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Abstract

The notion of probabilistic computation dates back at least to Turing, and he also wrestled with the prac-
tical problems of how to implement probabilistic algorithms on machines with, at best, very limited access to
randomness. A more recent line of research, known as derandomization, studies the extent to which random-
ness is superfluous. A recurring theme in the literature on derandomization is that probabilistic algorithms can
be simulated quickly bydeterministicalgorithms, if one can obtainimpressive(i.e., superpolynomial, or even
nearly-exponential) circuit size lower bounds for certain problems. In contrast to what is needed for deran-
domization, existing lower bounds seem rather pathetic (linear-size lower bounds for general circuits [IM02],
nearly cubic lower bounds for formula size [H˚as98], nearly quadratic size lower bounds for branching programs
[Nec66],n1+cd for depthd threshold circuits [IPS97]). Here, we present two instances where “pathetic” lower
bounds of the formn1+ε would suffice to derandomize interesting classes of probabilistic algorithms.

We show:

• If the word problem overS5 requires constant-depth threshold circuits of sizen1+ε for someε > 0,
then any language accepted by uniform polynomial-size probabilistic threshold circuits can be solved in
subexponential time (and more strongly, can be accepted by a uniform family of deterministic constant-
depth threshold circuits of subexponential size.)

• If there are no constant-depth arithmetic circuits of sizen1+ε for the problem of multiplying a sequence
of n 3-by-3 matrices, then for every constantd, black-box identity testing for depth-d arithmetic circuits
with bounded individual degree can be performed in subexponential time (and even by a uniform family
of deterministic constant-depth AC0 circuits of subexponential size).
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1 Introduction

Alan Turing was interested in probabilistic computation, on both practical and theoretical levels. Already in 1950,
he explicitly proposed the notion of extending deterministic computing devices by providing access to a “random
element” [Tur50]. Note that this was roughly contemporaneous with the development of Monte-Carlo methods
[MU49]. Turing also participated in the development of the Mark I computer project at Manchester University,
and according to some sources [CK80] he pushed for the inclusion of a random noise generator at the machine
instruction level (although this feature was not successful). Thus, from almost the very beginning of the mathe-
matical study of computation, there has been interest in probabilistic computation, as well as an appreciation of the
obstacles that lie in the way of practical implementations of probabilistic algorithms.

One promising avenue for dealing with the scarcity of truly random bits is to show that, in many cases, there is
no reason to use randomness at all. Hardness-based derandomization is one of the success stories of the past quar-
ter century. The main thread of this line of research dates back to the work of Shamir, Yao, and Blum and Micali
[Sha81, Yao82, BM84], and involves showing that, given a suitably hard functionf , one can construct pseudoran-
dom generators and hitting-set generators. Much of the progress on this front over the years has involved show-
ing how to weaken the hardness assumption onf and still obtain useful derandomizations [BFNW93], [AK97],
[IW97], [IW01], [KvM02], [ACR99], [ACR98], [ACRT99], [BF99], [MV05], [GW99], [GVW00], [ISW06],
[STV01], [SU05], [Uma03]. In rare instances, it has been possible to obtainunconditionalderandomizations using
this framework; Nisan and Wigderson showed that uniform families of probabilistic AC0 circuits can be simulated
by uniform deterministic AC0 circuits of sizenlogO(1) n [Nis91], [NW94], [Vio05]. More often, the derandomiza-
tions that have been obtained are conditional, and rely on the existence of functionsf that are hard on average. For
certain large complexity classesC (notably including#P,PSPACE, and exponential time), various types of ran-
dom self-reducibility and hardness amplification have been employed to show that such hard-on-average functions
f exist inC if and only if there is some problem inC that requires large Boolean circuits [BFNW93, IW97].

A more recent thread in the derandomization literature has studied the implications ofarithmeticcircuit lower
bounds for derandomization. Kabanets and Impagliazzo showed that, if the Permanent requires largearithmetic
circuits, then the probabilistic algorithm to test if two arithmeticformulae (or more generally, two arithmetic
circuits of polynomial degree) are equivalent can be simulated by a quick deterministic algorithm [KI04]. Sub-
sequently, Dvir, Shpilka, and Yehudayoff built on the techniques of Kabanets and Impagliazzo, to show that if
one could present a multilinear polynomial (such as the permanent) that requires depthd arithmetic formulae of
size2nε

, then the probabilistic algorithm to test if two arithmetic circuits of depthd − 5 are equivalent (where in
addition, the variables in these circuits have degree at mostlogO(1) n) can be derandomized to obtain a2logO(1) n

deterministic algorithm for the problem [DSY09].
In this paper, we combine these two threads of derandomization with the recent insight that, in some cases,

extremely modest-sounding (or even “pathetic”) lower bounds can be amplified to obtain superpolynomial bounds
[AK10]. In order to carry out this combination, we need to identify and exploit some special properties of certain
functions in and near NC1.

• The word problem overS5 is one of the standard complete problems for NC1 [Bar89]. Many of the most
familiar complete problems for NC1 have very efficientstrong downward self-reductions[AK10]. We show
that the word problem overS5, in addition, israndomly self-reducible. (This was observed previously by
Goldwasseret al. [GGH+08].) This enables us to transform a “pathetic”worst-casesize lower bound of
n1+ε on constant-depth threshold circuits, to a superpolynomial sizeaverage-caselower bound for this class
of circuits. In turn, by making some adjustments to the Nisan-Wigderson generator, this average-case hard
function can be used to give uniform subexponential derandomizations of probabilistic TC0 circuits.

• Iterated Multiplication ofn three-by-three matrices is a multilinear polynomial that is complete for arithmetic
NC1 [BOC92]. In the Boolean setting, this function is strongly downward self-reducible via self-reductions
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computable in TC0 [AK10]. Here we show that there is a correspondingarithmetic self-reduction; this
enables us to amplify a lower bound of sizen1+ε for constant-depth arithmetic circuits, to obtain a super-
polynomial lower bound for constant-depth arithmetic circuits. Then, by building on the approach of Dvir
et al. [DSY09], we are able to obtain subexponential derandomizations of the identity testing problem for a
class of constant-depth arithmetic circuits.

The rest of the paper is organized as follows: In Section 2, we give some preliminary definitions and notation.
In Section 3, we show how to convert a modest worst-case hardness assumption to a strong average-case hardness
separation of NC1 from TC0. We also present slightly weaker worst-case-to-average-case reductions for L and
for the classes GapL and GapNC1. In Section 4, we build on Section 3.1 to give a uniform derandomization of
probabilistic TC0 circuits. Finally, in Section 5 we prove our derandomization of a special case of polynomial
identity testing under a modest hardness assumption.

2 Preliminaries

This paper will mainly discuss NC1 and its subclass TC0. The languages in NC1 are accepted by families of
circuits of depthO(log n) that are built with fan-in two AND and OR gates, and NOT gates of fan-in one. For any
functions(n), TC0(s(n)) consists of languages that are decided by constant-depth circuit families of size at most
s(n) which contain only unbounded fan-in MAJORITY gates as well as unary NOT gates. TC0 = ∪k≥0TC0(nk).
TC0(SUBEXP) = ∩δ≥0TC0(2nδ

). The definitions of AC0(s(n)), AC0, and AC0(SUBEXP) are similar, although
MAJORITY gates are not allowed, and unbounded fan-in AND and OR gates are used instead.

We allow circuits to accept inputs not only from the Boolean alphabet{0, 1}, but from any finite alphabetΣ.
This is done by havingσ-input gates for eachσ ∈ Σ; aσ-input gateg connected to input symbolxi evaluates to 1
if xi = σ, and evaluates to 0 otherwise.

As is usual in arguments in derandomization based on the hardness of some functionf , we require not only that
f not have small circuits in order to be considered “hard”, but furthermore we require thatf needs large circuits at
everyrelevant input length. This motivates the following definition.

Definition 1 LetA be a language, and letDA be the set{n : A∩Σn 6= ∅}. We say thatA ∈ io-TC0(s(n)) if there
is an infinite setI ⊆ DA and a languageB ∈ TC0(s(n)) such that, for alln ∈ I,An = Bn (where, for a language
C, we letCn denote the set of all strings of lengthn in C). Similarly, we defineio-TC0 to be∪k≥0io-TC0(nk).

ThusA requires large threshold circuits onall relevant input lengths ifA 6∈ io-TC0. (A peculiarity of this definition
is that if A is afinite set, orAn is empty for infinitely manyn, thenA 6∈ io-TC0. This differs starkly from most
notions of “io” circuit complexity that have been considered, but it allows us to consider “complex” setsA that
are empty on infinitely many input lengths; the alternative would be to consider artificial variants of the “complex”
sets that we construct, having strings of every length.)

Probabilistic circuits take an input divided into two pieces, the actual input and the random inputs. We say an
input x is accepted by such a circuitC with probability p if, with respect to the uniform distributionUD over the
domainD from which the random inputs are drawn,Prr∼UD

[C(x, r) = 1] ≥ p. We say that inputx is rejected
by C with probability p if Prr∼UD

[C(x, r) = 0] ≥ p. When defining probabilistic complexity classes (such as
probabilistic NC1), we restrict the random inputs to come from{0, 1}∗, and we say that a family of probabilistic
circuits Cn acceptsA if, for all x ∈ An, Cn acceptsx with probability 2

3 , and for all otherx, Cn rejectsx with
probability 2

3 .
The standard uniformity condition for small complexity classes is calledDLOGTIME-uniformity. In order to

provide its proper definition, we need to mention thedirect connection languageassociated with a circuit family.
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Definition 2 LetC = (Cn)n∈N be a circuit family. The direct connection languageLDC of C is the set of all tuples
having either the form〈n, p, q, b〉 or 〈n, p, d〉, where

• If q = ε, thenb is the type of gatep in Cn;

• If q is the binary encoding ofk, thenb is thekth input top in Cn.

• The gatep has fan-ind in Cn.

The circuit familyC is DLOGTIME-uniform if there is a deterministic Turing machine that acceptsLDC in
linear time. For any circuit complexity classC, uC is its uniform counterpart, consisting of languages that are
accepted byDLOGTIME-uniform circuit families. For more background on circuit complexity, we refer the reader
to the textbook by Vollmer [Vol99]. The term “uniform derandomization” in the title refers to the fact that we are
presenting uniform circuit families that compute derandomized algorithms; this should not be confused with doing
derandomization based on uniform hardness assumptions.

The classes NC1, GapL, and GapNC1 all have complete problems under AC0-Turing reducibility. (See [Vol99]
for definitions of these terms.) All references to “completeness” refer to this notion of reducibility.

A particularly important complete language for NC1 is the word problem WP forS5, whereS5 is the symmetric
group over5 distinct elements [Bar89]. The input to the word problem is a sequence of permutations fromS5 and
it is accepted if and only if the product of the sequence evaluates to the identity permutation. The corresponding
searchproblem FWP is required to output the exact result of the iterated multiplication. A closely relatedbalanced
language is BWP, which stands for Balanced Word Problem.

Definition 3 The input toBWP is a pair 〈w1w2..wn, S〉, where∀i ∈ [1..n], wi ∈ S5, S ⊆ S5 and |S| = 60. The
pair 〈w1w2..wn, S〉 is in BWP if and only ifΠn

i=1wi ∈ S.

It is easy to verify that BWP is complete for NC1 as well.
In the following sections, let FWPn be the sub-problem of FWP where the domain is restricted to inputs of

lengthn and let BWPn be BWP∩ {〈φ, S〉 | φ ∈ Sn
5 , S ⊆ S5, |S| = 60}. Note that BWPn accepts exactly half of

the instances in{〈φ, S〉 | φ ∈ Sn
5 , S ⊆ S5, |S| = 60} since|S5| = 120.

The following simplified version of Chernoff’s bound turns out to be useful in our application.

Lemma 4 (Chernoff’s bound) LetX1, ..,Xm be i.i.d. 0-1 random variables withE[Xi] = p. LetX = Σm
i=1Xi.

Then for any0 < δ ≤ 1,

Pr[X < (1− δ)pm] ≤ e−
δ2pm

2 .

3 The existence of an average-case hard language

3.1 Worst-case to Average-case Reduction forNC1

In this section, we use random self-reducibility to show that, if NC1 6= TC0, then there are problems in NC1 that
are hard on average for TC0. First we recall the definition of hardness on average for decision problems.

Definition 5 LetUD denote the uniform distribution over all inputs in a finite domainD. For any Boolean function
f : D → {0, 1}, f is (1−ε)-hard for a set of circuitsS, if, for everyC ∈ S, we have thatPrx∼UD

[f(x) = C(x)] <
1− ε.

We will sometimes abuse notation by identifying a set with its characteristic function. For languages to be
considered hard on average, we consider only those input lengths where the language contains some strings.
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Definition 6 Let Σ be an alphabet. Consider a languageL = ∪nLn, whereLn = L ∩ Σn, and letDL = {n :
Ln 6= ∅}. We say thatL is (1 − ε)-hard for a class of circuit familiesC if DL is an infinite set and, for any circuit
family{Cn} in C, there existsm0 such that for allm ∈ DL such thatm ≥ m0, Prx∈Σm[f(x) = Cm(x)] < 1− ε.

The following theorem shows that if FWP6∈ io-TC0, then BWP is hard on average for TC0.

Theorem 7 There exist constantsc, δ > 0 and 0 < ε < 1 such that for any constantd > 0, if FWPn is not
computable byTC0(δn(s(n) + cn)) circuits of depth at mostd + c, thenBWPn is (1− ε)-hard forTC0 circuits of
sizes(n) and depthd.

Proof. Let ε < 1
4(120

60 ) . We prove the contrapositive. Assume there is a circuitC of sizes(n) and depthd such that

Prx[BWPn(x) = C(x)] ≥ 1− ε. We first present a probabilistic algorithm for FWPn.
Let the input instance for FWPn bew1w2 . . . wn. Generate a sequence ofn+1 random permutationsu0, u1, . . . , un

in S5 and a random setS ⊆ S5 of size 60. Letφ be the sequence(u0 · w1 · u1)(u−1
1 · w2 · u2)..(u−1

n−1 · wn · un).
Note thatφ is a completely random sequence inSn

5 .
Let us say thatφ is a “good” sequence if∀S′ ⊂ S5 with |S′| = 60, C(〈φ, S′〉) = BWPn(〈φ, S′〉).
If we have a “good” sequenceφ (meaning that foreveryset S′ of size 60,C gives the “correct” answer

BWPn(φ, S′) on input (φ, S′)), then we can easily find the unique valuer that is equal toΠn
i=1φi whereφi =

ui−1wiui, as follows:

• If C(φ, S) = 1, then it must be the case thatr ∈ S. Pick any elementr′ ∈ S5 \ S and observe thatr is the
only element such thatC(φ, (S \ {r}) ∪ {r′}) = 0.

• If C(φ, S) = 0, then it must be the case thatr 6∈ S. Pick any elementr′ ∈ S and observe thatr is the only
element such thatC(φ, (S \ {r′}) ∪ {r}) = 1.

Thus the correct valuer can be found by trying all suchr′. Hence, ifφ is good, we have

r = Πn
i=1φi = u0w1u1Πn

i=2u
−1
i−1wiui.

Produce as output the valueu−1
0 ru−1

n = Πn
i=1wi = FWPn(w).

Sinceε < 1
4(120

60 ) , a standard averaging argument shows that at least3
4 of the sequences inSn

5 are good. Thus

with probability at least34 , the probabilistic algorithm computes FWPn correctly. The algorithm can be computed
by a threshold circuit of depthd+O(1) since the subroutines related toC can be invoked in parallel and moreover,
the preparation ofφ and the aggregation of results of subroutines can be done by constant-depth threshold circuits.
Its size is at most121s(n) + O(n) since there are121 calls toC. Next, we put104n independent copies together
in parallel and output the majority vote. LetXi be the random variable that the outcome of theith copy isΠn

i=1wi.
By Lemma 4, on every input the new circuit computes FWPn with probability at least1 − 120−n

2 . Thus there is
a random sequence that can be hardwired in to the circuit, with the property that the resulting circuit gives the
correct output oneveryinput (and in fact, at least half of the random sequences have this property). This yields
a deterministic TC0 circuit computing FWPn exactly which is of depth at mostd + c and of size no more than
(121 · 104)n(s(n) + cn) for some universal constantc . Choosingδ ≥ (121 · 104) completes the proof. 2

Definition 8 [AK10, Definition 5]Letf : {0, 1}∗ → {0, 1}∗ be a function. Lets(n),m(n) : N → N be functions
such thatm(n) < n for all n, and letd ≥ 1 be an integer. We sayfn is downward self-reducibleto fm(n) by a
pure reduction of depthd and sizes(n) if there is a circuit family{Cn}n≥1 such that for eachn, Cn computesfn,
is of depth at mostd and size at mosts(n), and consists of fan-in twoAND and OR gates, unaryNOT gates and
oracle gates that compute functionf on inputs of size at mostm(n). If f is downward self-reducible tofnε for
some1 > ε > 0 we will sayf is strongly downward self-reducible.

5



The problem FWP is strongly downward self-reducible [AK10, Proposition 3.6].

Theorem 9 [AK10] If there is aγ > 0 such thatFWP 6∈ io-TC0(n1+γ), thenFWP 6∈ io-TC0.

Proof. We briefly sketch the proof. By [AK10, Proposition 7] FWPn is strongly downward self-reducible to
FWPnε by a Dlogtime-uniform pure reduction of depthO(1/ε) and sizeO(n). Hence, as observed in [AK10,
Corollary 4.3], for any givenγ > 0, an io-TC0 circuit of polynomial size for FWP can be combined with the
self-reduction for FWP (for a suitably chosenε) to obtain an io-TC0 circuit of sizen1+γ . 2

(Theorem 9 is not stated in terms of io-TC0 in [AK10], but the proof there shows that if there are infinitely
many input lengthsn where FWP has circuits of of sizenk, then there are infinitely many input lengthsm where
FWP has circuits of sizem1+γ . The strong downward self-reducibility property allows small circuits for inputs of
sizem to be constructed by efficiently using circuits for sizen < m as subcomponents.)

Since FWP is equivalent to WP via linear-size reductions on the same input length, the following corollary is
its easy consequence.

Corollary 10 If there is aγ > 0 such thatWP 6∈ io-TC0(n1+γ), thenFWP 6∈ io-TC0.

Combining Corollary 10 with Theorem 7 yields the average-case hardness of BWP from nearly-linear-size
worst-case lower bounds for WP against TC0 circuit families.

Corollary 11 There exists a constantε > 0 such that if∃γ > 0 such thatWP 6∈ io-TC0(n1+γ), then for anyk and
d there existsn0 > 0 such that whenn ≥ n0, BWPn is (1− ε)-hard for anyTC0 circuit of sizenk and depthd.

Define the following Boolean function WPMn : Sn
5 × S60

5 → {0, 1}, where WPMn stands for Word Problem
over Multi-set.

Definition 12 The input toWPMn is a pair 〈w1w2..wn, v1v2..v60〉, where∀i ∈ [1..n], wi ∈ S5 and ∀j ∈
[1..60], vi ∈ S5. 〈w1w2..wn, v1v2..v60〉 ∈ WPM if and only if∃j ∈ [1..60], Πn

i=1wi = vj.

BWP is the restriction of WPMn to the case where allvis are distinct. Hence, WPM inherits the average-case
hardness of BWP, since any circuit that computes WPMn on a sufficiently large fraction of inputs also approximates
BWP well. Formally,

Lemma 13 There is an absolute constant0 < c < 1 such that for everyε > 0, if BWPn is (1 − ε)-hard for TC0

circuits of sizenk and depthd, thenWPMn is (1− cε)-hard for TC0 circuits of sizenk and depthd.

Proof. Let c = (120
60 )

(120)60
. Note thatc is the probability that a sequence of 60 permutations contains no duplicates

and is in sorted order. Suppose there is a circuitC with the property thatPrx∈Sn×S60 [C(x) 6= WPM(x)] ≤ cε.
Then the conditional probability thatC(x) 6= WPM(x) given that the last 60 items inx give a list in sorted order
with no duplicates is at mostε. This yields a circuit having the same size, solving BWP with error at mostε, using
the uniform distribution over its domain, contrary to our assumption. 2

Corollary 14 There exists a constantε > 0 such that if∃γ > 0 such thatWP 6∈ io-TC0(n1+γ), then for anyk and
d there existsn0 > 0 such that whenn ≥ n0, WPMn is (1− ε)-hard forTC0 circuits of sizenk and depthd.
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Yao’s XOR lemma [Yao82] is a powerful tool to boost average-case hardness. We utilize a specialized version
of the XOR lemma for our purpose. Several proofs of this useful result have been published. For instance, see
the text by Arora and Barak [AB09] for a proof that is based on Impagliazzo’s hardcore lemma [Imp95]. For our
application here, we need a version of the XOR lemma that is slightly different from the statement given by Arora
and Barak. In the statement of the lemma as given by them,g is a function of the form{0, 1}n → {0, 1}. However,
their proof works for any Boolean functiong defined over any finite alphabet, because both the hardcore lemma
and its application in the proof of the XOR lemma are insensitive to the encoding of the alphabet. Hence, we state
the XOR Lemma in terms of functions over an alphabet setΣ. The proof presented in [AB09] yields the following
version of the XOR lemma:

For any Boolean functiong over some domainΣn, defineg⊕m : Σnm → {0, 1} by g⊕m(x1, x2, .., xm) =
g(x1)⊕ g(x2)⊕ ..⊕ g(xm) where⊕ represents the parity function.

Lemma 15 [Yao82] Let 1
2 < ε < 1, k ∈ N andθ > 2(1− ε)k. There is a constantc > 1 that depends only on|Σ|

such that ifg is (1 − ε)-hard for TC0 circuits of sizes and depthd, theng⊕k is (1
2 + θ)-hard for TC0 circuits of

sizeθ2s
cn and depthd− 1.

Let Σ = S5. The following corollary is an immediate consequence of Corollary 14 and Lemma 15.

Corollary 16 If there is aγ > 0 such thatWP 6∈ io-TC0(n1+γ), then for anyk, k′ andd there existsn0 > 0 such
that whenn ≥ n0 (WPMn)⊕n is (1

2 + 1
nk′ )-hard for TC0 circuits of sizenk and depthd.

Let WP⊗ = ∪n≥1{x | (WPMn)⊕n(x) = 1}. Note that it is a language inuNC1 and, moreover, it is decidable
in linear time.

Theorem 17 If there is aγ > 0 such thatWP 6∈ io-TC0(n1+γ), then for any integerk > 0, WP⊗ is (1
2 + 1

nk )-hard
for TC0.

3.2 Worst-case to Average-case Reduction forL

Here we show a similar worst-case to average-case connection as in the previous subsection, but for the class L
which contains NC1. Just as the word problem WP is complete for NC1, the word problem PWP forSn is complete
for L [MC87].

Definition 18 The languagePWPconsists of all inputs〈w1, w2 . . . wn〉, where eachwi encodes a permutation
overSn andΠn

i=1wi is the identity permutation.

We will use a few different encodings of permutations. Encoding 1 is where the permutation is represented
simply as an ordered list ofn distinct numbers between1 andn - the interpretation of this list as a permutation
is that if thek’th element in the list isj, thenk maps toj in the permutation. Encoding 2 is less economical
and represents a permutation as an ordered list ofn ordered pairs(i, σ(i)), wherei ranges from1 to n andσ is a
permutation on[n]. The interpretation here is that thei maps toσ(i) in the permutationσ. Here, whether the list
is ordered does not matter - all permutations of the ordered list represent the same permutation inSn. The fact that
eachpair is ordered is of course critical.

Using the fact that Sorting is in TC0 (e.g. see [Vol99]), we can convert from Encoding 1 to Encoding 2 or
vice-versa in TC0. The conversion from Encoding 1 to Encoding 2 is trivial - simply prefix each number in the
ordered list by its index in the list. To convert from Encoding 2 to Encoding 1, sort using the first element of the
ordered pair as the key, and retain only the second element in the sorted list.

7



For technical reasons, we will use a third even more verbose encoding - Encoding 3. In Encoding 3, a permu-
tationσ is represented as an ordered list ofn integers each of which isn bits long. The permutation represented
by this list is the identity permutation if there are two elements of the list which are equal, and is otherwise the
permutationσ whereσ(i) is the rank of thei’th element in the list, i.e., its index in the sorted order. Note that a
permutation in Encoding 1 can be trivially converted to Encoding 3 by prefixing each element byn− log n zeroes.
To convert from Encoding 3 to Encoding 1 in TC0, first check that there are no “collisions” in the list, i.e., a pair
of identical elements. If there is a collision, output the identity permutation - this can be done in AC0. If there
are no collisions, transform the ordered list to an ordered list of ordered pairs formed by pairing each element of
the original list with its index in the list. Sort according to the elements of the original list, but retain only the
corresponding order on the indices. If the list survives the collision check, this yields a permutation in Encoding 1.

Using the fact that the composition of two TC0 functions is in TC0, we get that we can convert from Encoding
2 to Encoding 3 and vice versa in TC0.

By default, we will consider the third encoding to be in effect. If this is not the case, we will explicitly say so.
For the purpose of studying a worst-case to average-case connection for L,we need a balanced version of the

language PWP.

Definition 19 The languageBPWPis defined as follows:

BPWP = {〈w1, w2 . . . wn, i〉 | eachwj encodes a permutation inSn w.r.t. Encoding 1 and theith bit

of the encoding of
∏n

j=1 wj is 1}.

We assume a natural Boolean encoding of the inputs, where the only relevant inputs are of sizen3 + 2 log n,
with n blocks ofn2 bits each representingw1 . . . wn according to Encoding 3 and the last block representingi. We
assume wlog thatn is a power of 2 - BPWP remains complete for L with this restriction.

Lemma 20 There is a family{Cn} of randomizedTC0 circuits of polynomial size such that for eachn, the output
of Cn is O(n2/2n)-close in statistical distance to the uniform distribution over(σ, σ−1), whereσ is uniformly
chosen inSn. Moreover, when considered purely as bit strings, the first and second outputs ofCn are O(n2/2n)-
close to the uniform distribution.

Proof.
The circuitsCn are defined as follows. First,n numbersx1, x2 . . . xn, with eachxi, 1 ≤ i ≤ n beingn bits

long, are generated at random. As per Encoding 3, thisn-tuple of numbers represents a permutationσ. The identity
permutation is generated with probability at most1/n! + n2/2n, since the probability of a collision is at most
n2/2n. Every other permutation is generated with equal probability, which is at least(1 − n2/2n)1/n!. A simple
computation of the statistical distance yields that the corresponding distribution on permutations isO(n2/2n)-close
to the uniform distribution on permutationsσ over [n].

It now remains to show how to generateσ−1. Sort thex-list x1, x2 . . . xn - this can be done in TC0. Then
convertσ from Encoding 3 to Encoding 2 in TC0. Then we include circuitry whichreversesthe order of each
ordered pair in the list, to yield the representation ofσ−1 according to Encoding 2. Then implement the TC0

conversion from Encoding 2 to Encoding 1, and finally use the elements of the resulting list as ranks to select
elements from the sortedx-list. We thus derive a representation ofσ−1 according to Encoding 3 which is itself
a permutation of the representation ofσ according to Encoding 3. The last part of the lemma follows using this
fact and the argument in the previous paragraph on the relative unlikelihood of the identity permutation being
represented. 2

Lemma 20 gives us the ability to generate a random permutation and its inverse efficiently. This can be used to
implement a random self-reduction in TC0 and hence derive a worst-case to average-case hardness amplification
in L against TC0.
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Theorem 21 If L 6⊆ TC0, then there is a language inL which is(1− 1/n2)-hard forTC0.

Proof. The language for which we show a random self-reduction is BPWP. Assume that BPWP is not(1−1/n2)-
hard for the complexity class TC0. We show how to solve BPWP in TC0 based on this assumption. Since BPWP
is complete for L, this implies that L⊆ TC0.

Let 〈w1, w2 . . . wn, i〉 be an input instance for BPWP, where eachwj represents a permutation overSn accord-
ing to Encoding 3. We generaten log n randomized queries to BPWP such that for each query, the query with the
last co-ordinate omitted is1 − O(n2/2n)-close to the uniform distribution over binary strings. The queries are
generated in TC0 as follows. Using Lemma 20, generaten random permutationsσ1, σ2, . . . , σn and their inverses.
We do not know how to do this exactly, but it suffices to do it approximately as guaranteed by Lemma 20. Form the
permutationss1, s2 . . . sn, where for eachj, 1 < j ≤ n, sj = σ−1

j−1wjσj, ands1 = w1σ1. To form these permuta-
tions, convert to Encoding 1 and use the fact that two permutations can be multiplied in TC0 when represented in
Encoding 1. When converting back to Encoding 3, for eachj, 1 ≤ j ≤ n, sort the list of numbers representingσj

and then use the representation of the permutation in Encoding 1 as ranks to select from the sorted list. Thus for
eachj, the resulting permutation is exponentially close to a random permutation of the list of numbers representing
σj . Since theσj are all independent, we have thats1 . . . sn are all independent and exponentially close to the
uniform distribution as bit strings. Now form the queries〈s1, s2 . . . sn, k〉 for each1 ≤ k ≤ n log n.

Since BPWP is not(1 − 1/n2)-hard for TC0, the assumption on the distribution of queries implies that the
TC0 approximators for BPWP return the correct answers for all queries with probability at least1 − (log n)/n,
for large enoughn. Using the correct answers for all queries, we can reconstructs1s2 . . . sn in Encoding 1. Also,
we know thatw1w2 . . . wn = s1s2 . . . snσ−1

n . Thus we can reconstructw1w2 . . . wn in Encoding 1 with another
multiplication in TC0 and then obtain itsith bit correctly with high probability. Finally, by a standard amplification
step followed by Adleman’s trick [Adl78], this probabilistic circuit can be converted to a non-uniform one.

2

3.3 Worst-case to Average-case Reduction forGapLand GapNC1

We first consider GapL. LetDeterminant denote the problem of computing the integer determinant. This is
a complete problem for GapL (see, e.g. [MV97]). We show that ifDeterminant cannot be computed by TC0

circuits thenDeterminant is somewhat hard on average for TC0 circuits. As TC0 circuits take Boolean input, we
will encode each integer entry of ann×n integer matrix in binary. In order to keep the overall size of this Boolean
input bounded, we will make the simplifying assumption that each entry of ann × n integer matrix instance of
Determinant is at mostn bits long. It is not hard to see that this version ofDeterminant is also complete for
GapL. Since the proof of the next theorem is similar to the standard argument for proving random self-reducibility
of Permanent [Lip91], we omit some low-level details.

Theorem 22 LetMn denote the set of alln × n matrices where each integer entry has size at mostn bits.1 If
there is aTC0 circuit computingDeterminant for at least a1− 1

n5 fraction of inputs fromMn then there is aTC0

circuit that computesDeterminant for all inputs fromMn.

Proof. Let C ′ denote the TC0 circuit that computes the integer determinant for1− 1
n5 fraction of inputs fromMn.

Our goal is to construct a TC0 circuit that computes the integer determinant foreveryinput matrixM ∈ Mn. For
input M ∈ Mn, we will describe anonadaptivereduction from the problem of computingdet(M) to computing
det(Mi) for a sequence of random matricesMi ∈ Mn, 1 ≤ i ≤ r where eachMi is nearly uniformly distributed
in Mn. To this end, pick a random matrixA ∈ Mn. This requiresn3 + n2 independent unbiased coin flips to

1It is necessary to be precise about what it means for an integer entry to haven bits. We use two’s-complement notation; thus the entries
come from the set{−2n−1, . . . , 2n−1 − 1}.
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pick then2 randomn-bit entries ofA along with their signs. Now, consider the polynomialdet(M + Ax). This
is a degreen polynomial overZ in the indeterminatex. Let S = {1, 2, . . . , n + 1} be distinct interpolating points
and considerdet(M + Ai) for eachi ∈ S. The matrixM + Ai is random. Unfortunately, it is not uniformly
distributed inMn (indeed, even its support is not contained inMn). Therefore, we cannot directly use the circuit
C ′ to computedet(M + Ai) for all i ∈ S and interpolate the value ofdet(M). We shall get around this difficulty
with Chinese remaindering.

By the Hadamard bound|det(M)| ≤ 2n2 · n! < 4n2
for all M ∈ Mn. We can pickn2 distinctO(log n) bit

primesp1, p2, . . . , pn2 so that
∏

i pi > |det(M)| for eachM ∈ Mn. We note thatdet(M) can be reconstructed
from the residuesdet(M)(mod pi), 1 ≤ i ≤ n2 by Chinese remaindering and, moreover, this reconstruction can
be done in Dlogtime-uniform TC0 [HAB02]. Hence, it suffices to describe a TC0 circuit family for computing
det(M)(mod p) for eachM ∈Mn, wherep is anO(log n) bit prime.

For a matrixA ∈ Mn picked uniformly at random, considerdet(M + Ax)(mod p). This is a degreen
polynomial inx modulop. We will computedet(M)(mod p) by interpolation. LetS = {1, 2, . . . , n + 1} be the
distinct interpolating points inFp; in order to ensure that this yields more thann points in the finite fieldFpi for
each of the primespi, we will pick pi > n+1 for all i. For any fixeds ∈ S, we note that the matrixM+As(mod p)
is nearly uniformly distributed overn×n matrices withFp entries. To see this, consider a randomly picked integer
entryAij of the matrixA, whereAij is at mostn bits long. Then for eachα ∈ {0, 1, . . . , p − 1} it is easily seen
that ∣

∣
∣
∣
1
p
− PrAij [Aij = α(mod p)]

∣
∣
∣
∣ ≤

1
2n

.

Hence, an easy calculation shows for any specific matrixB in Fn×n
p

∣
∣
∣
∣

1
pn2 − PrA∈Mn [M + As = B(mod p)]

∣
∣
∣
∣ ≤

1
pn22O(n)

.

It follows that the statistical distance of the distribution ofM + As(mod p) overFn×n
p to the uniform distribution

is bounded by2−O(n).
However, as explained above, notice that we cannot directly use the circuitC ′ to computedet(M + As) since

the entries ofM + As can beO(n + log n) bits long. Neither can we directly useC ′ to computedet(M +
As)(mod p), because the matrixM + As(mod p) has integer entries in the range{0, 1, . . . , p − 1} and these
matrices are only a( p

2n )n
2

fraction of matrices inMn. It is possible that the output ofC ′ is incorrect on all these
matrices. We now describe the solution. Consider the onto mapping

f : Mn −→ Fn×n
p ,

defined byf(M) = M(mod p). Now, consider the probability distribution onMn defined by first picking a
uniformly distributed random matrixM ′ ∈ Fn×n

p and then picking a uniformly distributed random preimage matrix
M ∈ f−1(M ′). A similar calculation as above shows that this distribution is exponentially-close to uniform. Now,
we briefly sketch how to obtain a (nearly) random preimageM of M ′. Let 2n−1 − 1 = qpp + `p, whereqp and`p

are the quotient and remainder on dividing2n − 1 by the primep. Similarly, let−2n−1 = −q′pp + `′p. For each
entryz = M ′

ij of the matrixM ′ we uniformly pick a random positive integerrij in the range−s′p,z ≤ rij ≤ sp,z

(wheres′p,z ∈ {q′p, q′p − 1} andsp,z ∈ {qp, qp − 1}, so as to guarantee thatz + ri,j is ann-bit integer), and set

Mij = M ′
ij + rijp.

Clearly, the matrixM thus defined is nearly-uniformly distributed inf−1(M ′) and a TC0 circuit can nearly-
randomly sample fromf−1(M ′).
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Now, for the random matrixM + As(mod p) ∈ Fn×n
p consider its random preimageMs inf−1(M + As),

for s ∈ {1, 2, . . . , n + 1}. By the above argument, it follows that eachMs is statistically close to the uniform
distribution onMn. Hence, for eachs ∈ S:

Pr[C ′(Ms) = det(Ms)] ≥ 1− 1
n5

− 1
2O(n)

,

where the term 1
2O(n) is subtracted in the above bound as it bounds the statistical distance ofMs’s distribution from

the uniform.
Hence with probability1 − 1

n3 the circuitC ′ correctly computesdet(Ms) for all s ∈ S. Now, applying the
fact that polynomial interpolation is TC0 computable [HAB02], a TC0 circuit can recoverdet(M)(mod p), given
det(Ms)(mod p) for all s ∈ S.

Putting it together, for each primepi we have a randomized TC0 circuit that computesdet(M)(mod pi) with
probability 1 − 1

n3 . Finally, applying Chinese remaindering which is TC0 computable [HAB02], we obtain a
randomized TC0 circuit that computesdet(M) with probability 1 − 1

n . As before, the random bits can be fixed
after amplifying the success probability using Adleman’s trick [Adl78]. 2

We now briefly discuss a similar worst-case to average-case reduction for GapNC1. The problem of computing
the(1, 1)th entry of the product ofn 3× 3 integer matrices is GapNC1 complete [CMTV98]. We show that if this
problem cannot be computed by TC0 circuits then it is somewhat hard on average for TC0 circuits. As before, since
we consider TC0 circuits which take Boolean inputs, we consider inputs(M1,M2, · · · ,Mn) in a smaller setIn

such that eachMi is a3× 3 matrix with integer entries that are at mostn bits long. This restricted problem is also
easily seen to be GapNC1 complete. In order to show the worst-case to average-case reduction we pick a uniform
random instance(A1, A2, · · · , An) ∈ In and consider the instance(M1 + A1x,M2 + A2x, · · · ,Mn + Anx) for
indeterminatex. Notice that the(1, 1)th entry of the matrix

∏n
i=1(Mi + Aix) is a degreen polynomial inx. Now,

exactly along the same lines as the proof of Theorem 22 we can show the following.

Theorem 23 LetIn denote all iterated matrix multiplication instancesM1,M2, · · · ,Mn, consisting of3×3 integer
matricesMi whose entries are at mostn bits long. If there is aTC0 circuit computing

∏n
i=1 Mi for at least1− 1

n5

inputsM1,M2, · · · ,Mn in In then there is aTC0 circuit that computes
∏n

i=1 Mi for all inputsM1,M2, · · · ,Mn

in In.

4 Uniform derandomization

The Nisan-Wigderson generator is the canonical method to prove the existence of pseudo-random generators based
on hard functions. It relies on the following definition of combinatorial designs.

Definition 24 (Combinatorial Designs) Fix a universe of sizeu. An (m, l)-design of sizen on [u] is a list of
subsetsS1, S2, ..., Sn satisfying:

1. ∀i ∈ [1..n], |Si| = m;

2. ∀i 6= j ∈ [1..n], |Si ∩ Sj| ≤ l.

Nisan and Wigderson [NW94] invented a general approach to construct combinatorial designs for various
ranges of parameters. The proof given by Nisan and Wigderson gives designs wherel = log n, and most applica-
tions have used that value ofl. For our application,l can be considerably smaller, and furthermore, we need the
Si’s to be very efficiently computable. For completeness, we present the details here. (Other variants of the Nisan-
Wigderson construction have been developed for different settings; we refer the reader to one such construction by
Viola [Vio05], as well as to a survey of related work [Vio05, Remark 5.3].)
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Lemma 25 [vL99] For l > 0, the polynomialx2·3l
+ x3l

+ 1 is irreducible overF2[x].

Lemma 26 [NW94] For any integern, anyα such thatlog log n/ log n < α < 1, let b = dα−1e andm = dnαe,
there is a(m, b)-design withu = O(m6). Furthermore, eachSi can be computed withinO(bm2) time.

Proof. Fix q = 22·3l
for somel such thatm ≤ q ≤ m3. Let the universe for the combinatorial design construction

beFq × Fq. Let p1.p2, . . . , pn be the lexicographically firstn univariate polynomials of degree at mostb overFq,
and letSi = {(a, pi(a)) | a ∈ Fq} be the graph of the polynomialpi. Sinceqb ≥ (nα)b ≥ n, there are at leastn
such distinct polynomialspi and hence such setsSi. No two polynomials share more thanb points which implies
the second condition of Definition 24. The first condition holds because we could simply drop elements from any
Si without increasing the size of intersections.

The arithmetic operations inFq are performed inlogO(1) q time because of the explicitness of the irreducible
polynomial given by Lemma 25. It is evident that for anyi ∈ [n], we can enumerate all elements ofSi in time
O(m · b(logO(1) q)) = O(bm2). 2

Lemma 27 For any constantα > 0 and for any large enough integern, if g is (1
2 + 1

n2 )-hard for TC0 circuits of
sizen2 and depthd + 2, then any probabilisticTC0 circuit C of sizen and depthd can be simulated by another
probabilistic TC0 circuit of sizeO(n1+α) and depthd + 1 which is given oracle access togdnαe and uses at most
O(n6α) many random bits.

Proof. This is a direct consequence of Lemma 26; we adapt the traditional Nisan-Wigderson argument to the
setting of TC0 circuits. Letn andα be given, with0 < α < 1. Let S1, . . . , Sn be the(m, b)-design from Lemma
26, wherem = dnαe, b = dα−1e, and eachSi ⊂ [u], with u = O(m6). We are giveng : Σm → {0, 1};
definehg : Σu → {0, 1}n by hg(x) = g(x|S1)g(x|S2)..g(x|Sn ), wherex|Si is the sub-sequence restricted to the
coordinates specified bySi.

The new circuit samples randomness uniformly fromΣu and feedsC with pseudo-random bits generated by
hg instead of purely random bits. It only has one more extra layer of oracle gates and its size is bounded by
O(n + n · nα) = O(n1+α). What is left is to prove the following claim.

Claim 28 For any constantε > 0, |Prx∈{0,1}n [C(x) = 1]− Pry∈Σu [C(hg(y)) = 1]| < ε.

Proof. Suppose there existsε such that|Prx∈{0,1}n [C(x) = 1] − Pry∈Σu [C(hg(y)) = 1]| ≥ ε. We will seek a
contradiction to the hardness ofg via a hybrid argument.

Samplez uniformly from Σu andr uniformly from {0, 1}n. Create a sequence ofn + 1 distributionsHi on
{0, 1}n where

• H0 = r;

• Hn = hg(z);

• ∀1 ≤ i ≤ n− 1, Hi = hg(z)1hg(z)2 . . . hg(z)iri+1 . . . rn.

By our assumption,|Σn
j=1(Prx∼Hj−1 [C(x) = 1] − Prx∼Hj [C(x) = 1])| ≥ ε. Therefore,∃i ∈ [n] such that

|Prx∼Hi−1 [C(x) = 1]− Prx∼Hi [C(x) = 1]| ≥ ε
n .

AssumePrx∼Hi [C(x) = 1] − Prx∼Hi−1[C(x) = 1] ≥ ε
n , otherwise add a not gate at the top ofC, and treat

the new circuit asC instead.
Consider the following probabilistic TC0 circuit C ′ for the functiong. On inputx, the circuitC ′ samplesz

uniformly from Σu andr uniformly from {0, 1}n and replaces the substringz|Si of z (i.e. the substring whose
coordinates are indexed bySi) with the input stringx. Then the circuitC ′ samples a random bitb ∈ {0, 1}. If
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C(hg(z)1 . . . hg(z)i−1bri+1 . . . rn) = 1, C ′ outputsb, otherwise, it outputs1 − b. For an input stringx ∈ Σm

picked uniformly at random we now lower bound the probability thatC ′ computes the functiong.
Let y denote the random stringhg(z)1 . . . hg(z)i−1bri+1 . . . rn which is the distributionHi−1. Further, let

pi−1 = Pry∼Hi−1 [C(y) = 1] andpi = Prw∼Hi [C(w) = 1]. In the following expressions all probabilities are over
uniformly picked stringsx ∈ Σm, z ∈ Σu andr ∈ {0, 1}n.

Pr[C ′(x) = g(x)] =
= Pr[C ′(x) = b ∧ b = g(x)] + Pr[C ′(x) 6= b ∧ b 6= g(x)]
= Pr[C(y) = 1 ∧ b = g(x)] + Pr[C(y) = 0 ∧ b 6= g(x)]

=
1
2
pi +

1
2
Pr[C(y) = 0 | b 6= g(x)]

=
1
2
pi +

1
2
− 1

2
α

whereα = Pr[C(y) = 1 | b 6= g(x)]. Observe that

pi−1 = Pr[C(y) = 1] = Pr[C(y) = 1 ∧ g(x) = b] + Pr[C(y) = 1 ∧ g(x) 6= b]

=
1
2
pi +

1
2
α.

Substituting above forα above we get

Prx,z,r[C ′(x) = g(x)] =
1
2

+ pi − pi−1 ≥ 1
2

+
ε

n
.

By an averaging argument we can fixz, r andb and hardwire intoC ′ to get a new circuitC ′′ such that

Prx∼Σm [C ′′(x) = g(x)] ≥ 1
2

+
ε

n
.

Note that in this case∀1 ≤ k ≤ i − 1, hg(z)k is function on inputx|Sk∩Si . Since∀k 6= i, |Si ∩ Sk| ≤ b,
we only need a TC0 circuit of size at most2O(b) and of depth at most2 to compute eachhg(z)k. In conclusion,
we obtain a TC0 circuit C ′′′ of size at most(2O(b) + 1)n and of depth at mostd + 2 such thatPrx∈Σm[C ′′′(x) =
g(x)] ≥ 1

2 + ε
n ≥ 1

2 + 1
n2 whenn is large enough, which is a contradiction. 2

2

The simulation in Lemma 27 is quite uniform, thus, plugging in appropriate segments of WP⊗ as our candidates
for the hard functiong, we derive our first main result.

Theorem 29 If WP is not infinitely often computed byTC0(n1+γ) circuit families for some constantγ > 0, then
any language accepted by polynomial-size probabilistic uniformTC0 circuit family is inuTC0(SUBEXP).

Proof. Fix any small constantδ > 0. Let L be a language accepted by some probabilistic uniform TC0 circuit
family of size at mostnk and of depth at mostd for some constantsk, d.

Choosem such thatn
δ
12 ≤ m ≤ n

δ
6 , and letα be such thatm = nα. By Theorem 17, whenm is large

enough, WP⊗m is (1
2 + 1

n2k )-hard for TC0 circuits of sizen2k and depthd + c, wherec is any constant. Hence,
as a consequence of Lemma 27, we obtain a probabilistic oracle TC0 circuit for Ln of depthd + 1. Since the
computation only needsO(m6) random bits, it can be turned into a deterministic oracle TC0 circuit of depthd + 2
and of size at mostO(n2k) · 2O(m6) ≤ 2O(nδ) (whenn is large enough), where we evaluate the previous circuit
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on every possible random string and add an extra MAJORITY gate at the top. The oracle gates all have fan-in
m ≤ nδ/6, and thus can be replaced by DNF circuits of size2O(nδ), yielding a deterministic TC0 circuit of size
2O(nδ) and depthd + 3.

We need to show that this construction is uniform, so that the direct connection language can be recognized in
timeO(nδ). The analysis consists of three parts.

• The connectivity between the top gate and the output gate of individual copies is obviously computable in
timem6 ≤ nδ.

• The connectivity inside individual copies isDLOGTIME-uniform, hence,nδ-uniform.

• By Lemma 26 eachSi is computable in timeO(bm2) which isO(m2) sinceb is a constant only depending
on δ. Moreover, notice that WP⊗ is a linear-time decidable language. Therefore, the DNF expression
corresponding to each oracle gate can be computed within timeO(m2) ≤ nδ.

In conclusion, the above construction produces a uniform TC0 circuit of size2O(nδ). Sinceδ is arbitrarily
chosen, our statement holds. 2

5 Consequences of pathetic arithmetic circuit lower bounds

In this section we show that a pathetic lower bound assumption forarithmetic circuitsyields a uniform derandom-
ization of a special case of polynomial identity testing (introduced and studied by Dviret al. [DSY09]).

The explicit polynomial that we consider is{IMM n}n>0, where IMMn is the(1, 1)th entry of the product ofn
3×3 matrices whose entries are all distinct indeterminates. Notice that IMMn is a degreen multilinear polynomial
in 9n indeterminates, and IMMn can be considered as a polynomial over any fieldF.

Arithmetic circuits computing a polynomial in the ringF[x1, x2, . . . , xn] are directed acyclic graphs with the
indegree zero nodes (the inputs nodes) labeled by either a variablexi or a scalar constant. Each internal node is
either a+ gate or a× gate, and the circuitcomputesthe polynomial that is naturally computed at the output gate.
The circuit is aformula if the fanout of each gate is1.

Before going further, we pause to clarify a point of possible confusion. There is another way that an arithmetic
circuit C can be said to compute a given polynomialf(x1, x2, . . . , xn) over a fieldF; even ifC does not compute
f in the sense described in the preceding paragraph, it can still be the case that for all scalarsai ∈ F we have
f(a1, . . . , an) = C(a1, . . . , an). In this case, we say thatC functionallycomputesf over F. If the field size is
larger than the syntactic degree of circuitC and the degree off , then the two notions coincide. Assuming thatf is
not functionallycomputed by a class of circuits is astrongerassumption than assuming thatf is not computed by
a class of circuits (in the usual sense). In our work in this paper, we use the weaker intractability assumption.

An oracle arithmetic circuit is one that hasoracle gates: For a given sequence of polynomialsA = {An} as
oracle, an oracle gate of fan-inn in the circuit evaluates then-variate polynomialAn on the values carried by itsn
input wires. An oracle arithmetic circuit is calledpure (following [AK10]) if all non-oracle gates are of bounded
fan-in. (Note that this use of the term “pure” is unrelated to the “pure” arithmetic circuits defined by Nisan and
Wigderson [NW97].)

The class of polynomials computed by polynomial-size arithmetic formulas is known as arithmetic NC1. By
[BOC92] the polynomial IMMn is complete for this class. Whether IMMn has polynomial sizeconstant-depth
arithmetic circuits is a long-standing open problem in the area of arithmetic circuits [NW97]. In this context, the
known lower bound result is that IMMn requires exponential size multilinear depth-3 circuits [NW97].

Very little is known about lower bounds for general constant-depth arithmetic circuits, compared to what is
known about constant-depth Boolean circuits. Exponential lower bounds for depth-3 arithmetic circuits over fi-
nite fields were shown in [GK98] and [GR00]. On the other hand, for depth-3 arithmetic circuits over fields of
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characteristic zero only quadratic lower bounds are known [SW01]. However, it is shown in [RY09] that the deter-
minant and the permanent require exponential sizemultilinear constant-depth arithmetic circuits. More details on
the current status of arithmetic circuit lower bounds can be found in Raz’s paper [Raz08, Section 1.3].

Definition 30 We say that a sequence of polynomials{pn}n>0 in F[x1, x2, . . . , xn] is (s(n),m(n), d)-downward
self-reducible if there is a pure oracle arithmetic circuitCn of depthO(d) and withO(s(n)) many oracle gates
that computes the polynomialpn using oracle gates only forpm′ , for m′ ≤ m(n).

Analogous to [AK10, Proposition 7], we can easily observe the following. It is a direct divide and conquer
argument using the iterated product structure.

Lemma 31 For each1 > ε > 0 the polynomial sequence{IMMn} is (n1−ε, nε, 1/ε)-downward self-reducible.

An easy argument, analogous to the proof sketch given for Theorem 9, shows that Lemma 31 allows for the
amplification of weak lower bounds for{IMM n} against arithmetic circuits of constant depth.

Theorem 32 Suppose there is a constantδ > 0 such that for alld and everyn, the polynomial sequence{IMMn}
requires depth-d arithmetic circuits of size at leastn1+δ. Then, for any constant depthd the sequence{IMMn} is
not computable by depth-d arithmetic circuits of sizenk for any constantk > 0.

Our goal is to apply Theorem 32 to derandomize a special case of polynomial identity testing (first studied in
[DSY09]). To this end we restate a result of Dvir et. al [DSY09].

Theorem 33 (Theorem 4 in [DSY09])Letn, s, r,m, t, d be integers such thats ≥ n. LetF be a field which has at
least2mt elements. LetP (x, y) ∈ F[x1, . . . , xn, y] be a non-zero polynomial withdeg(P ) ≤ t anddegy(P ) ≤ r
such thatP has an arithmetic circuit of sizes and depthd overF. Letf(x) ∈ F[x1, . . . , xn] be a polynomial with
deg(f) = m such thatP (x, f(x)) ≡ 0. Thenf(x) can be computed by a circuit of sizes′ = poly(s,mr) and
depthd′ = d + O(1) overF.

Let the underlying fieldF be large enough (Q, for instance). The following lemma is a variant of Lemma 4.1
in [DSY09]. For completeness, we provide its proof here.

Lemma 34 (Variant of Lemma 4.1 in [DSY09]) Letn, r, s be integers and letf ∈ F[x1, x2, . . . , xn] be a nonzero
polynomial with individual degrees at mostr that is computed by an arithmetic circuit of sizes ≥ n and depth
d. Let m = dnαe whereα > 0 is an arbitrary constant. LetS1, S2, . . . , Sn be the sets of the(m, b)-design
constructed in Lemma 26 whereb = d 1

αe. Letp ∈ F[z1, . . . , zm] be a multilinear polynomial with the property that

F (y) = F (y1, y2, . . . , yu) , f(p(y|S1), . . . , p(y|Sn)) ≡ 0 (1)

Then there exists absolute constantsa andk such thatp(z) is computable by an arithmetic circuit overF with
size bounded byO((smr)a) and having depthd + k.

Proof. Consider the following set of hybrid polynomials:

F0(x, y) = f(x1, x2, . . . , xn)
F1(x, y) = f(p(y|S1), x2, . . . , xn)

...
Fn(x, y) = f(p(y|S1), . . . , p(y|Sn))

The assumption implies thatF0 6≡ 0 while Fn ≡ 0. Hence, there exists0 ≤ i < n such thatFi 6≡ 0 and
Fi+1 ≡ 0. Notice thatFi is a nonzero polynomial in the variables{xj | i + 1 ≤ j ≤ n} and the variables
{yj | j ∈ S1 ∪ S2 ∪ · · · ∪ Si}.

We recall the well-known Schwartz-Zippel lemma.
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Lemma 35 (Schwartz-Zippel) [Sch80, Zip79]LetF be a field and letf ∈ F[x1, ..., xn] be a non-zero polynomial
with total degree at mostr. Then for any finite subsetS ⊂ F we have

|{c ∈ Sn : f(c) = 0}| ≤ r · |S|n−1 (2)

Sincedeg(Fi) ≤ nrm, then if we assume thatF has size more thannrm, Lemma 35 assures that we can assign
values from the fieldF to the variables{xj | i + 1 ≤ j ≤ n} and the variables{yj | j /∈ Si+1} so thatFi remains
a nonzero polynomial in the remaining variables. More precisely, fixing these variables to scalar values yields a
polynomialf̃ with the property that

f̃(q1(y|S1∩Si+1), . . . , q1(y|Si∩Si+1), xi+1) 6≡ 0
f̃(q1(y|S1∩Si+1), . . . , q1(y|Si∩Si+1), p(y|Si+1)) ≡ 0

whereqj(y|Sj∩Si+1) is the polynomial obtained frompj(y|Sj ) after fixing the variables inSj \ Si+1.
Rename the variables{yj | j ∈ Si+1} with {zj | 1 ≤ j ≤ m} and replacexi+1 by w. We obtain a polynomial

g with the property that

g(z1, . . . , zm, w) 6≡ 0
g(z1, . . . , zm, p(z1, . . . , zm)) ≡ 0

In order to apply Theorem 33, the only thing that remains is to calculate the circuit complexity ofg. ∀j 6=
i + 1, |Sj ∩ Si+1| ≤ b which is a constant. Notice that, for eachj ≤ i, the polynomialqj(y|Sj∩Si+1) depends
only on a constant (bounded byb) number of variables and is of constant degree sincep is multilinear. Hence
each polynomialqj(y|Sj∩Si+1) is a sum of at most2b many multilinear monomials and can be computed by a2b

size arithmetic circuit of depth2. Therefore, under the assumption thatf has a circuit of sizes and depthd, g is
computable by a circuit of sizes + O(n) and depthd + 2 which is a composition of the aforementioned circuits. It
is important to note thatdegw(g) = degxi+1

(f) ≤ r.
Now we can use Theorem 33 to obtain thatp(z) has a circuit of depthd + k and size at most(smr)a, for some

constanta. This concludes the proof. 2

At this point we describe our deterministic black-box identity testing algorithm for constant-depth arithmetic
circuits of polynomial size and bounded individual degree. Letn,m, u, α be the parameters as in Lemma 26. Given
such a circuitC over variables{xi | i ∈ [n]} of sizes = nt, depthd and individual degreer, we simply replace
xi with IMM (y|Si) wherey is a new set of variables{yj | j ∈ [u]}. Let C̃[y1, . . . , yu] denote the polynomial
computed by the new circuit.

Notice that the total degree of̃C is bounded byuc wherec is a constant depending on the combinatorial design
andr. Let R ⊆ F be any set ofuc + 1 distinct points. Then by Lemma 35 the polynomial computed byC̃ is
identically zero if and only ifC̃(a1, a2, . . . , au) = 0 for all (a1, a2, . . . , au) ∈ Ru.

This gives us the claimed algorithm. Its running time is bounded byO((uc + 1)u) = O(2n7α
). Sinceα can be

chosen to be arbitrarily small, we have shown that this identity testing problem is in deterministic sub-exponential
time. The correctness of the algorithm follows from the next lemma.

Lemma 36 If for every constantd′ > 0, the polynomial sequence{IMMn} is not computable by depth-d′ arith-
metic circuits of sizen` for any` > 0, thenC[x1, . . . , xn] ≡ 0 if and only ifC̃[y1, . . . , yu] ≡ 0.

Proof. The only-if part is easy to see. Let us focus on the if part. Suppose it is not the case, which means that
C̃[y1, . . . , yu] ≡ 0 but C[x1, . . . , xn] 6≡ 0. Then letC[x1, . . . , xn] play the role off [x1, . . . , xn] in Lemma 34
and let IMM[z1, . . . , zm] take the place ofp[z1, . . . , zm]. Therefore, IMM[z1, . . . , zm] is computable by a circuit
of depthd + k and size at most(ntmr)a = mO(1), wherek is the constant in Lemma 34 andnt is the size ofC.
This contradicts the hardness assumption about{IMM n}. 2

Putting it together, we get the following result.
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Theorem 37 If there existsδ > 0 such that for any constante > 0, IMM requires depth-e arithmetic circuits of
size at leastn1+δ, then the black-box identity testing problem for constant-depth arithmetic circuits of polynomial
size and bounded individual degree is in deterministic sub-exponential time.

Next, we notice that the above upper bound can be sharpened considerably. The algorithm simply takes the
OR over subexponentially-many evaluations of an arithmetic circuit; if any of the evaluations does not evaluate to
zero, then we know that the expressions are not equivalent; otherwise they are. Note that evaluating an arithmetic
circuit can be accomplished in logspace. (When evaluating a circuit overQ, this is shown in [HAB02, Corollary
6.8]; the argument for other fields is similar, using standard results about the complexity of field arithmetic.) Note
also that every language computable in logspace has AC0 circuits of subexponential size. (This appears to have
been observed first by Gutfreund and Viola [GV04]; see also [AHM+08] for a proof.) This yields the following
uniform derandomization result.

Theorem 38 If there are no constant-depth arithmetic circuits of sizen1+ε for the polynomial sequence{IMMn},
then for every constantd, black-box identity testing for depth-d arithmetic circuits with bounded individual degree
can be performed by a uniform family of constant-depthAC0 circuits of subexponential size.

We call attention to an interesting difference between Theorems 29 and 38. In Theorem 38, in order to solve
the identity testing problem with uniform AC0 circuits of size2nε

for smaller and smallerε, the depth of the AC0

circuits increases asε decreases. In contrast, in order to obtain a deterministic threshold circuit of size2nε
to

simulate a given probabilistic TC0 algorithm, the argument that we present in the proof of Theorem 29 gives a
circuit whose depth is not affected by the choice ofε. We do not know if a similar improvement of Theorem 38 is
possible, but we observe here that the depth need not depend onε if we use threshold circuits for the identity test.

Theorem 39 If there are no constant-depth arithmetic circuits of sizen1+ε for the polynomial sequence{IMMn},
then there is a constantc such that, for every constantd and everyγ > 0, black-box identity testing for depth-d
arithmetic circuits with bounded individual degree can be performed by a uniform family of depthd + c threshold
circuits of size2nγ

.

Proof. We provide only a sketch. Chooseα < γ/14, whereα is the constant from the discussion in the paragraph
before Lemma 36. Thus, our identity testing algorithm will evaluate a depthd arithmetic circuitC(x1, . . . , xn)
at fewer than2nγ/2

points~v = (v1, . . . , vn), where eachvi is obtained by computing an instance of IMMnα

consisting ofnα 3-by-3 matrices, whose entries without loss of generality have representations having length at
mostnα. Thus these instances of IMM have DNF representations of size2O(n2α). These DNF representations
are uniform, since the direct connection language can be evaluated by computing, for a given input assignment to
IMM nα , the product of the matrices represented by that assignment, which takes time at most(nα)3 < log(2nγ/2

).
Evaluating the circuitC on~v can be done in uniform TC0 [AAD00, HAB02]. 2
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[Hås98] Johan H˚astad. The shrinkage exponent of de Morgan formulas is 2.SIAM Journal on Computing,
27(1):48–64, 1998.

[IM02] Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of5n − o(n) for Boolean circuits.
In Proc. of Math. Foundations of Comp. Sci. (MFCS), volume 2420 ofLecture Notes in Computer
Science, pages 353–364, 2002.

[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard problems.Proc. IEEE Symp. on
Found. of Comp. Sci. (FOCS), pages 538–545, 1995.

[IPS97] Russell Impagliazzo, Ramamohan Paturi, and Michael E. Saks. Size-depth tradeoffs for threshold
circuits. SIAM Journal on Computing, 26(3):693–707, 1997.

[ISW06] Russell Impagliazzo, Ronen Shaltiel, and Avi Wigderson. Reducing the seed length in the Nisan-
Wigderson generator.Combinatorica, 26(6):647–681, 2006.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Derandomizing
the XOR lemma.Proc. ACM Symp. on Theory of Computing (STOC), pages 220–229, 1997.

[IW01] Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomization under a uniform
assumption.Journal of Computer and System Sciences, 63(4):672–688, 2001.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds.Computational Complexity, 13(1-2):1–46, 2004.

[KvM02] Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size proofs un-
less the polynomial-time hierarchy collapses.SIAM Journal on Computing, 31(5):1501–1526, 2002.

[Lip91] Richard J. Lipton. New directions in testing. InDistributed Computing and Cryptography, volume 2
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 191–202. AMS,
1991.

19



[MC87] Pierre McKenzie and Stephen A. Cook. The parallel complexity of Abelian permutation group prob-
lems.SIAM Journal on Computing, 16(5):880–909, 1987.

[MU49] Nick Metropolis and Stanislaw Ulam. The Monte Carlo method.J. Amer. Stat. Assoc., 44:335–341,
1949.

[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complexity.Chicago
Journal of Theoretical Computer Science, (5), 1997.

[MV05] Peter Bro Miltersen and N. V. Vinodchandran. Derandomizing Arthur-Merlin games using hitting
sets.Computational Complexity, 14(3):256–279, 2005.

[Nec66] Eduard Ivanovic Neciporuk. On a Boolean function.Doklady of the Academy of the USSR,
169(4):765–766, 1966.

[Nis91] Noam Nisan. Pseudorandom bits for constant depth circuits.Combinatorica, 11(1):63–70, 1991.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness.Journal of Computer and System Sciences,
49(2):149–167, 1994.

[NW97] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.Compu-
tational Complexity, 6(3):217–234, 1997.

[Raz08] Ran Raz. Elusive functions and lower bounds for arithmetic circuits.Proc. ACM Symp. on Theory of
Computing (STOC), pages 711–720, 2008.

[RY09] Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth multilinear circuits.
Computational Complexity, 18(2):171–207, 2009.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.J. ACM,
27(4):701–717, 1980.

[Sha81] Adi Shamir. On the generation of cryptographically strong pseudo-random sequences.Proc. of Inter-
national Conference on Automata, Languages, and Programming (ICALP), pages 544–550, 1981.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the XOR
lemma.Journal of Computer and System Sciences, 62(2):236–266, 2001.

[SU05] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a new pseudoran-
dom generator.Journal of the ACM, 52(2):172–216, 2005.

[SW01] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of characteristic zero.Com-
putational Complexity, 10(1):1–27, 2001.

[Tur50] Alan M. Turing. Computing machinery and intelligence.Mind, 49:433–460, 1950.

[Uma03] Christopher Umans. Pseudo-random generators for all hardnesses.Journal of Computer and System
Sciences, 67(2):419–440, 2003.

[Vio05] Emanuele Viola. The complexity of constructing pseudorandom generators from hard functions.Com-
putational Complexity, 13(3-4):147–188, 2005.

[vL99] Jacobus H. van Lint.Introduction to Coding Complexity. Springer-Verlag, 1999.

20



[Vol99] Heribert Vollmer. Introduction to Circuit Complexity. Springer, 1999.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract).Proc. IEEE
Symp. on Found. of Comp. Sci. (FOCS), pages 80–91, 1982.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. InEUROSAM ’79: Proceedings of
the International Symposiumon on Symbolic and Algebraic Computation, pages 216–226, 1979.

21

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


