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Abstract

A recurring theme in the literature on derandomization is that probabilistic algorithms can be simulated
quickly by deterministic algorithms, if one can obtainimpressive(i.e., superpolynomial, or even nearly-exponential)
circuit size lower bounds for certain problems. In contrast to what is needed for derandomization, existing lower
bounds seem rather pathetic (linear-size lower bounds for general circuits [IM02], nearly cubic lower bounds for
formula size [Hås98], nearlyn log log n size lower bounds for branching programs [BSSV03],n1+cd for depth
d threshold circuits [IPS97]). Here, we present two instances where “pathetic” lower bounds of the formn1+ε

would suffice to derandomize interesting classes of probabilistic algorithms.
We show:

• If the word problem overS5 requires constant-depth threshold circuits of sizen1+ε for someε > 0,
then any language accepted by uniform polynomial-size probabilistic threshold circuits can be solved in
subexponential time (and more strongly, can be accepted by a uniform family of deterministic constant-
depth threshold circuits of subexponential size.)

• If there are no constant-depth arithmetic circuits of sizen1+ε for the problem of multiplying a sequence
of n 3-by-3 matrices, then for every constantd, black-box identity testing for depth-d arithmetic circuits
with bounded individual degree can be performed in subexponential time (and even by a uniform family
of deterministic constant-depth AC0 circuits of subexponential size).
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1 Introduction

Hardness-based derandomization is one of the success stories of the past quarter century. The main thread of this
line of research dates back to the work of Shamir, Yao, and Blum and Micali [Sha81, Yao82, BM84], and involves
showing that, if given a suitably hard functionf , one can construct pseudorandom generators and hitting-set gener-
ators. Much of the progress on this front over the years has involved showing how to weaken the hardness assump-
tion on f and still obtain useful derandomizations [BFNW93], [AK97], [IW97], [IW01], [KvM02], [ACR99],
[ACR98], [ACRT99], [BF99], [MV05], [GW99], [GVW00], [ISW06], [STV01], [SU05], [Uma03]. In rare in-
stances, it has been possible to obtainunconditionalderandomizations using this framework; Nisan and Wigderson
showed that uniform families of probabilistic AC0 circuits can be simulated by uniform deterministic AC0 circuits
of sizenlogO(1) n [NW94]. More often, the derandomizations that have been obtained are conditional, and rely on
the existence of functionsf that are hard on average. For certain large complexity classesC (notably including
#P,PSPACE, and exponential time), various types of random self-reducibility and hardness amplification have
been employed to show that such hard-on-average functionsf exist inC if and only if there is some problem inC
that requires large Boolean circuits [BFNW93, IW97].

A more recent thread in the derandomization literature has studied the implications ofarithmeticcircuit lower
bounds for derandomization. Kabanets and Impagliazzo showed that, if the Permanent requires largearithmetic
circuits, then the probabilistic algorithm to test if two arithmeticformulae (or more generally, two arithmetic
circuits of polynomial degree) are equivalent can be simulated by a quick deterministic algorithm [KI04]. Sub-
sequently, Dvir, Shpilka, and Yehudayoff built on the techniques of Kabanets and Impagliazzo, to show that if
one could present a multilinear polynomial (such as the permanent) that requires depthd arithmetic formulae of
size2nε

, then the probabilistic algorithm to test if two arithmetic circuits of depthd − 5 are equivalent (where in
addition, the variables in these circuits have degree at mostlogO(1) n) can be derandomized to obtain a2logO(1) n

deterministic algorithm for the problem.
In this paper, we combine these two threads of derandomization with the recent insight that, in some cases,

extremely modest-sounding (or even “pathetic”) lower bounds can be amplified to obtain superpolynomial bounds
[AK]. In order to carry out this combination, we need to identify and exploit some special properties of certain
functions in and near NC1.

• The word problem overS5 is one of the standard complete problems for NC1 [Bar89]. Many of the most
familiar complete problems for NC1 have very efficientstrong downward self-reductions[AK]. We show that
the word problem overS5, in addition, israndomly self-reducible. (It seems that a number of researchers
have been aware that this problem is randomly self-reducible, although we have been unable to find any
place where this has appeared in print. A related property of this problem is discussed by Goldwasser et al
[GGH+07].) This enables us to transform a “pathetic”worst-casesize lower bound ofn1+ε on constant-
depth threshold circuits, to a superpolynomial sizeaverage-caselower bound for this class of circuits. In
turn, by making some adjustments to the Nisan-Wigderson generator, this average-case hard function can be
used to give uniform subexponential derandomizations of probabilistic TC0 circuits.

• Iterated Multiplication ofn three-by-three matrices is a multilinear polynomial that is complete for arithmetic
NC1 [BOC92]. In the Boolean setting, this function is strongly downward self-reducible via self-reductions
computable in TC0 [AK]. Here we show that there is a correspondingarithmeticself-reduction; this enables
us to amplify a lower bound of sizen1+ε for constant-depth arithmetic circuits, to obtain a superpolynomial
lower bound for constant-depth arithmetic circuits. Then, by building on the approach of Dvir et al [DSY09],
we are able to obtain subexponential derandomizations of the identity testing problem for a class of constant-
depth arithmetic circuits.

The rest of the paper is organized as follows: In Section 2 we give the preliminary definitions and notation.
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In Section 3 we convert a modest worst-case hardness assumption to a strong average-case hardness separation
of NC1 from TC0, and in Section 4 we use this to give a uniform derandomization of probabilistic TC0 circuits.
Finally, in Section 5 we prove our derandomization of a special case of polynomial identity testing under a modest
hardness assumption.

2 Preliminaries

This paper will mainly discuss NC1 and its subclass TC0. The languages in NC1 are accepted by families of
circuits of depthO(log n) that are built with fan-in two AND and OR gates, and NOT gates of fan-in one. For any
functions(n), TC0(s(n)) consists of languages that are decided by constant-depth circuit families of size at most
s(n) which contain only unbounded fan-in MAJORITY gates as well as unary NOT gates. TC0 = ∪k≥0TC0(nk).
TC0(SUBEXP) = ∩δ≥0TC0(2nδ

). The definitions of AC0(s(n)), AC0, and AC0(SUBEXP) are similar, although
MAJORITY gates are not allowed, and unbounded fan-in AND and OR gates are used instead.

As is usual in arguments in derandomization based on the hardness of some functionf , we require not only that
f not have small circuits in order to be considered “hard”, but furthermore we require thatf needs large circuits at
everyrelevant input length. This motivates the following definition.

Definition 1 LetA be a language, and letDA be the set{n : A∩Σn 6= ∅}. We say thatA ∈ io-TC0(s(n)) if there
is an infinite setI ⊆ DA and a languageB ∈ TC0(s(n)) such that, for alln ∈ I,An = Bn (where, for a language
C, we letCn denote the set of all strings of lengthn in C). Similarly, we defineio-TC0 to be∪k≥0io-TC0(nk).

Thus, ifA 6∈ io-TC0, it means thatA requires large threshold circuits onall relevant input lengths.
Probabilistic circuits take an input divided into two pieces, the actual input and the random coin flips. We

say an inputx is accepted by such a circuitC if, with respect to the uniform distributionUR over coin flips,
Prr∼UR

[C(x, r) = 1] ≥ 2
3 while x is rejected byC if Prr∼UR

[C(x, r) = 1] ≤ 1
3 .

The standard uniformity condition for small complexity classes is calledDLOGTIME-uniformity. In order to
provide its proper definition, we need to mention the direct connection language associated with a circuit family.

Definition 2 LetC = (Cn)n∈N be a circuit family. The direct connection languageLDC of C is the set of all tuples
having either the form〈n, p, q, b〉 or 〈n, p, d〉, where

• If q = ε, thenb is the type of gatep in Cn;

• If q is the binary encoding ofk, thenb is thekth input top in Cn.

• The gatep has fan-ind in Cn.

The circuit familyC is DLOGTIME-uniform if there is a deterministic Turing machine that acceptsLDC in
linear time. For any circuit complexity classC, uC is its uniform counterpart, consisting of languages that are
accepted byDLOGTIME-uniform circuit families. For more background on circuit complexity, we refer the reader
to the textbook by Vollmer [Vol99].

A particularly important complete language for NC1 is the word problem WP forS5, whereS5 is the symmetric
group over5 distinct elements [Bar89]. The input to the word problem is a sequence of permutations fromS5 and
it is accepted if and only if the product of the sequence evaluates to the identity permutation. The corresponding
searchproblem FWP is required to output the exact result of the iterated multiplication. A closely relatedbalanced
language is BWP, which stands for Balanced Word Problem.

Definition 3 The input toBWP is a pair 〈w1w2..wn, S〉, where∀i ∈ [1..n], wi ∈ S5, S ⊆ S5 and |S| = 60. The
pair 〈w1w2..wn, S〉 is in BWP if and only ifΠn

i=1wi ∈ S.
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It is easy to verify that BWP is complete for NC1 as well.
In the following sections, let FWPn be the sub-problem of FWP where the domain is restricted to inputs of

lengthn and let BWPn be BWP∩ {〈φ, S〉 | φ ∈ Sn
5 , |φ| = n, S ⊆ S5, |S| = 60}. Note that BWPn accepts

exactly half of the instances in{〈φ, S〉 | φ ∈ Sn
5 , |φ| = n, S ⊆ S5, |S| = 60} since|S5| = 120.

The following simplified version of Chernoff’s bound turns out to be useful in our application.

Lemma 4 (Chernoff’s bound) LetX1, ..,Xm be i.i.d. 0-1 random variables withE[Xi] = p. LetX = Σn
i=1Xi.

Then for any0 < δ ≤ 1,

Pr[X < (1− δ)pm] ≤ e−
δ2pm

2

3 The existence of an average-case hard language

In this section, we use random self-reducibility to show that, if NC1 6= TC0, then there are problems in NC1 that
are hard on average for TC0. First we recall the definition of hardness on average for decision problems.

Definition 5 LetUD denote the uniform distribution over all inputs in a finite domainD. For any Boolean function
f : D → {0, 1}, f is (1−ε)-hard for a set of circuitsS, if, for everyC ∈ S, we have thatPrx∼UD

[f(x) = C(x)] <
1− ε.

We will sometimes abuse notation by identifying a set with its characteristic function. For languages to be
considered hard on average, we consider only those input lengths where the language contains some strings.

Definition 6 Let Σ be an alphabet. Consider a languageL = ∪nLn, whereLn = L ∩ Σn, and letDL = {n :
Ln 6= ∅}. We say thatL is (1 − ε)-hard for a class of circuit familiesC if DL is an infinite set and, for any circuit
family{Cn} in C, there existsm0 such that for allm ∈ DL such thatm ≥ m0, Prx∈Σm[f(x) = C(x)] < 1− ε.

The following theorem shows that if FWP6∈ io-TC0, then BWP is hard on average for TC0.

Theorem 7 There exist constantsc, δ > 0 and 0 < ε < 1 such that for any constantd > 0, if FWPn is not
computable byTC0(δn(s(n) + cn)) circuits of depth at mostd + c, thenBWPn is (1− ε)-hard forTC0 circuits of
sizes(n) and depthd.

Proof. Let ε < 1
4(120

60 ) . We prove the contrapositive. Assume there is a circuitC of sizes(n) and depthd such that

Prx[BWPn(x) = C(x)] ≥ 1− ε. We first present a probabilistic algorithm for FWPn.
Let the input instance for FWPn bew1w2 . . . wn. Generate a sequence ofn+1 random permutationsu0, u1, . . . , un

in S5 and a random setS ⊆ S5 of size 60. Letφ be the sequence(u0 · w1 · u1)(u−1
1 · w2 · u2)..(u−1

n−1 · wn · un).
Note thatφ is a completely random sequence inSn

5 .
Let us say thatφ is a “good” sequence if∀S′ ⊂ S5 with |S′| = 60, C(〈φ, S′〉) = BWPn(〈φ, S′〉).
If we have a “good” sequenceφ (meaning thatC gives the “correct” answer BWPn(φ, S) on input(φ, S′) for

everysetS′ of size 60), then we can easily find the unique valuer that is equal toΠn
i=1φi whereφi = ui−1wiui,

as follows:

• If C(φ, S) = 1, then it must be the case thatr ∈ S. Pick any elementr′ ∈ S5 \ S and observe thatr is the
only element such thatC(φ, (S \ {r}) ∪ {r′}) = 0.

• If C(φ, S) = 0, then it must be the case thatr 6∈ S. Pick any elementr′ ∈ S and observe thatr is the only
element such thatC(φ, (S \ {r′}) ∪ {r}) = 1.
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Thus the correct valuer can be found by trying all suchr′. Hence, ifφ is good, we have

r = Πn
i=1φi = u0w1u1Πn

i=2u
−1
i−1wiui.

Produce as output the valueu−1
0 ru−1

n = Πn
i=1wi = FWPn(w).

Sinceε < 1
4(120

60 ) , a standard averaging argument shows that at least3
4 of the sequences inSn

5 are good. Thus

with probability at least34 , the probabilistic algorithm computes FWPn correctly. The algorithm can be computed
by a threshold circuit of depthd+O(1) since the subroutines related toC can be invoked in parallel and moreover,
the preparation ofφ and the aggregation of results of subroutines can be done by constant-depth threshold circuits.
Its size is at most122s(n) + O(n) since there are122 calls toC. Next, we put104n independent copies together
in parallel and output the majority vote. LetXi be the random variable that the outcome of theith copy isΠn

i=1wi.
By Lemma 4, on every input the new circuit computes FWPn with probability at least1 − 120−n

2 . Thus there is
a random sequence that can be hardwired in to the circuit, with the property that the resulting circuit gives the
correct output oneveryinput (and in fact, at least half of the random sequences have this property). This yields
a deterministic TC0 circuit computing FWPn exactly which is of depth at mostd + c and of size no more than
(122 ∗ 104)n(s(n) + cn) for some universal constantc . Choosingδ ≥ (122 ∗ 104) completes the proof. 2

The problem FWP is strongly downward self-reducible [AK, Definition , Proposition 7]. Hence, its worst-case
hardness against TC0 circuit families can be amplified as observed by Allender and Kouck´y [AK, Corollary 17].

Theorem 8 [AK] If there is aγ > 0 such thatFWP 6∈ io-TC0(n1+γ), thenFWP 6∈ io-TC0.

(Theorem 8 is not stated in terms of io-TC0 in [AK], but the proof shows that if there are infinitely many input
lengthsn where FWP has circuits of of sizenk, then there are infinitely many input lengthsm where FWP has
circuits of sizem1+γ . The strong downward self-reducibility property allows small circuits for inputs of sizem to
be constructed by efficiently using circuits for sizen < m as subcomponents.)

Since FWP is equivalent to WP via linear-size reductions on the same input length, the following corollary is
its easy consequence.

Corollary 9 If there is aγ > 0 such thatWP 6∈ io-TC0(n1+γ), thenFWP 6∈ io-TC0.

Combining Corollary 9 with Theorem 7, one achieves the average-case hardness of BWP from nearly-linear-
size worst-case lower bound for WP against TC0 circuit families.

Corollary 10 There exists a constantε > 0 such that if∃γ > 0 such thatWP 6∈ io-TC0(n1+γ), then for anyk and
d there existsn0 > 0 such that whenn ≥ n0, BWPn is (1− ε)-hard for anyTC0 circuit of sizenk and depthd.

Define the following Boolean function WPMn : Sn × S60 → {0, 1}, where WPMn stands for Word Problem
over Multi-set.

Definition 11 The input toWPMn is a pair 〈w1w2..wn, v1v2..v60〉, where∀i ∈ [1..n], wi ∈ S5 and ∀j ∈
[1..60], vi ∈ S5. 〈w1w2..wn, v1v2..v60〉 ∈ WPM if and only if∃j ∈ [1..60], Πn

i=1wi = vj.

Note that BWP is the restriction of WPMn to the scenario where allvis are distinct. Hence, WPM inherits the
average-case hardness of BWP, since any circuit that computes WPMn on a sufficiently large fraction of inputs
also approximates BWP well. Formally,

Lemma 12 There is an absolute constant0 < c < 1 such that for everyε > 0, if BWPn is (1 − ε)-hard for TC0

circuits of sizenk and depthd, thenWPMn is (1− cε)-hard for TC0 circuits of sizenk and depthd.
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Proof. Let c = (120
60 )

(120)60
. Note thatc is the probability that a sequence of 60 permutations contains no duplicates

and is in sorted order. Suppose there is a circuitC with the property thatPrx∈Sn×S60 [C(x) 6= WPM(x)] ≤ cε.
Then the conditional probability thatC(x) 6= WPM(x) given that the last 60 items inx give a list in sorted order
with no duplicates is at mostε. This yields a circuit having the same size, solving BWP with error at mostε, using
the uniform distribution over its domain, contrary to our assumption. 2

Corollary 13 There exists a constantε > 0 such that if∃γ > 0 such thatWP 6∈ io-TC0(n1+γ), then for anyk and
d there existsn0 > 0 such that whenn ≥ n0, WPMn is (1− ε)-hard forTC0 circuits of sizenk and depthd.

Yao’s XOR lemma [Yao82] is a powerful tool to boost average-case hardness. We utilize a specialized version
of the XOR lemma for our purpose. Several proofs of this useful result have been published. For instance, see
the text by Arora and Barak [AB09] for a proof that is based on Impagliazzo’s hardcore lemma [Imp95]. For our
application here, we need a version of the XOR lemma that is slightly different from the statement given by Arora
and Barak. In the statement of the lemma as given by them,g is a function of the form{0, 1}n → {0, 1}. However,
their proof works for any Boolean functiong defined over any finite alphabet, because both the hardcore lemma
and its application in the proof of the XOR lemma are insensitive to the encoding of the alphabet. Hence, we state
the XOR Lemma in terms of functions over an alphabet setΣ.

For any Boolean functiong over some domainΣn, defineg⊕m : Σnm → {0, 1} by g⊕m(x1, x2, .., xm) =
g(x1)⊕ g(x2)⊕ ..⊕ g(xm) where⊕ represents the parity function.

Lemma 14 [Yao82] Let 1
2 < ε < 1, k ∈ N andθ > 2(1 − ε)k. There is an absolute constantc > 1 which only

depends on|Σ| such that ifg is (1 − ε)-hard for TC0 circuits of sizes and depthd, theng⊕k is (1
2 + θ)-hard for

TC0 circuits of sizeθ2s
cn and depthd− 1.

Let Σ = S5. The following corollary is an immediate consequence of Corollary 13 and Lemma 14.

Corollary 15 If there is aγ > 0 such thatWP 6∈ io-TC0(n1+γ), then for anyk, k′ andd there existsn0 > 0 such
that whenn ≥ n0 (WPMn)⊕n is (1

2 + 1
nk′ )-hard for TC0 circuits of sizenk and depthd.

Let WP⊗ = ∪n≥1{x | (WPMn)⊕n(x) = 1}. Note that it is a language inuNC1 and, moreover, it is decidable
in linear time.

Theorem 16 If there is aγ > 0 such thatWP 6∈ io-TC0(n1+γ), then for any integerk > 0, WP⊗ is (1
2 + 1

nk )-hard
for TC0.

4 Uniform derandomization

The Nisan-Wigderson generator is the canonical method to prove the existence of pseudo-random generators based
on hard functions. It relies on the following definition of combinatorial designs.

Definition 17 (Combinatorial Designs) Fix a universe of sizeu. An (m, l)-design of sizen on [u] is a list of
subsetsS1, S2, ..., Sn satisfying:

1. ∀i ∈ [1..n], |Si| = m;

2. ∀i 6= j ∈ [1..n], |Si ∩ Sj| ≤ l.
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Nisan and Wigderson [NW94] invented a general approach to construct combinatorial designs for various
ranges of parameters. The proof given by Nisan and Wigderson gives designs wherel = log n, and most applica-
tions have used that value ofl. For our application,l can be considerably smaller, and furthermore, we need the
Si’s to be very efficiently computable. For completeness, we present the details here. (Other variants of the Nisan-
Wigderson construction have been developed for different settings; we refer the reader to one such construction by
Viola [Vio05], as well as to a survey of related work [Vio05, Remark 5.3].)

Lemma 18 [vL99] For l > 0, the polynomialx2·3l
+ x3l

+ 1 is irreducible overF2[x].

Lemma 19 [NW94] For any integern, anyα such thatlog log n/ log n < α < 1, let b = dα−1e andm = dnαe,
there is a(m, b)-design withu = O(m6). Furthermore, eachSi can be computed withinO(bm2) time.

Proof. Fix q = 22·3l
for somel such thatm ≤ q ≤ m3. Let the universe beFq × Fq andSi be the graph of theith

univariate polynomial of degree at mostb in the standard order. Sinceqb ≥ (nα)b ≥ n, there are at leastn distinct
Sis. No two polynomials share more thanb points, hence, the second condition is satisfied. The first condition
holds because we could simply drop elements without increasing the size of intersections.

The arithmetic operations inFq are performed withinlogO(1) q time because of the explicitness of the irre-
ducible polynomial by Lemma 18. It is evident that for anyi ∈ [n], we are able to enumerate all elements ofSi in
timeO(m · b(logO(1) q)) = O(bm2). 2

Lemma 20 For any constantα > 0 and for any large enough integern, if g is (1
2 + 1

n2 )-hard for TC0 circuits of
sizen2 and depthd + 2, then any probabilisticTC0 circuit C of sizen and depthd can be simulated by another
probabilistic TC0 circuit of sizeO(n1+α) and depthd + 1 which is given oracle access togdnαe and uses at most
O(n6α) many random bits.

Proof. This is a direct consequence of Lemma 19; we adapt the traditional Nisan-Wigderson argument to the
setting of TC0 circuits. Letn andα be given, with0 < α < 1. Let S1, . . . , Sn be the(m, b)-design from Lemma
19, wherem = dnαe, b = dα−1e, and eachSi ⊂ [u], with u = O(m6). We are giveng : Σm → {0, 1};
definehg : Σu → {0, 1}n by hg(x) = g(x|S1)g(x|S2)..g(x|Sn ), wherex|Si is the sub-sequence restricted to the
coordinates specified bySi.

The new circuit samples randomness uniformly fromAu and feedsC with pseudo-random bits generated by
hg instead of purely random bits. It only has one more extra layer of oracle gates and its size is bounded by
O(n + n ∗ nα) = O(n1+α). What is left is to prove the following claim.

Claim 21 For any constantε > 0, |Prx∈UAu [C(hg(x)) = 1]− Pry∈U{0,1}n [C(y) = 1]| < ε.

Proof. Suppose there existsε such that|Prx∈{0,1}n [C(x) = 1] − Pry∈An [C(hg(y)) = 1]| ≥ ε. We will seek a
contradiction to the hardness ofg via a hybrid argument.

Samplez uniformly from An andr uniformly from {0, 1}n. Create a sequence ofn + 1 distributionsHi on
{0, 1}n where

• H0 = r;

• Hn = hg(z);

• ∀1 ≤ i ≤ n− 1, Hi = hg(z)1hg(z)2 . . . hg(z)iri+1 . . . rn.

7



By our assumption,|Σn
j=1(Prx∼Hj−1 [C(x) = 1] − Prx∼Hj [C(x) = 1])| ≥ ε. Therefore,∃j ∈ [n] such that

|Prx∼Hj−1 [C(x) = 1]− Prx∼Hj [C(x) = 1]| ≥ ε
n . Let i be one such index.

AssumePrx∼Hi [C(x) = 1] − Prx∼Hi−1[C(x) = 1] ≥ ε
n , otherwise add a not gate at the top ofC, and treat

the new circuit asC instead.
Consider the following probabilistic TC0 circuit C ′ for g. On inputx, samplez uniformly from An andr

uniformly from {0, 1}n, replace the coordinates ofz specified bySi with x. Sample a random bitb ∈ {0, 1}. If
C(hg(z)1 . . . hg(z)i−1bri+1 . . . rn) = 1, outputb, otherwise, output1− b.

Prx∈Anα [C ′(x) = f(x)]
= 1

2Prx∈Anα [C ′(x) = b | b = f(x)] + 1
2Prx∈Anα [C ′(x) 6= b | b 6= f(x)]

= 1
2Prx∈Anα [C ′(x) = b | b = f(x)] + 1

2 − 1
2Prx∈Anα [C ′(x) = b | b 6= f(x)]

= 1
2 + 1

2Prx∈Anα [C ′(x) = b | b = f(x)]− 1
2Prx∈Anα [C ′(x) = b | b 6= f(x)]

= 1
2 + Prx∈Anα [C ′(x) = b | b = f(x)]− Prx∈Anα [C ′(x) = b]

= 1
2 + (Pry∈Hi(C(y) = 1)− Pry∈Hi−1(C(y) = 1))

≥ 1
2 + ε

n

Hence, there is a fixing of values forz, r andb satisfying the property thatPrx∈Anα [C ′(x, z, r, b) = f(x)] ≥
1
2 + ε

n . Note that in this case∀1 ≤ k ≤ i − 1, hg(z)k is function on inputx|Sk∩Si . Since∀k 6= i, |Si ∩ Sk| ≤ b,
we only need a TC0 circuit of size at most2O(b) and of depth at most2 to compute eachhg(z)k. In conclusion,
we obtain a TC0 circuit C ′′ of size at most(2O(b) + 1)n and of depth at mostd + 2 such thatPrx∈Anα [C ′(x) =
f(x)] ≥ 1

2 + ε
n ≥ 1

2 + 1
n2 whenn is large enough, a contradiction. 2

2

The simulation in Lemma 20 is quite uniform, thus, plugging in appropriate segments of WP⊗ as our candidates
for the hard functiong, we derive our first main result.

Theorem 22 If WP is not infinitely often computed byTC0(n1+γ) circuit families for some constantγ > 0, then
any language accepted by polynomial-size probabilistic uniformTC0 circuit family is inuTC0(SUBEXP).

Proof. Fix any small constantδ > 0. Let L be a language accepted by some probabilistic uniform TC0 circuit
family of size at mostnk and of depth at mostd for some constantsk, d.

Choosem such thatn
δ
12 ≤ m ≤ n

δ
6 , and letα be such thatm = nα. By Theorem 16, whenm is large

enough, WP⊗m is (1
2 + 1

n2k )-hard for TC0 circuits of sizen2k and depthd + c, wherec is any constant. Hence,
as a consequence of Lemma 20, we obtain a probabilistic oracle TC0 circuit for Ln of depthd + 1. Since the
computation only needsO(m6) random bits, it can be turned into a deterministic oracle TC0 circuit of depthd + 2
and of size at mostO(n2k) ∗ 2O(m6) ≤ 2O(nδ) (whenn is large enough), where we evaluate the previous circuit
on every possible random string and add an extra MAJORITY gate at the top. The oracle gates all have fan-in
m ≤ nδ/6, and thus can be replaced by DNF circuits of size2O(nδ), yielding a deterministic TC0 circuit of size
2O(nδ) and depthd + 3.

We need to show that this construction is uniform, so that the direct connection language can be recognized in
timeO(nδ). The analysis consists of three parts.

• The connectivity between the top gate and the output gate of individual copies is obviously computable in
timem6 ≤ nδ.

• The connectivity inside individual copies isDLOGTIME-uniform, hence,nδ-uniform.

• By Lemma 19 eachSi is computable in timeO(dm2) which isO(m2) sinced is a constant only depending
on δ. Moreover, notice that WP⊗ is a linear-time decidable language. Therefore, the DNF expression
corresponding to each oracle gate can be computed within timeO(m2) ≤ nδ.
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In conclusion, the above construction produces a uniform TC0 circuit of size2nδ
. Sinceδ is arbitrarily chosen,

our statement holds. 2

Note that the above conclusion can be strengthened to the following form: any language accepted by a
polynomial-size probabilistico(n)-uniform TC0 circuit family is inuTC0(SUBEXP).

5 Consequences of pathetic arithmetic circuit lower bounds

In this section we show that a pathetic lower bound assumption forarithmetic circuitsyields a uniform derandom-
ization of a special case of polynomial identity testing (introduced and studied by Dvir et al [DSY09]).

The explicit polynomial that we consider is{IMM n}n>0, where IMMn is the(1, 1)th entry of the product ofn
3×3 matrices whose entries are all distinct indeterminates. Notice that IMMn is a degreen multilinear polynomial
in 9n indeterminates, and IMMn can be considered as a polynomial over any fieldF.

Arithmetic circuits computing a polynomial in the ringF[x1, x2, . . . , xn] are directed acyclic graphs with the
indegree zero nodes (the inputs nodes) labeled by either a variablexi or a scalar constant. Each internal node is
either a+ gate or a× gate, and the circuitcomputesthe polynomial that is naturally computed at the output gate.
The circuit is aformula if the fanout of each gate is1.

Before going further, we pause to clarify a point of possible confusion. There is another way that an arithmetic
circuit C can be said to compute a given polynomialf(x1, x2, . . . , xn) over a fieldF; even ifC does not compute
f in the sense described in the preceding paragraph, it can still be the case that for all scalarsai ∈ F we have
f(a1, . . . , an) = C(a1, . . . , an). In this case, we say thatC functionallycomputesf over F. If the field size is
larger than the syntactic degree of circuitC and the degree off , then the two notions coincide. Assuming thatf is
not functionallycomputed by a class of circuits is astrongerassumption than assuming thatf is not computed by
a class of circuits (in the usual sense). In our work in this paper, we use the weaker intractability assumption.

An oracle arithmetic circuit is one that hasoracle gates: For a given sequence of polynomialsA = {An} as
oracle, an oracle gate of fan-inn in the circuit evaluates then-variate polynomialAn on the values carried by its
n input wires. An oracle arithmetic circuit is calledpure (following [AK]) if all non-oracle gates are of bounded
fan-in. (Note that this use of the term “pure” is unrelated to the “pure” arithmetic circuits defined by Nisan and
Wigderson [NW97].)

The class of polynomials computed by polynomial-size arithmetic formulas is known as arithmetic NC1. By
[BOC92] the polynomial IMMn is complete for this class. Whether IMMn has polynomial sizeconstant-depth
arithmetic circuits is a long-standing open problem in the area of arithmetic circuits [NW97]. In this context, the
known lower bound result is that IMMn requires exponential size multilinear depth-3 circuits [NW97].

Very little is known about lower bounds for general constant-depth arithmetic circuits, compared to what is
known about constant-depth Boolean circuits. Exponential lower bounds for depth-3 arithmetic circuits over fi-
nite fields were shown in [GK98] and [GR00]. On the other hand, for depth-3 arithmetic circuits over fields of
characteristic zero only quadratic lower bounds are known [SW01]. However, it is shown in [RY09] that the deter-
minant and the permanent require exponential sizemultilinear constant-depth arithmetic circuits. More details on
the current status of arithmetic circuit lower bounds can be found in Raz’s paper [Raz08, Section 1.3].

Definition 23 We say that a sequence of polynomials{pn}n>0 in F[x1, x2, . . . , xn] is (s(n),m(n), d)-downward
self-reducible if there is a pure oracle arithmetic circuitCn of depthO(d) and sizeO(s(n)) that computes the
polynomialpn using oracle gates only forpm′ , for m′ ≤ m(n).

Analogous to [AK, Proposition 7], we can easily observe the following. It is a direct divide and conquer
argument using the iterated product structure.

Lemma 24 For each1 > ε > 0 the polynomial sequence{IMMn} is (n1−ε, nε, 1/ε)-downward self-reducible.
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An easy argument, analogous to Theorem 8, shows that Lemma 24 allows for the amplification of weak lower
bounds for{IMM n} against arithmetic circuits of constant depth:

Theorem 25 Suppose there is a constantδ > 0 such that for alld and everyn, the polynomial sequence{IMMn}
requires depth-d arithmetic circuits of size at leastn1+δ. Then, for any constant depthd the sequence{IMMn} is
not computable by depth-d arithmetic circuits of sizenk for any constantk > 0.

Our goal is to apply Theorem 25 to derandomize a special case of polynomial identity testing (first studied in
[DSY09]). To this end we restate a result of Dvir et. al [DSY09].

Theorem 26 (Theorem 4 in [DSY09])Letn, s, r,m, t, d be integers such thats ≥ n. LetF be a field which has at
least2mt elements. LetP (x, y) ∈ F[x1, . . . , xn, y] be a non-zero polynomial withdeg(P ) ≤ t anddegy(P ) ≤ r
such thatP has an arithmetic circuit of sizes and depthd overF. Letf(x) ∈ F[x1, . . . , xn] be a polynomial with
deg(f) = m such thatP (x, f(x)) ≡ 0. Thenf(x) can be computed by a circuit of sizes′ = poly(s,mr) and
depthd′ = d + O(1) overF.

Let the underlying fieldF be large enough (Q, for instance). The following lemma is a variant of Lemma 4.1
in [DSY09]. For completeness, we provide its proof here.

Lemma 27 (Variant of Lemma 4.1 in [DSY09]) Letn, r, s be integers and letf ∈ F[x1, x2, . . . , xn] be a nonzero
polynomial with individual degrees at mostr that is computed by an arithmetic circuit of sizes ≥ n and depthd.
Letm = nα be an integer whereα > 0 is an arbitrary constant. LetS1, S2, . . . , Sn be the sets of the(m, b)-design
constructed in Lemma 19 whereb = d 1

αe. Letp ∈ F[z1, . . . , zm] be a multilinear polynomial with the property that

F (y) = F (y1, y2, . . . , yu) , f(p(y|S1), . . . , p(y|Sn)) ≡ 0 (1)

Then there exists absolute constantsa andk such thatp(z) is computable by an arithmetic circuit overF with
size bounded byO((smr)a) and having depthd + k.

Proof. Consider the following set of hybrid polynomials:

F0(x, y) = f(x1, x2, . . . , xn)
F1(x, y) = f(p(y|S1), x2, . . . , xn)

...
Fn(x, y) = f(p(y|S1), . . . , p(y|Sn))

The assumption implies thatF0 6≡ 0 while Fn ≡ 0. Hence, there exists0 ≤ i < n such thatFi 6≡ 0 and
Fi+1 ≡ 0. Notice thatFi is a nonzero polynomial in the variables{xj | i + 2 ≤ j ≤ n} and the variables
{yj | j ∈ S1 ∪ S2 ∪ · · · ∪ Si}.

We recall the well-known Schwartz-Zippel lemma.

Lemma 28 (Schwartz-Zippel) Let F be a field and letf ∈ F[x1, ..., xn] be a non-zero polynomial with total
degree at mostr. Then for any finite subsetS ⊂ F we have

|{c ∈ Sn : f(c) = 0}| ≤ r · |S|n−1 (2)
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Sincedeg(Fi) ≤ nrm, then if we assume thatF has size more thannrm, Lemma 28 assures that we can assign
values from the fieldF to the variables{xj | i + 2 ≤ j ≤ n} and the variables{yj | j /∈ Si+1} so thatFi remains
a nonzero polynomial in the remaining variables. More precisely, fixing these variables to scalar values yields a
polynomialf̃ with the property that

f̃(q1(y|S1∩Si+1), . . . , q1(y|Si∩Si+1), xi+1) 6≡ 0
f̃(q1(y|S1∩Si+1), . . . , q1(y|Si∩Si+1), p(y|Si+1)) ≡ 0

whereqj(y|Sj∩Si+1) is the polynomial obtained frompj(y|Sj ) after fixing the variables inSj \ Si+1.
Rename the variables{yj | j ∈ Si+1} with {zj | 1 ≤ j ≤ m} and replacexi+1 by w. We obtain a polynomial

g with the property that

g(z1, . . . , zm, w) 6≡ 0
g(z1, . . . , zm, p(z1, . . . , zm)) ≡ 0

In order to apply Theorem 26, the only thing that remains is to calculate the circuit complexity ofg. ∀j 6=
i + 1, |Sj ∩ Si+1| ≤ b which is a constant. Hence, for anyj ≤ i, qj(y|Sj∩Si+1) is a polynomial depending on a
constant number of variables, which can be computed by a constant-size arithmetic circuit of depth2 (Basically,
it is a sum of monomials). Under the assumption thatf has a circuit of sizes and depthd, g is computable by a
circuit of sizes + O(n) and depthd + 2 which is a composition of the aforementioned circuits. It is important to
note thatdegw(g) = degxi+1

(f) ≤ r.
Now we use Theorem 26 to obtain thatp(z) has a circuit of size at most(smr)a and depthd + k, which

concludes our proof. 2

At this point we describe our deterministic black-box identity testing algorithm for constant-depth arithmetic
circuits of polynomial size and bounded individual degree. Letn,m, u, α be the parameters as in Lemma 19. Given
such a circuitC over variables{xi | i ∈ [n]} of sizent, depthd and individual degreer, we simply replacexi with
IMM (y|Si) wherey is a new set of variables{yj | j ∈ [u]}. Let C̃[y1, . . . , yu] denote the polynomial computed by
the new circuit.

Notice that the total degree of̃C is bounded byuc wherec is a constant depending on the combinatorial design
andr. Let R ⊆ F be any set ofuc + 1 distinct points. Then by Lemma 28 the polynomial computed byC̃ is
identically zero if and only ifC̃(a1, a2, . . . , au) = 0 for all (a1, a2, . . . , au) ∈ Ru.

This gives us the claimed algorithm. Its running time is bounded byO((uc+1)u) = O(27αn6α
). Sinceα can be

chosen to be arbitrarily small, we have shown that this identity testing problem is in deterministic sub-exponential
time. The correctness of the algorithm follows from the next lemma.

Lemma 29 If for every constantd′ > 0, the polynomial sequence{IMMn} is not computable by depth-d′ arith-
metic circuits of sizenk for anyk > 0, thenC[x1, . . . , xn] ≡ 0 if and only ifC̃[y1, . . . , yu] ≡ 0.

Proof. The only-if part is easy to see. Let us focus on the if part. Suppose it is not the case, which means that
C̃[y1, . . . , yu] ≡ 0 but C[x1, . . . , xn] 6≡ 0. Then letC[x1, . . . , xn] play the role off [x1, . . . , xn] in Lemma 27
and let IMM[z1, . . . , zm] take the place ofp[z1, . . . , zm]. Therefore, IMM[z1, . . . , zm] is computable by a circuit
of depthd + k and size at most(ntmr)a = mO(1), a contradiction. 2

Putting it together, we get the following result.

Theorem 30 If there existsδ > 0 such that for any constante > 0, IMM requires depth-e arithmetic circuits of
size at leastn1+δ, then the black-box identity testing problem for constant-depth arithmetic circuits of polynomial
size and bounded individual degree is in deterministic sub-exponential time.
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Next, we notice that the above upper bound can be sharpened considerably. The algorithm simply takes the
OR over subexponentially-many evaluations of an arithmetic circuit; if any of the evaluations does not evaluate to
zero, then we know that the expressions are not equivalent; otherwise they are. Note that evaluating an arithmetic
circuit can be accomplished in logspace. (When evaluating a circuit overQ, this is shown in [HAB02, Corollary
6.8]; the argument for other fields is similar, using standard results about the complexity of field arithmetic.) Note
also that every language computable in logspace has AC0 circuits of subexponential size. (This appears to have
been observed first by Gutfreund and Viola [GV04]; see also [AHM+08] for a proof.) This yields the following
uniform derandomization result.

Theorem 31 If there are no constant-depth arithmetic circuits of sizen1+ε for the polynomial sequence{IMMn},
then for every constantd, black-box identity testing for depth-d arithmetic circuits with bounded individual degree
can be performed by a uniform family of constant-depthAC0 circuits of subexponential size.

We call attention to an interesting difference between Theorems 22 and 31. In Theorem 31, in order to solve
the identity testing problem with uniform AC0 circuits of size2nε

for smaller and smallerε, the depth of the AC0

circuits increases asε decreases. In contrast, in order to obtain a deterministic threshold circuit of size2nε
to

simulate a given probabilistic TC0 algorithm, the argument that we present in the proof of Theorem 22 gives a
circuit whose depth is not affected by the choice ofε. We do not know if a similar improvement of Theorem 31 is
possible, but we observe here that the depth need not depend onε if we use threshold circuits for the identity test.

Theorem 32 If there are no constant-depth arithmetic circuits of sizen1+ε for the polynomial sequence{IMMn},
then there is a constantc such that, for every constantd and everyγ > 0, black-box identity testing for depth-d
arithmetic circuits with bounded individual degree can be performed by a uniform family of depthd + c threshold
circuits of size2nγ

.

Proof. We provide only a sketch. Chooseα < γ/14, whereα is the constant from the discussion in the paragraph
before Lemma 29. Thus, our identity testing algorithm will evaluate a depthd arithmetic circuitC(x1, . . . , xn)
at fewer than2nγ/2

points~v = (v1, . . . , vn), where eachvi is obtained by computing an instance of IMMnα

consisting ofnα 3-by-3 matrices, whose entries without loss of generality have representations having length at
mostnα. Thus these instances of IMM have DNF representations of size2O(n2α). These DNF representations
are uniform, since the direct connection language can be evaluated by computing, for a given input assignment to
IMM nα , the product of the matrices represented by that assignment, which takes time at most(nα)3 < log(2nγ/2

).
Evaluating the circuitC on~v can be done in uniform TC0 [AAD00, HAB02]. 2
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