Electronic Colloquium on Computational Complexity, Report No. 70 (2010)

Symmetry Coincides with Nondeterminism for
Time-Bounded Auxiliary Pushdown Automata’

Eric Allender Klaus-brn Lange
Department of Computer Science Wilhelm-Schickard Institutif Informatik
Rutgers University Universitt Tubingen
New Brunswick, NJ 08855, USA D-72076 Tbingen, Germany
Email: allender@cs.rutgers.edu Email: lange @informatik.uni-tuebingen.de

Abstract—We show that every language accepted by a us briefly review some of the most important results that
nondeterministic auxiliary pushdown automaton in polynomial motivate interest in these classes.
time (that is, every language inSAC' = Log(CFL) can be Log(CFL) was defined by Sudborough [24] to be the
accepted by a symmetric auxiliary pushdown automaton in .
polynomial time. class of problems Iogspace—reduuble_ to_ context-free lan-
. . - guages. Venkateswaran [26] gave a circuit-based character-
KeywordsSymmetric Computation, Auxiliary Pushdown Au- ization of Log(CFL); Log(CFL) coincides with SAE the
tomata, LogCFL, Reversible Computation ' . . “ .
class of problems computable by polynomial-sized “semi-
unbounded” circuits of logarithmic depth, where a circuit is
said to be “semiunbounded” if the AND gates have bounded
Most of the fundamental questions in complexity theoryfan-in and the OR gates have no restriction on the fan-
hinge on the relationship between deterministic and nonden. Borodin et al. showed that Log(CFL) is closed under
terministic computation. The intermediate notiorsginmet-  complement [5]. One of the contributions of Sudborough’s
ric computation was introduced by Lewis and Papadimitriouoriginal paper on Log(CFL) was to give an automata-
[18] primarily as a tool to characterize the complexity theoretic characterization of Log(CFL), as the class of
of the graph accessibility problem for undirected graphsjanguages recognized by logspace-bounded nondeterministic
they showed that this problem is complete for Symmetricauxiliary pushdown automatdnat run in polynomial time.
Logspacé (SL). The question of the relationship between An auxiliary pushdown automatois a (deterministic
SL and deterministic logspace (L) was finally answered byor nondeterministic) logspace-bounded Turing machine,
Reingold [20], who showed that Sk L. that also has a pushdown store that is not subject to the
In contrast to the situation with space-bounded computaspace bound. (In this paper, we only consider auxiliary
tion, where symmetric computation coincides with determinpushdown automata that are logspace-bounded; thus our
ism, in the case of time bounded computation symmetry isotation will not mention the space bound explicitly.)
as powerful as unrestricted nondeterminism ([18]). Briefly,Deterministic and nondeterministic auxiliary pushdown
this is because if there is no space restriction a machinautomata were introduced by Cook [7], who showed
can keep track of the entire sequence of nondeterminighat these automata recognize precisely the languages
tic choices, which makes the computation graph tree-likein P, when no restriction is placed on the runninq time
Hence, walking “backwards” along edges in the computatiorjequivalently, when the running time is bounded?lﬁi/)(1 )
graph does not introduce new (erroneous) paths from theéwe use the following notation to express this equality:=
start configuration to an accepting state. DAUXPDA-TIME <2n0“>) — NAUxPDA-TIME (gno(”)_)
In this paper, we consider the role of symmetry in a”OtherSummarizing, we have:
setting that highlights the potential difference in power
between deterministic gn_d .nondeterministic computation: Proposition 1: [24], [26]
Log(CFL) (a nondeterministic class) and Log(DCFL) (the
corresponding deterministic class). Our main result is that ~ NAuxPDA-TIME (n®()) = Log(CFL) = SAC*.
symmetry and nondeterminism coincide in this setting. Let
The class Log(DCFL) (the class of problems reducible to
1To appear in Proc. IEEE Conference on Computational Complexitydeterministiccontext-free languages) was also defined by
(CCC) 2010. Sudborough [24], who showe®AuxPDA-TIME (n®M)

20bserve that this holds true for the pure reachability problem only. The_ Log(DCFL). Subsequently, Log(DCFL) was studied by

shortest path problem for undirected graphs is complete for nondetermin= .
istic logspace (NL)! (See, e.g., [25].) Dymond and Ruzzo, who showed that Log(DCFL) consists
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precisely of the problems solvable in logarithmic time uniquely determines what configuration the AuxPDA was in
on a CROW-PRAM [10]. Cook showed that deterministic when the segment began (so that this segment corresponds
context-free languages can be recognized in polynomido a bijective function on inputs of lengtihh computable in

time by machines usinqj)(log2 n) space, and thus lie in lengthm, wherem = logn is the size of the worktape), it

the class SE[9]. Summarizing, we have: follows that the AuxPDA can be programmed so that this
segment is actually reversible. Thus if we add “backward”
Proposition 2: [24], [10], [9] moves to the AuxPDA to make it symmetric, the only addi-
tional computations that arise from the original deterministic
DAuXPDA-TIME (n°) = CROW — TIME(logn) segment are computations that correspond to running the
= Log(DCFL)C SC. segment backward.

o . _ _ Of course, there will be occasions when our AuxPDA

Symmetry is just one of several intermediate notionsyill have to move its input head (or use its stack), and
between deterministic and nondeterministic computation thatheorem 3 does not directly allow us to conclude that
have received attention. Two other such notions @me  certain simple deterministic computations can be carried
ambiguity and randomness Unambiguous AuxPDAs, by out reversibly. Thus we appeal to the following proposition.
definition, never have more than one accepting computa-
tion path on any input. It is known that, if there is any  proposition 4: The following computations can be per-
problem in Dspade:) that requires circuits of exponential formed deterministically and reversibly:
size, then every problem ".‘ L(_)g(CFL) is_ac_cepted by an « Start with the input head on the leftmost symbol and
unamb|gyous AUXPDA running n polynomial tlme [3] (gnd, the worktape blank, and end with the input head on the
unconditionally, every problem in Log(CFL) is reducible leftmost symbol and the length of the input recorded
via nonuniform projections to a language accepted by an in binary on the worktape
unambigL_Jous AUXPDA running in polynomial time [21_])' In « Start with the input head on the leftmost symbol and
contrast, if we require that an AuxPDA harenyaccepting a number;j on the worktape, and end with the input

patgs t;fl'ltt'his ag;l:/) :t aI.It,hthen V‘.’g grrlve ai/thek r:otlon of head on the leftmost symbol and the pgira) on the
probabilistic Aux s with one-sided error. Venkateswaran worktape, where: is the jth input symbol.

studied such machines (even in the more powerful two-sided Start with a stringy on a worktape, and end with

error model), and argues that all languages accepted by such’ .
machines lie in S&[28]. Thus it would be a significant Eums;tf/d onto the stack with that part of the worktape

advance if, say, such machines could be shown to recognize | ot with a blank section of worktape of lengttand

all problems in NL. a stringyz on the stack whergy| = r, and end withy

hAlonghs|m||;r 'Imefc,rthctjere has been SOIm_e spefculatlon in that section of the worktape and popped off of the
that perhaps Reingold's deterministic simulation of space- g (<o that the stack holdy:

bounded symmetric computation could be extended to the
model of auxiliary pushdown automata [12]. As a conse- : hat. by Th here is a d L
quence of our results, any such extension would constitute a _ Fr°f: Note that, by Theorem 3, there is a deterministic

significant advance in our understanding of the complexity"m_d reversible computation .that starts ,With a numper i
of not only NL, but of Log(CFL) as well. written on the worktape, and increments it (or decrements it

We also need to make use of some of the propertie nd sets a bit if the number is zero). Thus, in order to prove
of reversible computation. Reversibility is a restriction the f|r_st ltem In Proposm(_)n 4, it suffices to ot_Jse.rve t_hat“tr:e
of both deterministic and symmetric computation. AfoIIowmg routine can be implemented reversibly: erte 0
Turing machinelM is reversibleif its configuration graph on the blank worktape, and then repeat the following steps

has indegree and outdegree at most one. The foIIowin{:jIntII the input head scans the right endmarker:
theorem of Lange, McKenzie, and Tapp will be useful for us: 1) Move the input head to the right, and
2) Increment the counter on the worktape.
Theorem 3:[16] When the loop is exited, move the input head back to the
Any bijective function computable in space equal to theleft end of the tape.
input size is computable in the same space bound by a The second item in the proposition is proved with very
reversible machine. similar techniques.
For the third item, consider a machine with states
Thus, when we build an AuxPDA that carries out a par-gpush, gmove, ¢return, andg, for each symbok. A sequence
ticular segment of its computatiateterministicallywithout ~ of moves that starts the process of pushing the buffer onto
moving its input head or using the pushdown store, in suclthe stack starts in statg,sn. In stategyush, if the machine
a way that the configuration at the end of the segmenscans a worktape symbal other than the end-of-buffer



marker, it enters state, and replaces the with a blank  entire push (pop) is completed, or else the operation is run
symbol. (If it scans the end-of-buffer marker, it enters stateback to the start, as if it had never been begun). In order
Greturn - to simplify the definitions, we assume that the computation

In stateq,, it replaces a blank on top of the stack with an begins withlog n space marked off on the worktape and the
a, and moves ta,ove. (The only “backward” move from buffer (with endmarkers) and we assume that the read-only
stateq, is to change a blank on the worktape to @amnd input tape also has endmarkers, and the bottom of the stack
move to stateypush.) is marked.

In statequnove, it Moves the worktape head to the right, A configuration C' of an AuxPDA encodes complete
and moves to state, ... (The only “backward” move from information about the state of the machine at a given point in
stateqgmove IS t0 pop some symbat off of the stack, and a computation (including positions of all heads, contents of
move to statey,. At this point, we can also see that the only all tapes, buffers, and pushdowns), and as usual w@&Hd?
“backward” move fromy,,s, iS to move the worktape head denote the relation on configurations where the machine can
to the left, and move to statg,ove.) start in configurationC' and move in one step to configu-

In stateq.turn, the machine moves the worktape head toration D. A subset of the states is labeled as “accepting”,
the left end of the buffer. (The only “backward” moves take and we say that the machirmeceptsan input if there is a
the machine back to the right end of the buffer, where itcomputation path starting from the initial configuration and

enters stat@pysn.) reaching an accepting state. With symmetric machines, it is
The fourth and final item in this proposition is proved impossible to require that computations halt, and thus we use
with very similar techniques. m the convention that a symmetric AuxPDA runs in ti{@)

Having established that nondeterminism and symmetryf, for every inputxz of lengthn, if there is any accepting
coincide for polynomial-time bounded AuxPDAs, and re- computation path at all on input then there is an accepting
calling from Theorem 3 that reversibility coincides with computation path of length at mo&in).
determinism for space-bounded computation, and recalling Definition 5: Let SymAuxPDA-TIME (no(l)) denote
the role that reversibility played in the proof of Theoremthe class of languages accepted by symmetric logspace-
6, it is natural to wonder about the computational powerbounded AuxPDAs that run for polynomial time.
of reversible AuxPDAs. We are not able to settle this
guestion, but in Section IV we summarize what we are able
to establish about the power of reversible AuxPDAs, and In this section we show that every language in SAE
present some open questions. accepted by some symmetric auxiliary pushdown automaton
in polynomial time. Thus, by Proposition 1, this establishes
our main theorem:

Il. M AIN RESULT

Il. PRELIMINARIES AND OVERVIEW

Lewis and Papadimitriou ([18]) introduced the concept of
symmetric computation. A nondeterministic Turing machine
is symmetric if, for any configuration§' and D, we have  NAuxPDA-TIME (nO(l)) = SymAuxPDA-TIME (nO(l)),
that C+D if and only if D-C.

In order to describe the symmetric algorithms that we  Proof: Let L be a language in Log(CFL)}- SAC'.
present, we will use the following approach. First, we will ThusL is accepted by a logspace-uniform family of circuits
present a nondeterministic (non-symmetric) AuxPDA that{Cn}, where without loss of generality we may assume the
clearly accepts a given language. The AuxPDA will befollowing:
designed using some conventions that allow us to reason « The gates of the circuiC,, are partitioned into lev-

Theorem 6:

clearly about its behavior. Then, we will “symmetrize” the els £y, L1, ..., L), Where the depth of the circuit is

AuxPDA, by introducing new moves, so that (f-D we d(n) = O(logn).

ensure that als®-C, and we will argue that this will not « The input level{y of the circuit C,, consists of input

change the language that is accepted. gates that are connected either to input symhglsr
Here are the conventions that we will follow, in our to negated input symbolg;, 1 < i < n. The wires that

AuxPDA algorithms: The logspace-bounded worktape will lead out of the input gates feed into AND gates at level

have two sections: a storage area, and a buffer. The buffer 1.

is used to push and pop items to and from the pushdown « If i > 0 is even, then all of the gates in lewglare OR
store; data will be pushed and popped in units of length gates. Ifi is odd, then all of the gates in levé] are

m = O(logn), pops will only be initiated when the buffer AND gates.

is empty, and pushes will have the effect of emptying the « Each AND gateh has fan-in exactly two.

buffer. Since pushes and pops are done deterministically (and « Wires from any level/; are directed toward gates in
reversibly), it is no loss of generality to treat these multi-step level ¢;1,, and a logspace computation can tell, given
operations abasicoperations (since, once begun, either the g andh, if there is an edge from to h.



« For eachn, the output gate,.; of C,, is an OR gate at
level d(n), and the function that mapsto (g,u:, d(n))
is computable in logspace.

halt and accept.
Otherwise, M pops a string (of length equal to the buffer)
off of the stack and stores it in the buffer (via a deterministic,

We now describe a nondeterministic (non-symmetric)reversible computation). There are two valid cases that allow
AuxPDA M acceptingL. We will then create a symmetric the computation to proceed:

AuxPDA M’ from M, and argue that it also acceptsin
polynomial time. We will use the “symbolfy, i] to denote
the contents of the worktape when our AuxPDW is
attempting to determine if the gatein level ¢; evaluates to

1. We use the “symbol]g, i| to denote the contents of the

worktape when our AuxPDA has successfully verified ghat

« If the buffer is equal to[g,i] < [¢’,]{(¢”, h), then M

will put [¢/,7] on the worktape, and push the string
[9,][¢’,i] < (¢”, h), onto the stack (via a deterministic,
reversible computation).

If the buffer is equal to[g¢’,1][g,4] < {(¢”,h), where
g < g are the two OR gates that feed intg then

M will write the tuple ([¢”,i + 2], h) on the worktape
and erase the buffer, via a deterministic and reversible
computation (note that no information is lost here, since
h determines the paifg, ¢')), and then it will erase

h, leaving only [¢”,i + 2] on the worktape. Clearly,
this last segment isot reversible, since it destroys all
information about: (and with it, all information about

g’ andg). Note that, if we add backward transitions to
makeM symmetric, the new transitions that are added
for this segment correspond to guessing arbitrary values

evaluates to 1. In addition, we will use a “protocol symbol”
(g, h) to denote the fact that our AuxPDA is trying to verify
that the OR gatg evaluates to 1, by verifying that the AND

gateh that feeds intgy evaluates td. Observe that all these

“symbols” requireO(logn) bits to write down.

We first create a nondeterministic (non-symmetric) Aux-
PDA M operating as follows: On input, with the stack
empty, our AuxPDAM uses deterministic and reversible
computation to record the input lengthon the worktape,
and then (by appealing to logspace-uniformity) places the
symbol [gout, d(n)] on the worktape. This computation is of h. Thus these moves are dual, in some sense, to the
deterministic, and can be done via a reversible computation  nondeterministic and symmetric movesidfthat guess
by Theorem 3 and Proposition 4. h.)

For any configuration where the worktape holdsi], The moves ofM are summarized in Table 1.
our AuxPDA M checks first to see it = 0. If ¢ = 0 When we create a symmetric AuxPDW’ from M by
then, g is an input gate. Hence by logspace-uniformity,  adding the required “backward” moves, we need to argue
can use deterministic, reversible computation to compute athat the new machinéd/’ does not accept any strings that
index j such that gatey is an input gate in level, that were not already accepted k. We express this as the
depends on bij of the input. Then, by Proposition 4/ following claim:
can record thejth bit of the input on the worktape (via a  Claim: For every even humbeér gateg is a gate in level
deterministic and reversible computatiod). then checks ¢; that evaluates to 1 if and only if there is a computation
(via a deterministic, reversible computation)gifevaluates path of M’ that starts withg, ] on the worktape, with an
to 1 and if so, it replacegy, i] with [g,4]. (If the gateg  empty stack and buffer, and reacHgsi|.
evaluates to 0, the®/ halts and rejects.) Proof of Claim: The forward direction is obvious, and it

If ¢ > 0, then via nondeterministic and symmetric moves,is also obvious that in this case there is a computation path
M guesses a string, so that the worktape hold$g, i],2).  of polynomial length. We prove the backward direction by
(Using the “backward” moves of these nondeterministicinduction ons.
steps corresponds to merely erasing some of the guesslf i = 0, let us assume that there is a computation path
“h” and thus involves revisiting an earlier configuration. of M’ that starts withg, 0] on the worktape, with an empty
This cannot happen in any accepting computation path o$tack and buffer, and reachgs 0]. If this path consists of
minimal length.) After the worktape hold§y, i], 2), M uses only forward moves of)M, then this clearly implies that
deterministic, reversible computation to verify thaiis an ¢ evaluates to 1 (by construction). We need to show that
AND gate in level¢; _; that feeds in tgy, and then computes (without loss of generality) no backward movesidfappear
the nameg;; andg, (g1 < g2) of the two OR gates that feed on this path. The onljorward moves ofM that leadnto any
in to h, and then write$g;, i—2] on the worktape, and writes configuration ofM with [g, 0] on the worktape, are moves
the string[g1,7 — 2] <[g2, i — 2](g, h) onto the buffer, before that perform a push. Such moves can not be executed in a
pushing this string onto the pushdown. (Note that the initialbackward direction by/’ when the stack is empty. The only
part of this deterministic computation isdependenof the  other backward moves that can occur along the computation
input, and thus can be done reversibly via direct appeal térom [g,0] to [g,0] correspond to undoing (and re-doing)
Theorem 3. Pushing information onto the pushdown can beart of the deterministic, reversible computation between
done reversibly by Proposition 4) _ these two configurations, and hence will not occur along

For any configuration where the worktape holgsi], M  any accepting path of minimal length. (Throughout the rest
first checks ifg = gou+ @andi = d(n), in which case it will  of the proof, we assume that any deterministic, reversible




1 | worktape | [g,0] - [g,0]

stack
2 | worktape | [g,1] s g, h - [g1,i—2]

stack l91,1— 2] <[g2,i— 2](g, h)
3 | worktape | [g,q] —  [g')4]

stack l9,1] alg’s (9", h) lg.illg’ il < (g" )
4 | worktape | [g,1] - lg"i+2],h — g i+2]

stack l¢',i]lg,3] < (¢", h)

Table |

FORWARD MOVES OFM . THERE ARE FOUR TYPES OF MOVE$NOT COUNTING THE MOVES THAT DO THE INITIAL SEFUP, AND THE MOVES THAT
DETERMINE IF CONDITIONS HAVE BEEN SATISFIED TO MOVE TO AN ACCEPTING STAT)E ONLY MOVES OF TYPE ONE CONSULT THE INPUT TAPE
TRANSITIONS MARKED <> ARE SYMMETRIC.
TRANSITIONS MARKED — ARE DETERMINISTIC AND REVERSIBLE
TRANSITIONS MARKED +— ARE DETERMINISTIC AND NON-REVERSIBLE.

1 | worktape | [g,1] < [g,4]

stack
2 | worktape | [g,1] s g, h = [g1,i—2]

stack l91,7 — 2] < [g2,% — 2]{g, h)
3 | worktape | [g,1] - [¢,1]

stack l9,4] <9, 59", h) [9,3llg’,i] < (g" )
4 | worktape | [g,1] - [¢"i+2,h s [¢"i+2]

stack l9',i]lg,3] < (9", h)

Table I

MOVES OF M’. TRANSITIONS MARKED <+ ORIGINATED FROM DETERMINISTIC AND REVERSIBLE STEPS OB/,
AND HENCE CONSTITUTE A SUBGRAPH OF THE CONFIGURATION GRAPH HAVING DEGREE TWO
TRANSITIONS MARKED <> ARE SYMMETRIC, AND CONFIGURATIONS IN THESE SEGMENTS TYPICALLY HAVE DEGREE LARGER THAN TWO

computation segment that is begun is run to completionsome timet,,, with some symbolg’, i — 2] on the worktape,
since the only other way the computation can exit theand a string of the formig”,i — 2][¢’,7 — 2] < (g9,h’) on
segment is by revisiting the configuration where it begartop of the stack, for somé’, ¢”,¢’, and proceeding to a
the segment.) This completes the proof of the basis step. configuration where the stack is empty and the worktape
If i > 0, then as in the basis step, the computation ofcontains the tuplé[g, i], '), and ending with someonre-
M’ starting from[g, ;] cannot begin using backward moves versible moves that erasg’. (There may actually be some
of M, because it would involve undoing a push, and thealternation between forward and backward moves in this
stack is currently empty. Thus the only way to start is usingsegment where some &f is erased and re-guessed, but in
symmetric moves ofi/ to guess some valul, and then to  a shortest accepting computation there will be only forward

use deterministic (reversible) moves bf that cause us to moves in this segment.)

push the strindgs,i — 2] < [g2,7 — 2](g, k) onto the stack, Let us now analyze the portion of the computationof
leaving [g1,7 — 2] on the worktape. Let us say that this that takes place between timgsandt,,. We assume without
configuration of M’ is reached at time;. loss of generality that this computation is of minimal length,

Similarly, the segment of the computation 8f’ that and thus does not visit any configuration/f that occurs
ends with[g, ¢] on the worktape, cannot end using backwardat any other time during its computation.
moves ofM, since this would involve undoing a push while  Since some of thé&(logn) symbols on top of the stack at
the pushdown is empty, and thus this segment must consititnest; andt,, differ, these symbols must have been popped
of forward deterministic (reversible) moves bf, starting at  off at some intermediate stage. Since, by by construcfih,




always completely fills the buffer when it performs a pop,stack, and this only happens from the configuration that
we conclude that there is a first time aftgr(call this time M’ is in at timet4. That is, if this pop is accomplished
t3), when M’ pops the stringg:,i — 2] < [g2,i — 2](g, h) via backward moves, it means thatl’ is revisiting the
from the stack. Since all pushes and pops involve movingonfiguration it was in at time,, contrary to our assumption.
data between the stack and the buffer via deterministic This completes the proof of the inductive step of the
(reversible) steps, we can see that the pop that takes plac&im, and also completes the proof of the theorem.

at time ¢ts must correspond to forward moves df (since [ |
backward moves ol would correspond to forward moves  We remark that the stack height on the symmetric Aux-
that push[g;,i — 2] < [g2, 7 — 2](g, h) onto the stack, which PDA M’ is O(log? n) on any accepting computation (since
only happens if the worktape holds;,: — 2] — which in  the valuei is bounded byO(logn)). Thus we conclude:

turn means that the computation is retracing its steps back Corollary 7: Any language that is accepted by a symmet-
to the start of this segment, contrary to our assumption)tic AuxPDA in polynomial time is accepted by a symmetric
Since the pop ofg1,i — 2] < [g2,7 — 2]{g, h) corresponds AuxPDA running in polynomial time whose pushdown never
to a forward move of\/, we see that this takes place in a contains more thaitbg® n symbols.

deterministic (reversible) segment that can only take place We remark that this implies that languages in NL are
if the worktape ofM’ holds[g;,7 — 2]. Let us denote by,  accepted by symmetric machines using spagg n and
the time when this pop begins. Since timds thefirsttime  running in polynomial time. This generalizes to other space
that these symbols have been popped off of the stack, wiounds as well:

can conclude that the computationfaf from timet; to ¢ Corollary 8: For all k, the class of languages accepted
begins with[g,7 — 2] on the worktape, ends witly;, i — 2] by nondeterministic polynomial-time Turing machines using
on the worktape, and can be accomplished with an empty(log” n) space is accepted by symmetric polynomial-time
stack. Thus, by induction, we conclude that gatevaluates  Turing machines using)(log’chl n) space.

to 1. Proof: A straightforward implementation of the con-
Recall that, between times andts, M’ is executing struction from the proof of Savitch's theorem [23] shows that
forward moves ofM corresponding to a pop dip,: — any language accepted by a nondeterministic Turing machine

2] < [g2,7 — 2](g, h) from the stack, with[g;,i — 2] on the in polynomial time andlog” n space is also accepted by
worktape. This only happens in the middle of a deterministicuniform semi-unbounded circuits of sizz®(eg“?) and
(reversible) segment (corresponding to moves of type 3 inlepth O(logn). The argument from the proof of Theorem
Table 1). There can be no switch to backward moves/fof 6 shows that such circuits can be simulated by symmetric
during the middle of this segment without revisiting earlier AuxPDAs that have have a worktape boundlef* » and
configurations, contrary to assumption. Thus this segmeniever have more thalvg"*! n symbols on the pushdown.

executes to completion in a forward direction, resulting in a ]

configuration at some timeg with [g1,7 — 2|[g2, i—2]<(g, h) It is natural to wonder whethdog® n space would be

on the stack, andy., i — 2] on the worktape. sufficient for this simulation, instead a6g" ™' n space. At
There are now two cases: least for the casé = 0 (i.e., for finite automata), it is known

If there is no intermediate stage betwegrandt,, where that this is not possible. For a discussion of this, see [14].
the stack is popped, then we have that h/, and hence Note that Corollary 8 implies that NSC (the nondetermin-
g1 =¢"” andgs = ¢’ and there is a computation @8’ that  istic analog of Steve’s Class SC) can be defined equivalently
begins with[g.,i — 2] on the worktape, ends witly., i — 2] in terms of symmetric machines. (For more results on NSC,
on the worktape, and can be accomplished with empty stackee [1].) This conclusion would also follow from Theorem
In this case, by induction, we have that gadeevaluatesto 1. 10 of [18] — but there is actually a problem with the proof
Sinceh is the AND of g; andg,, we have that evaluates  of Theorem 10 in [18]. We discuss this in the Appendix.
to 1. Also, since the protocol symbal = (g, h) is only
written onto the stack if the AND gatk feeds into the OR IV. REMARKS ON REVERSIBILITY
gateg, we conclude thay evaluates to 1, as desired. The concept of reversibility is related to determinism in

Otherwise, there is some first timg, ¢4 < t5 < tm, a way that is analogous to the relationship of symmetry
where the strindg1, i — 2][g2, ¢ — 2] < (g, h) is popped from to nondeterminism. The theoretical study of reversibility in
the stack. If these symbols are popped via forward moves afomputation was initiated in different contexts by Lecerf
M, it must be the case that the worktape cont@nsi — 2], ([17]) and Bennett ([4]).
and once again we can conclude tlgaévaluates to 1, as Let us now consider this relationship for auxiliary push-
desired. But in fact, this is the only possibility, since if down automata and thus for languages reducible to context-
this pop is accomplished via backward moves, it wouldfree languages.
correspond to moves a¥/ that, if executed in dorward Definition 9: We call a deterministic auxiliary pushdown
direction, would pushigi,i — 2][g2,% — 2] < {(g,h) on the automatonreversibleif it is also backdeterministic. That



is: for each configuratio', there is at most one possible but also RUL [2]. Is there a relationship between
configurationD such thatD-C'. RevAuxPDA-TIME (n®)) and PPM-Time(logn)?

By RevAuxPDA-TIME (n®®")) we denote the class of « We were able to show that symmetric AuxPDAs run-
languages acceptable by reversible auxiliary pushdown au- ning for polynomial time are able to compute with a
tomata in polynomial time. pushdown of polylogarithmic height. Is this possible for

Since deterministic and reversible computation have  reversible machines as well? It might be that the answer
equivalent computational power both in the setting of space  to this question is connected to our questions about the
complexity [16] and time complexity [4]), one might be relation betweerRevAuxPDA-TIME (n®()) and the
tempted to expect that this would hold for time-bounded PRAM classes mentioned above.
auxiliary push-down automata as well. Note however, that The known relations among these classes are summarized
there is an oracle relative to which deterministic computationn piagram 1.
is strictly more powerful than reversible computation, for
machines with simultaneous time and space bounds [11].

In the following paragraphs, we survey the relationship of
the classRevAuxPDA-TIME (n°")) to nearby complexity
classes.

The complexity class RUE RUspacé€log n) was defined
by Buntrock et al. [6] and has been studied subsequently
by the authors [2], [15]. A languagé is in RUL if there

Log(CFL) = SAC! =
NAUXPDA-TIME (n®®)) =

. . . . : - o(1)

is an NL machine accepting with the property that, on ¢ SymAWKPDATIME (1))
every input, the graph of reachable configurations is a tree.

It was shown by Buntrock et al. that RUL and a perhaps Log(DCFL)= CROW-TIME(log n) < DAUXPDA-TIME (no(l)) NL

slightly larger class known as ReachFewL is contained in
Log(DCFL). Analysis of their algorithm (which simply
searches through the configuration graph of a ReachFewLorow-Time(logn) RevAuxPDA-TIME (n0<1>) PPM-Time(log n) uL
machine) shows that it is a reversible algorithm. Hence we
obtain the following inclusion:

Proposition 10:
ReachFewlC RevAuxPDA-TIME (nM) L = RevSPACE(og ) =SL

(It was shown recently that ReachFewL is also contained in Figure 1. Inclusion relations among various subclasses of Log(CFL).
UL [19].)
We close this section with a list of open questions regard-

ing reversible AuxPDAs. In particular, there are a number of ACKNOWLEDGMENT
“nearby” complexity classes which one might hope to relate  The first author was supported in part by NSF Grants
in some way tcRevAuxPDA-TIME (n®(1)): DMS-0652582, CCF-0830133, and CCF-0832787. Some of
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write restriction working in logarithmic time with a Kintali, and Fengming Wang.
polynomial number of processors ([10]). Rossmanith
showed that the subcla®®ROW-TIME (logn) that
results by replacing “concurrent read” by “owner [1] M. Agrawal, E. Allender, S. Datta, H. Vollmer, and K. W.
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flowchart, with configuratiorC partially guessed, and with o Pushdown # 10
the three worktape-stacks arranged as follows: For some « Pushdown # 2D,

1 <logT(n), worktape 3 contains a strinfyd; . .. d; where e Pushdown # 3: 0

do = 0 and dy,...,d; € {1,2}; worktape 2 contains a o Other workspaced, C

sequence of configuration§y, ..., C;, where Cy is the Note thatX is a “special” configuration, since the guess
initial configuration; and worktape 2 contains a sequence obf C' is nearly complete.

configurationsDy, ..., Dy, whereD, is the final configura-  After X, the algorithm decremenis pusheg” onto Push-

tion.” (Informally, these “special” configurations corresponddown 2, pushes 1 onto Pushdown 3, verifies thatl > 0,
to the configurations where the algorithm is attempting toand then enters a “special” configuratiaf, where it is
guess an intermediate configuratiorthat appears half-way peginning to guess the midpoint of a path fréi to C. Y

along a path fronC; to Dy.) has the following format:
If we examine a trace of their algorithm, we see that | p,shdown # 10,
initially it is in a configuration of the following form: « Pushdown # 2D,,C
« Pushdown # 1Cj (the initial configuration). « Pushdown # 3: 01
« Pushdown # 2D, (the final configuration). « Other workspaced — 1

e Pushdown # 3: 0

. . Note that there is a path fromX to Y without visiting
« Other workspace: This is where the numbés stored;

o o i any “special” configurations in between. Thus, if this were
initially i is set to bed = logT'(n), whereT'is the {4 satisfy the requirements of Lemma 1, it should also be
running time. possible to get front to X.

After this initial configuration, their algorithm enters  However, their algorithm does not seem to have this
some “special” configurations, ending up with the following property.

configuration, which we will denote byX' (where we write We hasten to add that there are various ways to repair

the stack top on the right): their proof, and our intent is not to claim Corollary 8 as

a new result, but merely to observe that our main theorem

provides a correct alternate proof.
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