
New Algorithms for Learning in Presence of Errors∗

Sanjeev Arora
arora@cs.princeton.edu

Rong Ge
rongge@cs.princeton.edu

Department of Computer Science and
Center for Computational Intractability,

Princeton University

Abstract

We give new algorithms for a variety of randomly-generated instances of computational
problems using a linearization technique that reduces to solving a system of linear equations.

These algorithms are derived in the context of learning with structured noise, a notion intro-
duced in this paper. This notion is best illustrated with the learning parities with noise (LPN)
problem —well-studied in learning theory and cryptography. In the standard version, we have
access to an oracle that, each time we press a button, returns a random vector a ∈ GF(2)n

together with a bit b ∈ GF(2) that was computed as a · u + η, where u ∈ GF(2)n is a secret
vector, and η ∈ GF(2) is a noise bit that is 1 with some probability p. Say p = 1/3. The goal
is to recover u. This task is conjectured to be intractable.

In the structured noise setting we introduce a slight (?) variation of the model: upon pressing
a button, we receive (say) 10 random vectors a1, a2, . . . , a10 ∈ GF(2)n, and corresponding bits
b1, b2, . . . , b10, of which at most 3 are noisy. The oracle may arbitrarily decide which of the 10
bits to make noisy. We exhibit a polynomial-time algorithm to recover the secret vector u given
such an oracle. We think this structured noise model may be of independent interest in machine
learning.

We discuss generalizations of our result, including learning with more general noise patterns.
We also give the first nontrivial algorithms for two problems, which we show fit in our structured
noise framework.

We give a slightly subexponential algorithm for the well-known learning with errors (LWE)
problem over GF(q) introduced by Regev for cryptographic uses. Our algorithm works for the
case when the gaussian noise is small; which was an open problem.

We also give polynomial-time algorithms for learning the MAJORITY OF PARITIES func-
tion of Applebaum et al. for certain parameter values. This function is a special case of
Goldreich’s pseudorandom generator.

∗Research supported by NSF Grants CCF-0832797, 0830673, and 0528414

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 66 (2010)

1 Introduction

Sometimes, generating difficult instances of computational problems seems too easy. Of course this
can be a boon for cryptography, but on the other hand can frustrate machine learning theorists,
since it implies that hard-to-learn instances of learning problems can arise easily.

Consider for instance Goldreich’s simple random number generator: it takes a random string u
of length n and a fixed predicate f on d = O(1) bits that is balanced (i.e., |f−1(0)| = |f−1|(1)),
and applies f on m random (or pseudorandom) subsets of u. Can the resulting string of m bits
be distinguished from a random m-bit string? If not, we have a pseudorandom generator, and in
particular can conclude that the task of learning u from the resulting string is also hard.

Or to take another example, consider the Learning parities with noise (LPN) problem: we are
given a set of data points (a1, b1), (a2, b2) . . . , where ai ∈ GF(2)n and bi ∈ GF(2). Each ai was
chosen randomly, and bi was computed as ai · u + ηi, where u ∈ GF(2)n is a secret vector, and
ηi ∈ GF(2) is a noise bit that is 1 with some probability p. (All ai’s and ηi’s are iid.) The goal is
to distinguish these m bits from a truly random string. It can be shown that such a distinguisher
also allows us to recover u with high probability. All evidence suggests that this recovery problem
is hard, and this conjectured hardness is the basis of some cryptosystems [5, 7, 12]. The best
algorithm to recover u runs in 2O(n/ logn) time (Blum et al. [8]), only very slightly better than the
trivial 2O(n). The hardness of the LPN problem has important implications for machine learning.
A standard technique to make learning algorithms noise-tolerant is using Kearns [14]’s statistical
query (SQ) model, but parity is perhaps the simplest concept class for which the approach fails (and
must fail because parity has exponential SQ dimension). This is frustrating, because the algorithm
for learning parities in the noise-free setting is so simple and canonical: gaussian elimination (i.e.,
solving linear equations). If even this algorithm cannot be made noise-tolerant then the prospects
for more complicated learning algorithms seem bleak.

Clearly, we need more algorithmic ideas for this type of problems. Even if they do not always
work, they may help us understand parameter ranges where the problem transitions from hard
to easy. Sometimes the success/failure of specific algorithms can lead to interesting new research
questions, as happened with phase transitions for Random3SAT. If the problem is being used
in cryptography, then having several candidate algorithms —and the parameter values for which
they fail—is useful for setting parameter values in practice. Regev’s Learning with Errors (LWE)
problem, a generalization of LPN, provides a good example. This problem has become ubiquitous
in new cryptographic research in the last few years, since it shares similar hardness properties as
lattice-based cryptosystems a la Ajtai [1], Ajtai-Dwork [3] and others, while having more algebraic
structure which enables new uses (e.g., oblivious transfer protocol by Peikert et al. [17], and a
leakage-resistant crytosystem by Akavia et al. [4]; see Micciancio and Regev [15] for a survey).
There are no nontrivial algorithms for this problem, and it is known to become as hard as (worst-
case) approximate lattice vector problems when the noise parameter is more than

√
n. Does it have

any nontrivial algorithms for noise below
√
n (or for that matter, any other noise rate)? This is not

an idle question since the problem structure could be quite different for different noise rates; for
example in case of LPN the known construction for public-key cryptosystems from LPN [5] need
to assume the hardness of LPN for noise rate below 1/

√
n.

In this paper we use an algorithmic technique called linearization to make progress on some
of these questions. The main idea is an obvious one and similar to the linearization technique
used in practical cryptanalysis [6]: given a nonlinear equation that holds among some variables,
introduce new variables for the monomials and obtain a linear system in the new variables. (Similar
linearization ideas underlie Sherali-Adams lift and project methods in linear programming.) Our

2

contribution is to fruitfully apply this idea to the above settings and analyze it. We hope this will
inspire new results.

To illustrate our idea in the simplest way we introduce a variant on LPN that does not appear
to have been considered before and that, surprisingly, turns out to be tractable using our methods.
We call it the LPN problem with structured noise. In the standard noise model, pushing an oracle
button gives us a random a ∈ GF(2)n and a corresponding noisy value b ∈ GF(2) that is wrong with
probability p. In our model, pushing the oracle button returns m random vectors a1, a2, . . . , am ∈
GF(2)n and m bits b1, b2, . . . , bm, of which at most p fraction are noisy (in other words, for at least
(1 − p)m of the indices i, we are guaranteed ai · u = bi). This may be viewed as a guarantee that
the data errors, though still happening p fraction of the time, are not arbitrarily bursty. Every
sample returned by the oracle contains untainted data. Perhaps this and other structured noise
models should be considered in machine learning since the standard noise model has often led to
intractable problems. Our algorithm for LPN with structured noise runs in time that is polynomial
in nm, which is polynomial if m is a constant. Interestingly, it works even if the oracle is allowed
to look at ai’s while deciding where to add noise. It also works for more general “noise patterns”
as described later.

The idea in our algorithm is fairly simple: the above structured noise model implies that the
hidden secret u is the solution to a system of degree-m constraints. These degree-m constraints are
linearized by replacing monomials

∏
i∈S ui with a new variable yS , thus obtaining a linear constraint

in
(
n
m

)
variables. Then we prove that the resulting system has a unique solution. The proof requires

some work; see Section 2. We also give an exact characterization of noise-models for which our
technique works.

We also apply the linearization technique to give a subexponential algorithm for the LWE
problem with noise rate below

√
n, which clarifies why existing hardness results (which show that

LWE is as hard as lattice approximation [18, 16]) did not extend to this case.
Then we apply the linearization technique to an important subcase of Goldreich’s generator,

whereby f = MAJORITY of three XORs. This was proposed by Applebaum, Barak and Wigder-
son [2] as a suitable choice of f following some earlier attacks on Goldreich’s generator for “struc-
tured” f ’s (Bogdanov and Qiao [9]). We show that if m = Ω̃(n2) then the secret vector u can be
efficiently learned from the output of the generator. (Note that Applebaum et al. had proposed
m = n1.1 as a safe parameter choice, which is not contradicted by our results. However, thus far
there was no result indicating that even m = nd/3 is an unsafe choice.)

An explanation for the ubiquity of linearization Of course, our linearization idea fits in
a long line of mathematical results that involve reducing a complicated mathematical problem to
linear algebra —specifically, solving linear equations via gaussian elimination. Thus it is natural
to think of “reduction to gaussian elimination” as a simple (and possibly restricted) computational
model and to consider its strengths and limitations. In our algorithm, the reduction to gaussian
elimination actually involves equations whose coefficients are low-degree polynomials in the data
values. We can call this technique “reduction to gaussian elimination with polynomial coefficients.”
While trying to prove limitations of this restricted model for problems such as LPN and LWE, we
ended up with an observation (see Section C) that we have not seen earlier: every algebraic algo-
rithm (i.e., an algebraic circuit) for a decision problem can be converted into one that “reduces to
gaussian elimination with polynomial coefficients.” This gives some justification for the natural-
ness of this algorithm design technique and also shows that lowerbounds for this technique will be
difficult until we make progress on circuit lower bounds.

3

2 Learning Parities with Structured Noise

This section introduces our linearization technique in context of the LPN problem. The following
is the most general kind of oracle our algorithm can work with. The oracle has an associated
polynomial P in m variables over GF(2). Any η ∈ GF(2)m such that P (η) = 0 is an acceptable
noise pattern. Each time a button is pressed the oracle picks m random a1, a2, . . . , am ∈ GF(2)n,
and then picks an arbitrary acceptable noise pattern η. Then it outputs a1, a2, . . . , am together
with m bits b1, b2, . . . , bm defined as bi = ai ·u+ηi. For example, the polynomial such that P (η) = 0
iff η is a vector of hamming weight at most m/3 corresponds to the intuitive notion of “noise rate
1/3.” This polynomial also satisfies the hypothesis of the main theorem below.

Note that this noise model allows the oracle to look at the ai’s in choosing the noise pattern
(this is analogous to the agnostic-learning or worst-case noise model of the standard LPN, which
Khot et al. [10] have shown to be equivalent to the white noise case.)

Our algorithm requires P (·) to be such that there is at least one ρ ∈ GF(2)m such that ρ 6= η+η′

for all η, η′ satisfying P (η) = P (η′) = 0. For example, we could have P (η) = 0 iff the number of
1’s in η is fewer than m/2− 1, corresponding to a noise rate of less than 1/2. But one can conceive
of more exotic noise polynomials.
Theorem 2.1 (Main) Suppose P (·) is such that there is at least one ρ ∈ GF(2)m such that
ρ 6= η + η′ for all η, η′ satisfying P (η) = P (η′) = 0. Then there is an algorithm that learns the
secret u in time poly(nm) time.
There is an obvious generalization of this theorem (see Section B in the appendix) to learning
degree d polynomials (where parity is the subcase d = 1). The running time is poly(ndm). This
also leads to a learning algorithm for low-depth decision trees in our structured noise model, since
depth-d decision trees can be represented by degree d polynomials.

In this section we do a simpler version of Theorem 2.1 where the oracle’s noise pattern η is not
allowed to depend upon the points a1, a2, . . . , am ∈ GF(2)n. We think of this as white noise. The
proof of the general result appears in the Appendix.

The learning algorithm has access to an oracle Q(u,m,P, µ), where u ∈ GF(2)n is the secret
vector. Let m be an integer and P (η1, η2, ..., ηm) be a multilinear polynomial over the vector
η ∈ GF(2)m of degree d (P cannot be identically 0). Let µ be a distribution over the values of
η that satisfies P (η) = 0. The algorithm knows m and P , and tries to compute the secret u by
querying the oracle. (The algorithm does not know the distribution µ).

When queried by the algorithm, the oracle with secret u ∈ GF(2)n returns m random vectors
a1, a2, . . . , am ∈ GF(2)n together with m bits b1, b2, . . . , bm ∈ GF(2). The b values are determined
by first choosing a random vector η that satisfies P (η) = 0 using the distribution µ, then computing
bi = ai · u+ ηi.

Many structures can be expressed in this framework, for example, “at least one equation ai ·u =
bi is satisfied” can be expressed by P (η) =

∏m
i=1 ηi. In fact, any “structure” within the group of

size m that excludes at least one value of η can be expressed by a non-zero polynomial.
Let z be an n dimensional vector, zi’s are considered to be variables. The algorithm uses the

sample returned by the oracle to write a polynomial constraint for the variables zi’s. Ideally the
solution to the equations will be z = u.

First write the formula for η that is known to be satisfied given the oracle Q:

P (η1, η2, ..., ηm) = 0. (1)

Then substitute ηi = ai · z + bi to obtain

P (a1 · z + b1, a2 · z + b2, . . . , am · z + bm) = 0, (2)

4

which is a degree d polynomial constraint in the variable vector z that is always satisfied by the
samples obtained from the oracle when z = u. Since z2

i = zi in GF(2), without loss of generality
such a polynomial is multilinear.

Now convert this polynomial constraint to a linear one by the obvious linearization: For each
S ⊆ [n] and |S| ≤ d replace the monomial

∏
i∈S zi by the new variable yS . Thus (2) turns into a

linear constraint in a vector y of N =
∑d

i=1

(
n
i

)
new variables. Ideally the solution should have y

being the “tensor” of u, that is, yS =
∏
i∈S ui, and this is what we will show.

Properties of this linearization process are important in our proof so we define it more formally.

Definition 2.2 (linearization) Let p(z) =
∑

S⊆[n],|S|≤d cS
∏
i∈S zi, be a multilinear polynomial of

degree d in n variables where the coefficients cS’s are in GF(2). The linearization of p, denoted
L(p), is a linear function over the variables yS, where S ranges over subsets of [n] of size at most
d:

L(p) =
∑

S⊆[n],|S|≤d

cSyS .

We will assume there is a variable y∅ that is always 1, so the number of new variables is N + 1 =∑d
i=0

(
n
i

)
In this section z will denote a vector of variables, and y is the vector of all variables used in

linearizing degree d polynomials in z. Thus y has dimension N + 1, and is indexed by S ⊆ [n] and
|S| ≤ d.

Our learning algorithm will take poly(N, 2m+d) samples from the oracle, thus obtaining a lin-
ear system in N variables and poly(N, 2m+d) constraints. Each constraint is the linearization of
equation (2):

L(P (a1 · z + b1, a2 · z + b2, . . . , am · z + bm)) = 0. (3)

Note that the set of constraints always has at least one solution, namely, the vector y obtained
from the hidden vector u. We will show that whp all solutions will reveal the hidden vector u.

Theorem 2.3 The linear system obtained by 10N2m+d samples always has at least one solution,
and with high probability (over the oracle’s random choices) all solutions to the system satisfy
y{i} = ui.

We will need the following version of Schwartz-Zippel Lemma, which is essentially the fact that
degree d Reed-Muller Codes over GF(2) have distance 2−d. We call it “Schwartz-Zippel” because
that is the name given to a similar lemma over GF(q).

Lemma 2.4 (Schwartz-Zippel) If p is a nonzero multilinear polynomial over GF(2) of degree d,
then

Prx∈U [p(x) 6= 0] ≥ 2−d

Recall that for any n-dimensional vector z the tensor product z⊗k is the vector in nk dimensions
whose component corresponding to (i1, i2, i3, ..., ik) ∈ [n]k is zi1zi2 · · · zik . In the proof we will be
often interested in linearization of tensors of the vector (z + u), where u is the secret of the
oracle and z is a vector of variables. The components ui are considered to be constants. Let
Zk = (z+u)⊗k. Each component of Zk is a multilinear polynomial over z of degree at most k. Let
us linearize each component separately, and obtain vector Y k. Notice that components of Y k form
a subset of components in Y k+1, because for any index (i1, i2, ..., ik), Z

k
i1i2···ik =

∏k
j=1(zij + uij) =

5

(zik + uik)
∏k
j=1(zij + uij) = Zk+1

i1i2···ikik , so it is equivalent to the component corresponding to the

vector (i1, ..., ik, ik) (the original index with last component repeated) in Zk+1.
Each component of Y d is a linear combination of the coordinates of vector y. We represent this

linear transformation using a matrix Mu, in other words Y d = Muy. This linear transformation
maps y to a higher dimensional vector, in the analysis we consider Y d as a new set of variables.
Sometimes we will also use Y k where k < d; these are replaced by variables in Y d that have the
same value.

In the next lemma, the ⊗ notation denotes tensor product. Note that every degree d polynomial
in variables z can be represented as c · z⊗d where c is the coefficient vector.

Lemma 2.5 Let a1, a2, ..., am be vectors of n variables each. Consider a linearized polynomial
constraint of the form ∑

S⊆[m],S 6=∅,|S|≤d

cS(⊗i∈Sai) · Y |S| = 0, (4)

where cS are coefficients in GF(2). This is a homogeneous linear constraint in terms of Y d (here
“homogeneous” means there’s no constant term, so the equation is satisfied when Y d = 0) and a
degree d polynomial constraint in terms of the variables in ai’s.

Let an assignment to Y d be such that equation (4) is satisfied for all possible values of ai’s. If
there is a subset S of size k such that cS = 1, then Y k = 0.

Proof: Assume towards contradiction that Y k 6= 0. Let I = {i1, i2, ..., ik} be the set of size k
with cI = 1, and let (j1, j2, ..., jk) be an index where Y k is nonzero. We use ai,j to denote the j-th
component of the vector ai. Consider the polynomial over {ai,j}∑

S⊆[m],S 6=∅,|S|≤d

cS(⊗i∈Sai) · Y |S|.

The monomial
∏k
t=1 ait,jt appears in the sum only when S = I, and it is the monomial in the

component of (⊗i∈Sai) whose index is (j1, j2, ..., jk). If the polynomial is represented as the sum
of monomials,

∏k
t=1 ait,jt has coefficient cIY

k
j1,j2,...,jk

= 1. Therefore for this assignment of Y d, the
left hand side of Equation (4) is a polynomial over {ai,j} that is not identically 0, it cannot be 0
for all possible values of ai’s. This contradicts with the hypothesis, so we must have Y k = 0.

Now we are ready to prove Theorem 2.3:

Proof: The proof consists of inverting the viewpoint about what is a variable and what is a
constant. Constraint (2) is properly viewed as a polynomial constraint in the z’s as well as ai’s and
ηi’s.

It’s easy to see that if we set yS =
∏
i∈S ui then Equation (2) becomes P (η) = 0 and is always

satisfied. Now we show that every wrong vector yS results in a nonzero polynomial over the ai’s,
which is not satisfied for random choices of ai’s.

Substituting bi = ai · u+ ηi, Equation (2) becomes

P (η1 + a1 · (z + u), η2 + a2 · (z + u), ..., ηm + am · (z + u)) = 0. (5)

We observe there must be a value of η that get picked by distribution µ with probability at
least 1/2m. Let η∗ ∈ GF(2)m be this value, we have Pr[η = η∗] ≥ 1/2m and P (η∗) = 0. We show

6

that, incorrect y’s will have difficulty even restricting η to η∗. Assume the event η = η∗ happens,
Equation (2) becomes

P (a1 · (z + u) + η∗1, ..., am · (z + u) + η∗m) = 0. (6)

The polynomial P (a1 · (z + u) + η∗1, ..., am · (z + u) + η∗m) is then expanded into a similar form
as Equation (4). In the expansion, ai · (z+ u) are considered variables, η∗i are constants, and when
multiplying variables in a monomial we use tensor of ai’s:

P (a1 · (z + u) + η∗1, ..., am · (z + u) + η∗m) = P (η∗) +
∑

S⊆[m],S 6=∅,|S|≤d

cS(⊗i∈Sai) · Z |S|. (7)

Here the constant term is exactly P (η∗) (which is equal to 0), because if we express P as the
sum of monomials, each monomial of the form

∏
i∈S(ai · (z + u) + η∗i) has constant term

∏
i∈S η

∗
i .

Now we linearize (7) by replacing Zk with Y k, and use the fact P (η∗) = 0 to get∑
S⊆[m],S 6=∅,|S|≤d

cS(⊗i∈Sai) · Y |S| = 0. (8)

We can view this as a linear constraint over the variables Y d, and because (3) and (8) are the
same constraint (they are linearizations of the same polynomial), if y satisfies (3) then Y d = Muy
satisfies (8). The left hand side of Constraint (8) cannot be identically 0 because Constraint (3)
is not trivial. Let S be a subset such that cS = 1, and let its size be k. We claim that with high
probability all solutions will have Y k = 0.

For any nontrivial Y d = Muy such that Y k 6= 0, by Lemma 2.5, the left hand side of (8) is
a nonzero polynomial over the ai’s. This polynomial has degree at most d, by Schwartz-Zippel
Lemma it must be 1 with probability at least 2−d. The right hand side of Equation (8) is always
0. Hence when η = η∗ a solution with Y k 6= 0 will violate the constraint with probability at least
2−d. The probability that such a solution violates a random constraint is at least 2−m−d because
Pr[η = η∗] ≥ 2−m. Since constraints are independent the probability that this assignment Y d

satisfies all 10N2d+m constraints is at most (1− 2−d−m)10N2d+m ≤ e−10N .
For any solution y such that Y d = Muy and Y k 6= 0, we know the probability that it satisfies all

constraints is at most e−10N . By union bound the probability that there exists a y′ such that the
corresponding Y k 6= 0 and it satisfies all constraints is at most e−10N2N � 1. Therefore with high
probability all solutions to the system of linear equations satisfy Y k = 0. When Y k = 0, consider
the component (i, i, ..., i) of Y k, by definition it is equal to y{i} + ui, and we know it is 0, hence
y{i} = ui.

Therefore with high probability, all solutions will have y{i} = ui.

3 Learning With Errors

The learning with errors problem is a generalization of LPN to a larger field. There is an unknown
vector u ∈ GF(q)n where q is a prime number that is usually bounded by a polynomial of n. The
algorithm is given noisy samples of the type a · u + η where the noise η is generated according
to the Discrete Gaussian distribution Ψα with standard deviation αq, which consists of picking
a random real number r from the (usual) Gaussian distribution with standard deviation σ = αq
(i.e., with density function Dσ(r) = 1/σ exp(−(πr/σ)2)), then rounding it up to the nearest integer
bre and outputting bre(mod q). The algorithm is given access to an oracle Q(u,Ψα). which picks

7

a ∈ GF(q)n uniformly at random, then picks η independent of a from distribution Ψα, and returns
a, b where b = a · u + η. It is conjectured that no polynomial time algorithm can learn the secret
u for some specific parameters, and the best known algorithm works in exponential time. We give
the first nontrivial algorithm for LWE:

Theorem 3.1 When αq = nε where ε is a constant strictly smaller than 1/2, and q � (αq log n)2,

there is a 2Õ(n2ε) time algorithm algorithm that learns u when given access to the oracle Q(u,Ψα).

The theorem is derived by showing that the low error case fits in our “structured noise” setting,
for which we show a subexponential algorithm. In the structured noise model the algorithm has
access to a different oracle Q(u,Ψα, d). The new parameter d is an integer that is considered to be
the “bound” of the error η and satisfies 2d + 1 < q. The oracle ensures that the noise η is picked
uniformly from Ψα conditional on it being at most d in magnitude. (We always interpret η as an
integer between −(q − 1)/2 and (q − 1)/2.)

We will rely on two well known facts about the gaussian distribution:

Lemma 3.2 For η ∈ [−(q − 1)/2, (q − 1)/2], we have

1. Prη∼Ψα [|η| > kαq] ≤ e−O(k2).

2. Prη∼Ψα [η = 0] = Ω(1/αq).

Part 1 implies (we omit the simple calculation) that if we draw fewer than eo(k
2) samples from the

standard oracle then these are statistically very close to samples from the structured noise oracle
Q(u,Ψα, d) for d = kαq. Thus from now on we will assume that samples are drawn from the latter.
Part 2 of the lemma will be useful in the midst of the proof.

The algorithm works similarly as the algorithm for LPN, with an additional twist needed because
the field is not GF(2), so the underlying polynomials are non-multilinear. We first write a univariate
degree 2d+ 1 polynomial P such that P (η) = 0 whenever η is drawn from oracle Q(u,Ψα, d).

P (η) = η

d∏
i=1

(η + i)(η − i). (9)

From now on we use similar notation as in the LPN section. We use z (an n-dimensional
vector) as variables, and try to write a system of equations which whp have solutions that allow
us to recover u. To do this we substitute η = a · z + b in the polynomial P (η) to obtain a degree
2d+ 1 polynomial over the variables zi: (a · z + b)

∏d
i=1(a · z + b+ i)(a · z + b− i) = 0.

This constraint is always satisfied if z = u. Let D = 2d+ 1 denote the degree of the polynomial
P (η). Finally we linearize this equation using variable vector y that is indexed by vectors v ∈ Zn

such that 1 ≤
∑n

i=1 vi ≤ D. The variable yv corresponds to the monomial
∏n
i=1 z

vi
i . We denote the

degree of this monomial namely
∑n

i=1 vi as deg(v) or deg(yv). For simplicity we add one component
y0, which always has the value 1. The number of variables is N =

(
n+D
n

)
. We define yk to be the

vector of all the variables with degree k. Thus y = (1, y1, y2, ..., yD).
The new linearization operator L replaces each monomial in the polynomial with the corre-

sponding y variable. The linearized equation will be a linear constraint on the y variables,

L (P (a · z + b)) = 0. (10)

The algorithm queries the oracle O(Nαq2 log q) times, generating a system of linear equations
over the variables y’s.

8

Theorem 3.3 With high probability, all solutions to the system of linear equations generated as
above satisfy yei = ui where ei is the vector that has 1 in the i-th coordinate and 0 elsewhere.

Proof: Clearly the system always has a solution: the one where yv =
∏n
i=1 u

vi
i . With this choice

of yv’s constraint (10) is equivalent to P (η) = 0, which holds. Now we prove that whp the system
has no solution when some yei 6= ui.

The proof is similar to that for Theorem 2.3. We consider a new set of variables ỹ indexed
the same way as the vector y, and the coordinate of ỹ indexed by vector v corresponds to the
linearization of

∏n
i=1(zi + ui)

vi . Let ỹk denote the entries corresponding to the “degree k” terms
in ỹ. Thus each component of ỹ is a linear combination of coordinates of y. We denote the linear
transformation from y to ỹ by a matrix Mu, that is, ỹ = Muy. It’s easy to see that Mu defines
a bijection, because the linearization of

∏n
i=1(zi + ui)

vi will only contain variables with equal or
smaller degree, and there’s exactly one variable with the same degree as v which is yv. Hence when
the order of y vector is (1, y1, y2, ..., yD) and the order of ỹ vector is (1, ỹ1, ỹ2, ..., ỹD), the matrix
Mu is a lower triangular matrix with 1’s in the diagonal. Therefore Mu is invertible and defines a
bijection between y and ỹ, and yei 6= ui iff ỹ1

ei 6= 0.
Thus to finish the proof it suffices to show that no solution has ỹ1 6= 0 whp. This follows from

the following Claim, since it implies that the probability that an incorrect ỹ satisfies all CNαq2 log q
constraints is at most q−2N when the constant C is sufficiently. A union bound completes the proof
since the number of possible incorrect solutions is at most qN .

Claim: When the linear constraints are generated as above, then each candidate solution with
ỹ1 6= 0 violates a randomly generated constraint with probability at least Ω(1/αq2).

Recall that Lemma 3.2 part 2, the noise η = with probability at least αq (independent of the
choice of the ai’s). If η = 0 then the constraint that the algorithm writes, is (by substituting
b = a · u into constraint (10) simply L(P (a · (z+ u))) = 0 where L is the linearization operator and
P is the polynomial in (9).

The corresponding linear constraint is obtained by thinking of (z + u) as the variables, and
doing linearization by replacing (z + u)⊗k with Ỹ k (Ỹ k is similar to Y k in Section 2 and is defined
later), yielding

D∑
i=1

ci(a
⊗i · Ỹ i) = 0, (11)

where ci’s are the coefficients of the univariate polynomial P (η). Notice that c1 =
∏d
i=1 i(−i) 6= 0,

Lemma 3.4 below implies when ỹ1 6= 0 the above multivariate polynomial over the a’s is not
identically zero. The standard version of Schwartz-Zippel Lemma says that when the a’s are
chosen randomly the polynomial in (11) can be 0 with probability at most D/q. Since D < q the
left hand side is nonzero with probability at least 1/q. Therefore a nonzero ỹ violates a random
constraint with probability at least Ω(1/αq)1/q, and this finishes the proof of the Claim and of the
theorem.

Now we prove the statement alluded to above. Let Ỹ k be a vector of dimension nk that is
indexed by w ∈ [n]k. For any w ∈ [n]k, define the corresponding vector v(w) ∈ Zn, where the
i-th component of v(w) is the number of coordinates in w that are equal to i (for example if
w = (1, 2, 3, 2, 2, 3) then v = (1, 3, 2)). Each component of Ỹ k is a variable in ỹk, and Ỹ k

w = ỹv(w).

Now suppose we have a polynomial over ai’s as the LHS of Equation (11), where Ỹ i and ci’s are
considered to be constants.

We have the following analog of Lemma 2.5 whose proof is in Section D.

9

Lemma 3.4 The LHS Polynomial of Equation (11) over the ai’s is identically 0 if and only if for
all i ∈ [D] such that ci 6= 0, we have ỹi = 0.

4 Learning the Majority of Parities Function

Applebaum et al. [2] proposed the“DSF assumption” and showed how to use it (with other assump-
tions) to build public-key cryptosystems. LetMm,n,d be a random bipartite graph with m vertices
on top, n vertices at the bottom, and d edges from each top vertex. If G is such a graph, f is a
function f : {0, 1}d → {0, 1}, define the function Gf : {0, 1}n → {0, 1}m to be the function obtained
by mapping every u ∈ {0, 1}n to (f(uΓ(1)), . . . , f(uΓ(m))), where Γ(i) denotes the neighbors of the
i-th “top” vertex. The DSF assumption asserts the existence of a function f such that (G,Gf (Un))
is ε-indistinguishable from the distribution (G,Um) when G ∈RMm,n,d. Here d is a large constant.
When m = n this is conjectured by Goldreich [11], but in [2] m is required to be super-linear.

To avoid known attacks by Bogdanov and Qiao [9], Applebaum et al. suggested the “majority of
three parities” (that is, f is the majority of three parities on d/3 bits each) as a candidate function
for f . Indeed, they showed when m = O(n1.1), this function has nice properties such as looking
pseudorandom for AC0 circuits (and the proofs can be generalized when m = o(n2)). However,
using our algorithm we can show when m = Ω(n2 log n), the function Gf fails to be a pseudorandom
generator in a really severe way: not only is the output no longer indistinguishable from uniform
distribution, but the function Gf is also invertible with high probability.

Our algorithm is designed by noting that the “majority of parities” function can actually be
viewed as an answer given by a learning parities with structured noise oracle. Given Maj(a1 ·u, a2 ·
u, a3 · u) = b, where u ∈ {0, 1}n is the input, and a1, a2, a3 are vectors with exactly d/3 1’s that
are obtained when applying Gf , we can write a group of linear equations: a1 · u = b, a2 · u = b,
a3 ·u = b. Since b is the majority of these three parities, we know that at least two out of the three
equations are satisfied. This is exactly the kind of structure our LPN algorithm can work with.
We can represent this structure by P (η) = η1η2 + η1η3 + η2η3 where ηi = ai · u+ b. We could try
to use our earlier LPN algorithm, except the earlier analysis does not apply because the a vectors
are not uniformly random —each of a1, a2, a3 is randomly chosen from all vectors that have d/3
1’s, and have disjoint support. Also, once we fix the input u, the error η is dependent on the a
vectors, which we will need to deal with it differently than in Section A. We will see that all our
calculations become easier when m = n4 instead of m = n2 log n.

The algorithm will be analogous to our LPN algorithm. We write out the Equation (8) for this
structure explicitly by expanding P (η1, η2, η3):

(a1 ⊗ a2 + a1 ⊗ a3 + a3 ⊗ a2) · Y 2 + ((η1 + η2)a3 + (η2 + η3)a1 + (η1 + η3)a2) · Y 1 = 0, (12)

where Y 2, Y 1 are linearizations of (z+u)⊗ (z+u) and (z+u) respectively. Unlike in case of LPN,
having enough equations of this form does not guarantee a unique solution. Nevertheless we can
show that the solutions to the system of linear equations allow us to learn the secret u.

A key observation is η1 +η2 = (a1 +a2) ·u. Indeed, when (a1 +a2) ·u = 0, it means a1 ·u = a2 ·u,
so η1 = η2 = 0; when (a1 + a2) · u = 1, it means a1 · u 6= a2 · u, so exactly one of the equations is
incorrect, and we have η1 + η2 = 1. Applying this observation to (12), we get

(a1 ⊗ a2 + a1 ⊗ a3 + a3 ⊗ a2) · (Y 2 + u⊗ Y 1 + Y 1 ⊗ u) = 0. (13)

Let W denote (Y 2 + u ⊗ Y 1 + Y 1 ⊗ u). Since the diagonal entries of W do not affect the
equation we will assume Wi,i = 0 below. For distinct p, q, s, t ∈ [n], let W(p,q)×(s,t) denote the sum
Wp,s +Wp,t +Wq,s +Wq,t.

10

Claim 1: There is a polynomial-time algorithm that, given any solution Y 2, Y 1 for which
W(p,q)×(s,t) = 0 for all p, q, s, t, finds the secret u.

Proof: Recall that Wi,j = L((zi + ui)(zj + uj) + ui(zj + uj) + uj(zi + ui)) = y{i,j} + uiuj , where
L is the linearization operator. Since W(p,q)×(s,t) = 0 for every p, q, s, t, we obtain y{p,s} + y{p,t} +
y{q,s} + y{q,t} = upus + uput + uqus + uqut.

Now either u = 0 or u = 1 (both of which possibilities can be easily checked by substitution)
or else there is some p, q such that up = 0, uq = 1, and assume we have found such p, q since we
can exhaustively try all pairs. Then upus + uput + uqus + uqut = us + ut. Since we know p, q this
implies we know us +ut for every s, t, in other words whether or not us = ut. That leaves only two
possibilities for the vector u and we can easily verify which one is correct.

Now we give the simpler analysis for m = O(n4).
Claim 2: O(n4) equations suffice whp to rule out all solutions in which W(p,q)×(s,t) = 1 for

some p, q, s, t.

Proof: We show that if p, q, s, t are such that W(p,q)×(s,t) = 1, then Equation (13) is violated with

probability Ω(1/n2). Since the number of possible solutions W is 2n
2

a simple union bound yields
the claim.

Let Ai denote the set whose indicator vector is ai; thus Ai is a random set of size d/3
and A1, A2, A3 are disjoint. Consider the event E that |A1

⋂
{p, q, s, t}| = 0, |A2

⋂
{p, q}| =

|A3
⋂
{s, t}| = 1, |A2

⋂
{s, t}| = |A3

⋂
{p, q}| = 0. That is, exactly one of p, q appears in A2

and exactly one of s, t appears in A3. It’s easy to see that this happens with probability Ω(1/n2).
Now fix A1, A2\{p, q}, A3\{s, t} and let the corresponding indicator variables be a1, a∗2, a∗3. Now
and consider the four possibilities depending upon which of p, q appears in A2 and which of s, t
appear in A3: either a2 = a∗2 + ep or a2 = a∗2 + eq, and either a3 = a∗3 + es or a3 = a∗3 + et (ei is the
vector which is 1 only at position i). The sum of the expression (a1 ⊗ a2 + a1 ⊗ a3 + a3 ⊗ a2) over
these four possibilities evaluates to exactly the matrix (ep + eq)⊗ (es + et), because all other terms
appear even number of times.Therefore the sum of LHS of Equation (13) is exactly W(p,q)×(s,t).
Since W(p,q)×(s,t) is 1, in at least one of the four cases Equation (13) is violated, and this happens
with probability 1/4 conditioned on the event E.

We leave the proof that O(n2 log n) equations actually suffice for Claim 2 to Section E.

5 Conclusions

Linearization techniques have been applied in various contexts, and in this paper we manage to give
provable bounds for this idea in several contexts such as LPN, LWE, and learning the MAJORITY
of PARITIES function.

We also introduced a new structured noise model for LPN problems (and by analogy, for related
problems such as learning low-depth decision trees) which is a natural modification to the original
LPN problem and seems more tractable. We think such structured noise models should be studied
more in machine learning since standard models led to intractable problems.

It should be interesting to apply our techniques to other problems and settings, and to investi-
gate the optimality of our parameter choices. Our algorithm for m = n2 log n for the MAJORITY
of PARITIES function shows that analysis can sometimes be tightened beyond what a first glance
suggests.

An obvious open problem is to relate the new structured noise model with the original LPN
problem. This seems difficult, though it worked in the special case of LWE with low noise.

11

Acknowledgements.

We thank several people for useful conversations: Boaz Barak, Avrim Blum, Daniele Micciancio,
Oded Regev, David Steurer, Avi Wigderson.

References

[1] M. Ajtai. 1996. Generating hard instances of lattice problems (extended abstract). In Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing (STOC ’96).
ACM, New York, NY, USA, 99-108.

[2] B. Applebaum, B. Barak, and A. Wigderson. Public Key Cryptography from Different As-
sumptions . In Proceedings of STOC, 2010.

[3] Ajtai, M. and Dwork, C. 1997. A public-key cryptosystem with worst-case/average-case equiv-
alence. In Proceedings of the twenty-ninth annual ACM symposium on Theory of computing
(STOC ’97). ACM, New York, NY, USA, 284-293.

[4] Akavia, A., Goldwasser, S., and Vaikuntanathan, V. 2009. Simultaneous Hardcore Bits and
Cryptography against Memory Attacks. In Proceedings of the 6th theory of Cryptography
Conference on theory of Cryptography (San Francisco, CA, March 15 - 17, 2009). O. Reingold,
Ed. Lecture Notes In Computer Science, vol. 5444. Springer-Verlag, Berlin, Heidelberg, 474-
495.

[5] Alekhnovich, M. 2003. More on Average Case vs Approximation Complexity. In Proceedings
of the 44th Annual IEEE Symposium on Foundations of Computer Science (October 11 - 14,
2003). FOCS. IEEE Computer Society, Washington, DC, 298.

[6] Bard, G. V. Algebraic Cryptanalysis. Springer, 2009.

[7] Blum, A., Furst, M. L., Kearns, M. J., and Lipton, R. J. 1994. Cryptographic Primitives
Based on Hard Learning Problems. In Proceedings of the 13th Annual international Cryptology
Conference on Advances in Cryptology (August 22 - 26, 1993). D. R. Stinson, Ed. Lecture Notes
In Computer Science, vol. 773. Springer-Verlag, London, 278-291.

[8] Blum, A., Kalai, A., and Wasserman, H. 2003. Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM 50, 4 (Jul. 2003), 506-519. DOI=
http://doi.acm.org/10.1145/792538.792543

[9] Bogdanov, A. and Qiao, Y. On the security of goldreich’s one-way function. In APPROX-
RANDOM, pages 392-405, 2009.

[10] Feldman, V., Gopalan, P., Khot, S., and Ponnuswami, A. K. 2006. New Results for Learn-
ing Noisy Parities and Halfspaces. In Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science (October 21 - 24, 2006). FOCS. IEEE Computer Society,
Washington, DC, 563-574.

[11] Goldreich, O. Candidate one-way functions based on expander graphs. Technical Report TR00-
090, Electronic Colloquium on Computational Complexity (ECCC), 2000.

12

[12] Hopper, N. J. and Blum, M. 2001. Secure Human Identification Protocols. In Proceedings of
the 7th international Conference on the theory and Application of Cryptology and information
Security: Advances in Cryptology (December 09 - 13, 2001). C. Boyd, Ed. Lecture Notes In
Computer Science, vol. 2248. Springer-Verlag, London, 52-66.

[13] Hyafil, L. 1978. On the parallel evaluation of multivariate polynomials. In Proceed-
ings of the Tenth Annual ACM Symposium on theory of Computing (San Diego, Califor-
nia, United States, May 01 - 03, 1978). STOC ’78. ACM, New York, NY, 193-195. DOI=
http://doi.acm.org/10.1145/800133.804347

[14] Kearns, M. 1998. Efficient noise-tolerant learning from statistical queries. J. ACM 45, 6 (Nov.
1998), 983-1006. DOI= http://doi.acm.org/10.1145/293347.293351

[15] Micciancio, D., Regev, O. 2009. Lattice-Based Cryptography In Post Quantum Cryptography,
D.J. Bernstein; J. Buchmann; E. Dahmen (eds.), pp. 147-191, Springer (February 2009)

[16] Peikert, C. 2009. Public-key cryptosystems from the worst-case shortest vector problem. In
Proceedings of 41st ACM Symposium on Theory of Computing (STOC). ACM, New York,
333342.

[17] Peikert, C., Vaikuntanathan, V., and Waters, B. 2008. A Framework for Efficient and Com-
posable Oblivious Transfer. In Proceedings of the 28th Annual Conference on Cryptology:
Advances in Cryptology (Santa Barbara, CA, USA, August 17 - 21, 2008). D. Wagner, Ed.
Lecture Notes In Computer Science, vol. 5157. Springer-Verlag, Berlin, Heidelberg, 554-571.

[18] Regev, O. 2009. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM 56, 6 (Sep. 2009), 1-40. DOI= http://doi.acm.org/10.1145/1568318.1568324

[19] Valiant, L. G. Completeness classes in algebra. In STOC ’79: Proceedings of the eleventh
annual ACM symposium on Theory of computing, pages 249–261, 1979.

A Learning With Adversarial Noise

In Section 2, the noise vector η is chosen randomly from a distribution µ, and is independent of
the ai’s. Now we consider the more general model where the η is allowed to depend on the ai’s.
However, in this model the set of acceptable noise patterns is smaller.

The learning algorithm now has access to a new oracle Q(u,m,P). As before, u ∈ GF(2)n is the
secret of the oracle, P (η) is a multilinear polynomial such that all acceptable noise patterns η satisfy
P (η) = 0. When queried, the oracle picks m uniformly random vectors a1, a2, ..., am ∈ GF(2)n,
then it picks a noise pattern η that satisfies P (η) = 0. The oracle then returns the vectors {ai}
and bits b1, b2, ..., bm such that bi = ai · u+ ηi.

As we stated before one major difference here is that the oracle can pick η after looking at the
ai’s. Although oracle Q(u,m,P) still has no control over the randomness of {ai}, the ability to
pick η already gives it power to fool any learning algorithm for some choices of P . For example,
the polynomial representing “the noise vector has at most dm/2e ones” makes it impossible for any
algorithm to learn the secret.However, one can hope that if the polynomial P merely represents
“At most m/3 ones” (in other words, the noise rate is 1/3) then learning should be possible. The
next theorem shows that this is indeed the case. Later in Thm A.3 we will show this theorem is
tight in the sense that all other polynomials allow the adversary to fool any algorithm.

13

Theorem A.1 Suppose the oracle polynomial P is such that there exists η ∈ GF(2)m, for any α
and β satisfying P (α) = P (β) = 0, η 6= α + β. Then the secret u can be learned in poly(N2m)
time.

The algorithm works as follows: first construct a multilinear polynomial R(η). Let R(η) = 1 if
and only if η cannot be decomposed into α + β such that P (α) = P (β) = 0. In particular, for all
α and β that satisfy P (α) = P (β) = 0, we have R(α+ β) = 0. By assumption R is not identically
0. Let d be the degree of R, and let N =

∑d
i=1

(
n
i

)
. For each example returned by the oracle, the

algorithm adds additional noise vector β such that P (β) = 0. The effect is that the final noise
vector can be represented as α + β, where α is the noise introduced by the oracle and β is the
noise introduced by the algorithm. Although this vector is more “noisy”, it nevertheless satisfies
R(α+ β) = 0. For all β such that P (β) = 0, the algorithm defines a constraint

R(a1 · z + b1 + β1, a2 · z + b2 + β2, ..., am · z + bm + βm) = 0. (14)

Then the algorithm linearizes it to obtain a linear constraint on the variables yS

L(R(a1 · z + b1 + β1, a2 · z + b2 + β2, ..., am · z + bm + βm)) = 0. (15)

We claim that solving a system of linear equations generated by enough samples will reveal the
secret vector.

Theorem A.2 The linear system obtained by 10N2d samples (which contains at most 10N2m+d

equations) will always have at least one solution, and with high probability (over the random choices
of {ai}), all solutions to the system have the following property: the i-th bit of the secret vector is
just the value of y{i}.

Proof: When yS =
∏
i∈S ui, for any constraint, assume the noise vector that the oracle picked is

α, and the noise vector the algorithm picked is β, then the left hand side of Equation (15) is equal
to R(α+ β), where P (α) = P (β) = 0. By definition of R we have R(α+ β) = 0. Therefore there’s
always a solution to the system of linear equations, and it satisfies y{i} = ui.

Now we show that every incorrect y gets ruled out with high probability, and in fact by a very
small subset of the constraints. For any sample returned by the oracle, assume the noise vector
that the oracle picked is α, hence P (α) = 0. By the construction of linear equations, there will be
an equation that corresponds to β = α. Then bi + βi = bi + αi = ai · u. This equation is

L(R(a1 · (z + u), a2 · (z + u), ..., am · (z + u))) = 0. (16)

Equation (16) is equivalent to (3) when η = 0. If we just consider these constraints, we can
view them as generated by an oracle Q(u,m,R, µ), where the distribution µ gives probability 1 to
the 0 vector. Clearly R(0) = 0 because for any vector α such that P (α) = 0, we have α + α = 0.
Thus Q(u,m,R, µ) is a valid oracle, there are 10N2d such constraints, by Theorem 2.3 we know
with high probability all solutions to the linear system with these constraints satisfy y{i} = ui (here
since η = 0 with probability 1 we save a 2m factor in Thm 2.3). Since this set of constraints is only
a subset of all the constraints, with high probability all solutions to the entire linear system will
also satisfy y{i} = ui.

14

Now we show if the algorithm does not work, then no algorithm can learn the secret with
probability better than 1/2 for all possible oracles.

Theorem A.3 If for all η ∈ GF(2)m, there exist α, β ∈ GF(2)m such that P (α) = P (β) = 0 and
η = α + β, then for any algorithm Am,P there is an oracle Q(z,m, P), such that no matter how

many queries A makes, Pr[AQm,P = z] ≤ 1/2.

Proof: Assume towards contradiction that there exists an algorithmAm,P , for any oracleQ(z,m, P)

it satisfies Pr[AQm,P = z] > 1/2.
Pick u, v ∈ GF(2)n such that u 6= v. We will construct an oracle Q based on u and v. When

queried by the algorithm, the oracle Q first generates the vectors {ai} randomly (recall that the
oracle has no control over this process). Let M be a matrix in GF(2)m×n, the i-th row vector of
M is equal to ai. Compute b0 = Mu and b1 = Mv. Then the oracle constructs a set S ⊆ GF(2)m,
S = {b : P (b + b0) = 0 and P (b + b1) = 0} and returns {ai} and a random b ∈ S. Thus it suffices
to show S is not empty. The reason is that by hypothesis the vector η = b0 + b1 can be represented
as α+ β, where P (α) = P (β) = 0. Thus b0 + α must be in S.

Notice that, u and v are symmetric in the construction. The above oracle Q is a valid oracle for
Q(u,m,P), and is also a valid oracle for Q(v,m, P). Let Q1(u,m,P) = Q and Q2(v,m, P) = Q,
by assumption Pr[AQ1

m,P = u] > 1/2 and Pr[AQ2

m,P = v] > 1/2. However Q1 and Q2 are actually the

same oracle Q, therefore Pr[(AQm,P = u) or (AQm,P = v)] > 1. This is a contradiction. Therefore
such an algorithm cannot exist.

A.1 Other noise models

Our linearization can also be useful in situations even when the noise has no explicit “structure”.
Consider an example of “bursty” noise following a 2-step Markov process: when the last two noise
bits are 0 and 1 respectively, the probability of making an error (current noise bit is 1) is 1−1/

√
n,

while in all other cases the probability of making an error is 1/3. Intuitively this means when the
oracle makes a first mistake, it’s very unlikely for it to recover soon and the oracle will continue to
error with high probability. Although this oracle does not satisfy any kind of “structure” by our
definition, we can still get a non-trivial algorithm by selecting the right pattern. Consider a group
of C
√
n consecutive answers from the oracle, the probability that the error has pattern 0101 · · · 01

is just nC
√
n/4, the probability is so small that if we define the structure to be “error pattern is not

0101 · · · 01”, by union bound we can safely get enough groups of answers that satisfy the structure,
and therefore learn the secret vector in time 2Õ(

√
n). It’s not clear how to solve such problems

without using our algorithm. In fact, since the structure in our algorithm is very general, as long
as there are error patterns that occur with smaller than usual probability, our algorithm will be
able to utilize that and provide non-trivial improvements over the brute-force solution.

B Learning Low Degree Polynomials

In this section we consider the problem of learning low degree polynomials in the “structured noise”
model. Our algorithm will work in both the white noise setting and the adversarial noise setting,
but here for simplicity we only show an algorithm in the white noise setting. The algorithm for the
adversarial noise setting follows from the same construction as in Section A. The algorithm has
access to an oracle Q(U,m,P, µ), where m, P , µ are analogous to the parameters as in Section 2.
The new parameter U is the secret of the oracle. Unlike learning parities with noise, here U is a

15

degree d′ polynomial over GF(2)n. When queried, the oracle first chooses uniformly random vectors
a1, a2, ..., am from GF(2)n, then picks η from distribution µ independent of ai’s. The oracle returns
ai’s together with bi = U(ai) + ηi.

The algorithm tries to reduce this problem to learning parities with structured noise. We express
U in the monomial form:

U(ai,1, ai,2, ..., ai,n) =
∑

W⊆[n],|W |≤d′
uW

∏
j∈W

ai,j .

Here uW ’s are coefficients in GF(2). In the reduction we introduce variables zW , where W is
a subset of [n] with size at most d′. Notice that the set W has a different range from the sets S
we used before, and we will always use W for this kind of sets. Let Ω be the set of all W ’s, that
is, Ω = {W : W ⊆ [n] and |W | ≤ d′}. The vector z is also not similar to any of the y vectors we
used before. In particular z∅ is also a variable that can be either 0 or 1. Intuitively zW satisfies all
constraints written by the algorithm if zW = uW .

We define vector Ai based on the vector ai. The vector Ai is indexed by all sets W ∈ Ω, and we
have Ai,W =

∏
j∈W ai,j . Now we can think of the oracle’s secret as the vector uW , and the oracle

returns A1, A2, ..., Am and b. Then it looks like a learning parities with structured noise problem
because bi = Ai · uW + ηi. We apply the algorithm in Section 2 to generate 10N2m+dd′ equations,
and claim that with high probability the system of equations will have solutions that reveal the
secret u. Here N is the number of variables in the system and N = O(ndd

′
). After linearization,

we will have variables yS , where now S ⊆ Ω and |S| ≤ d.

Theorem B.1 The system of equations with 10N2m+dd′ constraints always has a solution. With
high probability (over the oracle’s randomness) all solutions to the system will satisfy y{W} = uW ,
and the secret U is

U(ai,1, ai,2, ..., ai,n) =
∑

W⊆[n],|W |≤d′
y{W}

∏
j∈W

ai,j .

Proof: (sketch) Notice that after reduction the problem is almost the same as learning parities
with noise, except that Ai is no longer a uniformly random vector. However, the only places where
we use properties of Ai’s in the proof for Theorem 2.3 are Lemma 2.5 and Schwartz-Zippel Lemma.
We will replace Lemma 2.5 with the following Lemma and claim that the rest of the proof still
works.

Lemma B.2 Consider a polynomial constraint of the form

∑
S⊆[m],S 6=∅,|S|≤d

cS(⊗i∈SAi) · Y |S| = 0, (17)

where cS are coefficients in GF(2). This is a homogeneous linear constraint in terms of Y d

If there is a subset S of size k such that cS = 1, and Y k 6= 0, then the left hand side of (17) is
a multilinear polynomial over ai,j’s of degree at most dd′ and is not identically 0.

Proof: If we expand the tensor (⊗i∈SAi) and view each component as a monomial over ai,j ’s, it’s
clear the left hand side of (17) is a multilinear polynomial over ai,j ’s of degree at most dd′, because
in the tensor Ai,W cannot be multiplied with Ai,W ′ for any W and W ′.

16

Let the set S of size k and cS = 1 be {s1, s2, ..., sk}, and let (W1,W2, ...,Wk) be an index where
Y k is nonzero(recall that Y k is now indexed by a vector in Ωk). The monomial

∏k
i=1

∏
j∈Wi

asi,j can

only appear in term cS(⊗i∈SAi) · Y |S|, its coefficient is cSY
k
W1,...,Wk

= 1. Therefore this polynomial
is not identically 0.

Now everything in the proof for Thm 2.3 can go through, except that we now have a polynomial
of degree dd′, so the probability that a nonzero Y d violates a random constraint with η = η∗ is at
least 2−dd

′
.

C Ubiquity of Linearization

Since learning parities with structured noise looks very similar to learning parity with noise, one
might ask whether the same kind of technique can be applied to solve the LPN problem. Unfor-
tunately, all reductions from LPN to learning parities with structured noise that we have tried
only give 2O(n) algorithms, which is no better than the trivial algorithm. Such difficulties might
lead one to think that our “reduction to gaussian elimination with polynomial coefficients” is too
restricted as a computational model and it is unable to solve the LPN problem. However in this
section we will show that any algebraic algorithm that solves the LPN problem can be transformed
into solving a system of linear equations with polynomial coefficients, where the size of the linear
system is quasipolynomial in the size of the algebraic algorithm. Also notice that our proof for
Theorem C.3 does not use any special properties of the LPN problem and can be generalized to
any decision problems. This shows the difficulty of proving a lowerbound for this model and justifies
the naturalness of “reduction to gaussian elimination with polynomial coefficients” technique.

We formulate a decision version of the learning parities with noise problem. Instead of giving
the algorithm an oracle Q, we assume the queries to the oracle have already been made, and the
result is a matrix A (containing all ai’s as row vectors) and a vector b. Either b = Au + η where
ηi is 1 with probability strictly smaller than 1/2 or b is a uniformly random vector. The algorithm
will do algebraic computations over GF(2) using elements in A and b, and decide whether there is
a u such that b = Au+ η. If the running time of the algorithm is T (n) where T is a non-decreasing
function, we always make sure that A has at least T (n) rows so the algorithm never runs out of
examples. The decision version of the learning parities with noise problem is defined as follows.

Definition C.1 (Decision Version of Learning Parity With Noise) Given matrix A ∈ GF(2)m×n

and vector b ∈ GF(2)m, learning parities with noise ρ (DLPNρ) is the problem of distinguishing
the following two distributions:

Distribution D1: The matrix A and the vector b are uniformly random and independent.
Distribution D2: The matrix A is uniformly random, b is generated by first choose u uniformly

random from GF(2)n, and let b = Au+ η where ηi’s are independent and ηi is 1 with probability ρ
and 0 otherwise.

The decision version is closely related to the original problem by the following theorem:

Theorem C.2 If there’s an algorithm M that runs in time T (n) and solves DLPNρ with proba-
bility at least 1− ε/n, then there exists an algorithm B that makes n calls to M and can recover u
in Distribution D2 with probability at least 1− ε− e−Ω(n).

17

Proof: Let Ai be the matrix A with i-th column vector removed. For every i ∈ [n] the algorithm
calls M using input (Ai, b). Let ui = 1 −M(Ai, b) (M outputs 0 for distribution D1 and 1 for
distribution D2), if Au+ b is a vector with at most (ρ+ 1/2)m/2 1’s, then B claims the the input
(A, b) comes from Distribution D2, and output u; otherwise B will conclude the input comes from
Distribution D1.

If the input really comes from Distribution D1, then with high probability (1− e−Ω(n)) there is
no vector u such that Au + b has at most (ρ + 1/2)m/2 1’s (by Chernoff Bound), so algorithm B
is correct with probability 1− e−Ω(n) in this case.

If the input comes from Distribution D2, then with probability at least 1− ε, all the n calls to
M return the correct answer. Notice that if ui = 1, let ãi be i-th column vector of A, and let x
be the vector u with the i-th component removed. Since b = Au + η, we have b = Aix + ãi + η.
The vector ãi is uniformly random and independent of Ai. Therefore b is also uniformly random
and independent of Ai, and the input (Ai, b) is statistically equivalent to the Distribution D1.
Thus algorithm M will output 0 (recall that we assumed all answers of M are correct). If ui = 0,
then b = Aix + η, the vector x is uniformly random in GF(2)n−1. Therefore the input (Ai, b) is
statistically equivalent to Distribution D2, and M will output 1. When all calls to M return correct
answer, the algorithm can reconstruct u correctly. For the correct value of u , the vector Au + b
is a vector with at most (ρ+ 1/2)m/2 1’s with probability at least 1− e−Ω(n), thus algorithm B is
correct with probability at least 1− ε− e−Ω(n) in this case.

Now we try to solve DLPN problem by mapping the problem to a large linear system Py = q,
as we did in previous sections. The components of the matrix P and the vector q are polynomials
over elements in the input (A, b). The vector y is a vector of variables. However, here the variables
y may not correspond to any linearization procedure as in our previous algorithms. If the input
(A, b) comes from Distribution D2, then Py = q has a solution with high probability; if (A,b) comes
from Distribution D1, then Py = q has no solution with high probability. The size of the system is
the dimension of matrix P , and the degree of the system is the maximum degree of components of
P and q when viewed as polynomials over the elements in (A, b). Our algorithm in Section 2 can
be viewed as a linear system with size poly(nd, 2m+d) and degree d.

For an arithmetic circuit C, we use C(D) to denote the probability that C outputs 1 when
input is chosen from distribution D. For a linear system L = (P, q), we use L(D) to denote the
probability that the equation Py = q has at least one solution when input is chosen from distribution
D. The next theorem shows if there’s an arithmetic circuit C that distinguishes between D1 and
D2 (C(D1) − C(D2) > δ), then a linear system of larger size will also be able to distinguish the
two distributions.

Theorem C.3 If there’s an arithmetic circuit C of size s and degree poly(s) such that C(D1) −
C(D2) > δ, then there’s a linear system L = (P, q) with size sO(log s) and degree 1 so that L(D1)−
L(D2) > δ.

Proof: Hyafil [13] showed that any arithmetic circuit of size s and degree poly(s) can be trans-
formed into a formula F with depth at most (log s)2 and size at most sO(log s). Using a fact proved
by Valiant [19], this formula can be computed by the projection of a determinant of size sO(log s),
that is, there is a matrix M of size sO(log s), whose elements are either 0, 1 or variables in (A, b),
such that detM = 1 if and only if the output of circuit C is 1. Let N be the size of M .

Now we construct P as a block diagonal matrix of dimension 2sN × 2sN , in its diagonal there
are 2s blocks, each of which is equal to M . The matrix P looks like

18


M O . . . O
O M . . . O
...

...
. . .

...
O O . . . M

 .

We pick q uniformly at random from GF(2)2sN . Clearly, if detM = 1, then detP = 1, the
system Py = q always has a solution.

If detM = 0, we break the vector q into 2s vectors of length N , and denote them by qi(1 ≤
i ≤ 2s). If the equation Py = q has a solution, then because P is a block diagonal matrix,
for each block My′ = qi has a solution. However, each qi is chosen uniformly from random,
with probability at least 1/2 qi is not a vector in the span of column vectors of M , in which
case My′ = qi do not have a solution. Since all vectors qi’s are independent, when detM = 0,
Pr[Py = q has a solution] ≤ 1/22s. Since the algorithm looks at no more than s components from
(A, b), by union bound we have

Pr[∃(A, b) Py = q has a solution] ≤ 2−2s · 2s = 2−s.

We fix q so that this event do not happen, then for any input (A, b), the system Py = q has
a solution if and only if detM = 1. Thus L(D) = C(D) for any distribution D, and we have
L(D1)− L(D2) > δ.

D Proof for Lemma 3.4

Proof: Assume that there is a k such that yk 6= 0 and ck 6= 0. Let v ∈ Zn be an index of yk where
ykv 6= 0. Using extended Binomial Theorem we know that there are exactly k!/(

∏n
i=1 vi!) copies of

the monomial
∏n
i=1 a

vi
i in the tensor a⊗k. By rule of inner product all these copies are multiplied

by ykv . Thus the coefficient of this monomial is ykv · k!/(
∏n
i=1 vi!) in GF(q). Here the factorials in

GF(q) are defined similarly as in Z, and division is done by multiplying the inverse. Since q > D
and q is a prime, this coefficient is nonzero. Clearly monomials cannot cancel each other so the
polynomial over ai’s is not identically 0.

The other direction is trivial, if for each i either ci = 0 or ỹi = 0 then the polynomial is 0.

E Proof for O(n2 log n) equations

This section will prove that only O(n2 log n) equations actually suffice for Claim 2 in Section 4. For
this we need to carefully analyse the probability that Equation (13) is violated. Intuitively, when
the probability is small, W has special structure so we don’t need to apply union bound to all 2n

2

matrices. Denoting by Wi the i-th row vector of W , we define the distance di,j of Wi and Wj as
follows. Let hami,j be the number of p different from i, j such that Wi,p 6= Wj,p. Then the distance
di,j = min{hami,j , n− 2− hami,j}.

Claim: There exists ε > 0, such that if the probability that Equation (13) is violated is smaller
than εt/n2, there must be a row i where the sum of distances between i and all other rows of W is
at most t.

19

Proof: We start with a lemma.

Lemma E.1 Let x1, x2, . . . , xn be any variables and
∑

i∈S xi+ c be a linear form where |S| = k. If
d= O(1) of the xi’s are randomly chosen and set to 1 and the rest are set to 0, then the probability
that the linear form evaluates to 1 is at least Ω(k/n− k2/n2).

Proof: We can compute the exact probability. When c = 0, the probability is

1(
n
k

) b(k−1)/2c∑
i=0

(
k

2i+ 1

)(
n− k

d− (2i+ 1)

)
.

When c = 1 the probability is

1(
n
k

) bk/2c∑
i=0

(
k

2i

)(
n− k
d− 2i

)
.

The sum of the two is 1, the ratio between the smaller and the larger is at most O(min{k, n−
k})/n (by comparing the corresponding terms), therefore the probability that y = 1 is at least
Ω(min{k, n− k})/n2, which is Ω(k/n− k2/n2).

Whenever we fix a1 and a2, the LHS of Equation (13) becomes a linear form over variables in
a3, and the number of unset variables is n − 2d/3. To apply Lemma E.1, we need to know the
number of terms in this linear form. Let ci be the indicator variable that is 1 iff a3,i appears in
the linear form after fixing a1 and a2, then by Equation (13) we know ci = 1 iff a1,i + a2,i = 0 and
(a1 + a2) ·Wi = 1 (when a1,i + a2,i = 1 then a3,i must be 0 and cannot appear in the linear form).
Letting k =

∑n
i=1 ci, we have by Lemma E.1:

Pr[LHS of Equation (13) = 1] = Ω(E[
(n− 2d/3)k − k2

(n− 2d/3)2
])

= Ω(E[
n
∑n

i=1 ci −
∑

1≤i,j≤n ci −
2d
3 · k

n2
])

= Ω(E[

∑
1≤i<j≤n(ci − cj)2 − 2dk/3

n2
])

The term (ci − cj)2 is closely related to our intuition: when Wi and Wj are roughly the same,
ci and cj will also be correlated and (ci − cj)2 is small. Let Pi,j be the probability that ci 6= cj
conditioned on a1,i + a2,i = 0 and a1,j + a2,j = 0, then E[

∑
1≤i<j≤n(ci − cj)2] =

∑
1≤i<j≤n Pi,j +

2d/3·E[k], because for any assignment of a1 and a2, there are exactly 2d/3·k pairs of (i, j) such that
ci 6= cj is caused by a1,i+a2,i = 1 or a1,j+a2,j = 1. Again by Lemma E.1 we know Pi,j = Ω(di,j/n).
Now we have:

Pr[LHS of Equation (13) = 1] = Ω(

∑
1≤i<j≤n Pi,j

n2
)

= Ω(

∑
1≤i<j≤n di,j

n3
)

= Ω(
mini

∑
1≤j≤n,j 6=i di,j

n2
).

20

Now we can try to bound the number of W ’s such that the probability of violation is small.
However there are still more than 2n possible W ’s even when t = 1, and that will require n3

equations if we still want to use the union bound.
To solve the problem we observe that some W ’s are equivalent to each other. Consider the

matrix W as the adjacency matrix of an undirected graph. We start by observing when the graph
W is a star rooted at vertex k (i.e. Wi,j = 1 iff i 6= j and i = k or j = k), the LHS of Equation
(13) is always 0, if the symmetric difference two graphs is a star, the LHS of Equation (13) is the
same no matter how we choose a1, a2, a3. More precisely, we have

Lemma E.2 Let Stari be the adjacency matrix of a star rooted at vertex i. For two matrices W
and W ′, if W ⊕W ′ can be expressed as ⊕i∈SStari for some set S ⊆ [n], then the two matrices
belong to the same equivalence class. Matrices in the same equivalence class will either all be or all
not be solutions to the system of linear equations. For any i, W is equivalent to some W ′ such that
the i-th row of W ′ is 0.

Proof: For any W and W ′, for any a1, a2, a3,

(a1 ⊗ a2 + a1 ⊗ a3 + a3 ⊗ a2) ·W ′ = (a1 ⊗ a2 + a1 ⊗ a3 + a3 ⊗ a2) · (W +
∑
i∈S

Stari)

= (a1 ⊗ a2 + a1 ⊗ a3 + a3 ⊗ a2) ·W.

Thus if W is a solution, W ′ will also satisfy all equations. If W violates one of the equations,
W ′ will violate the same equation. If we let S = {j : Wi,j = 1}, then clearly the i-th row of
W ′ = W ⊕ (⊕i∈SStari) is 0.

This Lemma allows us to treat matrices in the same equivalence class as a single one when
applying union bound, which avoids the loss of a 2n−1 factor in the number of matrices. By
Lemma E.2 W is always equivalent to some W ′ where W ′i = 0. Since applying symmetric difference
with a star does not change di,j , we know

∑
1≤j≤n,j 6=i d

′
i,j ≤ t where d′ is the distance function for

W ′. To bound the number of such W ′’s, let V + be the set of rows with at most n/2 − 1 1’s,
V − contains the rest of rows. It’s easy to see that any pair (i, j) such that i ∈ V + and j ∈ V −
will contribute 1 to the sum of distances no matter whether there’s an edge between i, j (if there
is an edge then it contributes 1 at W ′i,j otherwise it contributes one at W ′j,i). Any pair (i, j) will
contribute 2 to the distance if i, j ∈ V + and W ′i,j = 1 or i, j ∈ V − and W ′i,j = 0. For any size of V +,

the number of possible W ′ is
(

n
|V +|

)(
n2

t−|V +||V −|
)
2|V

+||V −| ≤ (2n)2t. Considering different i, |V +|,
the total number of such W ′ is bounded by n10t. Therefore, when we have at least 100n2 log n/ε
equations, the probability that for some p, q, s, t W(p,q)×(s,t) = 1 is at most

n2∑
t=1

(1− εt/n2)100n2 logn/εn10t � 1.

Our algorithm will find the secret vector u with high probability.

21

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

