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Abstract

The notion of probabilistic computation dates back at least to Turing, and he also wrestled with the prac-
tical problems of how to implement probabilistic algorithms on machines with, at best, very limited access to
randomness. A more recent line of research, known as derandomization, studies the extent to which random-
ness is superfluous. A recurring theme in the literature on derandomization is that probabilistic algorithms can
be simulated quickly bgleterministicalgorithms, if one can obtaiimpressive(i.e., superpolynomial, or even
nearly-exponential) circuit size lower bounds for certain problems. In contrast to what is needed for deran-
domization, existing lower bounds seem rather pathetic (linear-size lower bounds for general circuits [IM02],
nearly cubic lower bounds for formula size§898], nearly quadratic size lower bounds for branching programs
[Nec66],n'*< for depthd threshold circuits [IPS97]). Here, we present two instances where “pathetic” lower
bounds of the formx'+< would suffice to derandomize interesting classes of probabilistic algorithms.

We show:

e If the word problem overSs requires constant-depth threshold circuits of sizé< for somee > 0,
then any language accepted by uniform polynomial-size probabilistic threshold circuits can be solved in
subexponential time (and more strongly, can be accepted by a uniform family of deterministic constant-
depth threshold circuits of subexponential size.)

e If there are no constant-depth arithmetic circuits of siz&¢ for the problem of multiplying a sequence
of n 3-by-3 matrices, then for every constahtblack-box identity testing for deptti-arithmetic circuits
with bounded individual degree can be performed in subexponential time (and even by a uniform family
of deterministic constant-depth AQircuits of subexponential size).
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1 Introduction

Alan Turing was interested in probabilistic computation, on both practical and theoretical levels. Already in 1950,
he explicitly proposed the notion of extending deterministic computing devices by providing access to a “random
element” [Tur50]. Note that this was roughly contemporaneous with the development of Monte-Carlo methods
[MUA49]. Turing also participated in the development of the Mark | computer project at Manchester University,
and according to some sources [CK80] he pushed for the inclusion of a random noise generator at the machine
instruction level (although this feature was not successful). Thus, from almost the very beginning of the mathe-
matical study of computation, there has been interest in probabilistic computation, as well as an appreciation of the
obstacles that lie in the way of practical implementations of probabilistic algorithms.

One promising avenue for dealing with the scarcity of truly random bits is to show that, in many cases, there is
no reason to use randomness at all. Hardness-based derandomization is one of the success stories of the past quar-
ter century. The main thread of this line of research dates back to the work of Shamir, Yao, and Blum and Micali
[Sha81, Yao82, BM84], and involves showing that, given a suitably hard fungtione can construct pseudoran-
dom generators and hitting-set generators. Much of the progress on this front over the years has involved show-
ing how to weaken the hardness assumptionf@nd still obtain useful derandomizations [BFNW93], [AK97],
[IW97], [IW01], [KvMO2], [ACR99], [ACR98], [ACRT99], [BF99], [MV05], [GW99], [GVWO0O0], [ISWO06],
[STVO01], [SUO5], [Uma03]. In rare instances, it has been possible to obtaianditionalderandomizations using
this framework; Nisan and Wigderson showed that uniform families of probabilistitai€uits can be simulated
by uniform deterministic A€ circuits of sizenloe” ' n [Nis91], [NW94], [Vio05]. More often, the derandomiza-
tions that have been obtained are conditional, and rely on the existence of furfCctiatsare hard on average. For
certain large complexity class€s(notably including#P, PSPACE, and exponential time), various types of ran-
dom self-reducibility and hardness amplification have been employed to show that such hard-on-average functions
f existinC if and only if there is some problem hthat requires large Boolean circuits [BFNW93, IW97].

A more recent thread in the derandomization literature has studied the implicatiarighofeticcircuit lower
bounds for derandomization. Kabanets and Impagliazzo showed that, if the Permanent requirsithangéic
circuits, then the probabilistic algorithm to test if two arithmefarmulae (or more generally, two arithmetic
circuits of polynomial degree) are equivalent can be simulated by a quick deterministic algorithm [KI04]. Sub-
sequently, Dvir, Shpilka, and Yehudayoff built on the techniques of Kabanets and Impagliazzo, to show that if
one could present a multilinear polynomial (such as the permanent) that requiresi dejitimetic formulae of
size2™, then the probabilistic algorithm to test if two arithmetic circuits of depth 5 are equivalent (where in
addition, the variables in these circuits have degree at lgSt") n) can be derandomized to obtairp’as”"
deterministic algorithm for the problem [DSY09].

In this paper, we combine these two threads of derandomization with the recent insight that, in some cases,
extremely modest-sounding (or even “pathetic”) lower bounds can be amplified to obtain superpolynomial bounds
[AK10]. In order to carry out this combination, we need to identify and exploit some special properties of certain
functions in and near NC

e The word problem ovess is one of the standard complete problems for'NBar89]. Many of the most
familiar complete problems for NiChave very efficienstrong downward self-reductio8K10]. We show
that the word problem ove$s, in addition, israndomly self-reducible (This was observed previously by
Goldwasseeet al. [GGH'08].) This enables us to transform a “pathetigdrst-casesize lower bound of
n!t€ on constant-depth threshold circuits, to a superpolynomialasizeage-caséower bound for this class
of circuits. In turn, by making some adjustments to the Nisan-Wigderson generator, this average-case hard
function can be used to give uniform subexponential derandomizations of probabiliSticir€dits.

e Iterated Multiplication of: three-by-three matrices is a multilinear polynomial that is complete for arithmetic
NC! [BOC92]. In the Boolean setting, this function is strongly downward self-reducible via self-reductions
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computable in T€ [AK10]. Here we show that there is a correspondimgthmetic self-reduction; this
enables us to amplify a lower bound of siz&™ for constant-depth arithmetic circuits, to obtain a super-
polynomial lower bound for constant-depth arithmetic circuits. Then, by building on the approach of Dvir
et al. [DSY09], we are able to obtain subexponential derandomizations of the identity testing problem for a
class of constant-depth arithmetic circuits.

The rest of the paper is organized as follows: In Section 2, we give some preliminary definitions and notation.
In Section 3, we show how to convert a modest worst-case hardness assumption to a strong average-case hardness
separation of N€ from TC®. We also present slightly weaker worst-case-to-average-case reductions for L and
for the classes GapL and GapNQn Section 4, we build on Section 3.1 to give a uniform derandomization of
probabilistic TC circuits. Finally, in Section 5 we prove our derandomization of a special case of polynomial
identity testing under a modest hardness assumption.

2 Preliminaries

This paper will mainly discuss NCand its subclass TC The languages in NiCare accepted by families of
circuits of depthO(log n) that are built with fan-in two AND and OR gates, and NOT gates of fan-in one. For any
function s(n), TC?(s(n)) consists of languages that are decided by constant-depth circuit families of size at most
s(n) which contain only unbounded fan-in MAJORITY gates as well as unary NOT gatés=TG,~,TC"(n*).
TCO(SUBEXP) = Ns»oTC(2""). The definitions of AG(s(n)), AC?, and AC (SUBEXP) are similar, although
MAJORITY gates are not allowed, and unbounded fan-in AND and OR gates are used instead.

We allow circuits to accept inputs not only from the Boolean alphdbet}, but from any finite alphabet.
This is done by having-input gates for each € X; ac-input gateg connected to input symbal; evaluates to 1
if z; = o, and evaluates to 0 otherwise.

As is usual in arguments in derandomization based on the hardness of some fiinatéorequire not only that
f not have small circuits in order to be considered “hard”, but furthermore we requiré tiestds large circuits at
everyrelevant input length. This motivates the following definition.

Definition 1 Let A be a language, and léD 4 be the sef{n : ANY™ # ()}. We say thatd € io-TC"(s(n)) if there
is an infinite sef C D 4 and a languageB € TC?(s(n)) such that, for alln € I, A,, = B,, (where, for a language
C, we letC,, denote the set of all strings of lengthin C). Similarly, we definéo-TC to beUy,>io-TC?(n*).

ThusA requires large threshold circuits afi relevant input lengths ift ¢ io-TCV. (A peculiarity of this definition

is that if A is afinite set, or4,, is empty for infinitely manyn, then A ¢ io-TCY. This differs starkly from most
notions of “io” circuit complexity that have been considered, but it allows us to consider “complex sttt

are empty on infinitely many input lengths; the alternative would be to consider artificial variants of the “complex”
sets that we construct, having strings of every length.)

Probabilistic circuits take an input divided into two pieces, the actual input and the random inputs. We say an
input x is accepted by such a circuit with probability p if, with respect to the uniform distributiofy, over the
domainD from which the random inputs are drawRr, i, [C(z,7) = 1] > p. We say that input is rejected
by C with probability p if Pr..y,[C(x,r) = 0] > p. When defining probabilistic complexity classes (such as
probabilistic NC), we restrict the random inputs to come frdiiy 1}*, and we say that a family of probabilistic
circuits C,, acceptsd if, for all x € A,,, C,, acceptse with probability % and for all otherz, C,, rejectsz with
probability 2.

The standard uniformity condition for small complexity classes is cdle@GTIME-uniformity. In order to
provide its proper definition, we need to mention tlect connection languagassociated with a circuit family.



Definition 2 LetC = (C),)»en be a circuit family. The direct connection languabigc of C is the set of all tuples
having either the fornin, p, ¢, b) or (n, p, d), where

e If ¢ = ¢, thenb is the type of gate in C,,;
e If ¢ is the binary encoding o, thenb is thekth input top in C,,.

e The gatep has fan-ind in C,,.

The circuit familyC is DLOGTIME-uniform if there is a deterministic Turing machine that accdpig: in
linear time. For any circuit complexity cla€g uC is its uniform counterpart, consisting of languages that are
accepted bypLOGTIME-uniform circuit families. For more background on circuit complexity, we refer the reader
to the textbook by Vollmer [Vol99]. The term “uniform derandomization” in the title refers to the fact that we are
presenting uniform circuit families that compute derandomized algorithms; this should not be confused with doing
derandomization based on uniform hardness assumptions.

The classes NE GapL, and GapNC&all have complete problems under ACuring reducibility. (See [Vol99]
for definitions of these terms.) All references to “completeness” refer to this notion of reducibility.

A particularly important complete language for Nig the word problem WP fafs, wheresSs is the symmetric
group overs distinct elements [Bar89]. The input to the word problem is a sequence of permutationSsfieomd
it is accepted if and only if the product of the sequence evaluates to the identity permutation. The corresponding
searchproblem FWP is required to output the exact result of the iterated multiplication. A closely rbkitatted
language is BWP, which stands for Balanced Word Problem.

Definition 3 The input toBWP is a pair (w;ws..w,, S), whereVi € [1..n], w; € S5, 5 C S5 and|S| = 60. The
pair (wiws..wy, S) is in BWPIif and only ifII_,w; € S.

It is easy to verify that BWP is complete for N@s well.

In the following sections, let FWPbe the sub-problem of FWP where the domain is restricted to inputs of
lengthn and let BWR, be BWPN {(¢,S) | ¢ € SF', S C S5, |S| = 60}. Note that BWR accepts exactly half of
the instances if(¢, S) | ¢ € SE, S C S5, |S| = 60} since|Ss| = 120.

The following simplified version of Chernoff’s bound turns out to be useful in our application.

Lemma 4 (Chernoff’s bound) Let X, .., X,,, be i.i.d. 0-1 random variables witR[.X;] = p. LetX = X", X;.
Then forany) < § < 1,

62pm

PriX <(1—d)pm]<e 2

3 The existence of an average-case hard language

3.1 Worst-case to Average-case Reduction foNC!

In this section, we use random self-reducibility to show that, it NETC, then there are problems in N@hat
are hard on average for PCFirst we recall the definition of hardness on average for decision problems.

Definition 5 LetUp denote the uniform distribution over all inputs in a finite dom&inFor any Boolean function
f:D —H{0,1}, fis(1—e¢)-hard for a set of circuitsy, if, for everyC' € S, we have thaPr,..u, [f(z) = C(x)] <
1—e.

We will sometimes abuse notation by identifying a set with its characteristic function. For languages to be
considered hard on average, we consider only those input lengths where the language contains some strings.
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Definition 6 Let> be an alphabet. Consider a language= U, L,,, whereL,, = L N X", and letD;, = {n :
L, # (0}. We say thaL is (1 — ¢)-hard for a class of circuit familie§ if Dy, is an infinite set and, for any circuit
family {C,,} in C, there existsng such that for allm € Dy, such thatn > mg, Pryeym[f(z) = Crn(x)] <1 —e.

The following theorem shows that if FW@ io-TC?, then BWP is hard on average for T.C

Theorem 7 There exist constants § > 0 and0 < e < 1 such that for any constant > 0, if FWP, is not
computable by C%(6n(s(n) + cn)) circuits of depth at most + ¢, thenBWP,, is (1 — ¢)-hard for TC? circuits of
sizes(n) and depthd.

Proof. Lete < ﬁ. We prove the contrapositive. Assume there is a cir€uitf sizes(n) and depthi such that
60

Pry[BWP,(z) = C(x)] > 1 — . We first present a probabilistic algorithm for FYWP

Let the input instance for FWfbew;ws . . . w,. Generate a sequencersf1 random permutations, u1, . . ., un
in S5 and a random se&f C Ss of size 60. Letp be the sequenc@ug - wy - u1)(uy " - wa - uz)..(uy by - wy - uy).
Note thatg is a completely random sequenceSh.

Let us say tha is a “good” sequence .S’ C S5 with |S’| = 60, C((¢,S")) = BWP,({¢,S")).

If we have a “good” sequencg (meaning that foreveryset S’ of size 60,C gives the “correct” answer
BWP, (¢, S") on input (¢, S")), then we can easily find the unique valughat is equal tdI" ,¢; where¢; =
w;—1w;u;, as follows:

e If C(¢,S) = 1, then it must be the case that S. Pick any element’ € S5 \ S and observe thatis the
only element such that'(¢, (S \ {r}) U {r'}) = 0.

e If C(¢,S) =0, then it must be the case thatZ S. Pick any element’ € S and observe thatis the only
element such that'(¢, (S\ {r'}) U{r}) = 1.

Thus the correct value can be found by trying all sucH. Hence, if¢ is good, we have
r=1II_1¢; = uowlull_l?:Qu;jlwiui.

Produce as output the valug 'ru; ! = I w; = FWP, (w).

Sincee < ﬁ a standard averaging argument shows that at %aﬁthe sequences ifif' are good. Thus

60
with probability at Ieast%, the probabilistic algorithm computes FWEorrectly. The algorithm can be computed

by a threshold circuit of deptfi+ O(1) since the subroutines relateddocan be invoked in parallel and moreover,

the preparation ap and the aggregation of results of subroutines can be done by constant-depth threshold circuits.
Its size is at most21s(n) + O(n) since there ar@21 calls toC. Next, we putl0*n independent copies together

in parallel and output the majority vote. L&f; be the random variable that the outcome ofihecopy isII?_; w;.

By Lemma 4, on every input the new circuit computes FEW#th probability at least — % Thus there is

a random sequence that can be hardwired in to the circuit, with the property that the resulting circuit gives the
correct output oreveryinput (and in fact, at least half of the random sequences have this property). This yields
a deterministic T€ circuit computing FWR exactly which is of depth at most+ ¢ and of size no more than

(121 - 10%)n(s(n) + cn) for some universal constant Choosings > (121 - 10*) completes the proof. 0

Definition 8 [AK10, Definition 5]Let f : {0,1}* — {0, 1}* be a function. Le(n), m(n) : N'— A be functions
such thatm(n) < n for all n, and letd > 1 be an integer. We sayj, is downward self-reducibléo f,,,,,) by a
pure reduction of depth and sizes(n) if there is a circuit family{C,, },,>1 such that for eacl, C,, computesf,,,

is of depth at mosi and size at mosi(n), and consists of fan-in twWAND and OR gates, unaryNOT gates and
oracle gates that compute functighon inputs of size at most(n). If f is downward self-reducible tg,,. for

somel > ¢ > 0 we will sayf is strongly downward self-reducihble
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The problem FWP is strongly downward self-reducible [AK10, Proposition 3.6].
Theorem 9 [AK10] If there is ay > 0 such thatFWP ¢ io-TC%(n!*7), thenFWP ¢ io-TC".

Proof. We briefly sketch the proof. By [AK10, Proposition 7] FWRs strongly downward self-reducible to
FWP,: by a Dlogtime-uniform pure reduction of depth(1/¢) and sizeO(n). Hence, as observed in [AK10,
Corollary 4.3], for any giveny > 0, an io-TC circuit of polynomial size for FWP can be combined with the
self-reduction for FWP (for a suitably choserto obtain an io-T€ circuit of sizen'*. O

(Theorem 9 is not stated in terms of io-T@ [AK10], but the proof there shows that if there are infinitely
many input lengths: where FWP has circuits of of size®, then there are infinitely many input lengthswhere
FWP has circuits of sizex'*7. The strong downward self-reducibility property allows small circuits for inputs of
sizem to be constructed by efficiently using circuits for size< m as subcomponents.)

Since FWP is equivalent to WP via linear-size reductions on the same input length, the following corollary is
its easy consequence.

Corollary 10 If there is ay > 0 such thatWP ¢ io-TC%(n!'*7), thenFWP ¢ io-TC .

Combining Corollary 10 with Theorem 7 yields the average-case hardness of BWP from nearly-linear-size
worst-case lower bounds for WP against’Tarcuit families.

Corollary 11 There exists a constaat> 0 such that if3y > 0 such thatWP ¢ io-TC®(n!*7), then for anyk and
d there exists:y > 0 such that whem > ng, BWP, is (1 — ¢)-hard for anyTC? circuit of sizen* and depthd.

Define the following Boolean function WPM: S2 x S%° — {0, 1}, where WPN, stands for Word Problem
over Multi-set.

Definition 12 The input toWPM,, is a pair (wjws..wy,,v1v2..v60), WhereVi € [l.n], w; € Sy andVj €
[1..60], v; € Ss. <w1w2..wn,’l)1’l)2..1}60> € WPMif and onIy |fEI] S [1..60], H?lei = ;.

BWHP is the restriction of WPMto the case where ali;s are distinct. Hence, WPM inherits the average-case
hardness of BWP, since any circuit that computes WRkla sufficiently large fraction of inputs also approximates
BWP well. Formally,

Lemma 13 There is an absolute constaiit< ¢ < 1 such that for every > 0, if BWP, is (1 — ¢)-hard for TC"
circuits of sizen* and depthd, thenWPM,, is (1 — ce)-hard for TC circuits of sizen* and depthd.

120
Proof. Letc = (1(26T0()30 Note thatc is the probability that a sequence of 60 permutations contains no duplicates
and is in sorted order. Suppose there is a cir€uwith the property that’r,c gny 560 [C'(z) # WPM(z)] < ce.

Then the conditional probability that(x) # WPM(x) given that the last 60 items ingive a list in sorted order

with no duplicates is at most This yields a circuit having the same size, solving BWP with error at masting

the uniform distribution over its domain, contrary to our assumption. O

Corollary 14 There exists a constaat> 0 such that if3y > 0 such thatWP ¢ io-TC"(n!*7), then for anyk and
d there existsy > 0 such that whem > ng, WPM,, is (1 — ¢)-hard for TC' circuits of sizen* and depth.



Yao’s XOR lemma [Ya082] is a powerful tool to boost average-case hardness. We utilize a specialized version
of the XOR lemma for our purpose. Several proofs of this useful result have been published. For instance, see
the text by Arora and Barak [AB09] for a proof that is based on Impagliazzo’s hardcore lemma [Imp95]. For our
application here, we need a version of the XOR lemma that is slightly different from the statement given by Arora
and Barak. In the statement of the lemma as given by tlgesna function of the forr{0, 1}" — {0, 1}. However,
their proof works for any Boolean functiopndefined over any finite alphabet, because both the hardcore lemma
and its application in the proof of the XOR lemma are insensitive to the encoding of the alphabet. Hence, we state
the XOR Lemma in terms of functions over an alphabets€elhe proof presented in [AB09] yields the following
version of the XOR lemma:

For any Boolean functiog over some domaix”, defineg®™ : ¥ — {0,1} by ¢¥™ (21,22, ..,2m) =
g(x1) ® g(z2) @ .. ® g(x,) Whered represents the parity function.

Lemma 15 [Yao82] Let < € < 1,k € Nandd > 2(1 — €)*. There is a constant > 1 that depends only ofX|
such that ifg is (1 — €)-hard for TC circuits of sizes and depthd, theng®* is (% + 0)-hard for TC? circuits of

size% and depthd — 1.
LetX = S5. The following corollary is an immediate consequence of Corollary 14 and Lemma 15.

Corollary 16 If there is ay > 0 such thatWP ¢ io-TC°(n!*7), then for anyk, &’ andd there exists:; > 0 such
that whenn > ng (WPM,)®" is (5 + #)-hard for TC? circuits of sizen* and depthd.

Let WP® = U,,>1{x | (WPM,)®"(x) = 1}. Note that it is a language iNC' and, moreover, it is decidable
in linear time.

Theorem 17 If there is ay > 0 such thatWP ¢ io-TC®(n!*7), then for any integek > 0, WP? is (

+ —)-hard
for TCY.

1
2

3.2 Worst-case to Average-case Reduction far

Here we show a similar worst-case to average-case connection as in the previous subsection, but for the class L
which contains N&. Just as the word problem WP is complete for'\tbe word problem PWP fa$,, is complete
for L [MC87].

Definition 18 The languageP WP consists of all input§w;, ws ... w,), where eachw; encodes a permutation
over S, andII}_,w; is the identity permutation.

We will use a few different encodings of permutations. Encoding 1 is where the permutation is represented
simply as an ordered list of distinct numbers betweehandn - the interpretation of this list as a permutation
is that if thek'th element in the list isj, thenk maps toj in the permutation. Encoding 2 is less economical
and represents a permutation as an ordered listaflered pairgi, o (7)), wherei ranges froml to n ando is a
permutation onn]. The interpretation here is that thenaps too (i) in the permutatiorr. Here, whether the list
is ordered does not matter - all permutations of the ordered list represent the same permuggtidrmimfact that
eachpair is ordered is of course critical.

Using the fact that Sorting is in TQ(e.g. see [Vol99]), we can convert from Encoding 1 to Encoding 2 or
vice-versa in T€. The conversion from Encoding 1 to Encoding 2 is trivial - simply prefix each number in the
ordered list by its index in the list. To convert from Encoding 2 to Encoding 1, sort using the first element of the
ordered pair as the key, and retain only the second element in the sorted list.



For technical reasons, we will use a third even more verbose encoding - Encoding 3. In Encoding 3, a permu-
tation o is represented as an ordered listnointegers each of which is bits long. The permutation represented
by this list is the identity permutation if there are two elements of the list which are equal, and is otherwise the
permutationos whereo () is the rank of the’'th element in the list, i.e., its index in the sorted order. Note that a
permutation in Encoding 1 can be trivially converted to Encoding 3 by prefixing each element g n zeroes.
To convert from Encoding 3 to Encoding 1 in $Girst check that there are no “collisions” in the list, i.e., a pair
of identical elements. If there is a collision, output the identity permutation - this can be don€inlfdBere
are no collisions, transform the ordered list to an ordered list of ordered pairs formed by pairing each element of
the original list with its index in the list. Sort according to the elements of the original list, but retain only the
corresponding order on the indices. If the list survives the collision check, this yields a permutation in Encoding 1.
Using the fact that the composition of two T@inctions is in T®, we get that we can convert from Encoding
2 to Encoding 3 and vice versa in ¥C
By default, we will consider the third encoding to be in effect. If this is not the case, we will explicitly say so.
For the purpose of studying a worst-case to average-case connection for L,we need a balanced version of the
language PWP.

Definition 19 The languag-BPWPis defined as follows:

BPWP = {(w;,ws...wy,i) | eachw; encodes a permutation i}, w.r.t. Encoding 1 and thé”" bit
of the encoding of [}_, w; is 1}.

We assume a natural Boolean encoding of the inputs, where the only relevant inputs arewdfisizéog n,
with n blocks ofn? bits each representing; . . . w,, according to Encoding 3 and the last block represerititge
assume wlog that is a power of 2 - BPWP remains complete for L with this restriction.

Lemma 20 There is a family{C,,} of randomizedr C° circuits of polynomial size such that for eaehthe output
of C,, is O(n?/2")-close in statistical distance to the uniform distribution oyeto—!), wheres is uniformly
chosen inS,,. Moreover, when considered purely as bit strings, the first and second outpdtsawé O(n?/2")-

close to the uniform distribution.

Proof.

The circuitsC,, are defined as follows. First, numberszy,zs ... z,, with eachz;,1 < i < n beingn bits
long, are generated at random. As per Encoding 3y#tigole of numbers represents a permutatio he identity
permutation is generated with probability at magh! + n2 /2", since the probability of a collision is at most
n?/2". Every other permutation is generated with equal probability, which is at (gast2?/2")1/n!. A simple
computation of the statistical distance yields that the corresponding distribution on permutafi¢ns/i8")-close
to the uniform distribution on permutatioasover [n).

It now remains to show how to generate!. Sort thez-list 1,z ...z, - this can be done in TC Then
converto from Encoding 3 to Encoding 2 in TC Then we include circuitry whicheversesthe order of each
ordered pair in the list, to yield the representationoof' according to Encoding 2. Then implement the’TC
conversion from Encoding 2 to Encoding 1, and finally use the elements of the resulting list as ranks to select
elements from the sortecHlist. We thus derive a representationof! according to Encoding 3 which is itself
a permutation of the representationsoficcording to Encoding 3. The last part of the lemma follows using this
fact and the argument in the previous paragraph on the relative unlikelihood of the identity permutation being
represented. O

Lemma 20 gives us the ability to generate a random permutation and its inverse efficiently. This can be used to
implement a random self-reduction in T@nd hence derive a worst-case to average-case hardness amplification
in L against TC.



Theorem 21 If L ¢ TC, then there is a language inwhich is(1 — 1/n?)-hard for TCY.

Proof. The language for which we show a random self-reduction is BPWP. Assume that BPWRls-ntn?)-
hard for the complexity class PCWe show how to solve BPWP in PGased on this assumption. Since BPWP
is complete for L, this implies that C TC".

Let (wq,ws ... wy, i) be aninput instance for BPWP, where eactrepresents a permutation ovgy accord-
ing to Encoding 3. We generatelog n randomized queries to BPWP such that for each query, the query with the
last co-ordinate omitted i — O(n?/2")-close to the uniform distribution over binary strings. The queries are
generated in T€as follows. Using Lemma 20, generatgandom permutations;, oo, . .., o, and their inverses.
We do not know how to do this exactly, but it suffices to do it approximately as guaranteed by Lemma 20. Form the
permutationssy, s . . . s, Where for eachy,1 < j < n, s; = j‘}leaj, ands; = wyo1. To form these permuta-
tions, convert to Encoding 1 and use the fact that two permutations can be multiplied infE@ represented in
Encoding 1. When converting back to Encoding 3, for eadh< j < n, sort the list of numbers representing
and then use the representation of the permutation in Encoding 1 as ranks to select from the sorted list. Thus for
eachyj, the resulting permutation is exponentially close to a random permutation of the list of numbers representing
oj. Since theo; are all independent, we have that... s, are all independent and exponentially close to the
uniform distribution as bit strings. Now form the querigs, s> . .. sn, k) for eachl < k < nlogn.

Since BPWP is nofl — 1/n?)-hard for TC, the assumption on the distribution of queries implies that the
TC" approximators for BPWP return the correct answers for all queries with probability atlleaglogn)/n,
for large enough. Using the correct answers for all queries, we can reconstiuet . . s,, in Encoding 1. Also,
we know thatwiws ... w, = s183...s,0, . Thus we can reconstruat;ws . .. w, in Encoding 1 with another
multiplication in TG and then obtain it§” bit correctly with high probability. Finally, by a standard amplification
step followed by Adleman'’s trick [AdI78], this probabilistic circuit can be converted to a non-uniform one.

O

3.3 Worst-case to Average-case Reduction f@apLand GapNC

We first consider GapL. Lebeterminant denote the problem of computing the integer determinant. This is

a complete problem for GapL (see, e.g. [MV97]). We show thdddferminant cannot be computed by PC
circuits thenDeterminant is somewhat hard on average for T@rcuits. As TC circuits take Boolean input, we

will encode each integer entry of anx n integer matrix in binary. In order to keep the overall size of this Boolean
input bounded, we will make the simplifying assumption that each entry of am integer matrix instance of
Determinant is at mostn bits long. It is not hard to see that this versionl®fterminant is also complete for
GapL. Since the proof of the next theorem is similar to the standard argument for proving random self-reducibility
of Permanent [Lip91], we omit some low-level details.

Theorem 22 Let M,, denote the set of alt x n matrices where each integer entry has size at moisits! If
there is aTCP circuit computingDeterminant for at least al — % fraction of inputs fromM,, then there is &C°
circuit that compute®eterminant for all inputs fromM,,.

Proof. LetC’ denote the T€circuit that computes the integer determinantifor ni fraction of inputs fromM,,.
Our goal is to construct a TQircuit that computes the integer determinantdweryinput matrix A/ € M,,. For
input M € M,,, we will describe anonadaptivereduction from the problem of computingt()/) to computing
det(M;) for a sequence of random matricks € M,,,1 < i < r where eachl/; is nearly uniformly distributed
in M,,. To this end, pick a random matrit € M,,. This requires:® + n? independent unbiased coin flips to

!Itis necessary to be precise about what it means for an integer entry ta hitge We use two’s-complement notation; thus the entries
come from the sef—2""*,... 2"~ —1}.



pick then? randomn-bit entries ofA along with their signs. Now, consider the polynomiat(M + Azx). This

is a degreer polynomial overZ in the indeterminate. LetS = {1,2,...,n + 1} be distinct interpolating points
and considerlet(M + Ai) for eachi € S. The matrixM + Ai is random. Unfortunately, it is not uniformly
distributed inM,, (indeed, even its support is not contained\ify,). Therefore, we cannot directly use the circuit
C’ to computedet (M + Ai) for all i € S and interpolate the value dkt(M). We shall get around this difficulty
with Chinese remaindering.

By the Hadamard boundlet(M)| < 2" - n! < 4" for all M € M,,. We can pickn? distinct O(log n) bit
primespy, p2, ..., p,2 so that[ [, p; > |det(M)| for eachM € M,,. We note thatlet()) can be reconstructed
from the residueslet(M)(mod p;),1 < i < n? by Chinese remaindering and, moreover, this reconstruction can
be done in Dlogtime-uniform TC[HABO2]. Hence, it suffices to describe a T€ircuit family for computing
det(M)(mod p) for eachM € M,,, wherep is anO(log n) bit prime.

For a matrixA € M,, picked uniformly at random, considelet(M + Ax)(modp). This is a degree:
polynomial inz modulop. We will computedet(M )(mod p) by interpolation. LetS = {1,2,...,n + 1} be the
distinct interpolating points if¥,; in order to ensure that this yields more thapoints in the finite fieldr,, for
each of the primes;, we will pick p; > n+1 for all i. For any fixeds € S, we note that the matrid/ + As(mod p)
is nearly uniformly distributed ovet x n matrices withF,, entries. To see this, consider a randomly picked integer
entry 4;; of the matrixA, whereA;; is at mostn bits long. Then for each € {0,1,...,p — 1} itis easily seen
that

1 1
'; — Pry,,[Aij = a(mod p)]' < o
Hence, an easy calculation shows for any specific matrim F)*"

1

1 S
an 20(n) *

IW — Praem, [M + As = B(mod p)]‘ <
It follows that the statistical distance of the distributionMdf+ As(mod p) overF;*" to the uniform distribution
is bounded b9,

However, as explained above, notice that we cannot directly use the ¢ifdaittomputedet(M + As) since
the entries ofM + As can beO(n + logn) bits long. Neither can we directly use’ to computedet(M +
As)(mod p), because the matri/ + As(modp) has integer entries in the range,1,...,p — 1} and these

matrices are only az%)"g fraction of matrices inM,,. It is possible that the output @f’ is incorrect on all these
matrices. We now describe the solution. Consider the onto mapping

fi My — F*",

defined byf(M) = M (modp). Now, consider the probability distribution ok, defined by first picking a
uniformly distributed random matrix/" < F;;*™ and then picking a uniformly distributed random preimage matrix
M € f=Y(M"). A similar calculation as above shows that this distribution is exponentially-close to uniform. Now,
we briefly sketch how to obtain a (nearly) random preimagef M’. Let2"~! — 1 = g,p + ¢, whereg, and/,

are the quotient and remainder on dividi2fy— 1 by the primep. Similarly, let —27—! = —qpp + £,,. For each
entry z = M;; of the matrix\/’ we uniformly pick a random positive integey; in the range-s), . < r;; < s,
(wheres), , € {q,,q, — 1} ands,, . € {gp,q, — 1}, SO as to guarantee thatt- r; ; is ann-bit integer), and set

Mij = MZ/] + ’I”ijp.

Clearly, the matrixM thus defined is nearly-uniformly distributed ji!(M’) and a T€ circuit can nearly-
randomly sample fronf —*(M").
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Now, for the random matrixd// + As(modp) € F;*" consider its random preimag¥ inf~H(M + As),
fors € {1,2,...,n + 1}. By the above argument, it follows that easfy is statistically close to the uniform
distribution onM,,. Hence, for each € S:

Pr[C’(M,) = det(M,)] > 1 — % _ ﬁ
where the ter% is subtracted in the above bound as it bounds the statistical distan¢godistribution from
the uniform.

Hence with probabilityl — % the circuitC’ correctly computeslet (M) for all s € S. Now, applying the
fact that polynomial interpolation is TGcomputable [HABO2], a TEcircuit can recovetlet(M)(mod p), given
det(M;)(modp) forall s € S.

Putting it together, for each prime we have a randomized PQircuit that computedet (M )(mod p;) with
probability 1 — % Finally, applying Chinese remaindering which is “T€@mputable [HABO2], we obtain a
randomized T€ circuit that computeslet(M) with probability 1 — % As before, the random bits can be fixed

after amplifying the success probability using Adleman'’s trick [AdI78]. O

We now briefly discuss a similar worst-case to average-case reduction for GapheCproblem of computing
the (1, 1)*" entry of the product of. 3 x 3 integer matrices is GapN@omplete [CMTV98]. We show that if this
problem cannot be computed by T@ircuits then it is somewhat hard on average foP B@cuits. As before, since
we consider T€ circuits which take Boolean inputs, we consider inpUtg,, Mo, - - -, M,,) in a smaller sef,,
such that eachi/; is a3 x 3 matrix with integer entries that are at masbits long. This restricted problem is also
easily seen to be GapN@omplete. In order to show the worst-case to average-case reduction we pick a uniform
random instancéA;, A,,---, A,) € Z,, and consider the instan¢@/, + Az, My + Asx,---, M, + A,x) for
indeterminater. Notice that the(1, 1) entry of the matriX [}, (M; + A;z) is a degree: polynomial inz. Now,
exactly along the same lines as the proof of Theorem 22 we can show the following.

Theorem 23 LetZ,, denote all iterated matrix multiplication instancés; , M, - - -, M,,, consisting 0B x 3 integer
matrices)M; whose entries are at mostbits long. If there is & C° circuit computing[ [;* , M; for at leastl — %
inputs My, Ms, - - -, M,, in Z,, then there is & C° circuit that compute§ [, M; for all inputs My, Ma, - - -, M,
inZ,.

4 Uniform derandomization

The Nisan-Wigderson generator is the canonical method to prove the existence of pseudo-random generators based
on hard functions. It relies on the following definition of combinatorial designs.

Definition 24 (Combinatorial Designs) Fix a universe of size.. An (m,[)-design of sizex on [u] is a list of
subsetsSy, s, ..., S, satisfying:

1. Vi € [1.n], |S;| = m;
2. Vi #je[l.n], |S; ﬂSj‘ <.

Nisan and Wigderson [NW94] invented a general approach to construct combinatorial designs for various
ranges of parameters. The proof given by Nisan and Wigderson gives designg wheren, and most applica-
tions have used that value bf For our application] can be considerably smaller, and furthermore, we need the
S;'s to be very efficiently computable. For completeness, we present the details here. (Other variants of the Nisan-
Wigderson construction have been developed for different settings; we refer the reader to one such construction by
Viola [Vio05], as well as to a survey of related work [Vio05, Remark 5.3].)
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Lemma 25 [vL99] For [ > 0, the polynomialz>3' + 23 + 1 is irreducible overFs[z].

Lemma 26 [NW94] For any integer, anya such thafloglogn/logn < a < 1, leth = [a~1] andm = [n%],
there is a(m, b)-design withu = O(m®). Furthermore, eacl,; can be computed withi@(bm?) time.

Proof. Fix ¢ = 223" for somel such thatn < g < m3. Let the universe for the combinatorial design construction
belF, x IF,. Letp;.ps,...,p, be the lexicographically first univariate polynomials of degree at méstverF,,
and letS; = {(a,pi(a)) | a € F,} be the graph of the polynomia}. Sinceq® > (n®)® > n, there are at least
such distinct polynomialg; and hence such sets. No two polynomials share more thampoints which implies
the second condition of Definition 24. The first condition holds because we could simply drop elements from any
S; without increasing the size of intersections.

The arithmetic operations ifi, are performed ifog™""’ ¢ time because of the explicitness of the irreducible
polynomial given by Lemma 25. It is evident that for ang [r]|, we can enumerate all elements%fin time
O(m - b(log®WM ¢)) = O(bm?). O

o)

Lemma 27 For any constanty > 0 and for any large enough integer, if g is (% + #)-hard for TC? circuits of
sizen? and depthd + 2, then any probabilisticTC° circuit C' of sizen and depthd can be simulated by another
probabilistic TCY circuit of sizeO(n!**) and depthd + 1 which is given oracle access 1,.7 and uses at most
O(n%) many random bits.

Proof. This is a direct consequence of Lemma 26; we adapt the traditional Nisan-Wigderson argument to the
setting of TC® circuits. Letn anda be given, with) < o < 1. Let Sy, ..., .S, be the(m, b)-design from Lemma
26, wherem = [n], b = [a~!], and eachS; C [u], with u = O(mS%). We are giverny : ¥ — {0,1};
definehd : ¥* — {0,1}" by h9(z) = g(z|s,)9(x|s,)..9(z|s, ), wherez|g, is the sub-sequence restricted to the
coordinates specified bY;.

The new circuit samples randomness uniformly frafhand feeds” with pseudo-random bits generated by
h9 instead of purely random bits. It only has one more extra layer of oracle gates and its size is bounded by
O(n +n-n®) = O(n'T®). What is left is to prove the following claim.

Claim 28 For any constant > 0, |Prye(,1}[C(7) = 1] — Pryes«[C(h(y)) = 1]| <.

Proof. Suppose there existssuch tha Pr,c (o 13- [C(z) = 1] — Pryes«[C(R9(y)) = 1]| > e. We will seek a
contradiction to the hardness g@¥ia a hybrid argument.

Samplez uniformly from X% andr uniformly from {0, 1}". Create a sequence of+ 1 distributions H; on
{0,1}"™ where

e Hy=r;
® 1y = hg(z);
e V1<i<n-—1, H =h9(2)1h9(2)2... h9(2)iTit1 - - Tn.

By our assumption|X%_, (Pry~p, ,[C(z) =
|Pracs, ,[C(x) = 1] = Prowpg,[C(z) = 1]| > £.
AssumePr, .y, [C(x) = 1] — Pryon, ,[C(x) = 1] > +, otherwise add a not gate at the top(gfand treat
the new circuit ag” instead.
Consider the following probabilistic TCcircuit C’ for the functiong. On inputz, the circuitC’ samples:
uniformly from X* andr uniformly from {0, 1}" and replaces the substringls, of = (i.e. the substring whose
coordinates are indexed I8) with the input stringz. Then the circuitC” samples a random bit € {0,1}. If

[C(x) = 1])| > e. Thereforedi € [n] such that
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C(h9(2)1...h9(2)i—1briy1...m,) = 1, C' outputsb, otherwise, it outputd — b. For an input stringe € ™
picked uniformly at random we now lower bound the probability thatomputes the function.

Let y denote the random string’(z); ...h9(2);—1bri+1 ..., Which is the distributionH;_,. Further, let
pi—1 = Pry~m, ,[C(y) = 1] andp; = Pr,~ g, [C(w) = 1]. In the following expressions all probabilities are over
uniformly picked strings: € ¥™, z € ¥* andr € {0, 1}".

Pr(C'(z) = g(x)] =
= Pr[C'(z)=b A b=g(x)]+ Pr[C'(z) #b A b# g()]

= Pr[Cy) =1 Ab=g(@)]+PrlCly) =0 A b#g(z)]

= L lpcw) =016 £ g()]

oPi Ty
L1
- QT TR

wherea = Pr[C(y) = 1| b # g(x)]. Observe that

pi-1 =Pr[C(y) =1] = Pr[C(y) =1Ag(z) =b]+Pr[C(y) = 1 A g(z) # U]
11

Substituting above for above we get

1 1 €
Pro,[C'(2) = g(2)] = 5 +pi —pis1 2 5+ .

By an averaging argument we can fixr andb and hardwire inta@”’ to get a new circuiC” such that

Pryosm[C"(z) = g(x)] > = +

N | —
S|

Note that in this cas®l < k < i — 1, h9(z) is function on inputz|s, ns,. Sincevk # i, |S; NSk < b,
we only need a TCcircuit of size at mos2®®) and of depth at most to compute eachd(z);. In conclusion,
we obtain a T€ circuit C"” of size at most2°®) 4 1)n and of depth at most + 2 such thatPr,cxm [C" () =
g(z)] = 3 + £ > § + -5 whenn is large enough, which is a contradiction. O

O

The simulation in Lemma 27 is quite uniform, thus, plugging in appropriate segmentstof¥ur candidates
for the hard functiory, we derive our first main result.

Theorem 29 If WP is not infinitely often computed ByC°(n!*7) circuit families for some constant > 0, then
any language accepted by polynomial-size probabilistic unifé@f circuit family is inuTC°(SUBEXP).

Proof. Fix any small constand > 0. Let L be a language accepted by some probabilistic uniforrf dicuit
family of size at most* and of depth at most for some constants, d.

Choosem such thatn s <m < ng, and leta be such thatn = n®. By Theorem 17, whem: is large
enough, W% is (% + #)-hard for TC® circuits of sizen?* and depthd + ¢, wherec is any constant. Hence,
as a consequence of Lemma 27, we obtain a probabilistic oradlecif€uit for L,, of depthd + 1. Since the
computation only need9(m5%) random bits, it can be turned into a deterministic oraclé@ @i@uit of depthd + 2
and of size at mosP(n2t) - 200m*) < 20(") (whenn is large enough), where we evaluate the previous circuit
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on every possible random string and add an extra MAJORITY gate at the top. The oracle gates all have fan-in
m < n%/6, and thus can be replaced by DNF circuits of 26""), yielding a deterministic TEcircuit of size
20(n°) and depthi + 3.

We need to show that this construction is uniform, so that the direct connection language can be recognized in
time O(n%). The analysis consists of three parts.

e The connectivity between the top gate and the output gate of individual copies is obviously computable in
timem® < nd.

e The connectivity inside individual copiesBL.OGTIME-uniform, hencen?-uniform.

e By Lemma 26 eacl$; is computable in time(bm?) which isO(m?) sinceb is a constant only depending
on . Moreover, notice that WP is a linear-time decidable language. Therefore, the DNF expression
corresponding to each oracle gate can be computed withinGime?) < n?.

In conclusion, the above construction produces a uniforrfl Fi@uit of size20""). Sinces is arbitrarily
chosen, our statement holds. O

5 Consequences of pathetic arithmetic circuit lower bounds

In this section we show that a pathetic lower bound assumptioarfitimetic circuitsyields a uniform derandom-
ization of a special case of polynomial identity testing (introduced and studied byeDalir[DSY09]).

The explicit polynomial that we consider §MM ,, },,~o, where IMM, is the(1, 1)** entry of the product of
3 x 3 matrices whose entries are all distinct indeterminates. Notice that,|idlsl degree: multilinear polynomial
in 9n indeterminates, and IMlylcan be considered as a polynomial over any field

Arithmetic circuits computing a polynomial in the rifijx;, zo, .. ., x,,] are directed acyclic graphs with the
indegree zero nodes (the inputs nodes) labeled by either a variabtea scalar constant. Each internal node is
either a+ gate or ax gate, and the circuttomputeghe polynomial that is naturally computed at the output gate.
The circuit is aformulaif the fanout of each gate is

Before going further, we pause to clarify a point of possible confusion. There is another way that an arithmetic
circuit C' can be said to compute a given polynomfék, zo, . . ., x,,) over a fieldF; even ifC does not compute
f in the sense described in the preceding paragraph, it can still be the case that for alligcaldfsve have
flay,...,a,) = C(ay,...,a,). In this case, we say that functionallycomputesf overF. If the field size is
larger than the syntactic degree of ciratiiand the degree of, then the two notions coincide. Assuming tifas
not functionally computed by a class of circuits issiongerassumption than assuming thats not computed by
a class of circuits (in the usual sense). In our work in this paper, we use the weaker intractability assumption.

An oracle arithmetic circuit is one that hawacle gates: For a given sequence of polynomidls= {A,,} as
oracle, an oracle gate of fan-inin the circuit evaluates the-variate polynomiald,, on the values carried by its
input wires. An oracle arithmetic circuit is callgudire (following [AK10]) if all non-oracle gates are of bounded
fan-in. (Note that this use of the term “pure” is unrelated to the “pure” arithmetic circuits defined by Nisan and
Wigderson [NW97].)

The class of polynomials computed by polynomial-size arithmetic formulas is known as arithmétidByC
[BOC92] the polynomial IMM, is complete for this class. Whether IM)Vhas polynomial sizeonstant-depth
arithmetic circuits is a long-standing open problem in the area of arithmetic circuits [NW97]. In this context, the
known lower bound result is that IMMrequires exponential size multilinear depth-3 circuits [NW97].

Very little is known about lower bounds for general constant-depth arithmetic circuits, compared to what is
known about constant-depth Boolean circuits. Exponential lower bounds for depth-3 arithmetic circuits over fi-
nite fields were shown in [GK98] and [GR00]. On the other hand, for depth-3 arithmetic circuits over fields of
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characteristic zero only quadratic lower bounds are known [SWO01]. However, it is shown in [RY09] that the deter-
minant and the permanent require exponential siaétilinear constant-depth arithmetic circuits. More details on
the current status of arithmetic circuit lower bounds can be found in Raz’s paper [Raz08, Section 1.3].

Definition 30 We say that a sequence of polynomigls },,~o in Flz1, xo, ..., x,] is (s(n), m(n), d)-downward
self-reducible if there is a pure oracle arithmetic circdi, of depthO(d) and withO(s(n)) many oracle gates
that computes the polynomig), using oracle gates only fgs,,/, for m’ < m(n).

Analogous to [AK10, Proposition 7], we can easily observe the following. It is a direct divide and conquer
argument using the iterated product structure.

Lemma 31 For eachl > ¢ > 0 the polynomial sequendgMM,, } is (n'~¢, n¢, 1/¢)-downward self-reducible.

An easy argument, analogous to the proof sketch given for Theorem 9, shows that Lemma 31 allows for the
amplification of weak lower bounds f¢tMM ,, } against arithmetic circuits of constant depth.

Theorem 32 Suppose there is a constant> 0 such that for alld and everyn, the polynomial sequendgMM,, }
requires depth# arithmetic circuits of size at least'+°. Then, for any constant depththe sequencélMM,,} is
not computable by depti-arithmetic circuits of size.* for any constant > 0.

Our goal is to apply Theorem 32 to derandomize a special case of polynomial identity testing (first studied in
[DSY09]). To this end we restate a result of Dvir et. al [DSY09].

Theorem 33 (Theorem 4 in [DSYO09])Letn, s, r, m, t, d be integers such that> n. LetF be a field which has at
least2mt elements. LeP(x,y) € Flz1,...,z,,y] be a non-zero polynomial witteg(P) < t anddeg, (P) < r
such thatP has an arithmetic circuit of sizeand depthd overF. Let f(x) € F[z,...,x,] be a polynomial with
deg(f) = m such thatP(z, f(z)) = 0. Thenf(x) can be computed by a circuit of size = poly(s, m") and
depthd’ = d + O(1) overF.

Let the underlying field be large enough(, for instance). The following lemma is a variant of Lemma 4.1
in [DSY09]. For completeness, we provide its proof here.

Lemma 34 (Variant of Lemma 4.1 in [DSY09]) Letn, r, s be integers and lef € F[xy, z2, ..., z,] be anonzero
polynomial with individual degrees at mastthat is computed by an arithmetic circuit of size> n and depth
d. Letm = [n®] wherea > 0 is an arbitrary constant. Leb;,Ss,...,S, be the sets of thém, b)-design
constructed in Lemma 26 whdre= (%1. Letp € F[z,..., 2] be a multilinear polynomial with the property that

F(y) = F(y1,92,- -, 9a) = f(Wls,), - p(yls,)) =0 @

Then there exists absolute constamtnd & such thatp(z) is computable by an arithmetic circuit ov&rwith
size bounded b@((sm™)*) and having deptld + k.

Proof. Consider the following set of hybrid polynomials:

Fo(z,y) = flx1,me,...,2p)
Fl(xvy) = f(p(y|51),x2,...,xn)
Falwy) = Fls),.p0ls,)

The assumption implies thdf, # 0 while F,, = 0. Hence, there exist$ < i < n such thatF; # 0 and
F,y1 = 0. Notice thatF; is a nonzero polynomial in the variablgs; | i + 1 < j < n} and the variables
{yj |j€S1USU---US;}.

We recall the well-known Schwartz-Zippel lemma.
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Lemma 35 (Schwartz-Zippel) [Sch80, Zip79)LetF be a field and lef € F[z4, ..., z,] be a non-zero polynomial
with total degree at most Then for any finite subsét C F we have

[{ees" : flo=0} <r-|s|" )

Sincedeg(F;) < nrm, then if we assume th@ithas size more thamrm, Lemma 35 assures that we can assign
values from the field to the variablez; | i + 1 < j < n} and the variable$y; | j ¢ S;11} so thatF; remains
a nonzero polynomial in the remaining variables. More precisely, fixing these variables to scalar values yields a
polynomial f with the property that

f~(Q1(y‘SlﬂSi+1)v"' vQ1(y’5iﬂSi+1)7xi+1) 0

f(ql(y‘51ﬂsi+1)7 cee 7Q1(y|S¢ﬂSi+1)vp(y|Si+1)) 0
whereq;(y|s;ns;.,) is the polynomial obtained from;(y|s;) after fixing the variables it%; \ S; 1.
Rename the variablgg); | j € Si+1} with {z; | 1 < j < m} and replacer;; by w. We obtain a polynomial
g with the property that

e

9(z1, ..y Zm,w) 0
921,y 2my, P(Z1, - -y Zm) 0

In order to apply Theorem 33, the only thing that remains is to calculate the circuit complexityvgf #
i+ 1, |S; N Si11| < b which is a constant. Notice that, for eagh< i, the polynomialg;(y|s,ns,,,) depends
only on a constant (bounded By number of variables and is of constant degree sz multilinear. Hence
each polynomialy; (y|s;ns.,,) is @ sum of at mos2® many multilinear monomials and can be computed 12 a
size arithmetic circuit of depth. Therefore, under the assumption tlfatas a circuit of size and depthi, g is
computable by a circuit of size+ O(n) and depthl + 2 which is a composition of the aforementioned circuits. It
is important to note thateg,,(g) = deg,, ,(f) <.

Now we can use Theorem 33 to obtain thét) has a circuit of deptid + £ and size at mostsm™)*, for some
constant. This concludes the proof. O

IS

At this point we describe our deterministic black-box identity testing algorithm for constant-depth arithmetic
circuits of polynomial size and bounded individual degree.rl et u, o be the parameters as in Lemma 26. Given
such a circuitC over variables{z; | i € [n]} of sizes = n!, depthd and individual degree, we simply replace
; with IMM (y|S;) wherey is a new set of variablegy; | j € [u]}. Let C[yi,...,y.] denote the polynomial
computed by the new circuit.

Notice that the total degree 6f is bounded by.© wherec is a constant depending on the combinatorial design
andr. Let R C F be any set of.¢ + 1 distinct points. Then by Lemma 35 the polynomial computed’bis
identically zero if and only iC (a1, as, . . . , a,) = 0 for all (a1,az,...,a,) € R™

This gives us the claimed algorithm. Its running time is bounde®ky:© + 1)*) = O(2"'""). Sincea can be
chosen to be arbitrarily small, we have shown that this identity testing problem is in deterministic sub-exponential
time. The correctness of the algorithm follows from the next lemma.

Lemma 36 If for every constant!’ > 0, the polynomial sequencgMM,, } is not computable by depti-arith-
metic circuits of sizex’ for any/ > 0, thenClz1, ..., x,] = 0ifand only ifC[y1, . .., y.] = 0.

Proof. The only-if part is easy to see. Let us focus on the if part. Suppose it is not the case, which means that

Clyi,.--,yu] = 0 butClzy,...,z,] # 0. Then letC|xy,...,z,] play the role off[zy,...,z,] iIn Lemma 34

and let IMM[zq, ..., z,,] take the place op|z1, ..., z,]. Therefore, IMMz, ..., z,] is computable by a circuit
of depthd + k and size at mostn'm”)* = m®®), wherek is the constant in Lemma 34 amd is the size ofC.
This contradicts the hardness assumption addaMm ,, }. O

Putting it together, we get the following result.
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Theorem 37 If there exists) > 0 such that for any constant > 0, IMM requires depthe arithmetic circuits of
size at leask' 9, then the black-box identity testing problem for constant-depth arithmetic circuits of polynomial
size and bounded individual degree is in deterministic sub-exponential time.

Next, we notice that the above upper bound can be sharpened considerably. The algorithm simply takes the
OR over subexponentially-many evaluations of an arithmetic circuit; if any of the evaluations does not evaluate to
zero, then we know that the expressions are not equivalent; otherwise they are. Note that evaluating an arithmetic
circuit can be accomplished in logspace. (When evaluating a circuit@ythis is shown in [HABO2, Corollary
6.8]; the argument for other fields is similar, using standard results about the complexity of field arithmetic.) Note
also that every language computable in logspace hasoCuits of subexponential size. (This appears to have
been observed first by Gutfreund and Viola [GV04]; see also [AHE] for a proof.) This yields the following
uniform derandomization result.

Theorem 38 If there are no constant-depth arithmetic circuits of size* for the polynomial sequendgMM,, },
then for every constart, black-box identity testing for deptharithmetic circuits with bounded individual degree
can be performed by a uniform family of constant-ded@? circuits of subexponential size.

We call attention to an interesting difference between Theorems 29 and 38. In Theorem 38, in order to solve
the identity testing problem with uniform AQircuits of size2”* for smaller and smallet, the depth of the A&
circuits increases asdecreases. In contrast, in order to obtain a deterministic threshold circuit o?’Size
simulate a given probabilistic TCalgorithm, the argument that we present in the proof of Theorem 29 gives a
circuit whose depth is not affected by the choice.ofVe do not know if a similar improvement of Theorem 38 is
possible, but we observe here that the depth need not deperniflwe use threshold circuits for the identity test.

Theorem 39 If there are no constant-depth arithmetic circuits of size for the polynomial sequendgMM,, },
then there is a constantsuch that, for every constadtand everyy > 0, black-box identity testing for depth-
arithmetic circuits with bounded individual degree can be performed by a uniform family of depththreshold
circuits of size2™".

Proof. We provide only a sketch. Choose< /14, wherea is the constant from the discussion in the paragraph
before Lemma 36. Thus, our identity testing algorithm will evaluate a dégttithmetic circuitC'(z, ..., x,)

at fewer than2n”’” points ¥ = (vy,...,v,), Where eachy; is obtained by computing an instance of IMM
consisting ofn® 3-by-3 matrices, whose entries without loss of generality have representations having length at
mostn®. Thus these instances of IMM have DNF representations of %i#&*). These DNF representations

are uniform, since the direct connection language can be evaluated by computing, for a given input assignment to
IMM ,,«, the product of the matrices represented by that assignment, which takes time atbst log(Q”W).
Evaluating the circuit” on can be done in uniform TAADOO, HABO2]. O
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