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Abstract

We investigate the problem of local reconstruction, as defined by Saks and Seshadhri (2008),
in the context of error correcting codes.

The first problem we address is that of message reconstruction, where given oracle access to
a corrupted encoding w ∈ {0, 1}n of some message x ∈ {0, 1}k our goal is to probabilistically
recover x (or some portion of it). This should be done by a procedure (reconstructor) that given
an index i as input, probes w at few locations and outputs the value of xi. The reconstructor
can (and indeed must) be randomized, with all its randomness specified in advance by a single
random seed, and the main requirement is that for most random seeds, all values x1, . . . , xk are
reconstructed correctly (notice that swapping the order of “for most random seeds” and “for all
x1, . . . , xk” makes the definition equivalent to standard Local Decoding).

A message reconstructor can serve as a “filter” that allows evaluating certain classes of
algorithms on x safely and efficiently. For instance, to run a parallel algorithm, one can initialize
several copies of the reconstructor with the same random seed, and then they can autonomously
handle decoding requests while producing outputs that are consistent with the original message
x. Another motivation for studying message reconstruction arises from the theory of Locally
Decodable Codes.

The second problem that we address is codeword reconstruction, which is similarly defined,
but instead of reconstructing the message the goal is to reconstruct the codeword itself, given
an oracle access to its corrupted version.

Error correcting codes that admit message and codeword reconstruction can be obtained
from Locally Decodable Codes (LDC) and Self Correctible Codes (SCC) respectively. The main
contribution of this paper is a proof that in terms of query complexity, these are close to be the
best possible constructions, even when we disregard the length of the encoding.
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1 Introduction

Consider the following problem: a large data x ∈ {0, 1}k is stored on a storage device in encoded
form, but a small fraction of the encoding may be corrupted. We want to execute an algorithm M
on x, but most likely M will only need a small fraction of x for its execution. This can be the case
if M is a single process in a large parallelized system, or if M is a querying algorithm with limited
memory, that can even be adaptive, not knowing which bits of the input it will need in advance.
Ideally, in all these cases M should have the ability to efficiently decode any bit of x only when
the need arises (in particular, decoding every bit should be done by reading only a small fraction of
the corrupted encoding), and to ensure correctness it is also necessary that M succeeds (with high
probability) in correctly decoding all bits that are required for its execution. One way of ensuring
this is to decode the whole message x in advance, but in many cases this may be very inefficient,
or even impossible.

To perform the above task, a message reconstructor is required, that can simulate query ac-
cess to x in a local manner. Concretely, a message reconstructor is an algorithm that can recover
the original message x ∈ {0, 1}k from a corrupted encoding w ∈ {0, 1}n under two main condi-
tions: (locality) for every i ∈ [k] reconstructing xi requires reading w only at very few locations;
(consistency) with high probability, all indices i ∈ [k] should be reconstructed correctly. When
the consistency condition is weakened, so that only each index in itself is reconstructed correctly
with high probability, the definition becomes equivalent to Local Decoding, as formally defined in
[KT00]. Informally, a locally decodable code (LDC) is an error-correcting code which allows to
probabilistically decode any symbol of an encoded message by probing only a few symbols of its
corrupted encoding. As in the case of LDCs, the main challenge in message reconstruction is to
find short codes that allow reconstruction of every xi with as few queries to w as possible.

Any q-query LDC can be used for O(q log k)-query message reconstruction, by simply repeating
the local decoding procedure O(log k) times (for every decoding request xi) and outputting the
majority vote. The repetition will reduce the probability of incorrectly reconstructing xi to 1/(3k),
so that with probability 2/3 all k indices are reconstructed correctly. Thus having O(1)-query
LDCs (e.g. the Hadamard code) immediately implies the existence of codes with an O(log k)-
query message reconstructor. The question that immediately arises is whether one can do better,
specifically in terms of query complexity. The first theorem of this paper (see Theorem 3.2) states
that for any encoding of any length, a non-adaptive message reconstructor must make Ω(log k)
queries per decoding request.

Another family of error correcting codes related to LDCs are self correctable codes (SCC)
[BLR93]. In a q-query self-correctable code the probabilistic decoder is required to recover an
arbitrary symbol of the encoding itself. The second problem that we study here is of codeword re-
construction, which is related to SCCs in the same manner that message reconstruction is related to
LDCs. Concretely, a codeword reconstructor is an algorithm that can recover a codeword y ∈ {0, 1}n

from its corrupted version w ∈ {0, 1}n with two conditions: (locality) for every i ∈ [n] reconstruct-
ing yi requires reading w only at very few locations; (consistency) with high probability, all indices
i ∈ [n] should be reconstructed correctly. Here too, if the consistency condition is weakened, so
that only each index in itself is reconstructed correctly with high probability, then the definition
becomes equivalent to self correction; and any q-query SCC can be used for O(q log n)-query code-
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word reconstruction. Thus having O(1)-query SCCs (e.g. the Hadamard code) immediately implies
the existence of an O(log n)-query codeword reconstructor.

The second theorem of this paper (see Theorem 3.4) gives lower bounds on the query com-
plexity of codeword reconstruction for linear codes. Denoting by n̂ the number of distinct rows in
the generating matrix of a linear code, Theorem 3.4 states that codeword reconstruction requires
Ω(

√
log n̂) queries per decoding request. Since essentially all known SCCs are linear codes with

n̂ = n, this bound is tight up to the square root. Furthermore, a lower bound on the query com-
plexity can neither be stated for general (non-linear) codes, nor stated in terms of n alone. We
elaborate on this in Remark 3.5 below.

1.1 Related work

Local reconstruction Initially the model of online property reconstruction was introduced in
[ACCL08]. In this setting a data set f is given (we can think of it as a function f : [n]d →
N) which should have a specified structural property P , but this property may not hold due to
unavoidable errors. The specific property studied in [ACCL08] was monotonicity, and the goal
of the reconstructor was to construct (online) a new function g that is monotone, but not very
far from the original f . The authors developed such a reconstructor, which given x ∈ [n]d could
compute g(x) by querying f at only few locations. However, the reconstructor had to “remember”
its previous answers in order to be consistent with some fixed monotone function g, making it not
suitable for parallel or memory-limited applications.

This issue was addressed in [SS08], where the authors presented a purely local reconstructor for
monotonicity, that could output g(x) based only on few inspections of f . Given a random string
r, the reconstructor of [SS08] could locally reconstruct g at any point x, such that all answers
were consistent with some function g, which for most random strings r was monotone. Such
a reconstructor affords an obvious distributed implementation: generate one random seed, and
distribute it to each of the copies of the reconstructor. Since they are all determined by r, their
answers will be consistent.

Local reconstruction was also studied in the context of graphs [KPS08, GGR98] and geometric
problems [CS06]. In particular, [KPS08] studied the problem of expander reconstruction. Given an
oracle access to a graph that is close to being an expander, the algorithm of [KPS08] can simulate an
oracle access to a corrected graph, that is an expander. Reconstruction in the context of partition
problems for dense graphs was implicitly studied in [GGR98]. Given a dense graph G that is close
to satisfying some partition property (say k-colorability), the approximate partitioning algorithm
from [GGR98] can be made into one that efficiently and locally reconstructs a graph G′ that satisfies
the partition property and is close to G.

LDCs and SCCs Locally decodable codes were explicitly defined in [KT00], but they were
extensively studied before that in the context of self-correcting computation, worst-case to average-
case reductions, randomness extraction, probabilistically checkable proofs and private information
retrieval (see [Tre04] for a survey). The initial constructions of LDCs (and SCCs) were based on
Reed-Muller codes and allowed to encode a k-bit message by a poly(log k)-query LDC of length
poly(k) [BFLS91, CKGS98].
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For a fixed number of queries, the complexity of LDCs was first studied in [KT00], and has
since been the subject of a large body of work (see [Tre04, Gas04] for surveys). To this day, there
is a nearly exponential gap between the best known upper bounds on the length of q-query LDCs
[Yek08, Efr09] and the corresponding lower bounds [KdW04, WdW05, Woo07], for any constant
q ≥ 3.

While interesting on its own, studying message reconstruction can help us in understanding the
limitations of LDCs. If we view the local decoding algorithm as a deterministic algorithm that
takes as input i ∈ [k] and a random string r, then we require that for each i, most choices of r

lead to the correct decoding of the ith bit of the message. For message reconstruction we swap the
for all i and for most r quantifiers, and require that for most choices of r, the algorithm correctly
decodes all k bits of the encoded message.

Our lower bounds imply that in the case of error-correcting codes, it is impossible to correlate
the success probabilities of a local decoder in a way that for most random strings r, either all bits
of the message are decoded correctly, or only very few of them are. This is in contrast to the results
from local reconstruction of general properties (described in previous section), where clever use of
the fixed randomness r allows reconstruction with very few queries.

As we explained earlier, a constant query LDC of polynomial length would imply the existence of
an O(log k)-query message reconstructor of polynomial rate. Thus constructing an O(log k)-query
message reconstructible code of polynomial rate can be an intermediate step towards constant-query
LDCs of polynomial length.

2 Preliminaries

For α ∈ Σn we denote by αi the i’th symbol of α, and for a subset I ⊆ [n] we denote by α�I the
restriction of α to the indices in I. The Hamming distance, or simply the distance d(α, β) between
two strings α, β ∈ Σn, is the number of indices i ∈ [n] such that αi 6= βi. Given a set S ⊆ Σn

and α ∈ Σn, the distance of α from S is defined as d(α, S) = minβ∈S{d(α, β)}, where as expected
the minimum over an empty set is defined to be +∞. For ε > 0 we say that α is ε-close to S if
d(α, S) ≤ ε|α|.

An [n, k, d]Σ code is a mapping C : Σk → Σn such that for every x 6= x′ ∈ Σk, d(C(x), C(x′)) ≥ d.
Elements y ∈ C are called codewords. The parameter k is called the message length (or the
information length) of the code and n is called the block length or simply length of the code.
Sometimes we will refer to C also as a subset of Σn defined as C = {y : ∃x ∈ Σk s.t. y = C(x)}.

Usually we will be interested in some family C of codes 〈Ck〉k∈N, with functions n = n(k) and
d = d(k), in which every Ck is an [n, k, d]Σ code. Whenever the alphabet Σ is not specified it means
that Σ = {0, 1}. With a slight abuse of notation, for x ∈ Σk we will denote by C(x) the mapping
Ck(x) given by the “right size” code Ck from the family C. Similarly, for n = n(k) and w ∈ Σn

we define the distance of w from C as d(w, C) = d(w, Ck), which is the minimal distance between
w and some codeword of C. If d(w, C) < d/2 then the minimum is achieved by a unique codeword
y ∈ C, and we denote this codeword by DC(w). In this case the original message is well defined,
and it will be denoted by C−1(DC(w)).

An [n, k, d] code C is linear if (for all k) it has a generating matrix G ∈ {0, 1}n×k such that1

1Here and in the following we may identify {0, 1} with the field of two elements in the standard way.
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for all x ∈ {0, 1}k, C(x) = Gx. We denote by R(C) the number of distinct non-zero rows in C’s
generating matrix.

3 Definition of our model and statement of main results

Here we formally define message and codeword reconstruction, and state our main results. All
our definitions apply to non-adaptive algorithms, i.e. algorithms that base their query strategy
solely on their random bits, while basing their output on both random bits and the answers to the
queries. For clarity of analysis we make the dependence on a random string r of bits (assumed
to be chosen uniformly and independently) explicit, and we restrict2 our attention to families of
[n, k, d] codes, where Σ = {0, 1}. We disregard computation time considerations because all lower
bounds presented here hold regardless of computation time.

Definition 3.1 (Message Reconstruction) Let C be a family of [n, k, d] codes with d ≥ 2δn for
some fixed δ > 0, let q, ρ : N → N and let ε be a fixed constant3 satisfying 0 < ε < δ. A (q, ε, ρ)
message reconstructor for C is a deterministic machine A, taking as inputs k, n = n(k) ∈ N, i ∈ [k]
and a random string r ∈ {0, 1}ρ(k), that for every w ∈ {0, 1}n satisfies the following:

• A generates a set Qi,r ⊆ [n] of q = q(k) indices and a function Ci,r : {0, 1}q → {0, 1}, and
outputs Aw

r (i) , Ci,r(w�Qi,r
).

• Let Aw
r ∈ {0, 1}k denote the concatenation Aw

r (1)Aw
r (2) · · · Aw

r (k).
If d(w, C) ≤ εn then Prr

[
Aw

r = C−1(DC(w))
]
≥ 2/3.

When it is not important, we will avoid mentioning explicitly the random string length ρ, and will
simply use the term (q, ε) message reconstructor (or even q-query message reconstructor) to mean
a (q, Ω(1)) message reconstructor. For abbreviation, we may also use Ar to denote the algorithm
A that operates with the fixed random string r ∈ {0, 1}ρ.

In this terminology, if a code C has a (q, ε) message reconstructor then it is locally decodable with
q queries, up to noise rate ε. On the other hand, a code that is locally decodable with q queries (up
to noise rate ε) has an (O(q log k), ε) message reconstructor, and so the existence of constant query
LDCs implies that there exist codes that have an (O(log k), Ω(1)) message reconstructor. Our first
result shows that in terms of the number of queries this is essentially optimal, even for arbitrarily
long codes.

Theorem 3.2 There are no codes (of any length) with an o(log k)-query non-adaptive message
reconstructor.

Next we formally define codeword reconstruction. Notice that here the query complexity and
the randomness of the algorithm are mentioned in terms of n – the block length, rather than k as
in the definition of message reconstruction.

2Nevertheless, the bounds presented in this paper generalize to larger alphabets as well.
3For clarity of presentation ε will be considered to be an absolute constant. Nevertheless, the bounds presented

here have only logarithmic dependence on 1/ε.
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Definition 3.3 (Codeword Reconstruction) Let C, δ, q ,ρ and ε be as in Definition 3.1. A
(q, ε) codeword reconstructor for C is a deterministic machine A, taking as inputs k, n = n(k) ∈ N,
i ∈ [n] and a random string r ∈ {0, 1}ρ(n), that for every w ∈ {0, 1}n satisfies the following
conditions:

• A generates a set Qi,r ⊆ [n] of q = q(n) indices and a function Ci,r : {0, 1}q → {0, 1}, and
outputs Aw

r (i) , Ci,r(w�Qi,r
).

• Let Aw
r ∈ {0, 1}n denote the concatenation Aw

r (1)Aw
r (2) · · · Aw

r (n).
If d(w, C) ≤ ε then Prr

[
Aw

r = DC(w)
]
≥ 2/3.

Here too, we may avoid mentioning ρ explicitly, and may use Ar to denote the algorithm A that
operates with the fixed random string r.

If a code C has a (q, ε) codeword reconstructor then it is self-correctable with q queries, and
conversely, any code that is self-correctable with q queries up to noise rate ε has an (O(q log n), ε)
codeword reconstructor. As stated earlier, constant query SCCs exist, hence there are codes with
an (O(log n), Ω(1)) codeword reconstructor. Since essentially all known LDCs and SCCs are linear
codes, and furthermore they satisfy R(C) = n (i.e., all rows in their generating matrix are distinct),
we actually have linear codes with an (O(log R(C)), Ω(1)) codeword reconstructor. Our second
result shows that in the case of linear codes one cannot get significantly better than that.

Theorem 3.4 There are no linear codes (of any length) with an o(
√

log R(C))-query non-adaptive
codeword reconstructor.

Remark 3.5 For general (non-linear) codes there is no lower bound on the query complexity which
is poly-logarithmic in n. This follows from a simple observation that if a code has a q-query message
reconstructor then it also has a qk-query codeword reconstructor (in qk queries it is possible to decode
the whole message and its encoding). So, for example, Long Codes admit a codeword reconstructor
that makes only O(k log k) = O(log log n log log log n) queries.

Furthermore, even if we focus on linear codes only, stating the bound in Theorem 3.4 in terms of
n (instead of R(C)) is impossible, since there are linear [n, k, d] codes that have a q-query codeword
reconstructor, with q arbitrarily smaller than n. For example, let C′ be a linear [n′, k, d′] code with
a (q, ε) codeword reconstructor, and define a new linear [n = tn′, k, d = td′] code C as C(x) =
C′(x) · · · C′(x), namely, encoding x with t copies of C′(x). Now for any t (and hence arbitrarily
large n), C(x) has a (q, ε/2) codeword reconstructor, which picks a random copy of C′(x) from the
encoding, and then simulates on it the original codeword reconstructor for C′.

In the following corollary we use the fact that any linear code can be transformed into a
systematic code4 and combine Theorem 3.2 with Theorem 3.4.

Corollary 3.6 There is no linear code with an o(max{log k,
√

log R(C)})-query codeword recon-
structor.

4A linear code C is systematic if C(x)�[k] = x for all x ∈ {0, 1}k.
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It is worth mentioning that, while both local decoding and self correction become trivial in the
random-noise model (via simple repetition codes), this is not the case for reconstruction. In fact,
the query-complexity lower bounds from Theorems 3.2 and 3.4 apply to the random-noise model
as well. See more details in Section 6.1.

4 Proof of Theorem 3.2

Outline Usually, lower bound proofs that use Yao’s Principle involve an input distribution that
fools any deterministic algorithm of a certain type (bounded query complexity in our case) with
probability larger than 1/3. However, in this proof we will need to analyse the probabilistic algo-
rithm A itself, giving special treatment to the indices that it queries with high probability. We first
prove that for most of the deterministic algorithms Ar that result from fixing the random seed r

in A (the “typical” ones), the number of bits that are reconstructed correctly based only on the
indices that are frequently queried by A is small. Then we show that there is a distribution that
fools any such typical algorithm with very high probability. Due to this technique, instead of the
usual application of Yao’s Principle we argue that there is a distribution D that fools at least half
of the deterministic algorithms Ar with probability 1 − o(1). Thus, the distribution D would fool
the probabilistic algorithm A with probability at least 1

2 − o(1).
Fix ε > 0. Let C be a family of [n, k, d] codes and let A be its (q, ε) message reconstructor.

Our goal is to prove that q = Ω(log k). Recall that Qi,r ⊆ [n] denotes the set of indices queried by
A on input i ∈ [k], given the random string r. For j ∈ [n] we define I(j, r) = {i ∈ [k] : j ∈ Qi,r}.
Namely, I(j, r) is the set of indices whose reconstructed value may depend on the j’th bit of
the received word, given that the random seed is r. Similarly, for a subset S ⊂ [n] we define
I(S, r) =

∪
j∈S I(j, r) = {i ∈ [k] : S ∩ Qi,r 6= ∅}. We call an index j ∈ [n] influential with respect

to r if |I(j, r)| > 10q, and non-influential otherwise.

Lemma 4.1 For any r, there are at most k/10 influential indices in [n].

Proof. If there are more than k/10 influential indices then
∑n

j=1 |I(j, r)| > ( k
10)(10q) = kq. On

the other hand
∑n

j=1 |I(j, r)| =
∑k

i=1 |Qi,r| ≤ kq, a contradiction.

Lemma 4.2 Let A0
r ⊆ [n] be the set of influential indices (with respect to r). There exists a

partition A1
r , A

2
r , . . . , A

T
r of [n] \ A0

r into T ≤ k parts such that for all i ∈ [T ], |I(Ai
r, r)| ≤ 10q.

Proof. Recall that
∑n

j=1 |I(j, r)| ≤ kq from the previous proof. Let us construct a partition
A1

r , . . . , A
T
r of the non-influential indices as follows: A1

r contains the first `1 non-influential indices,
where `1 is the maximal number for which |I(A1

r)| ≤ 10q (note that in particular `1 ≥ 1); then A2
r

contains the next `2 non-influential indices, where `2 is the largest number satisfying |I(A2
r)| ≤ 10q

and so on. We claim that in the end of this process T ≤ k.
Assume that T > k. Consider the partition B1, . . . , BdT/2e of the non-influential indices where

Bi = A2i−1
r ∪ A2i

r . Notice that since T ≥ k + 1, there are at least k/2 parts in this partition. By
the definition of Ai

r’s, all but at most one (the last) of the Bi’s satisfy I(Bi) > 10q. So we have

n∑
j=1

|I(j, r)| ≥
dT/2e∑
i=1

|I(Bi, r)| > (k/2)10q > kq
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contradicting the fact
∑n

j=1 |I(j, r)| ≤ kq.
Now let us define a distribution D over received words. We will use the notation x ∼ D to mean

that x is chosen at random according to D, and whenever D is a set, we also use x ∼ D to mean
that x is chosen uniformly at random from D. Whenever the distribution or the set are clear from
context we may omit their specification.

Recall that we need a distribution over received words that are ε-close to C, on which every
deterministic message reconstructor fails with probability larger than 1/3. Instead, we define a
distribution D that will provide a word that is ε-close to C only with probability 1−o(1). However,
this will be sufficient because we will show that any algorithm will with probability at least 1

2 −o(1)
fail to reconstruct the correct message. So also if we condition on the 1 − o(1) event we still get
the same error probability estimate.

A random word w ∼ D is generated by picking a uniformly random x ∼ {0, 1}k, setting y = C(x)
and then obtaining w by flipping each of the bits of y with probability ε/2, independently of the
other bits. In fact this will be a distribution over w and x, but with some abuse of notation we will
generally omit x as with probability 1 − o(1) it is just the message corresponding to the codeword
closest to w. We need the following fact about D.

Lemma 4.3 For every q ≤ log n, Q ⊆ [n] of size |Q| = q and α ∈ {0, 1}q, Prw∼D[w�Q = α] ≥
(ε/2)q.

We shall prove that if the query complexity of A is o(log k) then the probability that A fails on
w ∼ D is large, namely,

Pr
w∼D,r

[Aw
r = C−1(DC(w))] ≤ 1/2 + o(1).

For w ∼ {0, 1}n, r ∈ {0, 1}ρ and i ∈ [k] we say that Aw
r (i) is determined by w�A0

r
if Aw

r (i) =

Ay
r(i) for every y ∈ {0, 1}n with y�A0

r
= w�A0

r
(notice that in general, Aw

r (i) may be determined

by w�A0
r

even when Qi,r * A0
r). The next definition and lemma say that for most random strings

r, the expected number of indices correctly determined only by the influential indices is not very
large, where the expectation is taken over w ∼ D.

Definition 4.4 For every x ∈ {0, 1}k, w ∈ {0, 1}n and r ∈ {0, 1}ρ we set βw,x
r = 0 if there is any

index i such that Aw
r (i) is determined by w�A0

r
but does not match the value xi. If there is no such

index, then we set

βw,x
r =

∣∣∣{i ∈ [k] : Aw
r (i) is determined (correctly) by w�A0

r
}
∣∣∣.

We call r ∈ {0, 1}ρ typical with respect to A if Ew,x∼D[βw,x
r ] ≤ 2

3k.

Lemma 4.5 Let A be a message reconstructor for C. Then Prr[r is typical w.r.t. A] > 1/2.

We postpone the proof of Lemma 4.5 to Section 4.1.
For every random string r ∈ {0, 1}ρ we denote by N(r), 0 ≤ N(r) ≤ k, the expected number

of correctly reconstructed bits by Ar, where the expectation is taken over w ∼ D. Formally,
N(r) = Ew∼D

[
k − d(Aw

r , C−1(DC(w)))
]
. Furthermore, given y ∈ D (by y ∈ D we mean y ∈ {0, 1}n
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that is in the support of D) and S ⊆ [n] we denote by N(r, y, S) the expected number of correctly
reconstructed bits by Ar, where the expectation is taken over w ∼ D conditioned on the event
w�S = y�S. Formally,

N(r, y, S) = Ew∼D

[
k − d(Aw

r , C−1(DC(w)))
∣∣∣w�S = y�S

]
.

Lemma 4.6 For any typical r, Ey∼D[N(r, y, A0
r)] ≤ k

(
1 − (ε/2)q

3

)
.

Proof. By the definition of a typical r, the expected number of bits whose reconstructed value
either depends on non-influential indices or is guaranteed to be always wrong is at least k/3. Call
these bits free bits. This means that every free bit may be incorrectly reconstructed by Ar for
some assignment α to the non-influential indices (if it can be correctly reconstructed at all). So, by
Lemma 4.3 the probability that Ar fails on a specific free bit, taken over w ∼ D, is at least (ε/2)q

(we can assume that the reconstructed value of each bit depends on at most q = log k ≤ log n of the
non-influential indices, since otherwise the query complexity is not as advertised and we are done).
Hence by linearity of expectation the expected number of bits that are reconstructed correctly by
Ar, taken over w ∼ D, is at most

2
3
k +

k

3

(
1 −

( ε

2

)q)
= k

(
1 − (ε/2)q

3

)
.

We now define a sequence of T + 1 random variables forming a Doob Martingale. For a fixed
r ∈ {0, 1}ρ, y ∈ D and every t, 0 ≤ t ≤ T , we define Hy,r

t , N(r, y, A0
r ∪ · · · ∪ At

r), that is the
expected number of bits reconstructed correctly by Ar, where the expectation is taken over all
w ∼ D that agree with y on all indices in A0

r ∪ A1
r ∪ · · · ∪ At

r.
By Lemma 4.6, Hr,y

0 ≤ k
(
1 − (ε/2)q

3

)
for all typical r. On the other hand, if Ar properly

reconstructs y then Hr,y
T = k. Thus, for every typical r we have

Pr
y∼D

[
Ay

r = C−1(DC(y))
]

= Pr
y∼D

[
Hr,y

T = k
]
≤ Pr

y∼D

[
Hr,y

T − Hr,y
0 ≥ k

(ε/2)q

3

]
.

By Lemma 4.2, T ≤ k and the influence I(At
r, r) of each set At

r, 1 ≤ t ≤ T , is bounded by 10q.
Thus for all 1 ≤ t < T we have |Hr,y

t+1 − Hr,y
t | ≤ 10q. Now we can apply Azuma’s Inequality, by

which we get

Pr
y∼D

[
Hr,y

T − Hr,y
0 ≥ k

(ε/2)q

3

]
≤ exp

(
−k2(ε/2)2q

9T (10q)2

)
≤ exp

(
−k(ε/2)2q

900q2

)
where in the last inequality we used the fact that T ≤ k. This means that the probability that A
reconstructs all k bits correctly with a typical r is o(1), unless q = Ω(log k). Since a random r is
typical with probability at least 1/2, we conclude that unless q = Ω(log k), A fails on w ∼ D with
overall probability at least 1/2 − o(1).
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4.1 Proof of Lemma 4.5

We need to prove that most random strings r satisfy Ew,x∼D[βw,x
r ] ≤ 2

3k. To this end, we need the
following auxiliary lemma, which is essentially an entropy preservation argument.

Lemma 4.7 For any two (possibly probabilistic) algorithms given by their functions, an encoder
E : {0, 1}k → {0, 1}k/10 and a decoder D : {0, 1}k/10 → {0, 1}k,

Pr
r,x∼{0,1}k

[
x = D(E(x))

]
≤ 2−9k/10,

where r denotes the outcome of the random coin flips of E and D. Furthermore, the inequality
holds even if E and D have shared randomness.

Proof. Let E, D be the two algorithms. Denote by Er and Dr their deterministic versions
operating with a fixed random seed r. For every possible r, partition the set {0, 1}k into at most
mr ≤ 2k/10 parts Xr

1 , . . . , Xr
mr

such for all i and x, y ∈ Xr
i we have Er(x) = Er(y). Observe that

for every fixed r, and conditioned over the event that a random x falls in Xr
i , Prx∼Xr

i
[Dr(Er(x)) =

x] ≤ 1/|Xr
i |, and clearly the probability that x falls in Xr

i is exactly |Xr
i |/2k. So for every fixed r

we have

Pr
x

[
x = Dr(Er(x))

]
=

mr∑
i=1

(
|Xr

i |
2k

)(
1

|Xr
i |

) =
mr∑
i=1

1/2k ≤ 2−9k/10.

Hence this holds for a random r as well.
Now consider the following encoder/decoder pair E, D corresponding to C and A. We will

assume that E and D share a random string r, and describe their operation for every possible r.
The encoder Er on x ∈ {0, 1}k computes y = C(x), converts y into w by flipping each bit with

probability ε/2 independently of the other bits, and outputs Er(x) , w�A0
r

(the identity of the

flipped bits is not part of the shared randomness). By the definition of A0
r , |Er(x)| ≤ k/10 for

every x and r (If necessary, Er(x) can be padded arbitrarily up to length k/10).
Before defining the decoder, let us denote by Sz

r ⊆ [k] the set of bits for which the value is
determined by Ar, given that the assignment to the influential indices A0

r of the received word
equals z.

The decoder Dr on z ∈ {0, 1}k/10 constructs Dr(z) , x′ ∈ {0, 1}k by reconstructing x′
i according

to Ar for all i ∈ Sz
r , and guessing x′

i ∈ {0, 1} uniformly at random for all other indices i ∈ [k] \ Sz
r .

We can now prove Lemma 4.5 by showing that the pair E, D defined above contradicts the
statement of Lemma 4.7, unless for most random strings r, Ew,x∼D[βw,x

r ] ≤ 2
3k. We start by ob-

serving that the distributions Er(x) : x ∼ {0, 1}k and w�A0
r

: w ∼ D are identical for every r.

Therefore, since for every r the value βw,x
r depends only on w�A0

r
and x, we have Ew,x∼D

[
βw,x

r

]
=

Ex∼{0,1}k

[
β

ext(Er(x)),x
r

]
for all r as well, where ext(Er(x)) ∈ {0, 1}n is any arbitrary string (exten-

sion) whose restriction to A0
r equals Er(x).

Now assume towards a contradiction that for at least half of the random strings r,

Ew,x∼D[βw,x
r ] = Ex∼{0,1}k [βext(Er(x)),x

r ] >
2
3
k.

10



Since 0 ≤ βw,x
r ≤ k for all w, x and r, this means that for at least half of the random strings r,

Pr
x∈{0,1}k

[βext(Er(x)),x
r ≥ k/2] > 1/6.

Therefore (taking into account that β
ext(Er(x)),x
r > 0 also implies that each of the bits not correctly

determined by A0
r obtains the correct value with probability 1

2 independently of the others),

Pr
r,x∼{0,1}k

[
x = Dr(Er(x))

]
≥ (

1
2
)(

1
6
)2−k/2 > 2−9k/10

contradicting Lemma 4.7.

5 Proof of Theorem 3.4

Outline For the proof of Theorem 3.4 we show that there is an input distribution D on which any
deterministic codeword reconstructor with query complexity o(

√
R(C)) fails with probability larger

than 1/3. This is done by constructing a set of indices S ⊂ [n] such that for every deterministic
reconstructor and for every i ∈ S, if Ei is the event that the reconstructor errs on index i, then
the events Ei, i ∈ S are independent (with respect to D). Since the reconstructor fails unless it
reconstructs all indices i ∈ S correctly, the probability that it does not fail goes down exponentially
with the size of the set S. Thus it is sufficient to show that the probability of each Ei is not too
low, and that S is sufficiently large. The latter is done using the Sunflower Lemma [ER60] and the
fact that C is a linear code.

Fix ε > 0. Let C be a family of linear [n, k, d] codes and let A be its (q, ε) codeword reconstructor.
Let G1, . . . , Gn ∈ {0, 1}k denote the rows of C’s generating matrix G, satisfying C(x)i = 〈Gi, x〉
(mod 2) for every x ∈ {0, 1}k and i ∈ [n], and let n̂ , R(C) denote the number of distinct rows in
G.

The distribution D is defined similarly to the definition in Section 4, that is, a random word
w ∼ D is generated by picking a uniformly random y ∈ C and then obtaining w by flipping each of
the bits of y with probability ε/2, independently of the other bits. As we also mentioned in Section
4, w ∼ D is ε-close to C only with probability 1 − o(1), but this will be sufficient because we will
show that for any r, Ar will fail to reconstruct the correct codeword with probability at least 1/2.
The next lemma is proved in Appendix A.

Lemma 5.1 The following holds for D and any linear code C:

1. Let T ⊆ [n] and i ∈ [n] \ T be such that Gi (the i’th row of C’s generating matrix) is linearly
independent of rows {Gj : j ∈ T}. Then for any α ∈ {0, 1}|T |,

Pr
w∼D:w�T=α

[DC(w)i = 1] = Pr
w∼D:w�T=α

[DC(w)i = 0] =
1
2
,

where “w ∼ D : w�T = α” is shorthand for “w ∼ D conditioned over the event that w�T = α”.
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2. Let S1, . . . , St ⊆ [n] be disjoint sets with |Si| ≤ q ≤ log n for all i ∈ [t]. For any sequence
〈αi ∈ {0, 1}|Si|〉i∈[t] of partial assignments,

Pr
w∼D

[
w�Si

= αi for some i ∈ [t]
]
≥ 1 − (1 − (ε/2)q)t.

Recall that Qi,r ⊆ [n] is the set of indices queried by A on input i ∈ [n] and random string r.
From this point on let us fix r and prove that unless q , maxi∈[n]{|Qi,r|} is of order Ω(

√
log n̂), the

probability (over w ∼ D) that Ar correctly reconstructs w (into y = DC(w)) is less than 1/2. Since
r is fixed, we will make the notation shorter by omitting the subscript r from the sets Qi,r.

The proof proceeds in two steps. In the first step we find a large subset F ⊆ [n] of indices,
such that Qi ∩ Qj = Qi′ ∩ Qj′ for all i, j, i′, j′ ∈ F , and in addition, for all i, j ∈ F the values
DC(w)i, DC(w)j are independent of w�Qi ∩ Qj

. F is constructed by first finding a large sunflower
in the sets Q1, . . . , Qn and then removing from it the (not too many) “bad” petals that violate the
above property. In the second part of the proof we show that given a large enough set F as above,
the probability that Ar incorrectly reconstructs at least one of the indices in F is high.

Definition 5.2 A sunflower with t petals and a core T is a collection of sets Q1, . . . , Qt such that
Qi ∩ Qj = T for all i 6= j.

Lemma 5.3 (Sunflower Lemma [ER60]) Let Q be a family of n sets, each set having cardinal-
ity at most q. If n > q!(t− 1)q then Q contains a sunflower with t petals. In particular, Q contains
a sunflower of size at least 1

q n1/q.

Let R be a set of n̂ indices corresponding to n̂ distinct rows in G. Let Q = 〈Qi〉i∈R be the
family of sets queried by Ar on inputs i ∈ R. By definition, Q contains n̂ sets, each of size at most
q. From Lemma 5.3 we can obtain a sunflower S ⊆ Q, S = Qi1 , . . . , Qit , with t ≥ 1

q n̂1/q petals. Let
T ⊂ [n] denote the core of S. We define the span of the core T as

span(T ) = span{Gi : i ∈ T} =
{∑

i∈T

αiGi (mod 2) : ∀i, αi ∈ {0, 1}
}
⊆ {0, 1}k.

Since |T | ≤ q the span of T contains at most 2q different rows from G.
Next we form a family S ′ ⊆ S of sets by removing from S every petal Qij for which Gij belongs

to the span of T . Namely, we set S ′ , {Qij ∈ S : Gij /∈ span(T )}. Notice that the resulting family
S ′ is a sunflower as well, with the same core T . Furthermore, the size of S ′ is at least t′ ≥ 1

q n̂1/q−2q.
Intuitively, the query sets in S ′ correspond to those indices in R that are “independent” of w�T .

We call these indices free indices and denote their set by F . Namely, F = {i : Qi ∈ S ′}. By the
first item of Lemma 5.1, for every free index i ∈ F and all α ∈ {0, 1}|T | we have

Pr
w∼D:w�T=α

[DC(w)i = 1] = Pr
w∼D:w�T=α

[DC(w)i = 0] =
1
2
. (1)

Now we can show that if q = o(
√

log n̂), then with probability at least 1/2 one of the free indices
will be reconstructed incorrectly by Ar. Assume that the contrary is true, i.e. Prw∼D[βw] > 1/2,
where βw is the indicator of the event that Ar reconstructs all free indices correctly. This implies
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that there exists an α ∈ {0, 1}|T | such that Prw∼D:w|T =α[βw] > 1/2. If for some i ∈ F the value
of Aw

r (i) is determined by the fact that w�T = α then by Equation 1 the probability that Ar

reconstructs i incorrectly is 1/2. So it must be the case that having w�T = α does not determine
Aw

r (i) for any of the free indices i, and in particular, for every Si , Qi \ T , Qi ∈ S ′ there must be
an assignment αi to w�Si

for which Ar reconstructs i incorrectly. Since the sets Si are disjoint we
can apply the second item of Lemma 5.1 by which the probability that one of the free indices is
reconstructed incorrectly is at least

1 − (1 − (ε/2)q)|S
′| ≥ 1 − (1 − (ε/2)q)

1
q
n̂1/q−2q

≥ 1 − e
−(ε/2)q( 1

q
n̂1/q−2q)

.

Notice that the above probability is larger than 1/2 (in fact it is almost 1) if (ε/2)q(1
q n̂1/q−2q) > 10,

which is the case for q = o(
√

log n̂). Hence a contradiction.

6 Extensions and open problems

6.1 Reconstruction against random noise

In the usual definition of locally decodable codes (and self-reconstructible codes) it is assumed that
the noise is adversarial, i.e. that the set of corrupted locations is chosen in a worst case manner.
Our definition of message and codeword reconstruction is against adversarial noise as well. But
does reconstruction become easier in the random-noise5 model?

While both local decoding and self correction become trivial in the random-noise model (via
simple repetition codes), this is not the case for reconstruction. In fact, our proofs were using input
distributions that exactly correspond to the random noise model. Moreover, there is a general
reduction that allows to translate any query-complexity lower bound in the adversarial-noise model
for message reconstruction to a lower bound in the random-noise model (or alternatively, translate
any upper bound in the random-noise message reconstruction model into one that works in the
adversarial-noise model) via LDCs:

Claim 6.1 Let C be a code with a q-query message reconstructor against random noise, and let
H be a p-query LDC. Then the code H(C)(x) , H(C(x)) (the LDC H composed with C) has an
O(pq)-query message reconstructor in the adversarial-noise model.

We omit the formal proof of Claim 6.1, but the main idea is that the additional LDC encoding
enables converting adversarial noise into random noise. This is the case since by the definition of an
LDC, every bit of the codeword y ∈ C can be decoded correctly with high probability, independently
of other bits.

Combining Claim 6.1 with Theorem 3.2, and using the fact that there are constant query LDCs,
we get that message reconstruction against random noise requires Ω(log k) queries. We can also
deduce correlations for lower bounds concerning codeword reconstruction, however here the size of
the LDC used becomes important as it affects the codeword size of the combined code.

5In the random-noise model the received word w is obtained by flipping (independently) each bit of the codeword

y with probability at most ε, and the requirement is that for every y ∈ C the decoding/correction/reconstruction is

successful with probability at least 2/3, taken over both r and w.
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We note that while there are codes of super-polynomial length with an O(log k)-query message
reconstructor, we do not know any polynomial-length code with an O(log2 k)-query message recon-
structor. So, the real bound in Theorem 3.2 may be higher than Ω(log k) for efficient codes. On
the other hand, the repetition code, whose encoding is obtained by concatenating O(log k) copies
of the original message, has a trivial log k-query message reconstructor against random noise. Thus
for random noise our lower bound is optimal, irrespective of the length of the code.

6.2 Partial reconstruction

In a more general setting, we may require that a message reconstructor should decode correctly any
t bits of the message, instead of all k. It is straightforward to extend the lower bound in Theorem 3.2
for this generalization to Ω(log t). Similarly, if we require that a codeword reconstructor should
decode correctly any t bits of the codeword instead of all n, then we can extend Theorem 3.4
to provide a lower bound of Ω(

√
log t̂), where t̂ is the number of distinct rows in the t rows

corresponding to the decoded part.

6.3 Open problems

• Our results suggest that one cannot get message reconstructors that are significantly more
query-efficient than the amplified versions of constant-query LDCs. It is an interesting ques-
tion whether this connection is bidirectional, i.e. whether q-query message reconstruction
implies q-query local decoding with error probability O(1/k).

• Are there codes of polynomial length that have O(log k)-query message reconstructors? A
positive answer would be an intermediate step towards proving that efficient constant query
LDCs exist.

• In the case of codeword reconstruction, Theorem 3.4 says that for any linear code the codeword
reconstructor must have query complexity Ω(

√
log n̂). On the other hand we have linear codes

with O(log n̂)-query codeword reconstructor. We expect the upper bound to be the correct
one, but we are currently unable to close this gap.
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A Proof of Lemma 5.1

For the first item, notice that since the codewords of C form a linear subspace, for every i ∈ [n] we
have Pry∈C [yi = 1] = Pry∈C [yi = 0] = 1/2 (here we assume without loss of generality that C is not
redundant, i.e. the generating matrix of C has no all-zero rows). Conditioning the above over some
restriction to y�T has no effect on indices i that are linearly independent of the indices in T . This
holds since the subset of C formed by the restriction is an affine subspace not parallel to the kernel
of Gi. Finally, in D the i’th bit of y can be flipped with some probability, but this has no effect
since the probability of yi being flipped is independent of the value yi.

The second item follows from immediately from the definition of D.
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