Comment on “Uniform Derandomization from Pathetic Lower Bounds”

Eric Allender∗
Department of Computer Science
Rutgers University
New Brunswick, NJ 08855, USA
allender@cs.rutgers.edu

V Arvind
The Institute of Mathematical Sciences
C.I.T. Campus
Chennai 600 113, India
arvind@imsc.res.in

Rahul Santhanam
School of Informatics
University of Edinburgh
Edinburgh EH8 9AD, UK
rsanthan@inf.ed.ac.uk

Fengming Wang†
Google, Inc.
76 9th Ave.
New York, NY, 10011 USA
wfengm@gmail.com

December 18, 2012

1 Permutation Problems Complete for L

In Definition 18 of our ECCC paper [AASW10] (which corresponds to Definition 3.5 of the journal version of this work [AASW12]), we define the language PWP and state that it was shown to be complete by Cook and McKenzie [MC87]. We thank Eric Miles and Emanuele Viola [MV12] for calling our attention to the following facts:

∗Supported in part by NSF Grants CCF-0830133, CCF-0832787, and CCF-1064785. Some of this work was performed while this author was a visiting scholar at the University of Cape Town.

†Supported in part by NSF Grants CCF-0830133, CCF-0832787 and CCF-1064785.
• The correct citation for this paper is [CM87], instead of [MC87], and
• The problem that Cook and McKenzie actually show is complete, which they call Permutation Product (PP), is not obviously equivalent to PWP.

In this comment, we provide a simple reduction, to establish our claim that PWP is, indeed, complete for \(L \). It suffices to provide a reduction from the \(L \)-complete language PP to PWP.

2 Reduction from PP to PWP

First, we present the problem PP, as defined in Cook-Mckenzie, which is \(L \)-complete: Given a list of permutations \(\pi_1, \pi_2, \ldots, \pi_t \in S_n \) and indices \(i, j \in [n] \), check if the product \(\prod_{k=1}^{t} \pi_k \) maps \(i \) to \(j \).

Now, for completeness, we remind the reader of the definition of the problem PWP: For permutations \(\pi_1, \pi_2, \ldots, \pi_t \in S_n \) check if their product \(\prod_{k=1}^{t} \pi_k \) is the identity.

There is a direct reduction from PP to PWP as explained below:

Firstly, we reduce the PP instance to one in which \(i = j \) by considering the list of permutations \(\pi_1, \pi_2, \ldots, \pi_t, \pi_{t+1} \), where \(\pi_{t+1} \) is the transposition \((i, j)\). Clearly, their product maps \(i \) to \(i \) iff the first \(t \) of them map \(i \) to \(j \).

Next, enlarge the domain by one element, so that we will consider permutations in \(S_{n+1} \) instead of \(S_n \): Replace each \(\pi_k \) by \(\sigma_k \in S_{n+1} \), where \(\sigma_k \) coincides with \(\pi_k \) on \([n]\) and \(\sigma_k(n + 1) = n + 1 \). Let \(\tau \in S_{n+1} \) denote the transposition \((n + 1, i)\). Let \(g \) denote the permutation \(\prod_{k=1}^{t+1} \sigma_k \).

Claim. \(\prod_{k=1}^{t+1} \pi_k \) maps \(i \) to \(i \) if and only if \(g \tau g^{-1} \tau \) is the identity permutation.

Proof.

Suppose \(\prod_{k=1}^{t+1} \pi_k \) maps \(i \) to \(i \). Then \(g(i) = i \). Since \(g(n + 1) = n + 1 \) we can see that \(g \tau g^{-1} \tau \) maps \(i \) to \(i \) and \(n + 1 \) to \(n + 1 \). As for the other points \(j \in [n + 1] \), \(\tau \) doesn’t interfere and the combination of \(g \) and \(g^{-1} \) fixes them all.

Conversely, suppose \(g \tau g^{-1} \tau \) is the identity. Then, in particular, \(g \tau g^{-1} \tau(i) = i \) which means \(g \tau g^{-1}(n + 1) = i \) which implies \(g \tau(n + 1) = i \) which implies \(g(i) = i \) which implies \(\prod_{k=1}^{t+1} \pi_k \) maps \(i \) to \(i \).

In summary, the reduction from PP to PWP is:

\[
\pi_1, \ldots, \pi_{t+1} \mapsto \pi_1, \ldots, \pi_{t+1} \tau \pi_{t+1}^{-1} \ldots \pi_1^{-1} \tau.
\]
References

