m+d)
and degree d.

For an arithmetic circuit C, we use C(D) to denote the probability that C outputs 1 when
input is chosen from distribution D. For a linear system L = (P, q), we use L(D) to denote
the probability that the equation Py = q has at least one solution when input is chosen from
distribution D. The next theorem shows if there’s an arithmetic circuit C that distinguishes
between D1 and D2 (C(D1)− C(D2) > δ), then a linear system of larger size will also be able
to distinguish the two distributions.

Theorem 6.3 If there’s an arithmetic circuit C of size s and degree poly(s) such that C(D1)−
C(D2) > δ, then there’s a linear system L = (P, q) with size sO(log s) and degree 1 so that
L(D1)− L(D2) > δ.

14

Proof: Hyafil [6] showed that any arithmetic circuit of size s and degree poly(s) can be
transformed into a formula F with depth at most (log s)2 and size at most sO(log s). Using a
fact proved by Valiant [10], this formula can be computed by the projection of a determinant
of size sO(log s), that is, there is a matrix M of size sO(log s), whose elements are either 0, 1 or
variables in (A, b), such that detM = 1 if and only if the output of circuit C is 1. Let N be the
size of M .

Now we construct P as a block diagonal matrix of dimension 2sN × 2sN , in its diagonal
there are 2s blocks, each of which is equal to M . The matrix P looks like

M O . . . O
O M . . . O
...

...
. . .

...
O O . . . M

 .

We pick q uniformly at random from GF(2)2sN . Clearly, if detM = 1, then detP = 1, the
system Py = q always has a solution.

If detM = 0, we break the vector q into 2s vectors of length N , and denote them by
qi(1 ≤ i ≤ 2s). If the equation Py = q has a solution, then because P is a block diagonal
matrix, for each block My′ = qi has a solution. However, each qi is chosen uniformly from
random, with probability at least 1/2 qi is not a vector in the span of column vectors of M ,
in which case My′ = qi do not have a solution. Since all vectors qi’s are independent, when
detM = 0, Pr[Py = q has a solution] ≤ 1/22s. Since the algorithm looks at no more than s
components from (A, b), by union bound we have

Pr[∃(A, b) Py = q has a solution] ≤ 2−2s · 2s = 2−s.

We fix q so that this event do not happen, then for any input (A, b), the system Py = q has
a solution if and only if detM = 1. Thus L(D) = C(D) for any distribution D, and we have
L(D1)− L(D2) > δ.

Acknowledgements.

We thank several people for useful conversations: Daniele Micciancio, Oded Regev, David
Steurer, Avi Wigderson.

References

[1] Akavia, A., Goldwasser, S., and Vaikuntanathan, V. 2009. Simultaneous Hardcore Bits
and Cryptography against Memory Attacks. In Proceedings of the 6th theory of Cryptog-
raphy Conference on theory of Cryptography (San Francisco, CA, March 15 - 17, 2009).
O. Reingold, Ed. Lecture Notes In Computer Science, vol. 5444. Springer-Verlag, Berlin,
Heidelberg, 474-495.

[2] Alekhnovich, M. 2003. More on Average Case vs Approximation Complexity. In Proceedings
of the 44th Annual IEEE Symposium on Foundations of Computer Science (October 11 -
14, 2003). FOCS. IEEE Computer Society, Washington, DC, 298.

[3] Blum, A., Furst, M. L., Kearns, M. J., and Lipton, R. J. 1994. Cryptographic Primitives
Based on Hard Learning Problems. In Proceedings of the 13th Annual international Cryp-

15

tology Conference on Advances in Cryptology (August 22 - 26, 1993). D. R. Stinson, Ed.
Lecture Notes In Computer Science, vol. 773. Springer-Verlag, London, 278-291.

[4] Blum, A., Kalai, A., and Wasserman, H. 2003. Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM 50, 4 (Jul. 2003), 506-519. DOI=
http://doi.acm.org/10.1145/792538.792543

[5] Hopper, N. J. and Blum, M. 2001. Secure Human Identification Protocols. In Proceedings
of the 7th international Conference on the theory and Application of Cryptology and infor-
mation Security: Advances in Cryptology (December 09 - 13, 2001). C. Boyd, Ed. Lecture
Notes In Computer Science, vol. 2248. Springer-Verlag, London, 52-66.

[6] Hyafil, L. 1978. On the parallel evaluation of multivariate polynomials. In Proceedings
of the Tenth Annual ACM Symposium on theory of Computing (San Diego, California,
United States, May 01 - 03, 1978). STOC ’78. ACM, New York, NY, 193-195. DOI=
http://doi.acm.org/10.1145/800133.804347

[7] Kearns, M. 1998. Efficient noise-tolerant learning from statistical queries. J. ACM 45, 6
(Nov. 1998), 983-1006. DOI= http://doi.acm.org/10.1145/293347.293351

[8] Peikert, C., Vaikuntanathan, V., and Waters, B. 2008. A Framework for Efficient and
Composable Oblivious Transfer. In Proceedings of the 28th Annual Conference on Cryptol-
ogy: Advances in Cryptology (Santa Barbara, CA, USA, August 17 - 21, 2008). D. Wagner,
Ed. Lecture Notes In Computer Science, vol. 5157. Springer-Verlag, Berlin, Heidelberg,
554-571.

[9] Regev, O. 2009. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM 56, 6 (Sep. 2009), 1-40. DOI= http://doi.acm.org/10.1145/1568318.1568324

[10] Valiant, L. G. Completeness classes in algebra. In STOC ’79: Proceedings of the eleventh
annual ACM symposium on Theory of computing, pages 249–261, 1979.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

