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Abstract

We show an Ω(
√
n/T ) lower bound for the space required by any unidirectional constant-

error randomized T -pass streaming algorithm that recognizes whether an expression over two
types of parenthesis is well-parenthesized. This proves a conjecture due to Magniez, Mathieu,
and Nayak (2009) and rigorously establishes that bi-directional streams are exponentially more
efficient in space usage as compared with unidirectional ones.

We obtain the lower bound by analyzing the information that is necessarily revealed by the
players about their respective inputs in a two-party communication protocol for a variant of
the Index function, namely Augmented Index. We show that in any communication protocol
that computes this function correctly with constant error on the uniform distribution (a “hard”
distribution), either Alice reveals Ω(n) information about her n-bit input, or Bob reveals Ω(1)
information about his (log n)-bit input, even when the inputs are drawn from an “easy” distri-
bution, the uniform distribution over inputs which evaluate to 0.

The information cost trade-off is obtained by a novel application of the conceptually sim-
ple and familiar ideas such as average encoding and the cut-and-paste property of randomized
protocols. We further demonstrate the effectiveness of these techniques by extending the result
to quantum protocols. We show that quantum protocols that compute the Augmented Index
function correctly with constant error on the uniform distribution, either Alice reveals Ω(n/t)
information about her n-bit input, or Bob reveals Ω(1/t) information about his (log n)-bit input,
where t is the number of messages in the protocol, even when the inputs are drawn from the
abovementioned easy distribution.
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1 Introduction

Streaming algorithms are designed to process massive input data, which cannot fit entirely in
computer memory. Random access to such input is prohibitive, so ideally we would like to process
it with a single sequential scan. Furthermore, during the computation, the algorithms are compelled
to use space that is much smaller than the length of the input. Formally, streaming algorithms
access the input sequentially, one symbol at a time, a small number of times (called passes), while
attempting to solve some information processing task using as little space (and time) as possible.
We refer the reader to the text [25] for a more thorough introduction to this topic.

One-pass streaming algorithms that use constant space and time recognize precisely the set of
regular languages. It is thus natural to ask what the complexity of languages higher up in the
Chomsky hierarchy is in the streaming model. In this work, we focus on a concrete such problem,
that of checking whether an expression with different types of parenthesis is well-formed. The
problem is formalized through the study of the language Dyck(2), which consists of all well-
parenthesized expressions over two types of parenthesis, denoted below by a, a and b, b, with the
bar indicating a closing parenthesis.

Definition 1.1 Dyck(2) is the language over alphabet Σ =
{
a, a, b, b

}
defined recursively as

Dyck(2) = ε+
(
a ·Dyck(2) · a+ b ·Dyck(2) · b

)
·Dyck(2) ,

where ε is the empty string, ‘·’ indicates concatenation of strings (or subsets thereof) and ‘+’
denotes set union.

This deceptively simple language is in a certain precise sense complete for the class of context-free
languages [10], and is implicit in a myriad of information processing tasks.

There is a straightforward algorithm that recognizes Dyck(2) with logarithmic space, as we may
run through all possible heights, and check parentheses at the same height. This scheme does not
seem to easily translate to streaming algorithms, even with a small number of passes over the input.
In fact, by appealing to the communication complexity of the equality function, we can deduce that
any deterministic streaming algorithm for Dyck(2) that makes T passes over the input requires
space Ω(n/T ) on instances of length n. Another route is suggested by a small-space algorithm for
the word problem in the free group with 2 generators. This is a relaxation of Dyck(2) in which local
simplifications p̄p = ε are allowed in addition to pp̄ = ε for every type of parenthesis (p, p̄). There
is a logarithmic space algorithm for solving the word problem [22] that can easily be massaged into
a one-pass streaming algorithm with polylogarithmic space. Again, this algorithm does not extend
to Dyck(2).

We rigorously establish the impossibility of recognizing Dyck(2) with logarithmic space with a
small number of passes in the streaming model.

Theorem 1.1 Any unidirectional randomized T -pass streaming algorithm that recognizes length n
instances of Dyck(2) with a constant probability of error uses space Ω(

√
n/T ).

A more precise statement of this theorem is presented as Corollary 3.2 later in this article. (Simi-
larly, the theorems we state below are made more precise in later sections.)

Dyck(2) was first studied in the context of the streaming model by Magniez, Mathieu, and
Nayak [23], spurred by its practical relevance, e.g., its relationship to the processing of large XML
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files, and the connection between formal language theory and complexity in the context of pro-
cessing massive data. They overcome the apparent difficulties described above and present two
sublinear space randomized streaming algorithms for Dyck(2). The first makes one pass over the
input, recognizes well-parenthesized expressions with space O(

√
n log n ) bits, and has polynomially

small probability of error. Moreover, they establish an optimal space lower bound for one-pass
algorithms with polynomially small error. They prove that any one-pass algorithm that makes
error at most 1/n log n uses space Ω(

√
n log n).

Perhaps more surprisingly, Magniez et al. show that the demand on space shrinks drastically when
the algorithm is allowed another pass over the input. The second algorithm makes two passes
over the input, uses only O(log2 n) space, and has polynomially small probability of error. A
curious property of the second algorithm is that it makes the second pass in reverse order, and
this seems essential for its performance. An obvious question then is whether this is an artefact of
the algorithm, or if we could achieve similar reduction in space usage by making multiple passes
in the same direction. The logarithmic space algorithm for Dyck(2) mentioned above translates
to streaming algorithms with a linear number of passes, and suggests the possibility of algorithms
with fewer (but more than one) passes, that use sub-polynomial space. Nonetheless, Magniez et al.
conjecture that a bound similar to that for the one-pass algorithms hold for multi-pass streaming
algorithms if all passes are made in the same direction. Theorem 1.1 proves the above conjecture
and confirms the intuition that the ability to scan the input in either direction gives streaming
algorithms additional computational firepower. The bound we get for one-pass algorithms is a
factor of

√
log n better than the one in Ref. [23] for constant error probability, but falls short of

optimal by the same factor for polynomially small error.

Theorem 1.1 is a consequence of a lower bound that we establish for the information cost of two-
party communication protocols for a variant of the Index problem. In this variant, the player
holding the index also receives a portion of the other party’s input. More formally, one party,
Alice, has an n-bit string x, and the other party, Bob, has an integer k ∈ [n], the prefix x[1, k − 1]
of x, and a bit b ∈ {0, 1}. The goal is to compute the function fn(x, (k, x[1, k − 1], b)) = xk ⊕ b,
i.e., to determine whether b = xk or not. This problem was studied in the one-way communication
model as “serial encoding” [2, 26], and as “Augmented Index” [12, 17] and “Mountain problem” [23]
later works. Informally speaking, we show that in any communication protocol that computes fn
correctly with constant error on the uniform distribution µ (a “hard distribution”), either Alice
reveals Ω(n) information about her input x, or Bob reveals Ω(1) information about his input k, even
when the inputs are drawn from an “easy distribution” (µ0, the uniform distribution over f−1n (0)).
We formally define the notion of information cost (ICA

λ(Π), ICB
λ(Π)) for a protocol Π for the two

players Alice (A) and Bob (B) with respect to the distribution λ in Section 2.2, and show:

Theorem 1.2 In any two-party randomized communication protocol Π for the Augmented Index
function fn that makes constant error at most ε ∈ [0, 1/4) on the uniform distribution µ over inputs,
either ICA

µ0(Π) ∈ Ω(n) or ICB
µ0(Π) ∈ Ω(1).

The connection between the Augmented Index function fn and streaming algorithms for Dyck(2)
was charted by Magniez et al. They map a streaming algorithm for Dyck(2) that uses space s to a
multi-party communication protocol in which the messages are each of the same length s, and then
bound s from below for protocols resulting from one-pass algorithms. The communication bound
is derived using the information cost approach (see, for example, Refs. [9, 28, 5, 16, 14]), which
reduces the task to bounding from below the information cost of Augmented Index.

A notion of information cost for Index was studied previously by Jain, Radhakrishnan, and Sen [15]
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in the context of privacy in communication. This notion differs from the one we study in two crucial
respects. First, it is defined in terms of the hard distribution for the problem (uniform over all
inputs). Second, the hard distribution is a product distribution. The techniques they develop
seem not to be directly relevant to the problem at hand, as we deal with an easy and non-product
distribution.

We devise a new method for analyzing the information cost of fn to arrive at Theorem 1.2. The
proof we present shows how the conceptually simple and familiar ideas such as average encoding
and the cut-and-paste property of randomized protocols may be brought to bear on Augmented
Index to derive the optimal (up to constant factors) information cost trade-off. We note that a
stronger trade-off was established by Magniez, Mathieu, and Nayak [23] for two-message protocols
that start with Alice, and make polynomially small error. They show that either Alice reveals Ω(n)
information about x, or Bob reveals Ω(log n) information about k in such protocols. This cannot
be reproduced with our techniques, as we do not restrict ourselves to this special form of protocol.
Indeed, for every l ∈ {1, 2, . . . , blog2 nc}, there is a deterministic protocol for fn in which Bob
sends l bits of k, and Alice responds with n/2l bits.

In independent work, concurrent with ours, Chakrabarti, Cormode, Kondapally, and McGregor [7]
derive a similar information cost trade-off for fn. Their motivation is identical to ours—to study
the space required by unidirectional multi-pass streaming algorithms for Dyck(2), and they present
a similar space lower bound for such algorithms. While some of the basic tools from information
theory that they ultimately employ (e.g., the Chain Rule for mutual information and the Pinskert
Inequality) are equivalent to ours, they take a different, rather technical, route to these tools.
The first version of our article [13] and that of Chakrabarti et al. [8] contained trade-offs that were
weaker, albeit in different respects. After learning about each other’s works, both groups strengthed
our respective proofs to achieve qualitatively the same results.

We demonstrate the power of the approach we take by extending it to quantum protocols for Aug-
mented Index. Starting with appropriate notions of quantum information cost (QICA

λ(Π),QICB
λ(Π))

for a protocol Π for Augmented Index, we arrive at the following trade-off.

Theorem 1.3 In any two-party quantum communication protocol Π (with read-only behaviour on
inputs and no intermediate measurements) for the Augmented Index function fn that has t
message exchanges and makes constant error at most ε ∈ [0, 1/4) on the uniform distribution µ
over inputs, either QICA

µ0(Π) ∈ Ω(n/t) or QICB
µ0(Π) ∈ Ω(1/t).

The quantum information cost trade-off involves a number of subtleties, such as quantifying infor-
mation cost in the absence of a notion of a message transcript, one which also avoids any information
leakage due to the non-product nature of the input distribution. The absence of an analogue to
the Cut-and-Paste property introduces further complications. We circumvent the Cut-and-Paste
property by adapting a hybrid argument due to Jain, Radhakrishnan, and Sen [14] that allows us
to analyze quantum protocols one message at a time. These issues are discussed in detail in Section
4.2.

We are not aware of quantum protocols that beat the classical information bounds, and believe
the dependence of the trade-off in Theorem 1.3 on the number of rounds t is a consequence of the
proof technique. The proof of the connection between quantum streaming algorithms and quantum
protocols for Augmented Index breaks down in the process of defining a suitable notion of
quantum information cost. We leave the possible implications for space lower bounds for quantum
streaming algorithms to future work. Finally, we remark that the approaches taken by Magniez et
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al. [23] and Chakrabarti et al. [7] for showing information cost trade-off in classical protocols do
not seem to generalize to quantum protocols. They are based on analyzing the input distribution
conditioned on the message transcript, for which no suitable quantum analogue is known.

Communication problems involving the Index function capture a number of phenomena in the
theory of computing, both classical and quantum, in addition to playing a fundamental role in
the area of communication complexity [21]. For instance, they have been used to analyze data
structures [24], the size of finite automata [3] and formulae [19], the length of locally decodable
codes [18], learnability of quantum states [1], and sketching complexity [4]. We believe that the
more nuanced properties of the Index function such as the one we establish here be of fundamental
importance, and be likely to find application in other contexts as well.

2 Classical information cost of Augmented Index

In this section we present the first result of this article. We summarize the notational conventions
we follow and the background from classical information theory that we assume in Section 2.1.
Then we develop the lower bound for classical protocols for Augmented Index in Section 2.2.

2.1 Information theory and communication complexity basics

We reserve small case letters like x, k,m for bit-strings or integers, and capital letters like X,K,M
for random variables over the corresponding sample spaces. We use the same symbol for a random
variable and its distribution. As is standard, given jointly distributed random variables AB over a
product sample space, A represents the marginal distribution over the first component. We often
use A|b as shorthand for the conditional distribution A|(B = b) when the second random variable B
is clear from the context. For a string x ∈ {0, 1}n, and integers i, j ∈ [n] = {1, 2, . . . , n}, we let
x[i, j] denote the substring of consecutive bits xi · · ·xj . If j < i, the expression denotes the empty
string. This notation extends to random variables over {0, 1}n in the obvious manner. When a
sample z is drawn from distribution Z, we denote it as z ← Z.

The `1-distance ‖A−B‖ between two random variables A,B over the same finite sample space S
is given by

‖A−B‖ =
∑
i∈S
|A(i)−B(i)| .

(Recall that as per our notational convention A(i), B(i) denote the probabilities assigned to i ∈ S
by A,B, respectively.) The Hellinger distance h(A , B) between the random variables is defined as

h(A , B) =

[
1

2

∑
i∈S

(√
A(i)−

√
B(i)

)2]1/2
.

Hellinger distance is a metric, and is related to to `1 distance in the following manner.

Proposition 2.1 Let P,Q be distributions over the same sample space. Then

h(P , Q)2 ≤ 1

2
‖P −Q‖ ≤

√
2 h(P , Q) .

The square of the Hellinger distance is jointly convex.
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Proposition 2.2 Let Pi, Qi be distributions over the same sample space for each i ∈ [n], and
let (αi) be a probability distribution over [n]. Let P =

∑n
i=1 αiPi, and Q =

∑n
i=1 αiQi. Then

h(P , Q)2 ≤
n∑
i=1

αi h(Pi , Qi)
2 .

We rely on a number of standard results from information theory in this work. For a comprehensive
introduction to the subject, we refer the reader to a text such as [11].

Let H(X) denote the Shannon entropy of the random variable X, and I(X : Y ) denote the mutual
information between two random variables X,Y . We also use H(p) to denote the Binary entropy
function when p ∈ [0, 1].

The chain rule for mutual information states:

Proposition 2.3 (Chain rule) Let ABC be jointly distributed random variables. Then

I(AB : C) = I(A : C) + I(B : C|A) .

The Average encoding theorem [20, 14] is a quantitative version of the intuition that two random
variables that are only weakly correlated are nearly independent. Stated differently, the conditional
distribution of one given the other is close to its marginal distribution, if their mutual information
is sufficiently small.

Proposition 2.4 (Average encoding theorem) Let AB be jointly distributed random variables.
Then,

Eb←B h(A|b , A)2 ≤ κ I(A : B) ,

where κ is the constant ln 2
2 .

We refer the reader to the text [21] for an introduction to the model of two-party communication
protocols. We use the following Cut-and-Paste property of private-coin communication protocols
(see, e.g., Ref. [5, Lemma 6.3]).

Proposition 2.5 (Cut-and-Paste) Let Π be a two-party private coin communication protocol.
Let M(x, y) denote the random variable representing the message transcript in Π when the first
party has input x and the second party has input y. Then for all pairs of inputs (x, y) and (u, v),

h(M(x, y) , M(u, v)) = h(M(x, v) , M(u, y)) .

2.2 The classical information cost lower bound

The main theorem in this article may be viewed as a trade-off between information revealed by the
two parties about their inputs while computing the Augmented Index function fn. We show that
at least one of the parties necessarily reveals “a lot” of information even on an “easy distribution” if
the protocol computes fn with bounded error on a “hard distribution”. The notion of information
on which we focus is known as “internal information” in the literature (see, e.g., Ref. [6]).

Consider a randomized two-party communication protocol Π which uses public randomness R, and
may additionally use private randomness. Suppose that M is the message transcript of the protocol,
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when the inputs X,Y to the two players, Alice and Bob, respectively, are sampled from the joint
distribution λ. The information cost of the protocol for Alice with respect to the distribution λ

is defined as ICA
λ(Π)

def
= I(X : M |Y R). The information cost of the protocol for Bob is defined

symmetrically as ICB
λ(Π)

def
= I(Y : M |XR).

Recall that in the Augmented Index problem, one party, Alice, has an n-bit string x, and the
other party, Bob, has an integer k ∈ [n], the prefix x[1, k − 1] of x, and a bit b ∈ {0, 1}. Their goal
is to compute the function fn(x, (k, x[1, k − 1], b)) = xk ⊕ b, i.e., to determine whether b = xk or
not, by engaging in a two-party communication protocol.

Let (X,K,B) be random variables distributed according to µ, the uniform distribution over {0, 1}n×
[n] × {0, 1}. Let µ0 denote the distribution conditioned upon B = XK , i.e., when the inputs are
chosen uniformly from the set of 0s of fn. We are interested in the information cost of a pro-
tocol Π with public randmness R for Augmented Index under the distribution µ0, for the two
parties. Let M denote the entire message transcript under µ, and let M0 denote the transcript
under distribution µ0. Then the information cost of Π is given by ICA

µ0(Π) = I(X : M0 |X[1,K]R)

and ICB
µ0(Π) = I(K : M0 |XR). The use of the notation M0 is equivalent to conditioning on the

event XK = B, i.e., imposing the distribution µ0, and helps us present our arguments more cleanly.
Note also that under the distribution µ0, we write Bob’s input as the prefix X[1,K].

Since the value of the Augmented Index function fn is a constant on µ0, there is no a priori
reason for the information cost of any party in a protocol to be large. However, we additionally
require the protocol to be correct with non-trivial probability on the uniform distribution, under
which there is equal chance of the function being 0 or 1. If the information cost (under µ0) of the two
parties is sufficiently low, we show that neither party can determine with high enough confidence
what the function value is. The intuition behind this is as follows. Suppose we restrict the inputs
to µ0. If Bob’s input K is changed, the random variables in Alice’s possession, specifically the
message transcript M0 conditioned on her inputs, are not perturbed by much. This is because they
give her little information about K. Similarly, if we flip one of the bits of Alice’s input X outside
of the prefix with Bob, the random variables in Bob’s possession at the end of the protocol are
not perturbed by much. Formally, these properties follow from the Average Encoding Theorem.
Observe that if we simultaneously change Bob’s index K to some L > K (while maintaining the
condition that XL = B), and flip the Lth bit of X, we switch from a 0-input of fn to a 1-input. The
Cut-and-Paste Lemma ensures that by simultaneously changing the inputs with the two parties, the
message transcript is perturbed by at most the sum of the amounts when the inputs are changed
one at a time. This implies that the message transcript does not sufficiently help either party
compute the function value.

We formalize this intuition in the next theorem, which we state for even n. A similar result holds
for odd n, and may be derived from the proof for the even case.

Theorem 2.6 For any two-party randomized communication protocol Π for the Augmented In-
dex function fn with n even, that makes error at most ε ∈ [0, 1/4) on the uniform distribution µ
over inputs, we have[

ICA
µ0(Π)

n

]1/2
+
[
2 · ICB

µ0(Π)
]1/2

≥ 1− 4ε

4
√

ln 2
−
[

H(2ε)

n

]1/2
,

where µ0 is the uniform distribution over f−1n (0). In particular, for any ε smaller than 1/4 by a
constant, either ICA

µ0(Π) ∈ Ω(n) or ICB
µ0(Π) ∈ Ω(1).
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Proof: Consider a protocol Π as in the statement of the theorem. Let the inputs be given by

random variables X,K,B, drawn from the distribution µ, let d
def
= ICA

µ0(Π)/n, and let c
def
= ICB

µ0(Π).

To simplify the presentation, we suppress the public randomness R used in the protocol, i.e.,
assume that Alice and Bob only use private coins. This does not affect the generality of our proof;
all the arguments below hold mutatis mutandis when the random variables are replaced by those
conditioned on a specific value r for the public random coins R, and the parameters (d, c, ε) are
replaced by the corresponding quantities (dr, cr, εr). Averaging the final inequality over R and
applying the Jensen Inequality gives us the claimed bound, as the inequality is of the same form
as in the statement of the theorem.

Let M be the entire message transcript of the protocol. Without loss of generality, we assume that
Bob computes the output of the protocol. If Alice computes the output, we include an additional
message from her to Bob consisting of the output. This only marginally increases the information
revealed by the Alice. Indeed, if the single bit output of the protocol is O0 under the distribution µ0,
H(O0) ≤ H(2ε), as the protocol produces the correct output with probability at least 1− 2ε on the
distribution µ0. Therefore,

I(X : M0O0|X[1,K]) = I(X : M0|X[1,K]) + I(X : O0|M0X[1,K])

≤ dn+ H(O0) ,

and I(K : M0O0|X) = I(K : M0|X). Henceforth, we assume that the output of the protocol Π is
computed by Bob, and its information costs are bounded as ICA

µ0(Π) ≤ d1n with d1 = d+ H(2ε)/n,

and ICB
µ0(Π) ≤ c.

We show below that the random variablesM0X[1,K] with Bob are close in distribution toM1X[1,K−
1] X̄K , where M1 denotes the transcript M conditioned on the function value being 1, i.e., when B =
X̄K .

Lemma 2.7
∥∥M0X[1,K]−M1X[1,K − 1] X̄K

∥∥ ≤ 1 + 8
√
κ c+ 4

√
2κ d1, where κ = ln 2

2 .

Since the protocol Π identifies the two distributions, M0X[1,K] and M1X[1,K − 1] X̄K , with av-
erage error ε, we have

∥∥M0X[1,K]−M1X[1,K − 1] X̄K

∥∥ ≥ 2(1− 2ε). The theorem follows.

We now prove the heart of the theorem, i.e., that the message transcript for the 0 and 1 inputs are
close to each other in distribution.

Proof of Lemma 2.7: When we wish to explicitly write the transcript M as a function of the
inputs to Alice and Bob, say x and x[1, k − 1], b respectively, we write it as M(x;x[1, k − 1], b).
If b = xk, we write Bob’s input as x[1, k].

For any x ∈ {0, 1}n and i ∈ [n], let x(i) denote the string that equals x in all coordinates except at
the ith. Note that M1 = M(X;X[1,K − 1], X̄K) has the same distribution as M(X(K);X[1,K]),
since X and X(K) are identically distributed. Thus, our goal is to bound∥∥∥M(X;X[1,K])X[1,K]−M(X(K);X[1,K])X[1,K]

∥∥∥ .

For reasons that become apparent as we develop our proof, we bound the above quantity when K
is larger than n/2. Let L be uniformly and independently distributed in [n]− [n/2]. Then∥∥∥M(X;X[1,K])X[1,K]−M(X(K);X[1,K])X[1,K]

∥∥∥
≤ 1 +

1

2

∥∥∥M(X;X[1, L])X[1, L]−M(X(L);X[1, L])X[1, L]
∥∥∥ . (2.1)
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So it suffices to bound the RHS above.

Recall that our goal is to show that, on average, changing from a 0-input to a 1-input does not
perturb the message transcript by much. For this, we begin by showing that changing Alice’s input
alone, or similarly, Bob’s input alone, has this kind of effect. If the information cost of Bob is
small, the message transcript does not carry much information about K when the inputs are drawn
from µ0. From this, we deduce that the transcript M0 is (on average) nearly the same for different
inputs to Bob.

Let J be uniformly and independently distributed in [n/2], and let L be as defined above. We
compare the transcript when Bob’s input index is J to when it is L.

Lemma 2.8 E(x,j,l)←(X,J,L) h(M(x ; x[1, j]) , M(x ; x[1, l]))2 ≤ 8κ c.

We defer the proof to later in this section.

When changing Alice’s input, we would like to ensure that the prefix held by Bob does not change.
It is for this reason that we restrict our attention to Bob’s inputs with index K ∈ [n/2], and change
Alice’s input by flipping the Lth bit, with L ∈ [n]− [n/2]. If the information cost of Alice is small,
M0 does not carry much information about X, even given a prefix. Therefore, flipping a bit outside
the prefix does not perturb the transcript by much.

Lemma 2.9 We have

E(x[1,l],j,l)←(X[1,L],J,L) h(M(x[1, l]X[l + 1, n] ; x[1, j]) , M(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]))2

≤ 16κ d1 .

This is proven later in the section.

We now conclude the proof of Lemma 2.7. Since Hellinger distance squared is jointly convex
(Proposition 2.2), Lemma 2.8 gives us

E(x[1,l],j,l)←(X[1,L],J,L) h(M(x[1, l]X[l + 1, n] ; x[1, j]) , M(x[1, l]X[l + 1, n] ; x[1, l]))

≤
√

8κ c . (2.2)

Along with the Triangle Inequality, and Lemma 2.9, this implies that

E(x[1,l],j,l)←(X[1,L],J,L) h(M(x[1, l]X[l + 1, n] ; x[1, l]) , M(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]))

≤
√

8κ c+
√

16κ d1 .

Using the Cut-and-Paste property of communication protocols (Proposition 2.5), we conclude that
simultaneously changing Bob’s input from x[1, j] to x[1, l] and flipping the lth bit of x perturbs the
transcript by no more than the individual changes.

E(x[1,l],j,l)←(X[1,L],J,L) h(M(x[1, l]X[l + 1, n] ; x[1, j]) , M(x[1, l − 1] x̄lX[l + 1, n] ; x[1, l]))

= E(x[1,l],j,l)←(X[1,L],J,L) h(M(x[1, l]X[l + 1, n] ; x[1, l]) , M(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]))

≤
√

8κ c+
√

16κ d1 . (2.3)

Combining Eq. (2.2) and Eq. (2.3), and using the Triangle Inequality we get

E(x[1,l],l)←(X[1,L],L) h(M(x[1, l]X[l + 1, n] ; x[1, l]) , M(x[1, l − 1] x̄lX[l + 1, n] ; x[1, l]))

≤ 4
√

2κ c+ 4
√
κ d1 .
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Using Proposition 2.1, we translate this back to a bound on `1 distance:∥∥∥M(X ; X[1, L])X[1, L]−M(X(L) ; X[1, L])X[1, L]
∥∥∥

≤ E(x[1,l],j,l)←(X[1,L],J,L) ‖M(x[1, l]X[l + 1, n] ; x[1, l])−M(x[1, l − 1] x̄lX[l + 1, n] ; x[1, l])‖

≤ 16
√
κ c+ 8

√
2κ d1 .

The lemma follows by combining this with Eq. (2.1).

We return to the deferred proofs.

Proof of Lemma 2.8: Consider the random variable M̃ jointly distributed with X,K which is
implicitly defined by the equation KXM̃ = K⊗ (XM0), where the latter is the product of the two
distributions K, and the marginal XM0. Then,

Lemma 2.10 E(x,k)←(X,K) h
(
M(x ; x[1, k]) , M̃(x)

)2
≤ κ c, where κ = ln 2

2 .

Proof: From the Average Encoding Theorem, Proposition 2.4, we have that for every x ∈ {0, 1}n,

Ek←K h
(
M(x ; x[1, k]) , M̃(x)

)2
≤ κ I(K : M0 |X = x) ,

which implies the lemma:

E(x,k)←(X,K) h
(
M(x ; x[1, k]) , M̃(x)

)2
≤ κ I(K : M0 |X) .

An immediate consequence of the above lemma is that

E(x,j)←(X,J) h
(
M(x ; x[1, j]) , M̃(x)

)2
≤ 2κ c , and

E(x,l)←(X,L) h
(
M(x ; x[1, l]) , M̃(x)

)2
≤ 2κ c .

By the Triangle Inequality, for any j ∈ [n/2], l ∈ [n]− [n/2], and x ∈ {0, 1}n,

h(M(x ; x[1, j]) , M(x ; x[1, l]))2

≤
(
h
(
M(x ; x[1, j]) , M̃(x)

)
+ h
(
M(x ; x[1, l]) , M̃(x)

))2
≤ 2 h

(
M(x ; x[1, j]) , M̃(x)

)2
+ 2 h

(
M(x ; x[1, l]) , M̃(x)

)2
.

Taking expectation over X, J, L, we get the claimed bound.

Proof of Lemma 2.9: We have

I(X : M(X ; X[1, J ]) |X[1, J ]) ≤ 2 I(X : M0|X[1,K]) ≤ 2d1n . (2.4)
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Fix a sample point (x[1, j], j), with j ∈ [n/2]. By the Chain Rule (Proposition 2.3),

I(X[j + 1, n] : M(x[1, j]X[j + 1, n] ; x[1, j]))

=
n∑

l=j+1

I(Xl : M(x[1, j]X[j + 1, n] ; x[1, j]) |X[j + 1, l − 1])

≥
n∑

l=n/2+1

I(Xl : M(x[1, j]X[j + 1, n] ; x[1, j]) |X[j + 1, l − 1]) . (2.5)

(2.6)

Moreover, by the Average Encoding Theorem (Proposition 2.4) and the Triangle Inequality, for any
given x[1, l], with l ∈ [n]− [n/2],

h(M(x[1, l − 1]xlX[l + 1, n] ; x[1, j]) , M(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]))2

≤ 4κ I(Xl : M(x[1, l − 1]XlX[l + 1, n] ; x[1, j])) . (2.7)

Combining Eqs. (2.4), (2.5), and (2.7), we get

E(x[1,l],j,l)←(X[1,L],J,L) h(M(x[1, l]X[l + 1, n] ; x[1, j]) , M(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]))2

≤ 4κ E(x[1,l−1],j,l)←(X[1,L−1],J,L) I(Xl : M(x[1, l − 1]Xl, X[l + 1, n] ; x[1, j]))

= 4κ E(x[1,j],j,l)←(X[1,J ],J,L) I(Xl : M(x[1, j]X[j + 1, n] ; x[1, j]) |X[j + 1, l − 1])

≤ 8κ

n
I(X : M(X ; X[1, J ]) |X[1, J ]) ≤ 16κ d1 ,

as claimed.

3 The connection with streaming algorithms

Streaming algorithms are algorithms of a simple form, intended to process massive problem in-
stances rapidly, ideally using space that is of smaller order than the size of the input. A pass on an
input x ∈ Σn, where Σ is some alphabet, means that x is given as an input stream x1, x2, . . . , xn,
which arrives sequentially, i.e., letter by letter in this order. We refer the reader to the text [25] for
a more thorough introduction to streaming algorithms.

Definition 3.1 (Streaming algorithm) Fix an alphabet Σ. A T -pass streaming algorithm A
with space s(n) and time t(n) is an algorithm such that for every input stream x ∈ Σn:

1. A performs T sequential passes on x;

2. A maintains a memory space of size s(n) bits while reading x;

3. A has running time at most t(n) per letter xi;

4. A has pre-processing and post-processing time at most t(n).

We say that A is bidirectional if it is allowed to access to the input in the reverse order, after
reaching the end of the input. Then the parameter T is the total number of passes in either direction.
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Recall that in the Augmented Index problem, one party, Alice, has an n-bit string x, and the
other party, Bob, has an integer k ∈ [n], the prefix x[1, k − 1] of x, and a bit b ∈ {0, 1}. Their goal
is to compute the function fn(x, (k, x[1, k − 1], b)) = xk ⊕ b, i.e., to determine whether b = xk or
not, by engaging in a two-party communication protocol.

The relationship between streaming algorithms for Dyck(2) and protocols for fn is captured by a
reduction due to Magniez, Mathieu, and Nayak [23]. The reduction was originally described only for
one-pass streaming algorithms, but extends immediately to unidirectional multi-pass algorithms.
For completeness, we sketch a proof of this theorem highlighting the differences from the one-pass
case.

Theorem 3.1 (Magniez, Mathieu, and Nayak) Any randomized streaming algorithm for Dyck(2)
with T passes in the same direction that uses space s for instances of length 4n2, and has worst-
case two-sided error δ yields a two-party communication protocol Π for the Augmented Index
function fn that makes error at most δ on the uniform distribution µ over its inputs, and has in-
formation costs ICA

µ0(Π) ≤ sT for Alice and ICB
µ0(Π) ≤ sT/n for Bob, with respect to the uniform

distribution µ0 over f−1n (0).

Proof: We sketch a proof of the theorem, highlighting the sole modification we need, namely in
the definition of information cost. We refer the reader to Ref. [23] for the details.

We rely on the same set of hard instances of Dyck(2), which correspond to strings of length
between 2n2 and 4n2. These are padded with well-formed expressions so that the length of all in-
stances is exactly 4n2. Each hard instance corresponds to an instance of a 2n-player communication
protocol for Ascension(n), which is the logical OR of n independent instances of the two-player
Augmented Index function fn. The players are denoted by Ai,Bi, i ∈ [n]. A T -pass unidirec-
tional streaming algorithm for Dyck(2) that uses space s results in a communication protocol Π
for Ascension(n) with T sequential iterations of messages in the order

A1 → B1 → A2 → B2 → · · ·An → Bn → An → An−1 → · · · → A2 → A1 .

Each message in this protocol is of length at most s, and the protocol makes the same worst-case
error δ as the streaming algorithm.

Let MBn,j , j ∈ [T ], denote the messages sent by Bn to An in the T iterations. The protocol Π
for Ascension(n) gives rise to a protocol for a single instance of fn through a direct sum property
of its “internal information cost”. Let µ0 be the uniform distribution over the subset of

(
{0, 1}n ×

[n] × {0, 1}
)

on which the function fn is 0. Let (XXX,kkk,ccc) =
(
Xi, ki, ci

)n
i=1

be n instances of fn,
distributed according to µn0 . Let R denote the public random bits in the protocol Π arising from
the randomness used by the streaming algorithm. The (internal) information cost of Π is defined
as:

ICµn0
(Π) = I(kkk,ccc : MBn,1 · · ·MBn,T |XXXR) .

This is the natural and straightforward extension of the measure used in the one-pass case, which
concentrates on MBn,1, the single message sent by Bn. Note that ICµn0

(Π) ≤ Ts, as each mes-
sage MBn,j is of length at most s.

The protocol Π may be adapted to n different protocols Π′i, i ∈ [n], for fn, by precisely the same
method of embedding an instance (X,K,B) of fn into one of Ascension(n), as described in Ref. [23,
Section 4.3]. The 2n players in Π are simulated by two players, Alice and Bob, as before: Alice
simulates A1,B1,A2,B2, . . . ,Ai, sends a message to Bob, who simulates Bi,Ai+1,Bi+1, . . . ,An,Bn,
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sends a message to Alice, who simulates An,An−1, . . . ,A1, and they repeat this in the same order
a total of T times. There are 2T messages in this protocol starting with Alice, she uses only
public randomness, whereas Bob may use private randomness, and the protocol makes the same
distributional error (at most δ) on the uniform distribution over its inputs as Π does. The (internal)
information cost of Π′i is measured as

ICµ0(Π′i) = I(ki, ci : MBn,1 · · ·MBn,T |XiRi) ,

where Ri is the public randomness in Π′i. This is the mutual information of all the messages
sent by Bob with his input, given Alice’s input, under the uniform distribution over the 0s of the
function fn.

The superadditivity of mutual information gives us the direct sum result

ICµn0
(Π) =

n∑
i=1

ICµ0(Π′i),

as in Ref. [23, Lemma 3]. Therefore at least one protocol for fn from (Π′i), call it Π′, has in-
ternal information cost at most Ts/n. Note that we may replace Bob’s messages by the entire
message transcript in Π′ in this information cost without changing its value, as Alice’s messages
are independent of K, given X, Bob’s messages, and the public randomness. Moreover, the to-
tal length of the messages sent by Alice is at most sT , so the mutual information of X with the
entire message transcript in Π′, even given Bob’s input and the public randomness, is at most sT .

The information cost trade-off in Theorem 2.6 implies that any streaming algorithm that makes a
“small” number of passes over the input requires a “large” amount of space.

Corollary 3.2 Any randomized (unidirectional) T -pass streaming algorithm for Dyck(2) that has
worst-case two-sided error δ < 1/4 uses space at least

√
N

T
× 1

6 + 4
√

2

[
1− 4ε

4
√

ln 2
−

2
√

H(2ε)
4
√
N

]2
on instances of length N .

4 Quantum information cost of Augmented Index

We now turn to quantum communication, and present the necessary background in Section 4.1. In
Section 4.2, we show how the notion of average encoding may be applied also to quantum protocols
for Augmented Index. The analysis of quantum protocols for Augmented Indexinvolves a
number of additional additional subtleties, which are also described along the way.

4.1 Quantum information theory and communication

We continue the use of capital letters to denote random variables. We see these as special cases
of quantum states, which are trace one positive semi-definite matrices. Random variables may be
viewed as quantum states that are diagonal in a canonical basis. Quantum states are also denoted
by capital letters P,Q, etc.
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The trace distance ‖A−B‖tr between two quantum states A,B over the same Hilbert space is the

metric induced by the trace norm ‖M‖tr = Tr
√
M †M . The Bures distance h(A , B) between the

states is defined as

h(A , B) =
[
1−

∥∥∥√A√B∥∥∥
tr

]1/2
.

For pure states |ψ1〉, |ψ2〉 we use h(|ψ1〉 , |ψ2〉) as shorthand for h(|ψ1〉〈ψ1| , |ψ2〉〈ψ2|). Bures dis-
tance is related to to `1 distance in the following manner.

Proposition 4.1 Let P,Q be quantum states over the same Hilbert space. Then

h(P , Q)2 ≤ 1

2
‖P −Q‖tr ≤

√
2 h(P , Q) .

In the following, let (px), (qy) be distributions over the finite sample spaces S,S ′, respectively.

The square of the Bures distance is convex in the following sense. Suppose two quantum states P,Q
are block diagonal in the same basis |x〉 for the space CS , and the blocks corresponding to x in P,Q
have the same trace px.

Proposition 4.2 Let Px, Qx be quantum states over the same finite Hilbert space for each x ∈ S.
Let P =

∑
x∈S px|x〉〈x| ⊗ Px, and Q =

∑
x∈S px|x〉〈x| ⊗Qx. Then

h(P , Q)2 =
∑
x∈S

px h(Px , Qx)2 .

The Local Transition Theorem due to Uhlmann [27] helps us find purifications of quantum states
that achieve the Bures distance between them.

Proposition 4.3 (Local Transition Theorem) Let |ψ1〉 and |ψ1〉 be two pure states in a tensor
product H1 ⊗H2 of Hilbert spaces. Then there exists a unitary operator U on H1 such that

h((U ⊗ IH2) |ψ1〉 , |ψ2〉) = h(TrH1 |ψ1〉〈ψ1| , TrH1 |ψ2〉〈ψ2|) .

We rely on a number of standard results from quantum information theory in this work. For a
comprehensive introduction to the subject, we refer the reader to a text such as [27].

Let S(P ) denote the von Neumann entropy of the quantum state P , and I(P : Q) denote the mutual
information between the two parts of a joint quantum state PQ.

For a joint quantum state XQ =
∑

x∈S px|x〉〈x| ⊗ Qx we define the conditional von Neumann
entropy as S(Q |X) =

∑
x∈S px S(Qx). Similarly, for a joint state XPQ =

∑
x∈S px|x〉〈x| ⊗ PxQx,

where PxQx is a joint state for each x ∈ S, we define the conditional mutual information as

I(P : Q |X) = S(P |X) + S(Q |X)− S(PQ |X) .

The chain rule for mutual information states:

Proposition 4.4 (Chain rule) Let XYQ =
∑

x∈S,y∈S′ pxqy|xy〉〈xy| ⊗ Qxy be a joint quantum
state. Then

I(XY : Q) = I(X : Q) + I(Y : Q|X) .
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The Average Encoding Theorem [20, 14] also holds for quantum states. (In fact, it was first
formulated in the context of quantum communication.)

Proposition 4.5 (Average encoding theorem) Let XQ =
∑

x∈S px|x〉〈x|⊗Qx be a joint quan-
tum state. Then,

Ex←X h(Qx , Q)2 ≤ κ I(X : Q) ,

where κ is the constant ln 2
2 .

We briefly describe the model of two-party quantum communication that we study. Following
the model introduced by Yao [29], two “players”, Alice and Bob, hold some number of qubits,
which initially factor into a tensor product A ⊗ HA,0 ⊗ HB,0 ⊗ B of Hilbert spaces. The qubits
corresponding to A⊗HA,0 are in Alice’s possession, and those in HB,0⊗B are in Bob’s possession.
We restrict ourselves to protocols with classical inputs and outputs. When the game starts, Alice
holds a classical input represented by a bit string x and similarly Bob holds y. In other words,
the qubits in space A are initialized to |x〉, and those in B are initialized to |y〉. The qubits in the
spaces HA,0 ⊗ HB,0 are intended to be the workspace of the two parties, and are initialized to a
possibly entangled state |Φ〉 that is independent of the inputs Alice and Bob have. The initial joint
state is thus |x〉 ⊗ |Φ〉 ⊗ |y〉.
The protocol consists of some number t ≥ 1 of rounds of message exchange, in which the two
players “play” alternately (any party may be the first to play). Suppose it is Alice’s turn to play
in round i, with i ≥ 1. Suppose the workspace of the two players just before the round factors
as HA,i−1 ⊗ HB,i−1. Alice applies a unitary operator Vi,x to the qubits in HA,i−1. Note that her
unitary depends on her input x and the round. We will have occasion to consider runs of the protocol
on superpositions of inputs. In this case, we think of Alice as applying the unitary

∑
x |x〉〈x| ⊗ Vi,x

to the qubits in the space A⊗HA,i−1. Then, Alice sends some of her qubits to Bob. Formally, the
space HA,i−1 factors as HA,i⊗Mi, whereMi denotes the message space, and HB,i =Mi⊗HB,i−1.
As a result, Bob may now apply a unitary operation to the qubits previously in Alice’s control.

At the end of the t rounds of message exchange, the player to receive the last message, say Bob,
measures the qubits in his possession (those in HB,t) according to a general measurement that may
depend on his input y. The measurement outcome is considered to be the output of the protocol.

We emphasize that the input qubits in the protocol are read only, and that there are no intermediate
measurements. A more general protocol may be transformed into this form by appealing to standard
techniques.

4.2 The quantum information cost trade-off

In this section, we derive an analogue of the information trade-off result established in Section 2.2
for quantum communication protocols for Augmented Index.

We first define the notion of quantum information cost for the Augmented Index function fn. As
in Section 2.2, let (X,K,B) be random variables distributed according to µ, the uniform distribution
over {0, 1}n×[n]×{0, 1}. Let µ0 denote the distribution µ conditioned upon XK = B, i.e., when the
inputs are chosen uniformly from the set of 0s of fn. We are interested in the quantum information
cost of a protocol Π for Augmented Index under the distribution µ0, for the two parties.

A significant difference between the classical and quantum information costs arises because the
no-cloning principle [27] prevents the two parties from keeping a copy of the messages. A natural
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notion of a transcript that encapsulates the history of a quantum protocol is instead the sequence
of the joint states after each message exchange. Correspondingly, the notion of information cost
is also different from the one in the classical case. A second point of departure from the classical
case is that we consider the information contained about a superposition of inputs corresponding
to the distribution of interest. This information is in general more than the information contained
about a distribution over inputs, and the resulting notion seems to be necessary for the proof of
the information cost trade-off we present. The final, technical point of difference comes from the
manner in which the input is distributed among the two parties. Since Alice and Bob share X[1,K],
when the input registers are initialized with superpositions corresponding to µ0, the two parties
already begin with some information about the each other’s input. Unlike in the classical case, this
enables Alice to get information about the index K. The effect of sharing the prefix X[1,K] is
identical to that of measuring the first K qubits of Alice’s superposition in the computational basis.
This results in states of varying amount of von Neumann entropy for different indices, which leaks
information about the index K. To quantify the information leaked by the protocol, we therefore
imagine that there is a single quantum register that carries the superposition corresponding to X,
and that Bob has read-only access to the relevant portion of this register. The information cost is
then measured with respect to this register.

As explained above, we adopt the following convention with respect to the inputs for Augmented
Index in the rest of this section. We imagine that Alice is given the input x, and Bob is given k, b,
and access to the prefix x[1, k − 1], rather than a copy of these bits. When we restrict to the
distribution µ0, we assume he has read-only access to x[1, k]. This means that the local unitary
operations used by Bob during the protocol are controlled by the register holding this prefix.

We suppose that there are a total of t messages, beginning with Alice and alternating with Bob.
This is solely to eliminate awkwardness in defining and referring to quantum information cost as we
do below, and may be removed without affecting the results. Alternatively, if Bob starts, we may
modify the protocol so that Alice sends a single qubit in a fixed state, say |0〉, at the beginning.
This does not affect the information cost, but increases the number of messages by one.

Let PiQi denote the joint state of Alice and Bob’s workspace in a protocol Π for Augmented
Index when we start with a uniform superposition X̂ over string x ∈ {0, 1}n and the random
inputs K,B with Bob (this corresponds to distribution µ), and let P 0

i Q
0
i denote the analogous joint

state corresponding to µ0, immediately after the ith message is sent. The quantum information
cost of Π for Alice and Bob with respect to µ0 is then defined as

QICA
µ0(Π) =

∑
odd i∈[t]

I(X : Q0
i |X[1,K]) , and

QICB
µ0(Π) =

∑
even i∈[t]

I(K : X̂P 0
i ) .

Note that there is an asymmetry in the manner we quantify quantum information cost. In Alice’s
cost, we measure the information about a uniformly random string X in Bob’s quantum state,
given the prefix to which he has access. In Bob’s cost, we measure the information about a random
index K in the joint state of strings x in superposition and Alice’s workspace qubits. Although
we could also consider superpositions over x in Alice’s cost and over k in Bob’s cost, we chose the
above notions as they give us the strongest result. The information quantities with superpositions
are always bounded from below by the ones with random variables, due to the monotonicity of
mutual information under quantum operations.

The intuition behind the lower bound on quantum information cost is the same as that in the
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classical case. Namely, starting from an input pair on which the function evaluates to 0, if the
information cost of any one party is low and we carefully change her input, the other party’s share
of the state does not change much. Assume for simplicity that Alice produces the output of the
protocol. We show that even when we simultaneously change both parts of the input, resulting
in a 1-input of the function, the perturbation to Alice’s final state is also correspondingly small.
This implies that the two information costs cannot be small simultaneously. In the final piece of
the argument above, the Local Transition Theorem and a hybrid argument take the place of the
Cut-and-Paste Lemma. Unlike the latter, these are applied on a message-by-message basis, à la
Jain, Radhakrishnan, and Sen [14], and leads to a dependence of the information cost trade-off on
the number of messages in the protocol.

The next theorem executes this argument for even n. A similar result also holds for odd n, and
may be inferred from the proof for the even case.

Theorem 4.6 Let Π be any quantum two-party communication protocol for the Augmented In-
dex function fn with n even, Alice starting and alternating with Bob for a total of t ≥ 1 messages.
If Π makes error at most ε ∈ [0, 1/4] on the uniform distribution µ over inputs, then

2

[
QICA

µ0(Π)

n

]1/2
+
[
2 ·QICB

µ0(Π)
]1/2

≥ 1− 4ε

4
√
κ t

,

where µ0 is the uniform distribution over f−1n (0).

Proof: Consider a protocol Π as in the statement of the theorem. Let the inputs be given

by random variables X,K,B, drawn from the distribution µ, let d
def
= QICA

µ0(Π)/n, and let c
def
=

QICB
µ0(Π).

Let X̂PiQiKB be the joint state of the registers used in the protocol, when the inputs are initialized
with a uniform superposition X̂ over x ∈ {0, 1}n and random variables K,B, immediately after
the ith message in the protocol. Let di = 1

n I(X : Q0
i |X[1,K]) for odd i ∈ [t], and ci = I(K : X̂P 0

i )
for even i ∈ [t]. So d =

∑
odd i∈[t] di and c =

∑
even i∈[t] ci.

We prove the theorem assuming that Alice computes the output of the protocol, i.e., t is even. The
proof when Bob computes the output is similar; we point out the main differences along the way.
If t is even, we show that the state XP 0

t is close in trace distance to the state XP 1
t , where XP 1

t

denotes the reduced state XPt conditioned on the function value being 1, i.e., when B = X̄K .
(Note that X is the classical random variable corresponding to the superposition X̂.)

Lemma 4.7
∥∥XP 0

t −XP 1
t

∥∥
tr
≤ 1 + 4

√
κ t
[
2
√
d+
√

2c
]
, where κ = ln 2

2 .

If t is odd, i.e., Bob computes the output of the protocol, we show the same bound on∥∥Q0
t X[1,K]−Q1

t X[1,K − 1] X̄K

∥∥
tr

.

Since the protocol identifies the two states XP 0
t and XP 1

t , with average error ε, we have∥∥XP 0
t −XP 1

t

∥∥ ≥ 2(1− 2ε) .

The theorem follows.
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We now prove the core of the theorem, i.e., that if Alice computes the output, her final state for
the 0 and 1 inputs are close to each other in distribution.

Proof of Lemma 4.7: When we wish to explicitly write a state, say Pi, as a function of the
inputs to Alice and Bob, say x and x[1, k − 1], b respectively, we write it as Pi(x;x[1, k − 1], b).
If b = xk, we write Bob’s input as x[1, k].

As before, for any x ∈ {0, 1}n and i ∈ [n], we let x(i) denote the string that equals x in all
coordinates except at the ith. Note that P 1

t = Pt(X;X[1,K − 1], X̄K) is the same mixed state
as Pt(X

(K);X[1,K]), since X and X(K) are identically distributed. Thus, our goal is to bound∥∥∥XPt(X;X[1,K])−X(K)Pt(X
(K);X[1,K])

∥∥∥
tr

.

For reasons similar to those the classical case and new ones arising from our proof below, we
consider the trace distance between the first term above with K ∈ [n/2] and the second term
with K ∈ [n] − [n/2]. (Recall that in the classical case, we restricted ourselves to K ∈ [n] − [n/2]
in both terms.) Let J be uniformly and independently distributed in [n/2], and let L be uniformly
and independently distributed in [n]− [n/2]. Then∥∥∥XPt(X;X[1,K])−X(K)Pt(X

(K);X[1,K])
∥∥∥
tr

≤ 1 +
1

2

∥∥∥XPt(X;X[1, J ])−X(L)Pt(X
(L);X[1, L])

∥∥∥
= 1 +

1

2

∥∥∥X(L)Pt(X
(L);X[1, J ])−X(L)Pt(X

(L);X[1, L])
∥∥∥ . (4.1)

So it suffices to bound the RHS above. If t is odd, we instead bound∥∥∥Qt(X;X[1,K])X[1,K]−Qt(X(K);X[1,K])X[1,K]
∥∥∥
tr

≤ 1 +
1

2

∥∥∥Qt(X;X[1, L])X[1, L]−Qt(X(L);X[1, L])X[1, L]
∥∥∥
tr

.

This expression is similar to the one we had in the classical case: we focus on the case K ∈ [n]−[n/2]
alone.

For every j ∈ [n/2], l ∈ [n] − [n/2] and z ∈ {0, 1}l, we consider four runs of the protocol Π. The
inputs to Alice and Bob in the four runs are summarized in the table below. Only the first l bits
of Alice’s input are specified. In all four runs, the last (n− l) input bits of Alice are initialized to a
uniform superposition over all (n− l)-bit strings. The final column gives the notation for the (pure)
state corresponding to the registers X̂[l+ 1, n]PiQi, which constitute the last (n− l) inputs bits of
Alice, her workspace, and that of Bob, immediately after the ith message has been sent, i ∈ [t].

Run Alice’s input x[1, l] Bob’s input k, x[1, k − 1], b State

00 z j, z[1, j − 1], zj |φi(z, j)〉
01 z l, z[1, l − 1], zl |φi(z, l)〉
10 z(l) j, z[1, j − 1], zj |φi(z(l), j)〉
11 z(l) l, z[1, l − 1], zl |φi(z(l), l)〉

The “Run” column indicates whether Alice’s lth bit has been switched, and whether we have
switched j to l. Note that in the first three runs of the protocol, we expect the output to be 0, and
in the last run, we expect it to be 1.
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We compare the intermediate protocol states in the above four runs, when we flip the lth input bit
of Alice, and when we switch Bob’s input from j to l (along with the corresponding prefix). We
show that the switch results in a perturbation to reduced state of the other party that is related
to the information contained about the bit or the index (as in the classical case). To quantify this
perturbation, define

hi(j, l, z) = h
(
Qi(zX[l + 1, n]; z[1, j]) , Qi(z

(l)X[l + 1, n]; z[1, j])
)
,

for every odd i ∈ [t]. Define

hi(j, l, z) = h
(
X̂[l + 1, n]Pi(zX̂[l + 1, n]; z[1, j]) , X̂[l + 1, n]Pi(zX̂[l + 1, n]; z[1, l])

)
,

for every even i ∈ [t]. In the above states, Pi is entangled with the qubits holding X̂, and is written
as a function of X̂[l + 1, n] to emphasize this.

The number of qubits Alice and Bob have during the protocol changes with every message. To
maintain simplicity of notation, we denote the identity operator in any round on the register
holding X̂[l+1, n] and Alice’s workspace qubits by IA and the identity operator on Bob’s workspace
qubits by IB.

We begin by showing that changing Bob’s input alone from j to l while keeping Alice’s input fixed
at zX̂[l + 1, n], does not perturb Alice’s reduced state in any round of communication by much,
provided the corresponding information cost of Bob is small. By the Local Transition Theorem, we
then see that Bob may apply a unitary operation to his qubits alone to bring the protocol states
close to each other.

Lemma 4.8 For every even i ∈ [t], there is a unitary operator Ui that depends upon j, l, z, acts on
Bob’s workspace qubits alone (i.e., on the register holding state Qi), and is such that

h( (IA ⊗ Ui) |φi(z, j)〉 , |φi(z, l)〉) = hi(j, l, z) .

Moreover,
E(j′,l′,z′)←(J,L,X[1,L]) hi(j

′, l′, z′) ≤
√

8κ ci .

The proof is presented later in this section.

Next, we show that if the information cost of Alice is small, Bob’s state Q0
i does not carry much

information about X, even given a prefix. Therefore, flipping a bit outside the prefix does not
perturb Bob’s state by much, and there is a unitary operation on Alice’s qubits which brings the
joint states close to each other.

Lemma 4.9 For every odd i ∈ [t], there is a unitary operator Ui that depends upon j, l, z, acts on
the qubits holding X̂[l + 1, n] and Alice’s workspace qubits (the register holding state Pi), and is
such that

h
(

(Ui ⊗ IB) |φi(z, j)〉 , |φi(z(l), j)〉
)

= hi(j, l, z) .

Moreover,
E(j′,l′,z′)←(J,L,X[1,L]) hi(j

′, l′, z′) ≤ 4
√
κ di .
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This is proven later in the section.

There is no quantum counterpart to the Cut-and-Paste lemma, so that unlike in the classical case,
the above two lemmata are by themselves not sufficient to conclude the theorem. Instead, we
combine these with a hybrid argument to show that switching from carefully chosen 0-inputs of
Augmented Index to corresponding 1-inputs does not affect the final state by “much”.

Lemma 4.10 Let (Ui)i∈[t], be the unitary operators given by Lemmata 4.8 and 4.9. For every
odd r ∈ [t],

h
(

(Ur ⊗ IB) |φr(z, l)〉 , |φr(z(l), l)〉
)
≤ hr(j, l, z) + 2

r−1∑
i=1

hi(j, l, z) .

For every even r ∈ [t],

h
(

(IA ⊗ Ur)|φr(z(l), j)〉 , |φr(z(l), l)〉
)
≤ hr(j, l, z) + 2

r−1∑
i=1

hi(j, l, z) .

This is proved later in this section.

By the Triangle Inequality, the monotonicity of the trace distance under quantum operations, the
relationship between trace and Bures distance (Proposition 4.1), Lemmata 4.10, 4.8 and 4.9,∥∥∥X(L)Pt(X

(L);X[1, J ])−X(L)Pt(X
(L);X[1, L])

∥∥∥
tr

≤ E(j,l,z)←(J,L,X[1,L])

∥∥∥X[l + 1, n]Pt(z
(l)X[l + 1, n]; z[1, j])−X[l + 1, n]Pt(z

(l)X[l + 1, n]; z[1, l])
∥∥∥
tr

≤ E(j,l,z)←(J,L,X[1,L])

∥∥∥X̂[l + 1, n]Pt(z
(l)X̂[l + 1, n]; z[1, j])− X̂[l + 1, n]Pt(z

(l)X̂[l + 1, n]; z[1, l])
∥∥∥
tr

≤ 2
√

2 E(j,l,z)←(J,L,X[1,L]) h
(
X̂[l + 1, n]Pt(z

(l)X̂[l + 1, n]; z[1, j]) , X̂[l + 1, n]Pt(z
(l)X̂[l + 1, n]; z[1, l])

)
≤ 2

√
2 E(j,l,z)←(J,L,X[1,L]) h

(
(IA ⊗ Ut)|φt(z(l), j)〉 , |φt(z(l), l)〉

)
≤ 4

√
2 E(j,l,z)←(J,L,X[1,L])

t∑
i=1

hi(j, l, z)

≤ 4
√

2

 ∑
odd i∈[t]

4
√
κ di +

∑
even i∈[t]

2
√

2κ ci

 ≤ 8
√
κ t
[
2
√
d+
√

2c
]
.

This concludes the proof of Lemma 4.7.

We turn to the deferred proofs.

Proof of Lemma 4.8: Note that X̂[l + 1, n]Pi(zX̂[l + 1, n]; z[1, k]) for k ≤ l is the reduced state
of |φ(z, k)〉 with Bob’s workspace (i.e., the register holding state Qi) traced out. By the Local
Transition Theorem, Proposition 4.3, there is a unitary operator Ui that depends upon j, l, z, acts
on Bob’s workspace qubits alone, and is such that

h( (IA ⊗ Ui) |φi(z, j)〉 , |φi(z, l)〉) = hi(j, l, z) .
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We show that this distance is bounded on average. Consider the quantum state X̂P̃i which is
the reduced state of all quantum registers except Bob’s workspace and his input K. We denote
by X̂Pi(X̂; X̂[1, k]) this state for a fixed index k, so that

X̂P̃i =
1

n

n∑
k=1

X̂Pi(X̂; X̂[1, k]) .

By the Average Encoding Theorem, Proposition 4.5,

Ek←K h
(
X̂Pi(X̂ ; X̂[1, k]) , X̂P̃i

)2
≤ κ ci ,

where κ = ln 2
2 . An immediate consequence is that

Ej′←J h
(
X̂Pi(X̂ ; X̂[1, j′]) , X̂P̃i

)2
≤ 2κ ci , and

El′←L h
(
X̂Pi(X̂ ; X̂[1, l′]) , X̂P̃i

)2
≤ 2κ ci .

By the Triangle Inequality, for any j′ ∈ [n/2], l′ ∈ [n]− [n/2],

h
(
X̂Pi(X ; X[1, j′]) , X̂Pi(X ; X[1, l′])

)2
≤

(
h
(
X̂Pi(X ; X[1, j′]) , X̂P̃i

)
+ h
(
X̂Pi(X ; X[1, l′]) , X̂P̃i

))2
≤ 2 h

(
X̂Pi(X ; X[1, j′]) , X̂P̃i

)2
+ 2 h

(
X̂Pi(X ; X[1, l′]) , X̂P̃i

)2
.

Since Bures distance is monotonic under measurements, measuring the first l′ qubits of X̂ yields

h
(
X[1, l′] X̂[l′ + 1, n]Pi(X[1, l′] X̂[l′ + 1, n] ; X[1, j′]) ,

X[1, l′] X̂[l′ + 1, n]Pi(X[1, l′] X̂[l′ + 1, n] ; X[1, l′])
)2

≤ 2 h
(
X̂Pi(X ; X[1, j′]) , X̂P̃i

)2
+ 2 h

(
X̂Pi(X ; X[1, l′]) , X̂P̃i

)2
.

Moreover, by Proposition 4.2, the left hand side above is equal to

Ez′←X[1,l′] h
(
X̂[l′ + 1, n]Pi(z

′X̂[l′ + 1, n] ; z′[1, j′]) , X̂[l′ + 1, n]Pi(z
′X̂[l′ + 1, n] ; z′[1, l′])

)2
.

Taking expectation over (j′, l′) ← (J, L), and invoking the Jensen inequality, we get the claimed
bound.

Proof of Lemma 4.9: Note that Qi(zX[l+1, n]; z[1, k]) for k ≤ l is the reduced state of |φ(z, k)〉
with the register holding X̂ and Alice’s workspace (the register holding state Pi) traced out. By the
Local Transition Theorem, Proposition 4.3, there is a unitary operator Ui that depends upon j, l, z,
acts on the registers holding X̂[l + 1, n]Pi alone, and is such that

h
(

(Ui ⊗ IB) |φi(z, j)〉 , |φi(z(l), j)〉
)

= hi(j, l, z) .

We have

I(X : Q0
i (X ; X[1, J ]) |X[1, J ]) ≤ 2 I(X : Q0

i |X[1,K]) ≤ 2din . (4.2)
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Fix j′ ∈ [n/2] and z′′ ∈ {0, 1}j
′
. By the Chain Rule, Proposition 4.4,

I(X[j′ + 1, n] : Qi(z
′′X[j′ + 1, n] ; z′′))

=
n∑

l′=j′+1

I(Xl′ : Qi(z
′′X[j′ + 1, n] ; z′′) |X[j′ + 1, l′ − 1])

≥
n∑

l′=n/2+1

I(Xl′ : Qi(z
′′X[j′ + 1, n] ; z′′) |X[j′ + 1, l′ − 1]) . (4.3)

Moreover, by the Average Encoding Theorem (Proposition 4.5) and the Triangle Inequality, for any

given l′ ∈ [n]− [n/2] and z′ ∈ {0, 1}l
′
,

h
(
Qi(z

′X[l′ + 1, n] ; z′[1, j′]) , Qi(z
′(l′)X[l′ + 1, n] ; z′[1, j′])

)2
≤ 4κ I(Xl′ : Qi(z

′[1, l′ − 1]Xl′ X[l′ + 1, n] ; z′[1, j′])) . (4.4)

Combining Eqs. (4.2), (4.3), and (4.4), we get

E(j′,l′,z′)←(J,L,X[1,L]) h
(
Qi(z

′X[l′ + 1, n] ; z′[1, j′]) , Qi(z
′(l′)X[l′ + 1, n] ; z′[1, j′])

)2
≤ 4κ E(j′,l′,z′)←(J,L,X[1,L]) I(Xl′ : Qi(z

′[1, l′ − 1]Xl′X[l′ + 1, n] ; z′[1, j′]))

= 4κ E(j′,l′,z′′)←(J,L,X[1,J ]) I(Xl′ : Qi(z
′′X[j′ + 1, n] ; z′′) |X[j′ + 1, l′ − 1])

≤ 8κ

n
I(X : Qi(X ; X[1, J ]) |X[1, J ]) ≤ 16κ di ,

as claimed.

Proof of Lemma 4.10: We prove the lemma by induction over r ∈ [t]. The base case is r = 1. By
the convention we have adopted, Alice sends the first message. Since the joint state immediately
after the first message is independent of Bob’s input, we have

|φ1(z, l)〉 = |φ1(z, j)〉 and |φ1(z(l), l)〉 = |φ1(z(l), j)〉 ,

so along with Lemma 4.9 we get

h
(

(U1 ⊗ IB) |φ1(z, l)〉 , |φ1(z(l), l)〉
)

= h
(

(U1 ⊗ IB) |φ1(z, j)〉 , |φ1(z(l), j)〉
)

= h1(j, l, z) .

We prove that the lemma holds for r, assuming that it holds for r− 1 ∈ [t]. There are two cases: r
is odd, or r is even. We conduct the argument in the second case, when r is even. The argument
for r odd is similar, and is omitted.

By Lemma 4.8, we have

h( (IA ⊗ Ur) |φr(z, j)〉 , |φr(z, l)〉) = hr(j, l, z) , (4.5)

and by Lemma 4.9 we have

h
(

(Ur−1 ⊗ IB) |φr−1(z, j)〉 , |φr−1(z(l), j)〉
)

= hr−1(j, l, z) .
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By the induction hypothesis, we also have

h
(

(Ur−1 ⊗ IB) |φr−1(z, l)〉 , |φr−1(z(l), l)〉
)
≤ hr−1(j, l, z) + 2

r−2∑
i=1

hi(j, l, z) .

Now

|φr(z, l)〉 = (IA ⊗ Vr,z[1,l]) |φr−1(z, l)〉 , and

|φr(z(l), l)〉 = (IA ⊗ Vr,z[1,l]) |φr−1(z(l), l)〉 ,

where Vr,z[1,l] is the unitary operator that Bob applies on his part of the state (i.e., on the register
holding state Qr−1 before sending the rth message. Note that Vr,z[1,l] commutes with Ur−1, as they
act on disjoint sets of qubits. Since the Bures distance is invariant unitary operators, we get

h
(

(Ur−1 ⊗ IB) |φr〉(z, j) , |φr(z(l), j)〉
)

= hr−1(j, l, z) , (4.6)

and

h
(

(Ur−1 ⊗ IB) |φr(z, l)〉 , |φr(z(l), l)〉
)
≤ hr−1(j, l, z) + 2

r−2∑
i=1

hi(j, l, z) . (4.7)

Using Eqs. (4.5), (4.6), and (4.7), and observing that Ur−1 and Ur act on disjoint sets of qubits,
we get

h
(

(IA ⊗ Ur) |φr(z(l), j)〉 , |φr(z(l), l)〉
)

≤ h
(

(IA ⊗ Ur) |φr(z(l), j)〉 , (Ur−1 ⊗ I⊗ Ur) |φr(z, j)〉
)

+ h
(

(Ur−1 ⊗ I⊗ Ur) |φr(z, j)〉 , |φr(z(l), l)〉
)

= hr−1(j, l, z) + h
(

(Ur−1 ⊗ I⊗ Ur) |φr(z, j)〉 , |φr(z(l), l)〉
)

≤ hr−1(j, l, z) + h((Ur−1 ⊗ I⊗ Ur) |φr(z, j)〉 , (Ur−1 ⊗ IB) |φr(z, l)〉)

+ h
(

(Ur−1 ⊗ IB) |φr(z, l)〉 , |φr(z(l), l)〉
)

≤ hr−1(j, l, z) + hr(j, l, z) + h
(

(Ur−1 ⊗ IB) |φr(z, l)〉 , |φr(z(l), l)〉
)

≤ hr(j, l, z) + 2

r−1∑
i=1

hi(j, l, z) .

(The identity operators without a subscript in this derivation act on the space of the rth message.)
This completes the induction step.
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