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Abstract

We show an Ω(
√
n/T ) lower bound for the space required by any unidirectional constant-

error randomized T -pass streaming algorithm that recognizes whether an expression over two
types of parenthesis is well-parenthesized. This proves a conjecture due to Magniez, Mathieu,
and Nayak (2009) and rigorously establishes the peculiar power of bi-directional streams over
unidirectional ones observed in the algorithms they present.

The lower bound is obtained by analysing the information that is necessarily revealed by the
players about their respective inputs in a two-party communication protocol for a variant of the
Index function.
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1 Introduction

The language Dyck(2) consists of all well-parenthesized expressions over two types of parenthesis,
denoted below by a, a and b, b.

Definition 1.1 Dyck(2) is the language over alphabet Σ =
{
a, a, b, b

}
defined recursively by:

Dyck(2) = ε+
(
a ·Dyck(2) · a+ b ·Dyck(2) · b

)
·Dyck(2).

This deceptively simple language is complete for the class of context-free languages [6], and is im-
plicit in a myriad of information processing tasks. It has been studied extensively, most recently in
setting of streaming algorithms [14]. Streaming algorithms are designed with the idea of processing
massive data, which cannot fit entirely in computer memory. Consequently, random access to the
input is extremely expensive, and furthermore, the algorithms are required to use space that is
much smaller than the length of the input. Formally, streaming algorithms access the input se-
quentially, one symbol at a time, a small number of times (called passes), while attempting to solve
some information processing task using as little space (and time) as possible. (See the text [15] for
an introduction to this topic.)

Magniez, Mathieu, and Nayak [14] present two randomized streaming algorithms for Dyck(2). The
first makes one pass over the input, recognizes well-parenthesized expressions with space O(

√
n log n )

bits, and has polynomially small probability of error. They show that the space requirement shrinks
drastically when the algorithm is allowed another pass over the input. The second algorithm makes
two passes over the input, uses only O(log2 n) space, and has polynomially small probability of
error. A startling property of the second algorithm is that it makes the second pass in reverse
order, and this seems essential for its performance. This phenomenon is partially explained by the
authors, by way of a space lower bound for one-pass algorithms. They prove that any one-pass
algorithm that makes error at most 1/n log n uses space Ω(

√
n log n), and conjecture that a similar

bound hold for multi-pass streaming algorithms if all passes are made in the same direction.

Logarithmic space is sufficient to recognize Dyck(2), if we are allowed random access to the input:
we may run through all possible heights, and check parentheses at the same height. This scheme
translates to streaming algorithms with a linear number of passes, but does not rule out the
possibility of algorithms with fewer (but more than one) passes, that use sub-polynomial space.
We show an Ω(

√
n/T ) lower bound for the space required by any unidirectional randomized T -pass

streaming algorithm that recognizes Dyck(2) with a constant probability of error. This proves the
conjecture from [14] and establishes the peculiar power of bi-directional streams.

A relatively straightforward generalization of the one-pass algorithm in [14] gives us a unidirectional
randomized T -pass streaming algorithm that uses space O

(√
(n log n)/T

)
and has polynomially

small probability of error. The lower bound we derive thus comes within a factor
√

log n/T 1/2 of
optimal. The bound for one pass algorithms is a factor of

√
log n better than the one in [14], for

constant error probability, but falls short of optimal (by the same factor) for polynomially small
error.

We derive the above lower bound by following the same high level route as taken in [14]. They map
a streaming algorithm with space s for Dyck(2) to a multi-party communication protocol in which
the messages are each of the same length s, and then bound s from below through a communication
complexity bound. The communication bound is derived using the information cost approach (see,
for example, [5, 17, 2, 11, 9]), which reduces the task to bounding from below the information cost
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of a variant of the Index problem, in which the player holding the index also receives a portion
of the other party’s input. More formally, one party, Alice, has an n-bit string x, and the other
party, Bob, has an integer k ∈ [n], the prefix x[1, k − 1] of x, and a bit b ∈ {0, 1}. The goal is to
compute the function fn(x, (k, x[1, k − 1], b)) = xk ⊕ b, i.e., to determine whether b = xk or not.
This problem was first studied in the one-way communication model as “serial encoding” [1, 16],
and is called the “Mountain problem” in [14].

It is in the analysis of the information cost of fn that we depart from the earlier route. First,
we formulate a bound for protocols resulting from streaming algorithms entirely in information-
theoretic terms. Second, we demonstrate how conceptually simple and familiar ideas such as average
encoding , and the cut-and-paste property of randomized protocols may be brought to bear on this
variant of Index, in spite of the apparent differences from earlier works. Informally speaking, we
show that in any communication protocol that computes fn correctly with constant error on the
uniform distribution µ (a “hard distribution”), either Alice reveals Ω(n) information about her
input x, or Bob reveals Ω(1) information about his input k, even when the inputs are drawn from
an “easy distribution” (µ0, the uniform distribution over f−1

n (0)).

A notion of information cost for Index has been studied previously by Jain, Radhakrishnan, and
Sen [10] in the context of privacy in communication. This notion, defined in terms of the hard
(product) distribution for the problem, however seems not to be directly relevant to our situation,
where we deal with an easy and non-product distribution.

In independent work, concurrent with an earlier version of this article [8], Chakrabarti, Cormode,
Kondapally, and McGregor [4] derived a similar information cost trade-off for fn, for protocols that
make error o(1/ log n) on the uniform distribution µ. While the basic tools from information theory
that they ultimately employ are similar to ours, they take a different, rather technical, route to
these tools. Their motivation is identical to ours—to study the space required by unidirectional
multi-pass streaming algorithms for Dyck(2). Their result for fn leads to an Ω(

√
n log log n/T )

space lower bound for unidirectional T -pass randomized streaming algorithms for Dyck(2) that
make constant error, a factor of Ω(

√
log logn ) smaller than the one we conclude. There is a subtle

but significant difference between our results on the information cost trade-off for fn themselves.
Parallel repetition, the only known method for amplifying the success probability in this context,
potentially blows up the information revealed by the two parties. Trade-offs for protocols that
make smaller error therefore do not imply any trade-offs for constant error protocols.

In the first version of this article [8], we derived a trade-off for constant error protocols which
depends on T , the number of rounds of message exchange the protocols have. We showed that
either Alice reveals Ω(n/T ) information about her input x, or Bob reveals Ω(1/T ) information
about k (when these inputs are drawn from the distribution µ0). This leads to an Ω(

√
n/T 3) space

lower bound for unidirectional T -pass randomized streaming algorithms for Dyck(2) that make
constant error. This is smaller by a factor of T 2 than the bound we present here. It outperforms the
one in [4] by a factor of Ω(

√
log logn ) when T is constant, but this advantage shrinks in the obvious

manner as T grows. It is overtaken by the latter bound when T ∈ Ω( 4
√

log logn ). Notwithstanding
the dependence on the number of rounds, our remarks about trade-offs for constant error protocols
vis-a-vis those for protocols making smaller error (as in [4]) still apply.

The intuition behind the proof in the current version of our article is the same as that in the original,
and may be understood in more detail in Section 2.3. The original proof relied on a round reduction
type of argument giving rise to the dependence on the number of rounds mentioned above. Our
innovation here is to realize the same intuition in one-shot, by analysing the protocol transcript as
a whole, instead of analysing it round-by-round.
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2 Lower bounds for unidirectional streams

In this section we present the results of this article. We derive a bound on the space required
by streaming algorithms for Dyck(2). The lower bound is derived by invoking methods from
communication complexity. We use the reduction due to Magniez, Mathieu, and Nayak [14] between
a streaming algorithm for Dyck(2) and two-party communication protocols for the variant fn
of Index. While their connection is described for one-pass algorithms, it holds mutatis mutandis
for (unidirectional) multi-pass streaming algorithms. We state this connection in Section 2.2, and
then develop our lower bound in Section 2.3. We summarize the notational conventions we follow
and the background from information theory that we assume in Section 2.1.

2.1 Information theory basics

We reserve small case letters like x, k,m for bit-strings or integers, and capital letters like X,K,M
for random variables over the corresponding sample spaces. We use the same symbol for a random
variable and its distribution. As is standard, given jointly distributed random variables AB over a
product sample space, A represents the marginal distribution over the first component. We often
use A|b as shorthand for the conditional distribution A|(B = b) when the second random variable B
is clear from the context. For a string x ∈ {0, 1}n, and integers i, j ∈ [n], we let x[i, j] denote the
substring of consecutive bits xi · · ·xj . If j < i, the expression denotes the empty string. This
notation extends to random variables over {0, 1}n in the obvious manner. When a sample z is
drawn from distribution Z, we denote it as z ← Z. We denote the `1-distance between two random
variables A,B over the same sample space by ‖A−B‖, and the Hellinger distance between them
as h(A , B).

We rely on a number of standard facts from information theory in this work. For a comprehensive
introduction to information theory, we refer the reader to a text such as [7].

The Hellinger distance is a metric, and the following fact relates it to `1 distance.

Fact 2.1 Let P,Q be distributions over the same sample space. Then

h(P , Q)2 ≤ 1
2
‖P −Q‖ ≤

√
2 h(P , Q) .

The square of the Hellinger distance is jointly convex.

Fact 2.2 Let Pi, Qi be distributions over the same sample space for each i ∈ [n], and let (αi) be a
probability distribution over [n]. Let P =

∑n
i=1 αiPi, and Q =

∑n
i=1 αiQi. Then

h(P , Q)2 ≤
n∑
i=1

αi h(Pi , Qi)
2 .

Let H(X) denote the Shannon entropy of the random variable X, and I(X : Y ) denote the mutual
information between two random variables X,Y . We also use H(p) to denote the Binary entropy
function when p ∈ [0, 1].

The chain rule for mutual information says:
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Fact 2.3 (Chain rule) Let ABC be jointly distributed random variables. Then

I(AB : C) = I(A : C) + I(B : C|A) .

The Average encoding theorem [12, 9] is a quantitative version of the fact that two random vari-
ables that are only weakly correlated are nearly independent. Stated differently, the conditional
distribution of one given the other is close to its marginal distribution, if their mutual information
is sufficiently small.

Fact 2.4 (Average encoding theorem) Let AB be jointly distributed random variables. Then,

Eb←B h(A|b , A)2 ≤ κ I(A : B) ,

where κ is the constant ln 2
2 .

We need the following Cut-and-Paste property of two-party private-coins communication protocols
(see e.g. [2, Lemma 6.3]). We refer the reader to the text [13] for an introduction to the model of
two-party communication protocols.

Fact 2.5 (Cut-and-Paste) Let Π be a two-party private coins communication protocol. Let M(x, y)
denote the random variable representing the message transcript in Π when Alice has input x and
Bob has input y. Then,

h(M(x1, y1) , M(x2, y2)) = h(M(x1, y2) , M(x2, y1)) .

2.2 The two-party communication problem

We consider randomized two-party communication protocols arising from streaming algorithms
for Dyck languages. As described in Section 1, in these protocols one party, Alice, has an n-
bit string x, and the other party, Bob, has an integer k ∈ [n], the prefix x[1, k − 1] of x, and a
bit b ∈ {0, 1}. The goal is to compute the function fn(x, (k, x[1, k−1], b)) = xk⊕b, i.e., to determine
whether b = xk or not. This variant of the index function problem is called the “Mountain problem”
in [14], the “Augmented Index problem” in [4], and was previously studied in the setting of one-way
communication as “serial encoding” [1, 16].

Let (X,K,B) be random variables distributed according to µ, the uniform distribution over {0, 1}n×
[n] × {0, 1}. Let µ0 denote the distribution conditioned upon B = XK , i.e., when the inputs are
chosen uniformly from the set of 0s of fn. Let M denote the entire message transcript under µ,
and let M0 denote the transcript under distribution µ0. The protocols for fn on which we focus
satisfy the following properties that arise from considerations in the streaming model.

1. Alice and Bob may use private randomness in addition to public randomness R.

2. The information that the transcript carries about X under distribution µ0, from Bob’s point
of view, is small:

I(X : M0|X[1,K]R) ≤ dn ,

for some d ≥ 0. As K can be inferred from the prefix X[1,K], we have suppressed it in the
conditioning.
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3. The information that the transcript carries about K under distribution µ0 is small from Alice’s
point of view:

I(K : M0|XR) ≤ c ,

for some c ≥ 0.

4. The distributional error of the protocol under the uniform distribution µ over inputs is at
most ε < 1

2 .

We refer to protocols as described above as (d, c, ε)-protocols for the function fn.

A less symmetric notion of information, I(X : M0|KR), is considered by Chakrabarti et al. [4]
instead of the one we have in Item 2 above. The condition in Item 2 from which we start is a
weaker constraint on protocols than a bound on I(X : M0|KR), as

I(X : M0|X[1,K]R) ≤ I(X : M0|X[1,K]R) + I(X[1,K] : M0|KR) = I(X : M0|KR) .

The notion of information which we choose to study is arguably more natural, and has occurred
in previous works under the name “internal information” (see, e.g., [3]). The previous version of
this article [8] assumed a bound on the total message length. However, the proof technique we
used relied only on a bound on the information I(X : M0|R). This kind of bound is also a weaker
requirement than one on I(X : M0|KR), as

I(X : M0|R) ≤ I(X : M0K|R) = I(X : M0|KR) ,

as X and K are independent, and independent of R. However, it is not much weaker. Since

I(X : M0|KR) ≤ I(X : M0|R) + log2 n ,

a bound of dn, with d = Ω
(

logn
n

)
, on I(X : M0|R) implies a similar bound on I(X : M0|KR).

We note however, that the analysis of the index function in [4] may be adapted to work under the
condition in Item 2.

The relationship between streaming algorithms and protocols for fn is captured by the following
reduction.

Theorem 2.6 (Magniez, Mathieu, and Nayak [14]) Any randomized streaming algorithm for
Dyck(2) with T passes in the same direction that uses space s for instances of length 4n2, and has
worst case two-sided error δ implies an (sT/n, sT/n, δ) streaming protocol for fn.

The reduction was described in [14] only for one-pass streaming algorithms, but extends immedi-
ately to multi-pass algorithms. For completeness, we sketch a proof of this theorem in Appendix A,
highlighting the differences from the one-pass case.

2.3 The communication lower bound

The main theorem in this article may be viewed as a trade-off between information revealed by the
two parties about their inputs while computing fn. We show that at least one of the parties neces-
sarily reveals “a lot” of information even on the “easy distribution” µ0 if the protocol computes fn
with bounded error on a “hard distribution” µ. We state the theorem for even n. A qualitatively
similar result holds for odd n, and may be derived from the proof for the even case.
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Theorem 2.7 Any (d, c, ε)-protocol for fn with ε ≤ 1/4 and n even satisfies

4
√
c+ 2

√
d ≥ (1− 4ε)√

2 ln 2
− 4
√

H(2ε) .

Proof: Consider a (d, c, ε)-protocol P for fn, in which Alice’s input X is uniformly distributed
over {0, 1}n, and Bob’s input is (K,X[1,K − 1], B), where K,B are uniformly distributed over [n]
and {0, 1}, respectively. In addition, X,K,B are all independent.

To simplify the presentation, we suppress the public randomness R used in the protocol, i.e.,
assume that Alice and Bob only use private coins. This does not affect the generality of our proof;
all the arguments below hold mutatis mutandis when the random variables are replaced by those
conditioned on a specific value r for the public random coins R, and the parameters (d, c, ε) are
replaced by the corresponding quantities (dr, cr, εr). Averaging the final inequality over R and
applying the Jensen Inequality gives us the claimed bound, as the inequality is of the same form
as in the statement of the theorem.

Let M be the entire message transcript of the protocol. Without loss of generality, we assume that
the output of the protocol may be computed from M . This may be accomplished by including
the output in the final message, while only marginally increasing the information revealed by the
party sending the final message. Indeed, if the single bit output of the protocol is O0 under the
distribution µ0, H(O0) ≤ H(2ε), as the protocol produces the correct output with probability at
least 1− 2ε on the distribution µ0. Therefore, if Alice sends this output bit,

I(X : M0O0|X[1,K]) = I(X : M0|X[1,K]) + I(X : O0|M0X[1,K])
≤ dn+ H(O0) ,

and I(K : M0O0|X) = I(K : M0|X). If Bob sends the output bit, then

I(K : M0O0|X) = I(K : M0|X) + I(K : O0|M0X)
≤ c+ H(O0) ,

and I(X : M0O0|X[1,K]) = I(X : M0|X[1,K]). Henceforth, we assume that P is a (d1, c1, ε)-
protocol in which the output may be computed from M , and either d1 = d + H(2ε)/n, c1 = c,
or d1 = d, c1 = c+ H(2ε).

We show below that the message transcript M0 is close in distribution to the message transcript M1,
which denotes the transcript M conditioned on the function value being 1, i.e., when B = X̄K .

Lemma 2.8
∥∥M0 −M1

∥∥ ≤ 1 + 8
√
κ c1 + 2

√
2κ d1, where κ = ln 2

2 .

Since the protocol P identifies the two distributions, M0 and M1, with average error ε, we
have

∥∥M0 −M1
∥∥ ≥ 2(1− 2ε). The theorem follows.

This immediately gives us a space lower bound for one-pass streaming algorithms for Dyck(2).
Let δ0 be the root in [0, 1/2] of the function E(z) defined as

E(z) =
(1− 4z)√

2 ln 2
− 4
√

H(2z) .
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Corollary 2.9 Any randomized T -pass streaming algorithm for Dyck(2) that has worst case two-
sided error δ < δ0 uses space at least

E(ε)2

72
×
√
N

T

on instances of length N .

Proof of Lemma 2.8: When we wish to explicitly write the transcript M as a function of the
inputs to Alice and Bob, say x and x[1, k − 1], b respectively, we write it as M(x;x[1, k − 1], b).
If b = xk, we write Bob’s input as x[1, k].

For any x ∈ {0, 1}n and i ∈ [n], let x(i) denote the string that equals x in all coordinates except at
the ith. Note that M1 = M(X;X[1,K − 1], X̄K) has the same distribution as M(X(K);X[1,K]),
since X and X(K) are identically distributed. Thus, our goal is to bound∥∥∥M(X;X[1,K])−M(X(K);X[1,K])

∥∥∥ .

Let J be uniformly and independently distributed in [n/2], and let L be uniformly and indepen-
dently distributed in [n]− [n/2]. Then∥∥∥M(X;X[1,K])−M(X(K);X[1,K])

∥∥∥
≤ 1 +

1
2

∥∥∥M(X;X[1, L])−M(X(L);X[1, L])
∥∥∥ . (2.1)

So it suffices to bound the RHS above.

Since it does not carry much information about K, we deduce that the transcript M0 does not
distinguish between different inputs to Bob.

Lemma 2.10 E(x,j,l)←(X,J,L) h(M(x ; x[1, j]) , M(x ; x[1, l]))2 ≤ 8κ c1.

We defer the proof to later in this section.

Since M0 does not carry much information about X, even given a prefix, flipping a bit outside the
prefix does not perturb it by much.

Lemma 2.11 We have

E(x[1,l],j,l)←(X[1,L],J,L) h(M(x[1, l]X[l + 1, n] ; x[1, j]) , M(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]))2

≤ 4κ d1 .

This is proven later in the section.

We now conclude the proof of Lemma 2.8. Since Hellinger distance squared is jointly convex
(Fact 2.2), Lemma 2.10 gives us

E(x[1,l],j,l)←(X[1,L],J,L) h(M(x[1, l]X[l + 1, n] ; x[1, j]) , M(x[1, l]X[l + 1, n] ; x[1, l]))

≤
√

8κ c1 . (2.2)

Along with the triangle inequality, and Lemma 2.11, this implies that

E(x[1,l],j,l)←(X[1,L],J,L) h(M(x[1, l]X[l + 1, n] ; x[1, l]) , M(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]))

≤
√

8κ c1 +
√

4κ d1 .
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Using the Cut-and-Paste property of communication protocols (Fact 2.5), we get

E(x[1,l],j,l)←(X[1,L],J,L) h(M(x[1, l]X[l + 1, n] ; x[1, j]) , M(x[1, l − 1] x̄lX[l + 1, n] ; x[1, l]))

= E(x[1,l],j,l)←(X[1,L],J,L) h(M(x[1, l]X[l + 1, n] ; x[1, l]) , M(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]))

≤
√

8κ c1 +
√

4κ d1 . (2.3)

Combining Eq. (2.2) and Eq. (2.3), and using the triangle inequality we get

E(x[1,l],l)←(X[1,L],L) h(M(x[1, l]X[l + 1, n] ; x[1, l]) , M(x[1, l − 1] x̄lX[l + 1, n] ; x[1, l]))

≤ 4
√

2κ c1 + 2
√
κ d1 .

Using Fact 2.1, we translate this back to a bound on `1 distance:∥∥∥M(X ; X[1, L])−M(X(L) ; X[1, L])
∥∥∥

= E(x[1,l],j,l)←(X[1,L],J,L) ‖M(x[1, l]X[l + 1, n] ; x[1, l])−M(x[1, l − 1] x̄lX[l + 1, n] ; x[1, l])‖

≤ 16
√
κ c1 + 4

√
2κ d1 .

The lemma follows by combining this with Eq. (2.1).

We return to the deferred proofs.

Proof of Lemma 2.10: Define a random variable M̃ implicitly by the equation KXM̃ =
K ⊗ (XM0), where the latter is the product of the two distributions K, and the marginal XM0.
Then,

Lemma 2.12 E(x,k)←(X,K) h
(
M(x ; x[1, k]) , M̃(x)

)2
≤ κ c1, where κ = ln 2

2 .

Proof: From the average encoding theorem, Fact 2.4, we have that for every x ∈ {0, 1}n,

Ek←K h
(
M(x ; x[1, k]) , M̃(x)

)2
≤ κ I(K : M0|X = x) ,

which implies the lemma:

E(x,k)←(X,K) h
(
M(x ; x[1, k]) , M̃(x)

)2
≤ κ I(K : M0|X) .

An immediate consequence of the above lemma is that

E(x,j)←(X,J) h
(
M(x ; x[1, j]) , M̃(x)

)2
≤ 2κ c1 , and

E(x,l)←(X,L) h
(
M(x ; x[1, l]) , M̃(x)

)2
≤ 2κ c1 .

By the triangle inequality, for any j ∈ [n/2], l ∈ [n]− [n/2], and x ∈ {0, 1}n,

h(M(x ; x[1, j]) , M(x ; x[1, l]))2

≤
(
h
(
M(x ; x[1, j]) , M̃(x)

)
+ h
(
M(x ; x[1, l]) , M̃(x)

))2

≤ 2 h
(
M(x ; x[1, j]) , M̃(x)

)2
+ 2 h

(
M(x ; x[1, l]) , M̃(x)

)2
.
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Taking expectation over X, J, L, we get the claimed bound.

Proof of Lemma 2.11: We have

I(X : M(X ; X[1, J ]) |X[1, J ]) ≤ 2 I(X : M0|X[1,K]) ≤ 2d1n . (2.4)

Fix a sample point x[1, j], j. By the chain rule (Fact 2.3),

I(X[j + 1, n] : M(x[1, j]X[j + 1, n] ; x[1, j]))

=
n∑

l=j+1

I(Xl : M(x[1, j]X[j + 1, n] ; x[1, j]) |X[j + 1, l − 1])

≥
n∑

l=n/2

I(Xl : M(x[1, j]X[j + 1, n] ; x[1, j]) |X[j + 1, l − 1]) (2.5)

Moreover, by the average encoding theorem (Fact 2.4), for any given x[1, l],

h(M(x[1, l − 1]xlX[l + 1, n] ; x[1, j]) , M(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]))2

≤ κ I(Xl : M(x[1, l − 1]XlX[l + 1, n] ; x[1, j])) . (2.6)

Combining Eqs. (2.4), (2.5), and (2.6), we get

E(x[1,l],j,l)←(X[1,L],J,L) h(M(x[1, l]X[l + 1, n] ; x[1, j]) , M(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]))2

≤ κ E(x[1,l−1],j,l)←(X[1,L−1],J,L) I(Xl : M(x[1, l − 1]Xl, X[l + 1, n] ; x[1, j]))

= κ E(x[1,j],j,l)←(X[1,J ],J,L) I(Xl : M(x[1, j]X[j + 1, n] ; x[1, j]) |X[j + 1, l − 1])

≤ 2κ
n

I(X : M(X ; X[1, J ]) |X[1, J ])

≤ 4κ d1 ,

as claimed.
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A From streaming algorithms to communication protocols

Here we sketch a proof of Theorem 2.6, highlighting the sole modification we need, namely in the
definition of information cost. We refer the reader to [14] for the details.

We rely on the same set of hard instances of Dyck(2), which correspond to strings of length
between 2n2 and 4n2. Each such hard instance corresponds to an instance of a 2n-player com-
munication protocol for Ascension(n), which is the logical OR of n independent instances of the
two-player problem fn defined in Section 2.2. The players are denoted by Ai,Bi, i ∈ [n]. A T -pass
unidirectional streaming algorithm for Dyck(2) that uses space s results in a communication pro-
tocol P for Ascension(n) with T sequential iterations of messages in the same order as for the
one-pass case described in [14, Section 4]. Each message in this protocol is of length at most s, and
the protocol makes the same worst case error δ as the streaming algorithm.

Let MBn,j , j ∈ [T ], denote the messages sent by Bn to An in the T iterations. The protocol P
for Ascension(n) gives rise to a protocol for a single instance of fn through a direct sum property of
its “information cost”. Let µ0 be the uniform distribution over the subset of

(
{0, 1}n×[n]×{0, 1}

)
on

which the function fn is 0. Let (XXX,kkk,ccc) =
(
Xi, ki, ci

)n
i=1

be n instances of fn, distributed according
to µn0 . Let R denote the public random bits in the protocol P arising from the randomness used
by the streaming algorithm. The information cost of P is defined as:

ICµn
0
(P ) = I(kkk,ccc : MBn,1 · · ·MBn,T |XXX,R),

This is the natural and straightforward extension of the measure used in the one-pass case, which
concentrates on MBn,1, the single message sent by Bn. Note that ICµn

0
(P ) ≤ Ts, as each mes-

sage MBn,j is of length at most s.

The protocol P may be adapted to n different protocols P ′i , i ∈ [n], for fn, by precisely the
same method of embedding an instance of fn into one of Ascension(n), as described in [14, Sec-
tion 4.3]. The 2n players in P are simulated by two players, Alice and Bob, as before: Alice
simulates A1,B1,A2,B2, . . . ,Ai, sends a message to Bob, who simulates Bi,Ai+1,Bi+1, . . . ,An,Bn,
sends a message to Alice, who simulates An,An−1, . . . ,A1, and they repeat this in the same order a
total of T times. There are 2T messages in this protocol starting with Alice, she uses only public
randomness, whereas Bob may use private randomness, and the protocol makes the same distri-
butional error (at most δ) on the uniform distribution over its inputs as P does. The information
cost of P ′i is measured as

ICµ0(P ′i ) = I(ki, ci : MBn,1 · · ·MBn,T |Xi, Ri),

where Ri is the public randomness in P ′i . This is the mutual information of all the messages
sent by Bob with his input, given Alice’s input, under the uniform distribution over the 0s of the
function fn.

The superadditivity of mutual information gives us the direct sum result

ICµn
0
(P ) =

n∑
i=1

ICµ0(P ′i ),

as in [14, Lemma 3]. Therefore at least one protocol for fn from (P ′i ), call it P ′, has information
cost at most Ts/n. Note that we may replace Bob’s messages by the entire message transcript
in P ′ in this information cost without changing its value, as Alice’s messages are independent of K,
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given X, Bob’s messages, and the public randomness. Moreover, the total length of the messages
sent by Alice is at most sT , so the mutual information of X with the entire message transcript
in P ′, even given Bob’s input and the public randomness, is at most sT .
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