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Abstract

A recurring theme in the literature on derandomization is that probabilistic algorithms can be simulated
quickly by deterministic algorithms, if one can obtaimpressivéi.e., superpolynomial, or even nearly-exponential)
circuit size lower bounds for certain problems. In contrast to what is needed for derandomization, existing lower
bounds seem rather pathetic (linear-size lower bounds for general circuits [IM02], nearly cubic lower bounds for
formula size [His98], nearly: log log n size lower bounds for branching programs [BSSV@3}; ¢ for depth
d threshold circuits [IPS97]). Here, we present two instances where “pathetic” lower bounds of the'form
would suffice to derandomize interesting classes of probabilistic algorithms.

We show:

e If the word problem overlSs requires constant-depth threshold circuits of sizé< for somee > 0,

then any language accepted by uniform polynomial-size probabilistic threshold circuits can be solved in
subexponential time (and more strongly, can be accepted by a uniform family of deterministic constant-
depth threshold circuits of subexponential size.)

e If there are no constant-depth arithmetic circuits of giz&* for the problem of multiplying a sequence
of n 3-by-3 matrices, then for every constahtlack-box identity testing for deptti-arithmetic circuits
with bounded individual degree can be performed in subexponential time (and even by a uniform family
of deterministic constant-depth AQircuits of subexponential size).
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author was a visiting scholar at the University of Cape Town.
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1 Introduction

Hardness-based derandomization is one of the success stories of the past quarter century. The main thread of this
line of research dates back to the work of Shamir, Yao, and Blum and Micali [Sha81, Yao82, BM84], and involves
showing that, if given a suitably hard functiginone can construct pseudorandom generators and hitting-set gener-
ators. Much of the progress on this front over the years has involved showing how to weaken the hardness assump-
tion on f and still obtain useful derandomizations [BFNW93], [AK97], [IW97], [IW01], [KvMO02], [ACR99],
[ACR98], [ACRT99], [BF99], [MV05], [GW99], [GVWO0O0], [ISWO06], [STVO01], [SUO5], [Uma03]. In rare in-
stances, it has been possible to obtaigonditionalderandomizations using this framework; Nisan and Wigderson
showed that uniform families of probabilistic AQircuits can be simulated by uniform deterministic B€rcuits

of sizenloe”'n [NW94]. More often, the derandomizations that have been obtained are conditional, and rely on
the existence of functiong that are hard on average. For certain large complexity clasgaetably including

#P, PSPACE, and exponential time), various types of random self-reducibility and hardness amplification have
been employed to show that such hard-on-average funcfi@xsst inC if and only if there is some problem

that requires large Boolean circuits [BFNW93, IW97].

A more recent thread in the derandomization literature has studied the implicatiarihofeticcircuit lower
bounds for derandomization. Kabanets and Impagliazzo showed that, if the Permanent requirsdthangéic
circuits, then the probabilistic algorithm to test if two arithmefarmulae (or more generally, two arithmetic
circuits of polynomial degree) are equivalent can be simulated by a quick deterministic algorithm [KI04]. Sub-
sequently, Dvir, Shpilka, and Yehudayoff built on the techniques of Kabanets and Impagliazzo, to show that if
one could present a multilinear polynomial (such as the permanent) that requires!gejittimetic formulae of
size2™, then the probabilistic algorithm to test if two arithmetic circuits of depth 5 are equivalent (where in
addition, the variables in these circuits have degree at lgSt") n) can be derandomized to obtairp’as”"
deterministic algorithm for the problem.

In this paper, we combine these two threads of derandomization with the recent insight that, in some cases,
extremely modest-sounding (or even “pathetic”) lower bounds can be amplified to obtain superpolynomial bounds
[AK]. In order to carry out this combination, we need to identify and exploit some special properties of certain
functions in and near NC

e The word problem ovess is one of the standard complete problems for'NBar89]. Many of the most
familiar complete problems for Nthave very efficienstrong downward self-reductiofidK]. We show that
the word problem ovefs, in addition, israndomly self-reducible (It seems that a number of researchers
have been aware that this problem is randomly self-reducible, although we have been unable to find any
place where this has appeared in print. A related property of this problem is discussed by Goldwasser et al
[GGHT07].) This enables us to transform a “pathetiedrst-casesize lower bound of,!*¢ on constant-
depth threshold circuits, to a superpolynomial sixerage-caséower bound for this class of circuits. In
turn, by making some adjustments to the Nisan-Wigderson generator, this average-case hard function can be
used to give uniform subexponential derandomizations of probabilisticciF€uits.

e lterated Multiplication of: three-by-three matrices is a multilinear polynomial that is complete for arithmetic
NC! [BOC92]. In the Boolean setting, this function is strongly downward self-reducible via self-reductions
computable in TE[AK]. Here we show that there is a corresponderithmeticself-reduction; this enables
us to amplify a lower bound of size' < for constant-depth arithmetic circuits, to obtain a superpolynomial
lower bound for constant-depth arithmetic circuits. Then, by building on the approach of Dvir et al [DSY09],
we are able to obtain subexponential derandomizations of the identity testing problem for a class of constant-
depth arithmetic circuits.

The rest of the paper is organized as follows: In Section 2 we give the preliminary definitions and notation.
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In Section 3 we convert a modest worst-case hardness assumption to a strong average-case hardness separation
of NC! from TC, and in Section 4 we use this to give a uniform derandomization of probabilisficciF€liits.

Finally, in Section 5 we prove our derandomization of a special case of polynomial identity testing under a modest
hardness assumption.

2 Preliminaries

This paper will mainly discuss NCand its subclass TC The languages in NiCare accepted by families of
circuits of depthO(log n) that are built with fan-in two AND and OR gates, and NOT gates of fan-in one. For any
function s(n), TC?(s(n)) consists of languages that are decided by constant-depth circuit families of size at most
s(n) which contain only unbounded fan-in MAJORITY gates as well as unary NOT gatés=TG,~,TC"(n*).
TCO(SUBEXP) = Ny TCY(2""). The definitions of A€(s(n)), AC?, and AC(SUBEXP) are similar, although
MAJORITY gates are not allowed, and unbounded fan-in AND and OR gates are used instead.

As is usual in arguments in derandomization based on the hardness of some fifinat@require not only that
f not have small circuits in order to be considered “hard”, but furthermore we requiré tiestds large circuits at
everyrelevant input length. This motivates the following definition.

Definition 1 Let A be a language, and leD 4 be the se{n : ANX" # (}. We say thatd € io-TC%(s(n)) if there
is an infinite sef C D4 and a languageB € TC%(s(n)) such that, for alln € I, A,, = B,, (where, for a language
C, we letC,, denote the set of all strings of lengthin C). Similarly, we definéo-TC° to beukzoio-TCO(n’“).

Thus, if A ¢ io-TCY, it means thatd requires large threshold circuits afi relevant input lengths.

Probabilistic circuits take an input divided into two pieces, the actual input and the random coin flips. We
say an inputz is accepted by such a circuit if, with respect to the uniform distributio/r over coin flips,
Prrv,[C(z,7) = 1] > 2 while z is rejected byC' if Pry.y,[C(z,r) =1] < 1.

The standard uniformity condition for small complexity classes is calle@GTIME-uniformity. In order to
provide its proper definition, we need to mention the direct connection language associated with a circuit family.

Definition 2 LetC = (C),)»en be a circuit family. The direct connection languabigc of C is the set of all tuples
having either the fornin, p, ¢, b) or (n, p, d), where

e If ¢ = ¢, thenb is the type of gate in C,,;
e If ¢ is the binary encoding o, thenb is thekth input top in C,,.
e The gatep has fan-ind in C,,.

The circuit familyC is DLOGTIME-uniform if there is a deterministic Turing machine that accdpig: in
linear time. For any circuit complexity cla€s uC is its uniform counterpart, consisting of languages that are
accepted bYpLOGTIME-uniform circuit families. For more background on circuit complexity, we refer the reader
to the textbook by Vollmer [VoI99].

A particularly important complete language for Nig the word problem WP fafs, whereSs is the symmetric
group overs distinct elements [Bar89]. The input to the word problem is a sequence of permutationSsfieomd
it is accepted if and only if the product of the sequence evaluates to the identity permutation. The corresponding
searchproblem FWP is required to output the exact result of the iterated multiplication. A closely rbkitatted
language is BWP, which stands for Balanced Word Problem.

Definition 3 The input toBWP is a pair (w;ws..w,, S), whereVi € [1..n], w; € S5, S C S5 and|S| = 60. The
pair (wyws..wy, S) is in BWPIif and only ifII}_,w; € S.
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It is easy to verify that BWP is complete for N@s well.

In the following sections, let FWPbe the sub-problem of FWP where the domain is restricted to inputs of
lengthn and let BWR, be BWPN {(¢,5) | ¢ € S, |¢| =n, S C S5, |S| = 60}. Note that BWR, accepts
exactly half of the instances §1¢, S) | ¢ € SZ, |¢| =n, S C S5, |S| = 60} since|Ss| = 120.

The following simplified version of Chernoff’s bound turns out to be useful in our application.

Lemma 4 (Chernoff’'s bound) Let X, .., X,,, be i.i.d. 0-1 random variables witR[.X;] = p. LetX = X7 | X;.
Then forany < § <1,

52pm,

PriX <(1—-40)pm]<e 2

3 The existence of an average-case hard language

In this section, we use random self-reducibility to show that, it NETC, then there are problems in N@hat
are hard on average for PCFirst we recall the definition of hardness on average for decision problems.

Definition 5 LetUp denote the uniform distribution over all inputs in a finite dom&inFor any Boolean function
f:D —{0,1}, fis(1—e¢)-hard for a set of circuitsS, if, for everyC' € S, we have thaPr,i, [f(z) = C(z)] <
1 —e.

We will sometimes abuse notation by identifying a set with its characteristic function. For languages to be
considered hard on average, we consider only those input lengths where the language contains some strings.

Definition 6 Let> be an alphabet. Consider a language= U, L,,, whereL,, = L N X", and letD;, = {n :
L, # (0}. We say thaL is (1 — ¢)-hard for a class of circuit familie§ if Dy, is an infinite set and, for any circuit
family {C,, } in C, there existsng such that for alim € Dy, such thatm > mg, Pryesm(f(z) = C(z)] < 1 —e.

The following theorem shows that if FW@io-TC?, then BWP is hard on average for T.C

Theorem 7 There exist constants 6 > 0 and0 < e < 1 such that for any constant > 0, if FWP, is not
computable by C%(6n(s(n) + cn)) circuits of depth at most + ¢, thenBWP,, is (1 — ¢)-hard for TC? circuits of
sizes(n) and depthd.

Proof. Lete < 4% We prove the contrapositive. Assume there is a cir€uilf sizes(n) and depthi such that

Pry [BWP,(z) = (63(95)] > 1 — e. We first present a probabilistic algorithm for FWWP

Let the input instance for FWfbew;ws . . . w,. Generate a sequencersf 1 random permutationsy, u1, . . ., un
in S5 and a random sef C Ss of size 60. Letp be the sequenc@u - wy - up)(uyt - wa - ug)..(u, by - wy - uy).
Note thaty is a completely random sequenceSh.

Let us say that is a “good” sequence IS’ C S5 with |S'| = 60, C'({¢,S’)) = BWP,({¢,S")).

If we have a “good” sequenge(meaning that” gives the “correct” answer BWR¢, S) on input(¢, S’) for
everysetS’ of size 60), then we can easily find the unique valukat is equal tdI}" , ¢; where¢;, = u;_jw;u;,
as follows:

e If C(¢,S) = 1, then it must be the case that S. Pick any element’ € S5 \ S and observe thatis the
only element such that'(¢, (S \ {r}) U {r'}) = 0.

o If C(¢,S) = 0, then it must be the case thatZ S. Pick any element’ € S and observe thatis the only
element such that'(¢, (S'\ {r'}) U {r}) = 1.



Thus the correct value can be found by trying all sucH. Hence, if¢ is good, we have
r =10 ¢ = Uowle?:Qu;_llwiui.

Produce as output the valug 'ru;, ! = T w; = FWP, (w).

Sincee < ﬁ a standard averaging argument shows that at %aﬁthe sequences i’ are good. Thus
60

with probability at Ieast%, the probabilistic algorithm computes F\WPEorrectly. The algorithm can be computed

by a threshold circuit of deptfi+ O(1) since the subroutines relateddocan be invoked in parallel and moreover,

the preparation ap and the aggregation of results of subroutines can be done by constant-depth threshold circuits.
Its size is at most22s(n) + O(n) since there ar@22 calls toC. Next, we putl0*n independent copies together

in parallel and output the majority vote. L&f; be the random variable that the outcome ofihecopy isII?_; w;.

By Lemma 4, on every input the new circuit computes FEW#th probability at least — % Thus there is

a random sequence that can be hardwired in to the circuit, with the property that the resulting circuit gives the
correct output oreveryinput (and in fact, at least half of the random sequences have this property). This yields
a deterministic T€ circuit computing FWR exactly which is of depth at most+ ¢ and of size no more than

(122 * 10*)n(s(n) + cn) for some universal constant Choosings > (122 x 10*) completes the proof. O

The problem FWP is strongly downward self-reducible [AK, Definition , Proposition 7]. Hence, its worst-case
hardness against P@ircuit families can be amplified as observed by Allender and Kpiak(, Corollary 17].

Theorem 8 [AK] If there is a~ > 0 such thatFWP ¢ io-TC%(n!'*7), thenFWP ¢ io-TC".

(Theorem 8 is not stated in terms of io-T@ [AK], but the proof shows that if there are infinitely many input
lengthsn where FWP has circuits of of siz€®, then there are infinitely many input lengthswhere FWP has
circuits of sizem'*?. The strong downward self-reducibility property allows small circuits for inputs ofisize
be constructed by efficiently using circuits for size< m as subcomponents.)

Since FWP is equivalent to WP via linear-size reductions on the same input length, the following corollary is
its easy consequence.

Corollary 9 If there is ay > 0 such thatWP ¢ io-TC"(n!*7), thenFWP ¢ io-TCP,

Combining Corollary 9 with Theorem 7, one achieves the average-case hardness of BWP from nearly-linear-
size worst-case lower bound for WP against'Tcuit families.

Corollary 10 There exists a constaat> 0 such that if3y > 0 such thatWP ¢ io-TC"(n!*7), then for anyk and
d there existsg > 0 such that whem > ng, BWP,, is (1 — ¢)-hard for anyTC? circuit of sizen* and depthi.

Define the following Boolean function WPM: S™ x S% — {0, 1}, where WPN, stands for Word Problem
over Multi-set.

Definition 11 The input toWPM,, is a pair (wyws..wy,, v1v2..v60), WhereVi € [l.n], w; € S; andVj €
[1..60], v; € Ss. <w1w2..wn,’l)1’l)2..1}60> € WPMif and onIy |fEI] S [1..60], H?lei = ;.

Note that BWP is the restriction of WPMo the scenario where alls are distinct. Hence, WPM inherits the
average-case hardness of BWP, since any circuit that computes,VoRM sufficiently large fraction of inputs
also approximates BWP well. Formally,

Lemma 12 There is an absolute constafit< ¢ < 1 such that for every > 0, if BWP, is (1 — ¢)-hard for TC"
circuits of sizen* and depthd, thenWPM,, is (1 — ce)-hard for TC circuits of sizen* and depthd.
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120
Proof. Letc = % Note thatc is the probability that a sequence of 60 permutations contains no duplicates
and is in sorted order. Suppose there is a cir€uwith the property thatr,c gny 560 [C'(z) # WPM(z)] < ce.

Then the conditional probability that(x) # WPM(x) given that the last 60 items ingive a list in sorted order

with no duplicates is at most This yields a circuit having the same size, solving BWP with error at masting

the uniform distribution over its domain, contrary to our assumption. O

Corollary 13 There exists a constaat> 0 such that if3y > 0 such thatWP ¢ io-TC®(n!*7), then for anyk and
d there exists:y > 0 such that whem > ng, WPM,, is (1 — ¢)-hard for TCY circuits of sizen* and depthd.

Yao’s XOR lemma [Ya082] is a powerful tool to boost average-case hardness. We utilize a specialized version
of the XOR lemma for our purpose. Several proofs of this useful result have been published. For instance, see
the text by Arora and Barak [AB09] for a proof that is based on Impagliazzo’s hardcore lemma [Imp95]. For our
application here, we need a version of the XOR lemma that is slightly different from the statement given by Arora
and Barak. In the statement of the lemma as given by tp@sna function of the forn{0, 1} — {0, 1}. However,
their proof works for any Boolean functiopndefined over any finite alphabet, because both the hardcore lemma
and its application in the proof of the XOR lemma are insensitive to the encoding of the alphabet. Hence, we state
the XOR Lemma in terms of functions over an alphabetset

For any Boolean functiog over some domaix”, defineg®™ : ¥ — {0,1} by ¢¥™ (21,29, ..,xm) =
g(z1) ® g(z2) ® .. ® g(x,,) Whered represents the parity function.

Lemma 14 [Yao082] Let% <e<1,keNandf > 2(1 — ). There is an absolute constant> 1 which only
depends om%| such that ifg is (1 — €)-hard for TC? circuits of sizes and depthd, theng® is (3 + 6)-hard for

TC circuits of sizeZ* and depthd — 1.
Let> = S5. The following corollary is an immediate consequence of Corollary 13 and Lemma 14.

Corollary 15 If there is ay > 0 such thatWP ¢ io-TC°(n!*7), then for anyk, &’ andd there exists:; > 0 such
that whenn > ng (WPM,,)®" is (5 + ﬁ)-hard for TC? circuits of sizen* and depthd.

Let WP® = U,,>1{x | (WPM,)®"(x) = 1}. Note that it is a language iNC' and, moreover, it is decidable
in linear time.

Theorem 16 If there is ay > 0 such thatWP ¢ io-TC"(n!*7), then for any integek > 0, WP® is (3 + = )-hard
for TCO.

4 Uniform derandomization

The Nisan-Wigderson generator is the canonical method to prove the existence of pseudo-random generators based
on hard functions. It relies on the following definition of combinatorial designs.

Definition 17 (Combinatorial Designs) Fix a universe of size.. An (m,!)-design of sizex on [u] is a list of
subsetsSy, 5o, ..., S, satisfying:

1. Vi € [1.n], |S;| = m;

2. Vi #je[l.n], |S; ﬂSj‘ <.



Nisan and Wigderson [NW94] invented a general approach to construct combinatorial designs for various
ranges of parameters. The proof given by Nisan and Wigderson gives designd whkren, and most applica-
tions have used that value bf For our application] can be considerably smaller, and furthermore, we need the
S;'s to be very efficiently computable. For completeness, we present the details here. (Other variants of the Nisan-
Wigderson construction have been developed for different settings; we refer the reader to one such construction by
Viola [Vio05], as well as to a survey of related work [Vio05, Remark 5.3].)

Lemma 18 [vL99] For [ > 0, the polynomial:>3' + z3 + 1 is irreducible overFs[z].

Lemma 19 [NW94] For any integerm, anya such thafloglogn/logn < a < 1, letb = [a~!] andm = [n%],
there is a(m, b)-design withu = O(m®). Furthermore, eacl,; can be computed withi®(bm?) time.

Proof. Fix ¢ = 223 for somel such thatn < ¢ < m3. Let the universe bg, x FF, andS; be the graph of théth
univariate polynomial of degree at mdsin the standard order. Singé > (n®)” > n, there are at least distinct
S;s. No two polynomials share more thamoints, hence, the second condition is satisfied. The first condition
holds because we could simply drop elements without increasing the size of intersections.

The arithmetic operations iR, are performed Withiriogo(l) q time because of the explicitness of the irre-
ducible polynomial by Lemma 18. It is evident that for anyg [n], we are able to enumerate all elementspin
time O(m - b(log®W) q)) = O(bm?). O

Lemma 20 For any constanty > 0 and for any large enough integer, if g is (% + #)-hard for TCO circuits of
sizen? and depthd + 2, then any probabilisticTC° circuit C of sizen and depthd can be simulated by another
probabilistic TC? circuit of sizeO(n'T*) and depthd + 1 which is given oracle access 10,1 and uses at most
O(n%) many random bits.

Proof. This is a direct consequence of Lemma 19; we adapt the traditional Nisan-Wigderson argument to the
setting of T circuits. Letn anda be given, with) < o < 1. Let Sy, ..., S, be the(m, b)-design from Lemma
19, wherem = [n®], b = [a~!], and eachS; C [u], with u = O(mS). We are givery : ¥™ — {0,1};
definend : ¥* — {0,1}" by h9(x) = g(x|s,)9(z|s,)-.9(x|s, ), Wwherez|g, is the sub-sequence restricted to the
coordinates specified by;.

The new circuit samples randomness uniformly frdth and feedsC' with pseudo-random bits generated by
h9 instead of purely random bits. It only has one more extra layer of oracle gates and its size is bounded by
O(n +n xn®) = O(n'T%). What is left is to prove the following claim.

Claim 21 For any constant > 0, | Prye, au[C(h9(z)) = 1] = Pryc, 013 [C(y) = 1]| < e.

Proof. Suppose there existssuch thal Pr,co1)»[C(z) = 1] — Pryean[C(R9(y)) = 1]| > e. We will seek a
contradiction to the hardness @¥ia a hybrid argument.

Samplez uniformly from A™ andr uniformly from {0, 1}". Create a sequence of+ 1 distributions H; on
{0,1}"™ where

e Hy=r;
e H, = hg(z):

e V1<i<n-—1, H =h9(2)1h9(2)2...h9(2)iTit1 - .- Tn.



By our assumptionX"_, (Pry~m; ,[C(x) = 1] — Pryn;[C(z) = 1])| > €. Therefored; € [n] such that
|Pro~n; ,[C(z) = 1] — Pryop,[C(z) = 1]| > £. Leti be one such index.
AssumePr, .y, [C(x) = 1] — Pryon, ,[C(x) = 1] > +, otherwise add a not gate at the top(gfand treat

the new circuit ag’ instead.

Consider the following probabilistic TCcircuit C’ for g. On inputz, samplez uniformly from A™ andr
uniformly from {0, 1}", replace the coordinates ofspecified byS; with z. Sample a random bit € {0, 1}. If
C(h9(2)1...h9(2)i—1briy1 ... my) = 1, outputd, otherwise, output — b.

Proc e [C'(x) = f()]

= LProcane[C'(x) =b|b= f(z)] + 5 Pr xeA"“[ () #b| b # f(x)]

= 1P7“xeAna [C"(@) =b|b= f(x)] + 5 — P%eAna [C'(z) =b|b# f(2)]
= %Jr 5P ieanc [C'(2) =b b= f(z)] = 5Pryeane[C'(x) =b| b # f(2)]
= 5+ Prycane[C'(z) =b|b= (ff)]—P"”xeAna[ "(z) =]

= % + (PTyGH (Cly)=1) - Pryem, , (C(y) =1))

>

=+ £
2 n

Hence, there is a fixing of values for r andb satisfying the property tha®r,c 4no [C'(z, z,7,b) = f(x)] >
3+ <. Note that in this casel < k < i — 1, h9(z)y is function on inputz|s,ns,. Sincevk # i, |S; N Si| < b,
we only need a TCcircuit of size at mos2®®) and of depth at most to compute eachd(z);. In conclusion,

we obtain a T€ circuit " of size at most2°® + 1)n and of depth at most + 2 such thatPr,_ yue [C"(z) =
f(@)] > + £ > 1+ 25 whenn is large enough, a contradiction. O

O

The simulation in Lemma 20 is quite uniform, thus, plugging in appropriate segments‘ofgiur candidates
for the hard functiony, we derive our first main result.

Theorem 22 If WP is not infinitely often computed BC®(n'*7) circuit families for some constant > 0, then
any language accepted by polynomial-size probabilistic unifé@f circuit family is inuTC°(SUBEXP).

Proof. Fix any small constani > 0. Let L be a language accepted by some probabilistic uniforr di@uit
family of size at most* and of depth at most for some constants, d.

Choosem such thatn% <m < ng and leta be such thatn = n®. By Theorem 16, whem: is large
enough, WB is ( 2,C) -hard for TC circuits of sizen?* and depthd + ¢, wherec is any constant. Hence,
as a consequence of Lemma 20, we obtain a probabilistic oradlecif€uit for L,, of depthd + 1. Since the
computation only need9(m®%) random bits, it can be turned into a deterministic oraclé @i@uit of depthd + 2
and of size at mosD(n2*) x 200m") < 20(n®) (whenn is large enough), where we evaluate the previous circuit
on every possible random string and add an extra MAJORITY gate at the top. The oracle gates all have fan-in
m < n%/6, and thus can be replaced by DNF circuits of 226""), yielding a deterministic TEcircuit of size
20(n°) and depthi + 3.

We need to show that this construction is uniform, so that the direct connection language can be recognized in
time O(n?). The analysis consists of three parts.

e The connectivity between the top gate and the output gate of individual copies is obviously computable in
timem® < nf.

e The connectivity inside individual copiesBL.OGTIME-uniform, hencen?-uniform.

e By Lemma 19 eacls; is computable in time(dm?) which isO(m?) sinced is a constant only depending
on . Moreover, notice that WP is a linear-time decidable language. Therefore, the DNF expression
corresponding to each oracle gate can be computed withinGime?) < n?.
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In conclusion, the above construction produces a unifor dieuit of size2™’. Sinces is arbitrarily chosen,
our statement holds. a

Note that the above conclusion can be strengthened to the following form: any language accepted by a
polynomial-size probabilistio(n)-uniform TC circuit family is inuTC’(SUBEXP).

5 Consequences of pathetic arithmetic circuit lower bounds

In this section we show that a pathetic lower bound assumptioariitnmetic circuitsyields a uniform derandom-
ization of a special case of polynomial identity testing (introduced and studied by Dvir et al [DSY09])).

The explicit polynomial that we consider MM ,, },,~q, where IMM, is the(1, 1)** entry of the product o,

3 x 3 matrices whose entries are all distinct indeterminates. Notice that,|MMs degree: multilinear polynomial
in 9n indeterminates, and IMlican be considered as a polynomial over any field

Arithmetic circuits computing a polynomial in the rifjz,, xo, . .., z,,] are directed acyclic graphs with the
indegree zero nodes (the inputs nodes) labeled by either a variabtea scalar constant. Each internal node is
either a+ gate or ax gate, and the circuttomputeghe polynomial that is naturally computed at the output gate.
The circuit is aformulaif the fanout of each gate is

Before going further, we pause to clarify a point of possible confusion. There is another way that an arithmetic
circuit C can be said to compute a given polynomjfgk, o, ..., x,) over a fieldF; even ifC' does not compute
f in the sense described in the preceding paragraph, it can still be the case that for allsgcaldfsve have
flai,...,a,) = Cla,...,ay). Inthis case, we say that functionally computesf overF. If the field size is
larger than the syntactic degree of ciratiiand the degree of, then the two notions coincide. Assuming tlfas
not functionallycomputed by a class of circuits isscongerassumption than assuming thais not computed by
a class of circuits (in the usual sense). In our work in this paper, we use the weaker intractability assumption.

An oracle arithmetic circuit is one that hagacle gates: For a given sequence of polynomidls= {A,,} as
oracle, an oracle gate of fan-inin the circuit evaluates the-variate polynomial4,, on the values carried by its
n input wires. An oracle arithmetic circuit is callgulire (following [AK]) if all non-oracle gates are of bounded
fan-in. (Note that this use of the term “pure” is unrelated to the “pure” arithmetic circuits defined by Nisan and
Wigderson [NW97].)

The class of polynomials computed by polynomial-size arithmetic formulas is known as arithmetidcByC
[BOC92] the polynomial IMMN, is complete for this class. Whether IMMhas polynomial sizeonstant-depth
arithmetic circuits is a long-standing open problem in the area of arithmetic circuits [NW97]. In this context, the
known lower bound result is that IMMrequires exponential size multilinear depth-3 circuits [NW97].

Very little is known about lower bounds for general constant-depth arithmetic circuits, compared to what is
known about constant-depth Boolean circuits. Exponential lower bounds for depth-3 arithmetic circuits over fi-
nite fields were shown in [GK98] and [GROO0]. On the other hand, for depth-3 arithmetic circuits over fields of
characteristic zero only quadratic lower bounds are known [SWO01]. However, it is shown in [RY09] that the deter-
minant and the permanent require exponential sia#ilinear constant-depth arithmetic circuits. More details on
the current status of arithmetic circuit lower bounds can be found in Raz’s paper [Raz08, Section 1.3].

Definition 23 We say that a sequence of polynomigls },,~o in Flz1, 22, ..., 2] iS (s(n), m(n), d)-downward
self-reducible if there is a pure oracle arithmetic circdit, of depthO(d) and sizeO(s(n)) that computes the
polynomialp,, using oracle gates only fgf,,/, form’ < m(n).

Analogous to [AK, Proposition 7], we can easily observe the following. It is a direct divide and conquer
argument using the iterated product structure.

Lemma 24 For eachl > ¢ > 0 the polynomial sequendgMM,, } is (n'~¢, n¢, 1/¢)-downward self-reducible.
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An easy argument, analogous to Theorem 8, shows that Lemma 24 allows for the amplification of weak lower
bounds fo{IMM ,,} against arithmetic circuits of constant depth:

Theorem 25 Suppose there is a constant> 0 such that for alld and everyr, the polynomial sequendgMM,, }
requires depth# arithmetic circuits of size at least' ™. Then, for any constant depththe sequenc¢IMM,, } is
not computable by depti-arithmetic circuits of size* for any constant > 0.

Our goal is to apply Theorem 25 to derandomize a special case of polynomial identity testing (first studied in
[DSY09]). To this end we restate a result of Dvir et. al [DSY09].

Theorem 26 (Theorem 4 in [DSYO09]) Letn, s, r, m, t, d be integers such that> n. LetF be a field which has at
least2mt elements. LeP(x,y) € Flz1,...,z,,y] be a non-zero polynomial witteg(P) < t anddeg, (P) <r
such thatP has an arithmetic circuit of sizeand depthd overF. Let f(x) € F[zy,...,z,] be a polynomial with
deg(f) = m such thatP(z, f(z)) = 0. Thenf(x) can be computed by a circuit of size = poly(s, m") and
depthd’ = d + O(1) overF.

Let the underlying field& be large enough{, for instance). The following lemma is a variant of Lemma 4.1
in [DSY09]. For completeness, we provide its proof here.

Lemma 27 (Variant of Lemma 4.1 in [DSY09]) Letn, r, s be integers and lef € F[xy, z2, ..., z,] be anonzero
polynomial with individual degrees at masthat is computed by an arithmetic circuit of size> n and depthd.
Letm = n® be an integer whera > 0 is an arbitrary constant. Lef, S, ..., S, be the sets of then, b)-design
constructed in Lemma 19 whdre= (%1. Letp € F[z,..., z,) be a multilinear polynomial with the property that

F(y) = Flyv.y2,--,ya) = f(0yls)), - p(yls,) =0 1)

Then there exists absolute constamtnd & such thatp(z) is computable by an arithmetic circuit ov&rwith
size bounded b@((sm™)*) and having deptld + k.

Proof. Consider the following set of hybrid polynomials:

Fo(z,y) = flx1,22,...,2,)
Fl(xvy) = f(p(y‘ﬁﬁ)vav'--axn)
Fuwy) = [Wls)-..p(ls.))

The assumption implies thadf, £ 0 while F,, = 0. Hence, there exist$ < i < n such thatf; # 0 and
Fiy1 = 0. Notice thatF; is a nonzero polynomial in the variablgs; | i + 2 < j < n} and the variables
{yj 17 €S1USU---U S}

We recall the well-known Schwartz-Zippel lemma.

Lemma 28 (Schwartz-Zippel) Let F be a field and letf € F[zy,...,z,] be a non-zero polynomial with total
degree at most. Then for any finite subsét C F we have

[{ees™ : fle)=0} <r-|SI""" ()
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Sincedeg(F;) < nrm, then if we assume th@ithas size more thamrm, Lemma 28 assures that we can assign
values from the field to the variablez; | i + 2 < j < n} and the variable$y; | j ¢ S;11} so thatF; remains
a nonzero polynomial in the remaining variables. More precisely, fixing these variables to scalar values yields a
polynomial f with the property that

f:(Q1(y‘SlﬂSi+1)v s vQ1(y’5iﬂSi+1)v xi-f—l)
f(Q1(y‘SlﬂSi+1)v L aQI(y’SiﬂSi+1)ap(y’Si+1))

e

0
0

whereq;(y|s;ns;.,) is the polynomial obtained from;(y|s;) after fixing the variables % \ S; 1.
Rename the variablgg); | 7 € S;+1} with {z; | 1 < j < m} and replacer;; by w. We obtain a polynomial
g with the property that

9(z1,. .y Zm,w)
g(zlu .. '7Zm7p(zla .. '7Zm))

IS

0
0

In order to apply Theorem 26, the only thing that remains is to calculate the circuit complexityvgf #
i+ 1, |S; N Sit1] < bwhich is a constant. Hence, for afiy< i, ¢;(y|s,ns,,,) iS @ polynomial depending on a
constant number of variables, which can be computed by a constant-size arithmetic circuit df (Rasically,
it is a sum of monomials). Under the assumption théias a circuit of size and depthd, g is computable by a
circuit of sizes + O(n) and depthi + 2 which is a composition of the aforementioned circuits. It is important to
note thatdeg,,(g9) = deg,,, () <.

Now we use Theorem 26 to obtain that:) has a circuit of size at mogkm”)® and depthd + &, which
concludes our proof. O

At this point we describe our deterministic black-box identity testing algorithm for constant-depth arithmetic
circuits of polynomial size and bounded individual degree.rLet, u, « be the parameters as in Lemma 19. Given
such a circuitC over variablegz; | i € [n]} of sizen’, depthd and individual degree, we simply replace:; with
IMM (y|S;) wherey is a new set of variable§y; | j € [u]}. LetC[y1, . . ., y.] denote the polynomial computed by
the new circuit.

Notice that the total degree 6f is bounded by:© wherec is a constant depending on the combinatorial design
andr. Let R C F be any set of.¢ + 1 distinct points. Then by Lemma 28 the polynomial computed’bis
identically zero if and only iﬁ(al, as,...,ay) = 0forall (a1,as,...,a,) € R".

This gives us the claimed algorithm. Its running time is bounde@fy:©+1)*) = O(27"""). Since can be
chosen to be arbitrarily small, we have shown that this identity testing problem is in deterministic sub-exponential
time. The correctness of the algorithm follows from the next lemma.

Lemma 29 If for every constant!’ > 0, the polynomial sequencgMM,, } is not computable by depti-arith-
metic circuits of size* for anyk > 0, thenClz1, ..., x,] = 0if and only ifC[y1, . .., y.] = 0.

Proof. The only-if part is easy to see. Let us focus on the if part. Suppose it is not the case, which means that
Clyi,--.,yu] = 0 butClzy,...,z,] # 0. Then letC|xy,...,z,] play the role off[z,...,z,] iIn Lemma 27
and let IMM[z1, . .., z,,] take the place 0p[z1, ..., zy]. Therefore, IMMz1, ..., z,,] is computable by a circuit

of depthd + k and size at mosin'm”)* = m®", a contradiction. O
Putting it together, we get the following result.
Theorem 30 If there existsy > 0 such that for any constant > 0, IMM requires depthe arithmetic circuits of

size at least' 9, then the black-box identity testing problem for constant-depth arithmetic circuits of polynomial
size and bounded individual degree is in deterministic sub-exponential time.
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Next, we notice that the above upper bound can be sharpened considerably. The algorithm simply takes the
OR over subexponentially-many evaluations of an arithmetic circuit; if any of the evaluations does not evaluate to
zero, then we know that the expressions are not equivalent; otherwise they are. Note that evaluating an arithmetic
circuit can be accomplished in logspace. (When evaluating a circuit@y#his is shown in [HABO2, Corollary
6.8]; the argument for other fields is similar, using standard results about the complexity of field arithmetic.) Note
also that every language computable in logspace hasoCuits of subexponential size. (This appears to have
been observed first by Gutfreund and Viola [GV04]; see also [AHE] for a proof.) This yields the following
uniform derandomization result.

Theorem 31 If there are no constant-depth arithmetic circuits of size for the polynomial sequendgMM,, },
then for every constant, black-box identity testing for deptharithmetic circuits with bounded individual degree
can be performed by a uniform family of constant-ded@? circuits of subexponential size.

We call attention to an interesting difference between Theorems 22 and 31. In Theorem 31, in order to solve
the identity testing problem with uniform AQircuits of size2™ for smaller and smallet, the depth of the AC
circuits increases asdecreases. In contrast, in order to obtain a deterministic threshold circuit o’Size
simulate a given probabilistic TCalgorithm, the argument that we present in the proof of Theorem 22 gives a
circuit whose depth is not affected by the choice.0fVe do not know if a similar improvement of Theorem 31 is
possible, but we observe here that the depth need not deperiflwa use threshold circuits for the identity test.

Theorem 32 If there are no constant-depth arithmetic circuits of size* for the polynomial sequendgMM,, },
then there is a constantsuch that, for every constadtand everyy > 0, black-box identity testing for depth-
arithmetic circuits with bounded individual degree can be performed by a uniform family of depththreshold
circuits of size2™".

Proof. We provide only a sketch. Choose< /14, wherea is the constant from the discussion in the paragraph
before Lemma 29. Thus, our identity testing algorithm will evaluate a dégttithmetic circuitC(xy, ..., z,)

at fewer than2n”’” points ¥ = (vy,...,v,), Where eachy; is obtained by computing an instance of IMM
consisting ofn® 3-by-3 matrices, whose entries without loss of generality have representations having length at
mostn®. Thus these instances of IMM have DNF representations of %i#&*). These DNF representations

are uniform, since the direct connection language can be evaluated by computing, for a given input assignment to
IMM ,,«, the product of the matrices represented by that assignment, which takes time atbst log(Q”W).
Evaluating the circuit” on can be done in uniform TAADOO, HABO2]. O
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