Comment on "Uniform Derandomization from Pathetic Lower Bounds"

Eric Allender*
Department of Computer Science
Rutgers University
New Brunswick, NJ 08855, USA
allender@cs.rutgers.edu
V Arvind
The Institute of Mathematical Sciences
C.I.T. Campus
Chennai 600 113, India
arvind@imsc.res.in

Rahul Santhanam
School of Informatics
University of Edinburgh
Edinburgh EH8 9AD, UK
rsanthan@inf.ed.ac.uk
Fengming Wang ${ }^{\dagger}$
Google, Inc.
76 9th Ave.
New York, NY, 10011 USA
wfengm@gmail.com

December 18, 2012

1 Permutation Problems Complete for L

In Definition 18 of our ECCC paper [AASW10] (which corresponds to Definition 3.5 of the journal version of this work [AASW12]), we define the language PWP and state that it was shown to be complete by Cook and McKenzie [MC87]. We thank Eric Miles and Emanuele Viola [MV12] for calling our attention to the following facts:

[^0]- The correct citation for this paper is [CM87], instead of [MC87], and
- The problem that Cook and McKenzie actually show is complete, which they call Permutation Product (PP), is not obviously equivalent to PWP.

In this comment, we provide a simple reduction, to establish our claim that PWP is, indeed, complete for L. It suffices to provide a reduction from the L-complete language PP to PWP.

2 Reduction from PP to PWP

First, we present the problem PP, as defined in Cook-Mckenzie, which is L-complete: Given a list of permutations $\pi_{1}, \pi_{2}, \ldots, \pi_{t} \in S_{n}$ and indices $i, j \in[n]$, check if the product $\prod_{k=1}^{t} \pi_{k}$ maps i to j.

Now, for completeness, we remind the reader of the definition of the problem PWP: For permutations $\pi_{1}, \pi_{2}, \ldots, \pi_{t} \in S_{n}$ check if their product $\prod_{k=1}^{t} \pi_{k}$ is the identity.

There is a direct reduction from PP to PWP as explained below:
Firstly, we reduce the PP instance to one in which $i=j$ by considering the list of permutations $\pi_{1}, \pi_{2}, \ldots, \pi_{t}, \pi_{t+1}$, where π_{t+1} is the transposition $(i j)$. Clearly, their product maps i to i iff the first t of them map i to j.

Next, enlarge the domain by one element, so that we will consider permutations in S_{n+1} instead of S_{n} : Replace each π_{k} by $\sigma_{k} \in S_{n+1}$, where σ_{k} coincides with π_{k} on $[n]$ and $\sigma_{k}(n+1)=n+1$. Let $\tau \in S_{n+1}$ denote the transposition $(i n+1)$. Let g denote the permutation $\prod_{k=1}^{t+1} \sigma_{k}$.
Claim. $\prod_{k=1}^{t+1} \pi_{k}$ maps i to i if and only if $g \tau g^{-1} \tau$ is the identity permutation.

Proof.

Suppose $\prod_{k=1}^{t+1} \pi_{k}$ maps i to i. Then $g(i)=i$. Since $g(n+1)=n+1$ we can see that $g \tau g^{-1} \tau$ maps i to i and $n+1$ to $n+1$. As for the other points $j \in[n+1], \tau$ doesn't interfere and the combination of g and g^{-1} fixes them all.

Conversely, suppose $g \tau g^{-1} \tau$ is the identity. Then, in particular, $g \tau g^{-1} \tau(i)=$ i which means $g \tau g^{-1}(n+1)=i$ which implies $g \tau(n+1)=i$ which implies $g(i)=i$ which implies $\prod_{k=1}^{t+1} \pi_{k}$ maps i to i.

In summary, the reduction from PP to PWP is:

$$
\pi_{1}, \ldots, \pi_{t+1} \mapsto \pi_{1}, \ldots, \pi_{t+1} \tau \pi_{t+1}^{-1} \ldots \pi_{1}^{-1} \tau
$$

References

[AASW10] E. Allender, V. Arvind, R. Santhanam, and F. Wang. Uniform derandomization from pathetic lower bounds. Technical Report TR10-069, Electronic Colloquium on Computational Complexity (ECCC), 2010.
[AASW12] E. Allender, V. Arvind, R. Santhanam, and F. Wang. Uniform derandomization from pathetic lower bounds. Philosophical Transactions of the Royal Society Series A, 370:3512-3535, 2012.
[CM87] Stephen A. Cook and Pierre McKenzie. Problems complete for deterministic logarithmic space. J. Algorithms, 8(3):385-394, 1987.
[MC87] Pierre McKenzie and Stephen A. Cook. The parallel complexity of Abelian permutation group problems. SIAM Journal on Computing, 16(5):880-909, 1987.
[MV12] E. Miles and E. Viola. Personal communication. 2012.

[^0]: *Supported in part by NSF Grants CCF-0830133, CCF-0832787, and CCF-1064785. Some of this work was performed while this author was a visiting scholar at the University of Cape Town.
 ${ }^{\dagger}$ Supported in part by NSF Grants CCF-0830133, CCF-0832787 and CCF-1064785.

