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Abstract

We show an Ω(
√
n/T ) lower bound for the space required by any unidirectional constant-

error randomized T -pass streaming algorithm that recognizes whether an expression over two
types of parenthesis is well-parenthesized. This proves a conjecture due to Magniez, Mathieu,
and Nayak (2009) and rigorously establishes that bidirectional streams are exponentially more
efficient in space usage as compared with unidirectional ones. We obtain the lower bound by
analyzing the information that is necessarily revealed by the players about their respective inputs
in a two-party communication protocol for a variant of the Index function, namely Augmented
Index. We show that in any communication protocol that computes this function correctly with
constant error on the uniform distribution (a “hard” distribution), either Alice reveals Ω(n)
information about her n-bit input, or Bob reveals Ω(1) information about his (log n)-bit input,
even when the inputs are drawn from an “easy” distribution, the uniform distribution over
inputs which evaluate to 0. The information cost trade-off is obtained by a novel application
of the conceptually simple and familiar ideas such as average encoding and the cut-and-paste
property of randomized protocols.

Motivated by recent examples of exponential savings in space by streaming quantum algo-
rithms, we also study quantum protocols for Augmented Index. Defining an appropriate notion
of information cost for quantum protocols involves a delicate balancing act between its applica-
bility and the ease with which we can analyze it. We define a notion of quantum information
cost which reflects some of the non-intuitive properties of quantum information. We show that
in quantum protocols that compute the Augmented Index function correctly with constant error
on the uniform distribution, either Alice reveals Ω(n/t) information about her n-bit input, or
Bob reveals Ω(1/t) information about his (log n)-bit input, where t is the number of messages in
the protocol, even when the inputs are drawn from the abovementioned easy distribution. While
this trade-off demonstrates the strength of our proof techniques, it does not lead to a space lower
bound for checking parentheses. We leave such an implication for quantum streaming algorithms
as an intriguing open question.
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1 Introduction

Streaming algorithms [39] are designed to process massive input data, which cannot fit entirely in
computer memory. Random access to such input is prohibitive, so ideally we would like to process it
with a single sequential scan. Furthermore, during the computation, the algorithms are compelled
to use space that is much smaller than the length of the input. Formally, streaming algorithms
access the input sequentially, one symbol at a time, a small number of times (called passes), while
attempting to solve some information processing task using as little space (and time) as possible.

One-pass streaming algorithms that use constant space and time recognize precisely the set of regu-
lar languages. It is thus natural to ask what the complexity of languages higher up in the Chomsky
hierarchy is in the streaming model. In this work, we focus on a concrete such problem, that of
checking whether an expression with different types of parenthesis is well-formed. The problem
is formalized through the language Dyck(2), which consists of all well-parenthesized expressions
over two types of parenthesis, denoted below by a, a and b, b, with the bar indicating a closing
parenthesis. Formally, Dyck(2) is the language over alphabet Σ =

{
a, a, b, b

}
defined recursively

as
Dyck(2) = ε+

(
a ·Dyck(2) · a+ b ·Dyck(2) · b

)
·Dyck(2) ,

where ε is the empty string, ‘·’ indicates concatenation of strings (or subsets thereof) and ‘+’
denotes set union. This deceptively simple language is in a certain precise sense complete for the
class of context-free languages [14], and is implicit in a myriad of information processing tasks.

There is a straightforward algorithm that recognizes Dyck(2) with logarithmic space, as we may
run through all possible levels of nesting, and check parentheses at the same level. While this
scheme is highly space-efficient, it may make Ω(n) passes over the input in the worst case, on
instances of length n. It is not obvious if we can translate this scheme to a streaming algorithm
with a small number of passes over the input. By appealing to the communication complexity of
the equality function, we can deduce that any deterministic streaming algorithm for Dyck(2) that
makes T passes over the input requires space Ω(n/T ) on instances of length n. Therefore, any
streaming algorithm with smaller space complexity, if one exists, would necessarily be randomized.
One such algorithm is suggested by a small-space algorithm for the word problem in the free group
with 2 generators. This is a relaxation of Dyck(2) in which local simplifications p̄p = ε are allowed
in addition to pp̄ = ε for every type of parenthesis (p, p̄). There is a logarithmic space (randomized)
algorithm for solving the word problem [36] that can easily be massaged into a one-pass streaming
algorithm with polylogarithmic space. Again, this algorithm does not extend to Dyck(2).

We rigorously establish the impossibility of recognizing Dyck(2) with logarithmic space with a
small number of passes in the streaming model, even with randomized algorithms.

Theorem 1.1. For any T ≥ 1, any unidirectional randomized T -pass streaming algorithm that
recognizes length n instances of Dyck(2) with a constant probability of error uses space Ω(

√
n/T ).

A more precise statement of this theorem is presented as Corollary 3.3 later in this article.

Dyck(2) was first studied in the context of the streaming model by Magniez, Mathieu, and
Nayak [37]. They were motivated by its practical relevance, e.g., its relationship to the processing
of large XML files, and by the connection between formal language theory and complexity in the
context of processing massive data. They overcome the apparent difficulties described above and
present sublinear space randomized streaming algorithms for Dyck(2). The first makes one pass
over the input, recognizes well-parenthesized expressions with space O(

√
n log n ) bits, and has poly-

nomially small probability of error. Moreover, they prove that this one-pass algorithm is optimal.
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They establish that any one-pass randomized algorithm that makes error at most 1/n log n uses
space Ω(

√
n log n). Theorem 1.1 establishes a similar result for multi-pass streaming algorithms.

The bound for one-pass algorithms given by Theorem 1.1 is a factor of
√

log n better than the
one in Ref. [37] for constant error probability, but falls short of optimal (by the same factor) for
polynomially small error.

In the standard model for streaming algorithms, access to the input symbols is provided in the same
fixed order in every pass over the input . This reflects a constraint of the infrastructure available
to us in practice. Theorem 1.1 applies to such unidirectional algorithms. Perhaps surprisingly,
Magniez et al. showed that the demand on space shrinks drastically when algorithms for Dyck(2)
are allowed another pass over the input in the reverse direction. They presented a second algorithm
that makes two passes in opposite directions over the input, uses only O(log2 n) space, and has
polynomially small probability of error. A question that naturally arose is whether this is an artefact
of the algorithm, or if we could achieve similar reduction in space usage by making multiple passes
in the same direction. Magniez et al. conjecture that a bound similar to that for the one-pass
algorithms hold for multi-pass streaming algorithms if all passes are made in the same direction.
Theorem 1.1 proves this conjecture and establishes the first natural example for which unidirectional
multi-pass streaming algorithms are much less powerful than bidirectional ones. More importantly,
existing computing infrastructure only supports unidirectional streams, and this result confirms
that we cannot reproduce the performance of the bidirectional algorithm within it.

Theorem 1.1 is a consequence of a lower bound that we establish for the “information cost” of
two-party communication protocols for a variant of the Index problem. In the Index problem,
one party, Alice, is given an n-bit string x, and the other party, Bob, is given an integer k ∈ [n].
Their goal is to determine the bit xk by communicating with each other. In the variant we study,
the player holding the index also receives a portion of the other party’s input. More formally,
Alice holds an n-bit string x, and Bob, holds an integer k ∈ [n], the prefix x[1, k − 1] of x, and
a bit b ∈ {0, 1}. The goal is to compute the function fn(x, (k, x[1, k − 1], b)) = xk ⊕ b, i.e., to
determine whether b = xk or not. This problem was studied in the one-way communication model,
with communication from Alice to Bob, as “serial encoding” [2, 40]. Lower bounds on its quantum
communication complexity were derived and used to establish exponential lower bounds on the
size of one-way quantum finite automata. In later works, the problem was studied as “Augmented
Index”; the linear lower bound was re-derived for classical communication, and used to establish
lower bounds for streaming and sketching (see, e.g., [26, 16]). The problem, called “the Mountain
problem” by Magniez, Mathieu, and Nayak [37], was central to the proof of optimality of the
one-pass streaming algorithm for Dyck(2). We elaborate on this later in this section.

Informally speaking, we show that in any communication protocol that computes the Augmented
Index function fn with constant error on the uniform distribution µ (a “hard distribution”), either
Alice reveals Ω(n) information about her n-bit input x, or Bob reveals Ω(1) information about his
(log n)-bit input k, even when the inputs are drawn from an “easy distribution” (µ0, the uniform
distribution over f−1n (0)). We formally define the notion of information cost (ICA

λ(Π), ICB
λ(Π))

for a protocol Π for the two players Alice (A) and Bob (B) with respect to the distribution λ in
Section 2.3, and show:

Theorem 1.2. In any two-party randomized communication protocol Π for the Augmented Index
function fn that makes constant error at most ε ∈ [0, 1/4) on the uniform distribution µ over inputs,
either ICA

µ0(Π) ∈ Ω(n) or ICB
µ0(Π) ∈ Ω(1).

A more precise statement of this theorem is presented as Theorem 2.6 later in this article. We point
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out that the theorem is optimal as there is a one-message deterministic protocol for Augmented
Index with communication n.

The connection between streaming algorithms using “small” space to two-party protocols for Aug-
mented Index with “small” information cost was presented by Magniez et al. for one-pass al-
gorithms. However, it generalizes in a straightforward manner to multi-pass algorithms. For
completeness, this reduction is described in full in Section 3, for multi-pass algorithms. The
reduction consists of three steps, following the information cost approach. (See, for example,
Refs. [13, 45, 5, 25, 23] for earlier applications of this approach.) First, a streaming algorithm
for Dyck(2) that uses space s is mapped to a multi-party communication protocol in which the
messages are each of the same length s. Second, a two-party communication protocol for Aug-
mented Index with “small” information cost with respect to µ0 is derived using a “direct sum”
argument. Finally, a lower bound for the aforementioned information cost is proven. Magniez et
al. proved a lower bound for the information cost of a two-message protocol that resulted from
a one-pass streaming algorithm. Our main contribution, Theorem 1.2, lies in this final step. It
applies to protocols with an arbitrary number of messages, and is the first general lower bound on
information cost for Augmented Index.

A notion of information cost for Index was studied previously by Jain, Radhakrishnan, and Sen [24]
in the context of privacy in communication (see also earlier work due to Klauck [28]). This notion
differs from the one we study in two crucial respects. First, it is defined in terms of the hard
distribution for the problem (uniform over all inputs). Second, the hard distribution is a product
distribution. The techniques they develop seem not to be directly relevant to the problem at hand,
as we deal with an easy and non-product distribution.

We devise a new method for analyzing the information cost of fn to arrive at Theorem 1.2. The
proof we present shows how conceptually simple and familiar ideas such as average encoding and
the cut-and-paste property of randomized protocols may be brought to bear on Augmented Index
to derive the optimal (up to constant factors) information cost trade-off. The intuition behind the
lower bound is as follows. Assume, for simplicity, that the protocol transcript contains the output.
Starting from an input pair on which the function evaluates to 0, if the information cost of any one
party is “low” and we carefully change her input, the transcript does not change “much”. We show
that even when we simultaneously change the inputs with both parties, resulting in a 1-input of
the function, the perturbation to the transcript state is also correspondingly “small”. This implies
that the two information costs cannot be “small” simultaneously.

We point out that the trade-off established by Magniez, Mathieu, and Nayak [37] for two-message
protocols that start with Alice, and make polynomially small error, is stronger. They show that
either Alice reveals Ω(n) information about x, or Bob reveals Ω(log n) information about k in such
protocols. This cannot be reproduced without a further refinement of our techniques. Indeed,
Theorem 1.2 also applies to two-message protocols in which Bob starts. Such protocols match the
trade-off given in the theorem: for every l ∈ {1, 2, . . . , blog2 nc}, there is a deterministic protocol
for fn in which Bob sends l bits of k, and Alice responds with n/2l bits.

In independent work, concurrent with ours, Chakrabarti, Cormode, Kondapally, and McGregor [10]
derive a similar information cost trade-off for fn. Their motivation is identical to ours—to study
the space required by unidirectional multi-pass streaming algorithms for Dyck(2), and they present
a similar space lower bound for such algorithms. While some of the basic tools from information
theory at the heart of their proof (e.g., the Chain Rule for mutual information and the Pinsker
Inequality) are equivalent to ours, they take a different route to these tools. The first version of
our article [22] and that of Chakrabarti et al. [11] contained trade-offs that were weaker, albeit in
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different respects. After learning about each other’s work, both groups strengthened our respective
proofs to achieve qualitatively the same result. Subsequently, Chakrabarti and Kondapalli [12]
extended the result to show that either Bob reveals Ω(b) information about his input k, or Alice
reveals n/2O(b) information about her input x, i.e., either ICB

µ0(Π) ∈ Ω(b) or ICA
µ0(Π) ∈ n/2O(b).

This matches the information cost of the two-message protocol described above up to constant
factors.

The promise of fast processing with limited memory held by streaming algorithms make them es-
pecially attractive in the context of quantum computation. The absence of prototypes with a large
enough number of qubits and long coherence times inevitably leads us to such algorithms. This
has fueled the study of quantum finite automata and also later works on quantum streaming algo-
rithms [34, 21, 8]. Several of these works show how quantum effects lead to an exponential savings
in space over their classical counterparts, albeit for specially crafted problems. It is thus natural to
ask how much more efficient such quantum algorithms could be, for a well-studied and important
problem such as Dyck(2). Motivated by this, we also study quantum protocols for Augmented
Index. We define appropriate notions of quantum information cost (QICA

λ(Π),QICB
λ(Π)) for dis-

tributions λ with a limited form of dependence in Section 4.2, and then arrive at the following
trade-off.

Theorem 1.3. In any two-party quantum communication protocol Π (with read-only behaviour
on inputs and no intermediate measurements) for the Augmented Index function fn that has t
message exchanges and makes constant error at most ε ∈ [0, 1/4) on the uniform distribution µ
over inputs, either QICA

µ0(Π) ∈ Ω(n/t) or QICB
µ0(Π) ∈ Ω(1/t).

Quantum protocols have the ability to compute without revealing much information [20, 18]. It is
thus hardly a surprise that the quantum information cost trade-off involves a number of subtleties.
For instance, it is not obvious how we may quantify information cost in the absence of the notion
of a message transcript, or how we discount information leakage due to the non-product nature of
the input distribution. These issues are discussed in detail in Section 4.2. Nonetheless, we show
how the ideas behind Theorem 1.2 also shed light on quantum communication. The intuition from
the classical case comes with its own complications, such as the absence of an analogue of the
Cut-and-Paste Lemma. We circumvent the Cut-and-Paste property by appealing to the “Local
Transition Theorem” and adapting a hybrid argument due to Jain, Radhakrishnan, and Sen [23].
We apply these on a message-by-message basis, which leads to the dependence of the trade-off
on the number of messages in the protocol. We are not aware of quantum protocols that beat
the classical information bounds. However the dependence of the trade-off in Theorem 1.3 on the
number of messages t may be inherent, as is the case with Set Disjointness [23].

Theorem 1.3 demonstrates the versatility of our proof techniques. The techniques due to Magniez
et al. [37] and Chakrabarti et al. [10] for showing information cost trade-off in classical protocols do
not seem to generalize to quantum protocols. They analyze the input distribution conditioned on
the message transcript, a notion for which no suitable quantum analogue is known. Theorem 1.3,
however, does not immediately lead to a lower bound on the space required by quantum streaming
algorithms for Dyck(2). The main hurdle here is that the connection between streaming algorithms
and communication protocols for Augmented Index with low information cost does not extend
to the quantum case. This appears to be due to the stronger notion of information cost that we
adopt. (The stronger notion appears to be necessary for our proof technique.) It is possible that a
version of Theorem 1.3 hold with an alternative definition of information cost that is more relevant
to quantum streaming algorithms. We leave this for future investigation.
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Communication problems involving the Index and Augmented Index functions capture a number
of phenomena in the theory of computing, both classical and quantum, in addition to playing a
fundamental role in the area of communication complexity [32]. For instance, they have been used
to analyze data structures [38], the size of finite automata [3] and formulae [29], the length of
locally decodable codes [27], learnability of states [31, 1], and sketching complexity [4]. Recently,
phenomena in quantum information have been discovered via the Index function problem, e.g.,
information causality [44], a connection between non-locality and the uncertainty principle [43] and
quantum ignorance [47]. We believe that the more nuanced properties of the Augmented Index
function such as the one we establish here be of fundamental importance, and be likely to find
application in other contexts as well.
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2 Classical information cost of Augmented Index

In this section we present the first result of this article. We summarize the notational conventions
we follow and the background from classical information theory that we assume in Section 2.1. We
do the same for two-party communication complexity and information cost in Section 2.2. Then
we develop the lower bound for classical protocols for Augmented Index in Section 2.3.

2.1 Information theory basics

We reserve small case letters like x, k,m for bit-strings or integers, and capital letters like X,K,M
for random variables over the corresponding sample spaces. We use the same symbol for a random
variable and its distribution. As is standard, given jointly distributed random variables AB over
a product sample space, A represents the marginal distribution over the first component. We
sometimes use A|b as shorthand for the conditional distribution A|(B = b) when the second random
variable B is clear from the context. For a string x ∈ {0, 1}n, and integers i, j ∈ [n] = {1, 2, . . . , n},
we let x[i, j] denote the substring of consecutive bits xi · · ·xj . If j < i, the expression denotes
the empty string. This notation extends to random variables over {0, 1}n in the obvious manner.
When a sample z is drawn from distribution Z, we denote it as z ← Z.

The `1 distance ‖A−B‖ between two random variables A,B over the same finite sample space S
is given by

‖A−B‖ =
∑
i∈S
|A(i)−B(i)| ,

and takes values in the interval [0, 2]. (Recall that as per our notational convention A(i), B(i)
denote the probabilities assigned to i ∈ S by A,B, respectively.) The Hellinger distance h(A , B)
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between the random variables is defined as

h(A , B) =

[
1

2

∑
i∈S

(√
A(i)−

√
B(i)

)2]1/2
.

Hellinger distance is a metric, and is related to `1 distance in the following manner. (See Section 3.2
in [33] for a proof.)

Proposition 2.1. Let P,Q be distributions over the same sample space. Then

h(P , Q)2 ≤ 1

2
‖P −Q‖ ≤

√
2 h(P , Q) .

The square of the Hellinger distance satisfies the following property, called joint convexity . It may
be verified by a straightforward application of the Cauchy-Schwarz inequality.

Proposition 2.2. Let Pi, Qi be distributions over the same sample space for each i ∈ [n], and
let (αi) be a probability distribution over [n]. Let P =

∑n
i=1 αiPi, and Q =

∑n
i=1 αiQi. Then

h(P , Q)2 ≤
n∑
i=1

αi h(Pi , Qi)
2 .

Proof: By the Cauchy-Schwarz Inequality, for each j ∈ S,

√
P (j)Q(j) =

∑
i∈[n]

αi Pi(j)

∑
i′∈[n]

αi′ Qi′(j)

1/2

≥
∑
i∈[n]

√
αi Pi(j)

√
αiQi(j) .

So we have

h(P , Q)2 =
1

2

∑
j∈S

(
P (j) +Q(j)− 2

√
P (j)Q(j)

)
≤ 1

2

∑
j∈S

∑
i∈[n]

αi

(
Pi(j) +Qi(j)− 2

√
Pi(j)Qi(j)

)

=

n∑
i=1

αi h(Pi , Qi)
2 .

We rely on a number of standard results from information theory in this work. For a comprehensive
introduction to the subject, we refer the reader to a text such as [15].

We use H(X) to denote the Shannon entropy of the random variable X, and I(X : Y ) to denote the
mutual information between two random variables X,Y . We also use H(p) to denote the Binary
entropy function when p ∈ [0, 1].

The chain rule for mutual information, Theorem 2.5.2 in [15], states:
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Proposition 2.3 (Chain rule). Let ABC be jointly distributed random variables. Then

I(AB : C) = I(A : C) + I(B : C|A) .

The Average encoding theorem [30, 23] is a quantitative version of the intuition that two random
variables that are only weakly correlated are nearly independent. Stated differently, the conditional
distribution of one given the other is close to its marginal distribution, if their mutual information
is sufficiently small.

Proposition 2.4 (Average encoding theorem [30, 23]). Let AB be jointly distributed random vari-
ables. Then,

Eb←B h(A|b , A)2 ≤ κ I(A : B) ,

where κ is the constant ln 2
2 .

2.2 Communication protocols and information cost

In the two-party communication model [48] for computing Boolean functions, parties Alice and Bob
receive inputs x ∈ X and y ∈ Y, respectively, for some sets X ,Y. They may share a random bit
string R, that is independent of the inputs x, y. The bits of R are called public coins, as they are
known to both parties. Alice (or Bob) may use an additional random string RA (RB, respectively),
that is not known to the other party. These strings RA, RB are called private coins.

The goal of the two parties is to compute a bi-variate Boolean function f : X × Y → {0, 1}, by
communicating with each other. The communication occurs in the form of t ≥ 0 messages, starting
with one party, and then alternating with the other. In each of the t steps, the party sending it
computes the message as a function of the input, the public and private random coins she or he
has, and the messages received so far. After all t messages have been sent, the recipient of the last
message produces the output of the protocol. The output is computed in a manner analogous to
the messages, from the party’s input, random coins, and all the messages received.

The pattern of communication is specified by a protocol Π, which lists the type, number, and
distribution of the coins used by each party, the number of messages, the party that starts the
protocol, and the functions used by the parties to generate the messages and the output. The
sequence of t messages produced during a run of the protocol Π on a pair of inputs x, y together
constitute the transcript . This is in general a random variable due to the use of random coins. We
denote the random variable corresponding to the output by Π(x, y).

The probability of correctness (or success) of a protocol on input x, y is Pr[Π(x, y) = f(x, y)].
We consider inputs drawn from a joint distribution XY , in which case the success probability
is Pr[Π(X,Y ) = f(X,Y )]. The probability of the complementary event is called the error of the
protocol on the distribution XY .

We refer the reader to the text [32] for equivalent formulations of communication protocols, and a
thorough introduction to the models of two-party classical communication.

Protocols that use only public coins are called public-coin protocols and those that use only private
coins are called private-coin protocols. The availability of public randomness obviates the need
for private randomness in typical settings. Conversely, private randomness can often simulate
public coins with a slight increase in communication [41]. In the context of information cost,
however, access to the private randomness used by one party may result in more information being
revealed to the other. To the best of our knowledge, there is no general recipe for replacing private
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with public randomness while preserving information cost. (For recent progress on this question,
see Ref. [9].) In the reductions between protocols we encounter in this article, regardless of the
nature of randomness used in the original protocol, we end up with a protocol with both types of
randomness. We therefore study protocols of this type.

We use the following Cut-and-Paste property of private-coin communication protocols. (For a
proof, see Lemma 6.3 in Ref. [5].)

Proposition 2.5 (Cut-and-Paste [5]). Let Π be a two-party private-coin communication protocol.
Let M(x, y) denote the random variable representing the message transcript in Π when the first
party has input x and the second party has input y. Then for all pairs of inputs (x, y) and (u, v),

h(M(x, y) , M(u, v)) = h(M(x, v) , M(u, y)) .

We consider the information revealed during a communication protocol and focus on a notion known
as “internal information” in the literature. Although this notion is implicit in earlier work [5], it
was named so by Barak, Braverman, Chen, and Rao [6]. We emphasize that there is no canonical
measure of information cost, and the choice of definition is often driven by a motivating application.
A different definition of information cost would suffice for our application to streaming algorithms,
and would additionally simplify some of our proofs. However, we use internal information, as this
gives us the strongest information cost trade-off result.

Consider a randomized two-party communication protocol Π which uses public randomness R,
and may additionally use private randomness. Suppose that M is the message transcript of the
protocol, when the inputs to the two players, Alice and Bob, respectively, are sampled from the
joint distribution λ. Let the inputs random variables be denoted by X,Y . The information cost

of the protocol for Alice with respect to the distribution λ is defined as ICA
λ(Π)

def
= I(X : M |Y R).

The information cost of the protocol for Bob is defined symmetrically as ICB
λ(Π)

def
= I(Y : M |XR).

2.3 The classical information cost lower bound

The first main theorem in this article may be viewed as a trade-off between information revealed
by the two parties about their inputs while computing the Augmented Index function fn. We
show that at least one of the parties necessarily reveals “a lot” of information even on an “easy
distribution” if the protocol computes fn with bounded error on a “hard distribution”.

Recall that in the Augmented Index problem, one party, Alice, has an n-bit string x, and the
other party, Bob, has an integer k ∈ [n], the prefix x[1, k − 1] of x, and a bit b ∈ {0, 1}. Their goal
is to compute the function fn(x, (k, x[1, k − 1], b)) = xk ⊕ b, i.e., to determine whether b = xk or
not, by engaging in a two-party communication protocol.

Let (X,K,B) be random variables distributed according to µ, the uniform distribution over {0, 1}n×
[n] × {0, 1}. Let µ0 denote the distribution conditioned upon B = XK , i.e., when the inputs are
chosen uniformly from the set of 0s of fn. We are interested in the information cost of a proto-
col Π with public randomness R for Augmented Index under the distribution µ0, for the two
parties. Let M denote the entire message transcript under µ, and let M0 denote the transcript
under distribution µ0. Then the information cost of Π is given by ICA

µ0(Π) = I(X : M0 |X[1,K]R)

and ICB
µ0(Π) = I(K : M0 |XR). The use of the notation M0 is equivalent to conditioning on the

event XK = B, i.e., imposing the distribution µ0, and helps us present our arguments more cleanly.
Note also that under the distribution µ0, we write Bob’s input as the prefix X[1,K].
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Since the value of the Augmented Index function fn is a constant on µ0, there is no a priori
reason for the information cost of any party in a protocol to be large. However, we additionally
require the protocol to be correct with non-trivial probability on the uniform distribution, under
which there is equal chance of the function being 0 or 1. If the information cost (under µ0) of the two
parties is sufficiently low, we show that neither party can determine with high enough confidence
what the function value is. The intuition behind this is as follows. Suppose we restrict the inputs
to µ0. If Bob’s input K is changed, the random variables in Alice’s possession, specifically the
message transcript M0 conditioned on her inputs, are not perturbed by much. This is because
these random variables reveal little information about K. Similarly, if we flip one of the bits of
Alice’s input X outside of the prefix with Bob, the random variables in Bob’s possession at the
end of the protocol are not perturbed by much. Formally, these properties follow from the Average
Encoding Theorem. Observe that if we simultaneously change Bob’s index K to some L > K and
flip the Lth bit of X, we switch from a 0-input of fn to a 1-input. The Cut-and-Paste Lemma
ensures that by simultaneously changing the inputs with the two parties, the message transcript is
perturbed by at most the sum of the amounts when the inputs are changed one at a time. This
implies that the message transcript does not sufficiently help either party compute the function
value.

We formalize this intuition in the next theorem, which we state for even n. A similar result holds
for odd n, and may be derived from the proof for the even case. Together, they give us Theorem 1.2,
as stated in the introduction (Section 1).

Theorem 2.6. For any two-party randomized communication protocol Π for the Augmented
Index function fn with n even, that makes error at most ε ∈ [0, 1/4) on the uniform distribution µ
over inputs, we have[

ICA
µ0(Π)

n

]1/2
+
[
2 · ICB

µ0(Π)
]1/2

≥ 1− 4ε

4
√

ln 2
−
[

H(2ε)

n

]1/2
,

where µ0 is the uniform distribution over f−1n (0). In particular, for any ε smaller than 1/4 by a
constant, either ICA

µ0(Π) ∈ Ω(n) or ICB
µ0(Π) ∈ Ω(1).

Proof: Consider a protocol Π as in the statement of the theorem. Let the inputs be given by
random variables X,K,B, drawn from the distribution µ.

Let M be the entire message transcript of the protocol, and let M0 be the transcript under distri-
bution µ0. Without loss of generality, we assume that Bob computes the output of the protocol.
If Alice computes the output, we include an additional message from her to Bob consisting of the
output. This only marginally increases the information revealed by Alice. Indeed, if the single bit
output of the protocol is O0 under the distribution µ0, H(O0) ≤ H(2ε), as the protocol produces
the correct output with probability at least 1 − 2ε on the distribution µ0. Let d ≥ 0 be such
that I(X : M0 |X[1,K]) = dn. Then,

I(X : M0O0 |X[1,K]) = I(X : M0 |X[1,K]) + I(X : O0 |M0X[1,K])

≤ dn+ H(O0) ,

and I(K : M0O0 |X) = I(K : M0 |X). Henceforth, we assume that the output of the protocol Π is
computed by Bob, and its information costs are bounded as ICA

µ0(Π) ≤ d1n with d1 = d+ H(2ε)/n,

and ICB
µ0(Π) ≤ c.

9



Let R be the public randomness used in the protocol. For each specific value r for the public
random coins, we use the subscript r on a random variable to denote conditioning on R = r.

Define d1r
def
= 1

n I(X : M0
r |X[1,K]) and cr

def
= I(K : M0

r |XR), so that Er←R d1r = ICA
µ0(Π)/n

and Er←R cr = ICB
µ0(Π). We emphasize that the protocol may use private randomness in addition

to the public randomness R. Let εr denote the error made by the protocol Π on the uniform
distribution µ over inputs, when R = r.

In the rest of the proof, we fix a specific value r for the public randomness, and show that

d
1/2
1r + (2cr)

1/2 ≥ 1− 4εr

4
√

ln 2
. (2.1)

Averaging this over r ← R and applying the Jensen Inequality gives us the theorem.

We show below that the random variables M0
rX[1,K] with Bob are “close” in distribution to the

random variables M1
rX[1,K − 1] X̄K , where M1

r denotes the transcript Mr conditioned on the
function value being 1, i.e., when B = X̄K . In other words, we show that the `1 distance between
them is only “slightly more” than 1 if the information cost of the protocol is small.

Lemma 2.7.
∥∥M0

rX[1,K]−M1
rX[1,K − 1] X̄K

∥∥ ≤ 1 + 8
√
κ cr + 4

√
2κ d1r, where κ = ln 2

2 .

On the other hand, the protocol Π identifies the two distributions, M0
rX[1,K] and M1

rX[1,K −
1] X̄K , with average error εr. If the error εr were small, the `1 distance would be correspondingly
closer to 2. Formally,

∥∥M0
rX[1,K]−M1

rX[1,K − 1] X̄K

∥∥ ≥ 2(1 − 2εr), which is the `1 distance
between the distributions of the output of the protocol in the two cases. This gives us a lower
bound on the information cost, in terms of the error made by the protocol. Combining the two
bounds on the `1 distance, we get Eq. (2.1) and hence the theorem.

We now prove the heart of the theorem, i.e., that the message transcript for the 0 and 1 inputs are
close to each other in distribution.

Proof of Lemma 2.7: The proof follows the intuition given before Theorem 2.6. We break the
proof into several steps, each of which is captured by a lemma. The proofs of the lemmata are
postponed to later in the section so as to present the high-level argument first.

When we wish to explicitly write the transcript Mr as a function of the inputs to Alice and Bob,
say x and x[1, k − 1], b respectively, we write it as Mr(x;x[1, k − 1], b). If b = xk, we write Bob’s
input as x[1, k].

For any x ∈ {0, 1}n and i ∈ [n], let x(i) denote the string that equals x in all coordinates except
at the ith. Since (X,X[1,K − 1], X̄K) and (X(K), X[1,K]) are identically distributed, M1

r =
Mr(X;X[1,K − 1], X̄K) has the same distribution as Mr(X

(K);X[1,K]). Thus, our goal is to
bound ∥∥∥Mr(X;X[1,K])X[1,K]−Mr(X

(K);X[1,K])X[1,K]
∥∥∥ .

Later, we consider the random variables in Bob’s possession when we flip one of the bits in input X
with Alice. In order to do the flip in a manner consistent with the prefix with Bob, we only flip
bits in coordinates > n/2. This gives us a bound on the above quantity when the index is larger
than n/2. Therefore we consider L uniformly and independently distributed in [n]− [n/2]. We have∥∥∥Mr(X;X[1,K])X[1,K]−Mr(X

(K);X[1,K])X[1,K]
∥∥∥

≤ 1 +
1

2

∥∥∥Mr(X;X[1, L])X[1, L]−Mr(X
(L);X[1, L])X[1, L]

∥∥∥ , (2.2)
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and we bound the RHS from above.

Recall that our goal is to show that, on average, changing from a 0-input to a 1-input does not
perturb the message transcript by much. For this, we begin by showing that changing Alice’s input
alone, or similarly, Bob’s input alone, has this kind of effect. If the information cost of Bob is
small, the message transcript does not carry much information about K when the inputs are drawn
from µ0. From this, we deduce that the transcript M0

r is (on average) nearly the same for different
inputs to Bob.

Let J be uniformly and independently distributed in [n/2], and let L be as defined above. We
compare the transcript when Bob’s input index is J to when it is L.

Lemma 2.8. E(x,j,l)←(X,J,L) h(Mr(x ; x[1, j]) , Mr(x ; x[1, l]))2 ≤ 8κ cr.

We defer the proof to later in this section.

When changing Alice’s input, we would like to ensure that the prefix held by Bob does not change.
So we restrict our attention to Bob’s inputs with index J ∈ [n/2], and change Alice’s input by
flipping the Lth bit, with L ∈ [n] − [n/2]. If the information cost of Alice is small, M0

r does not
carry much information about X, even given a prefix. Therefore, flipping a bit outside the prefix
does not perturb the transcript by much.

Lemma 2.9. We have

E(x[1,l],j,l)←(X[1,L],J,L) h(Mr(x[1, l]X[l + 1, n] ; x[1, j]) , Mr(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]))2

≤ 16κ d1r .

This is proven later in the section.

We now conclude the proof of Lemma 2.7. Since Hellinger distance squared is jointly convex
(Proposition 2.2), Lemma 2.8 gives us a bound on the distance between the transcripts averaged
over the choice of suffix x[l + 1, n]. Along with the Jensen Inequality, we get

E(x[1,l],j,l)←(X[1,L],J,L) h(Mr(x[1, l]X[l + 1, n] ; x[1, j]) , Mr(x[1, l]X[l + 1, n] ; x[1, l]))

≤
√

8κ cr . (2.3)

Along with the Triangle Inequality, and Lemma 2.9, this implies that

E(x[1,l],j,l)←(X[1,L],J,L) h(Mr(x[1, l]X[l + 1, n] ; x[1, l]) , Mr(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]))

≤
√

8κ cr +
√

16κ d1r .

Using the Cut-and-Paste property of private coin communication protocols (Proposition 2.5), we
conclude that simultaneously changing Bob’s input from x[1, j] to x[1, l] and flipping the lth bit
of x perturbs the transcript by no more than the individual changes.

E(x[1,l],j,l)←(X[1,L],J,L) h(Mr(x[1, l]X[l + 1, n] ; x[1, j]) , Mr(x[1, l − 1] x̄lX[l + 1, n] ; x[1, l]))

= E(x[1,l],j,l)←(X[1,L],J,L) h(Mr(x[1, l]X[l + 1, n] ; x[1, l]) , Mr(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]))

≤
√

8κ cr +
√

16κ d1r . (2.4)

Combining Eq. (2.3) and Eq. (2.4), and using the Triangle Inequality we get

E(x[1,l],l)←(X[1,L],L) h(Mr(x[1, l]X[l + 1, n] ; x[1, l]) , Mr(x[1, l − 1] x̄lX[l + 1, n] ; x[1, l]))

≤ 4
√

2κ cr + 4
√
κ d1r .
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Using Proposition 2.1, we translate this back to a bound on `1 distance:∥∥∥Mr(X ; X[1, L])X[1, L]−Mr(X
(L) ; X[1, L])X[1, L]

∥∥∥
≤ E(x[1,l],l)←(X[1,L],L) ‖Mr(x[1, l]X[l + 1, n] ; x[1, l])−Mr(x[1, l − 1] x̄lX[l + 1, n] ; x[1, l])‖

≤ 16
√
κ cr + 8

√
2κ d1r .

Lemma 2.7 follows by combining this with Eq. (2.2).

We return to the lemmata whose proofs we had deferred.

Lemma 2.8. E(x,j,l)←(X,J,L) h(Mr(x ; x[1, j]) , Mr(x ; x[1, l]))2 ≤ 8κ cr.

Proof: Consider the random variable M̃r jointly distributed with X,K which is implicitly defined
by the equation KXM̃r = K ⊗ (XM0

r ), where the latter is the product of the two distributions K,
and the marginal XM0

r .

By the Average Encoding Theorem, Proposition 2.4, we have that for every x ∈ {0, 1}n,

Ek←K h
(
Mr(x ; x[1, k]) , M̃r(x)

)2
≤ κ I(K : M0

r |X = x) ,

where κ = ln 2
2 . Averaging over x← X,

E(x,k)←(X,K) h
(
Mr(x ; x[1, k]) , M̃r(x)

)2
≤ κ I(K : M0

r |X) .

An immediate consequence is that

E(x,j)←(X,J) h
(
Mr(x ; x[1, j]) , M̃r(x)

)2
≤ 2κ cr , and

E(x,l)←(X,L) h
(
Mr(x ; x[1, l]) , M̃r(x)

)2
≤ 2κ cr .

By the Triangle Inequality, for any j ∈ [n/2], l ∈ [n]− [n/2], and x ∈ {0, 1}n,

h(Mr(x ; x[1, j]) , Mr(x ; x[1, l]))2

≤
(
h
(
Mr(x ; x[1, j]) , M̃r(x)

)
+ h
(
Mr(x ; x[1, l]) , M̃r(x)

))2
≤ 2 h

(
Mr(x ; x[1, j]) , M̃r(x)

)2
+ 2 h

(
Mr(x ; x[1, l]) , M̃r(x)

)2
.

Taking expectation over X, J, L, we get the claimed bound.

Lemma 2.9. We have

E(x[1,l],j,l)←(X[1,L],J,L) h(Mr(x[1, l]X[l + 1, n] ; x[1, j]) , Mr(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]))2

≤ 16κ d1r .
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Proof: This intuition behind this lemma is the same as that behind the impossibility of “random
access encoding” [40, 3]. Suppose we view the transcript as an encoding of the bits of X not known
to Bob, of which there are at least n/2. Since they are uniformly random, the net information
in the encoding about the bits is no more than the sum of the information about the individual
bits, even conditioned on the prefix. This follows by the superadditivity of mutual information for
independent random variables (equivalently, the Chain Rule, Proposition 2.3). This implies that,
on average, the encoding is very weakly correlated with the bits. The Average Encoding Theorem
(Proposition 2.4) then implies that the messages for two prefixes that differ in one bit are close to
each other, on average. We formalize this below.

Since J is uniform on [n/2],

I(X : Mr(X ; X[1, J ]) |X[1, J ]) ≤ 2 I(X : M0
r |X[1,K]) ≤ 2 d1rn . (2.5)

Fix a sample point (x[1, j], j), with j ∈ [n/2]. By the Chain Rule (Proposition 2.3),

I(X[j + 1, n] : Mr(x[1, j]X[j + 1, n] ; x[1, j]))

=
n∑

l=j+1

I(Xl : Mr(x[1, j]X[j + 1, n] ; x[1, j]) |X[j + 1, l − 1])

≥
n∑

l=n/2+1

I(Xl : Mr(x[1, j]X[j + 1, n] ; x[1, j]) |X[j + 1, l − 1]) . (2.6)

Moreover, by the Triangle Inequality and the Average Encoding Theorem (Proposition 2.4), for
any given x[1, l], with l ∈ [n]− [n/2],

h(Mr(x[1, l − 1]xlX[l + 1, n] ; x[1, j]) , Mr(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]))2

≤
[
h(Mr(x[1, l − 1]xlX[l + 1, n] ; x[1, j]) , Mr(x[1, l − 1]XlX[l + 1, n] ; x[1, j]))

+ h(Mr(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]) , Mr(x[1, l − 1]XlX[l + 1, n] ; x[1, j]))
]2

≤ 2
[
h(Mr(x[1, l − 1]xlX[l + 1, n] ; x[1, j]) , Mr(x[1, l − 1]XlX[l + 1, n] ; x[1, j]))2

+ h(Mr(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]) , Mr(x[1, l − 1]XlX[l + 1, n] ; x[1, j]))2
]

≤ 4κ I(Xl : Mr(x[1, l − 1]XlX[l + 1, n] ; x[1, j])) . (2.7)

Combining Eqs. (2.5), (2.6), and (2.7), we get

E(x[1,l],j,l)←(X[1,L],J,L) h(Mr(x[1, l]X[l + 1, n] ; x[1, j]) , Mr(x[1, l − 1] x̄lX[l + 1, n] ; x[1, j]))2

≤ 4κ E(x[1,l−1],j,l)←(X[1,L−1],J,L) I(Xl : Mr(x[1, l − 1]Xl, X[l + 1, n] ; x[1, j]))

= 4κ E(x[1,j],j,l)←(X[1,J ],J,L) I(Xl : Mr(x[1, j]X[j + 1, n] ; x[1, j]) |X[j + 1, l − 1])

≤ 8κ

n
I(X : Mr(X ; X[1, J ]) |X[1, J ]) ≤ 16κ d1r ,

as claimed.

3 The connection with streaming algorithms

Streaming algorithms are algorithms of a simple form, intended to process massive problem in-
stances rapidly, ideally using space that is of smaller order than the size of the input. A pass on
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an input x ∈ Σn, where Σ is some alphabet, means that x is read as an input stream x1, x2, . . . , xn,
which arrives sequentially, i.e., letter by letter in this order.

Definition 3.1 (Streaming algorithm). Fix an alphabet Σ. A (unidirectional) T -pass streaming
algorithm A with space s(n) and time t(n) is an algorithm such that for every input stream x ∈ Σn:

1. A performs T sequential passes on x in the order x1, x2, . . . , xn,

2. A maintains a memory space of size s(n) bits while reading x,

3. A has running time at most t(n) per letter xi, and

4. A has pre-processing and post-processing time at most t(n).

We say that A is bidirectional if it is allowed to read the input in the reverse order, after reaching
the last letter. Then the parameter T is the total number of passes in either direction.

In general, the pre- and post-processing times of a streaming algorithm may be different, and
may differ from the running time per letter. Since the results in this section apply to streaming
algorithms regardless of their time complexity, we choose not to make this finer distinction.

We refer the reader to the text [39] for a more thorough introduction to streaming algorithms.

Recall that in a two-party communication protocol for Augmented Index, one party, Alice, has
an n-bit string x, and the other party, Bob, has an integer k ∈ [n], the prefix x[1, k − 1] of x, and
a bit b ∈ {0, 1}. Their goal is to compute the function fn(x, (k, x[1, k − 1], b)) = xk ⊕ b, i.e., to
determine whether b = xk or not, by engaging in a two-party communication protocol.

The relationship between streaming algorithms for Dyck(2) and communication protocols for fn
is captured by a reduction due to Magniez, Mathieu, and Nayak [37]. The reduction was originally
described only for one-pass streaming algorithms, but extends readily to unidirectional multi-pass
algorithms. For completeness, we include a proof of this theorem here.

Theorem 3.1. Suppose there is a randomized unidirectional streaming algorithm for Dyck(2)
with T passes that uses space s for instances of length at most 4n2, and has worst-case two-sided
error δ. Then there is a two-party communication protocol Π for the Augmented Index func-
tion fn that makes error at most δ on the uniform distribution µ over its inputs, and has infor-
mation costs ICA

µ0(Π) ≤ sT for Alice and ICB
µ0(Π) ≤ sT/n for Bob, with respect to the uniform

distribution µ0 over f−1n (0).

Proof: For any string z = z1 · · · zn ∈ {a, b}n, let z denote the matching string zn zn−1 · · · z1
corresponding to z. Let z[i, j] denote the substring zizi+1 · · · zj if 1 ≤ i ≤ j ≤ n, and the empty
string ε otherwise. We abbreviate z[i, i] as z[i] if 1 ≤ i ≤ n.

We focus on a subset of instances for Dyck(2) defined as follows. Let n be a positive integer.
Consider strings of the form

w = x1 y1 z1 z1 y1 x2 y2 z2 z2 y2 · · · xn yn zn zn yn xn · · · x2 x1 , (3.1)

where for every i, xi ∈ {0, 1}n, yi = xi[n− ki + 2, n] for some ki ∈ {1, 2, . . . , n}, and zi ∈ {a, b}.
The string w is in Dyck(2) if and only if, for every i, zi = xi[n− ki + 1]. Note that these instances
have length in the interval [2n(n+ 1), 4n2]. Figure 1 depicts an instance of this form.

Intuitively, recognizing strings of the form w is difficult in one pass with space o(n). After reading
xi, the streaming algorithm does not have enough space to store this string so as to be able to check
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Figure 1: An instance of the form described in Eq. (3.1). A line segment with positive slope denotes
a string over {a, b}, and a segment with negative slope denotes a string over

{
a, b
}

. A solid dot
depicts a pair of the form zz for some z ∈ {a, b}. The entire string is distributed amongst 2n
players A1,B1,A2,B2, . . . ,An,Bn in a communication protocol for Ascension(n) as shown.

the bit at unknown index (n − ki + 1). Moreover, after reading yn it does not have enough space
to store information about all indices k1, k2, . . . , kn. When it reads xn · · ·x2 x1 it therefore misses
out on its second chance to check whether zi = xi[n − ki + 1] for every i. When the algorithm
is allowed a larger number of passes T in the same direction, it may adopt a more sophisticated
strategy. Nevertheless, the same intuition carries over with a tighter bound of o(n/T ) on the space.

We observe that a space s streaming algorithm gives rise to a multiparty communication protocol for
the problem Ascension(n), which is the logical OR of n independent instances of the Augmented
Index function fn. In more detail, in the problem Ascension(n) there are 2n players A1,A2, . . . ,An
and B1,B2, . . . ,Bn. Player Ai is given xi ∈ {0, 1}n, player Bi is given ki ∈ [n], a bit zi, and the
prefix xi[1, ki − 1] of xi. Let x = (x1, x2, . . . , xn), k = (k1, k2, . . . , kn), and z = (z1, z2, . . . , zn).

The goal of the communication protocol is to compute

Fn(x,k, z) =

n∨
i=1

fn(xi, ki, zi) =

n∨
i=1

(xi[ki]⊕ zi) ,

which is 0 if xi[ki] = zi for all i, and 1 otherwise. The communication between the 2n parties is
required to be T sequential iterations of communication in the following order, for some T ≥ 1:

A1 → B1 → A2 → B2 → · · ·An → Bn → An → An−1 → · · · → A2 → A1 . (3.2)

In other words, for t = 1, 2, . . . , T ,
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– for i from 1 to n − 1, player Ai sends message MAi,t to Bi, then Bi sends message MBi,t to
Ai+1,

– An sends message MAn,t to Bn,

– Bn sends message MBn,t to An,

– for i from n down to 2, Ai sends message M ′Ai,t
to Ai−1.

At the end of the T iterations, A1 computes the output.

There is a one-to-one correspondence between inputs to Dyck(2) of the form in Eq. (3.1) and the
inputs to Ascension(n). This arises from a partition of the word among 2n players as depicted in
Figure 1. For ease of notation, the strings xi in Ascension(n) are taken to be the ones in Dyck(2)
with the bits in reverse order . This switches the suffixes yi with prefixes of the same length.

The following is immediate.

Lemma 3.2. A unidirectional T -pass streaming algorithm for Dyck(2) with space s implies a
communication protocol for Ascension(n) with T iterations of communication as above, in which
every message is of length s. Moreover, on any input, the probability of error of the protocol is the
same as that of the algorithm.

Proof: In each of the T iterations, a player simulates the streaming algorithm on his/her part of
the input, and sends the length s workspace to the next player in the sequence. The final player
A1 gives the output of the algorithm as that of the protocol.

We prove a direct sum result that captures the relationship of Ascension(n) to solving n in-
stances of the more “primitive” problem Augmented Index. The direct sum result is proven
using the superadditivity of mutual information for inputs (xi, ki, zi) picked independently from
the uniform distribution µ0 over f−1n (0). The use of this “easy” distribution collapses the func-
tion Ascension(n) to an instance of Augmented Index in any chosen coordinate. The direct
sum result allows us to choose a coordinate with small information cost, which proves the theorem.

Consider an instance (X,K,Z) of Ascension(n) distributed according to µn0 over ({0, 1}n × [n]×
{0, 1})n, where X = (X1, X2, . . . , Xn), K = (K1,K2, . . . ,Kn) and Z = (Z1, Z2, . . . , Zn).

Let Π̃ be a public-coin randomized protocol for Ascension(n) derived from a unidirectional T -pass
streaming algorithm for Dyck(2). Assume it has worst-case error δ, and that each message is of
length at most s. For each j ∈ [n], we construct a protocol Πj as follows for the Augmented
Index function fn. Let (x, k, c) be the input for Augmented Index.

1. Alice sets Aj ’s input xj to her input x.

2. Bob sets Bj ’s input (kj , xj [1, kj − 1], zj) to his input (k, x[1, k − 1], c).

3. Alice and Bob generate, using public coins, Xi uniformly at random from {0, 1}n, indepen-
dently for all i > j, so also (Xi,Ki, Zi) distributed according to µ0, independently for all i < j.

4. Bob generates Ki uniformly and independently for i > j, using private coins. Then Bob sets
Zi = Xi[ki] for i > j, so that (Xi,Ki, Zi) are distributed according to µ0, independently for
all i > j.

5. Alice and Bob simulate the protocol Π̃ by executing the roles of players (Ai,Bi)
n
i=1 as follows.

In the tth iteration of communication in the order described in Eq. (3.2),
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(a) Alice runs Π̃ until she generates the message MAj ,t from player Aj . She sends this message
to Bob.

(b) Bob continues running Π̃ until he generates the message MBn,t from player Bn. He sends
this message to Alice.

(c) Alice completes the rest of the tth iteration of Π̃ until she generates the message M ′A2,t

from player A2, and moves to the next iteration of Π̃ (if any).

At the end of the T th iteration, Alice completes the rest of the protocol Π̃ and produces as
output for Πj , the output of player A1 in Π̃.

By definition of the distribution µ0, we have fn(Xi,Ki, Zi) = 0 for all i 6= j. So Fn(X,K,Z) =
fn(x, k, c), and each protocol Πj computes the function fn, i.e., solves Augmented Index, with
worst-case error at most δ.

Note that in the simulation of Π̃ by Alice and Bob above, the random variables (Xi,Ki, Zi) for i < j
are used only by Alice, and could have been generated by Alice using private coins. Making these
random variables public does not affect the correctness of Πj , but turns out to be convenient in
deriving the direct sum result.

Let R denote the public coins used in the protocol Π̃. Let M denote the sequence of T random
variables MBn,1MBn,1 · · ·MBn,T , viz., the messages sent by Bn over all the iterations. By the Chain
Rule (Proposition 2.3),

I(KZ : M | XR) =

n∑
j=1

I(KjZj : M | XRK1Z1 · · ·Kj−1Zj−1) .

Let Rj = (R, (Xi)j 6=i, (K
i, Zi)i<j). These are all the public random coins used in the protocol Πj ,

and any further random coins are used only by Bob privately to generate (Ki, Zi)i>j . Since for
all j

ICB
µ0(Πj) = I(KjZj : M | XjRj)

= I(KjZj : M | XRK1Z1 · · ·Kj−1Zj−1) ,

we have the direct sum result

n∑
j=1

ICB
µ0(Πj) = I(KZ : M | XR) .

Furthermore, M has length at most sT , so that

n∑
j=1

ICB
µ0(Πj) ≤ sT ,

and there is a j0 ∈ [n] such that ICB
µ0(Πj0) ≤ sT/n. We also have

ICA
µ0(Πj0) = I(Xj0 : MAj0

,1MAj0
,2 · · ·MAj0

,T | Kj0Zj0 Rj0)

≤ sT ,

since the length of each message MAj0
,t is bounded by s. The protocol Πj0 is the protocol claimed

by the theorem.
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The information cost trade-off in Theorem 2.6 implies that any streaming algorithm that makes a
“small” number of passes over the input requires a “large” amount of space.

Corollary 3.3. Any randomized unidirectional T -pass streaming algorithm for Dyck(2) that has
worst-case two-sided error δ < 1/4 uses space at least

√
N

T
× 1

6 + 4
√

2

[
1− 4δ

4
√

ln 2
−

2
√

H(2δ)
4
√
N

]2
on instances of length N .

4 Quantum information cost of Augmented Index

We now turn to quantum communication. We present the necessary background on quantum infor-
mation theory in Section 4.1, and discuss quantum protocols and information cost in Section 4.2. In
Section 4.3, we show how the notion of average encoding may be applied also to quantum protocols
for Augmented Index. The analysis of quantum protocols for Augmented Index involves a
number of additional additional subtleties, which are also described along the way.

4.1 Quantum information theory basics

We continue the use of capital letters to denote random variables. We see these as special cases
of quantum states, which are trace one positive semi-definite matrices. Indeed, random variables
may be viewed as quantum states that are diagonal in a canonical basis. Quantum states are also
denoted by capital letters P,Q, etc.

The trace distance ‖A−B‖tr between two quantum states A,B over the same Hilbert space is the

metric induced by the trace norm ‖M‖tr = Tr
√
M †M . Another metric, the Bures distance h(A , B)

between the states, is defined as

h(A , B) =
[
1−

∥∥∥√A√B∥∥∥
tr

]1/2
.

This metric generalizes Hellinger distance to quantum states; when A,B are random variables,
Bures distance coincides with Hellinger distance. For pure states |ψ1〉, |ψ2〉 we use h(|ψ1〉 , |ψ2〉)
as shorthand for h(|ψ1〉〈ψ1| , |ψ2〉〈ψ2|). Bures distance is related to `1 distance in the following
manner (see, e.g., Lemma II.6 in Ref. [30]):

Proposition 4.1. Let P,Q be quantum states over the same Hilbert space. Then

h(P , Q)2 ≤ 1

2
‖P −Q‖tr ≤

√
2 h(P , Q) .

In the following, let (px), (qy) be distributions over the finite sample spaces S,S ′, respectively.

The square of the Bures distance is convex in the following sense. Suppose two quantum states P,Q
are block diagonal in the same basis |x〉 for the space CS , and the blocks corresponding to x in P,Q
have the same trace px.
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Proposition 4.2. Let Px, Qx be quantum states over the same finite Hilbert space for each x ∈ S.
Let P =

∑
x∈S px|x〉〈x| ⊗ Px, and Q =

∑
x∈S px|x〉〈x| ⊗Qx. Then

h(P , Q)2 =
∑
x∈S

px h(Px , Qx)2 .

This may be verified readily by the definition of the Bures distance, but may also be derived as an
immediate consequence of the strong concavity property of fidelity [42, Theorem 9.7, p. 414].

The Local Transition Theorem due to Uhlmann [42] helps us find purifications of quantum states
that achieve the Bures distance between them.

Proposition 4.3 (Local Transition Theorem). Let |ψ1〉 and |ψ1〉 be two pure states in a tensor
product H1 ⊗H2 of Hilbert spaces. Then there exists a unitary operator U on H1 such that

h((U ⊗ IH2) |ψ1〉 , |ψ2〉) = h(TrH1 |ψ1〉〈ψ1| , TrH1 |ψ2〉〈ψ2|) .

We rely on a number of standard results from quantum information theory in this work. For a
comprehensive introduction to the subject, we refer the reader to a text such as [42].

Let S(P ) denote the von Neumann entropy of the quantum state P , and I(P : Q) denote the mutual
information between the two parts of a joint quantum state PQ.

For a joint quantum state XQ =
∑

x∈S px|x〉〈x| ⊗ Qx we define the conditional von Neumann
entropy as S(Q |X) =

∑
x∈S px S(Qx). Similarly, for a joint state XPQ =

∑
x∈S px|x〉〈x| ⊗ (PQ)x,

where (PQ)x is a joint state for each x ∈ S, we define the conditional mutual information as

I(P : Q |X) = S(P |X) + S(Q |X)− S(PQ |X) .

The chain rule for mutual information states:

Proposition 4.4 (Chain rule). Let XYQ =
∑

x∈S,y∈S′ pxqy|xy〉〈xy|⊗Qxy be a joint quantum state.
Then

I(XY : Q) = I(X : Q) + I(Y : Q |X) .

It follows directly from the identity S(XQ) = S(X)+S(Q|X) for joint states XQ of the form XQ =∑
x∈S px|x〉〈x| ⊗Qx.

The Average Encoding Theorem [30, 23] also holds for quantum states. (In fact, it was first
formulated in the context of quantum communication.)

Proposition 4.5 (Average encoding theorem). Let XQ =
∑

x∈S px|x〉〈x| ⊗Qx be a joint quantum
state. Then,

Ex←X h(Qx , Q)2 ≤ κ I(X : Q) ,

where κ is the constant ln 2
2 .

4.2 Quantum communication and information cost

We briefly describe the model of two-party quantum communication, à la Yao [49]. We only consider
protocols with classical inputs and outputs. For the basic elements of quantum computation, we
refer the reader to a text such as [42].
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Informally, two “players”, Alice and Bob, hold some number of qubits. When the protocol starts,
Alice holds a classical input represented by a bit string x ∈ X and similarly Bob holds y ∈ Y. The
qubits in the workspace of the two parties are initialized to a state |Φ〉 that is independent of the
inputs x, y, and may be entangled across the parties. The protocol consists of some number t ≥ 1
of rounds of message exchange, in which the two players “play” alternately. Any party may be the
first to play. Suppose it is Alice’s turn to play. She applies a unitary operator to her workspace
qubits, which depends on her input x and the round. Then, Alice sends some of her workspace
qubits to Bob. In the next round, Bob’s local computation thus involves some qubits previously
in Alice’s control. At the end of the t rounds of message exchange, the player to receive the last
message, say Bob, observes the qubits in his possession according to a measurement that may
depend on his input y. The measurement outcome is considered to be the output of the protocol.

More formally, a two-party quantum communication protocol Π is specified as follows. The protocol
uses some N qubits, for some positive integer N , so that the associated state space is (C2)⊗N . We
view this space as a tensor product space A⊗HA,i⊗HB,i⊗B, for each i = 0, 1, . . . , t, with the initial
factorization given by i = 0, and the factorization at the end of the jth round given i = j. This
factorization reflects the ownership of the qubits. The space A contains Alice’s input, B contains
Bob’s input, and the spaces HA,i and HB,i correspond to Alice’s and Bob’s workspace qubits at the
end of round i, respectively.

The qubits in space A are initialized to |x〉, and those in B are initialized to |y〉. The qubits in
the space HA,0 ⊗ HB,0 are initialized to a possibly entangled state |Φ〉 that is independent of the
inputs. The initial joint state is thus |x〉 ⊗ |Φ〉 ⊗ |y〉.
The protocol specifies the number t of messages sent, and the player that sends the first message.
Suppose it is Alice’s turn to play in round i, with i ≥ 1. The workspace of the two players just
before the round factors as HA,i−1 ⊗ HB,i−1. Alice applies a unitary operator Vi,x to the qubits
in HA,i−1. Note that her unitary depends on her input x and the round. (Later, we imagine
running the protocol on superpositions of inputs. In this case, we think of Alice as applying the
unitary Vi =

∑
x |x〉〈x| ⊗Vi,x to the qubits in the space A⊗HA,i−1.) Then, Alice sends some of her

qubits, corresponding to the space Mi, to Bob. That is, the space HA,i−1 factors as HA,i ⊗Mi,
and HB,i =Mi ⊗HB,i−1.

After the tth message is sent, the recipient, say Bob, observes the qubits corresponding to HB,t

according to a POVM that depends on his input y. The output of the protocol is the measurement
outcome, and we denote the corresponding random variable by Π(x, y). Figure 2 depicts such a
two-party protocol.

We emphasize that the input qubits in the protocol are read only , and that there are no intermediate
measurements. A more general protocol may be transformed into this form by appealing to standard
techniques in quantum computation [7].

In this article, we are concerned with protocols designed to compute a bi-variate Boolean function f :
X ×Y → {0, 1}. As for classical protocols, the probability of correctness (or success) of a protocol
on input x, y is Pr[Π(x, y) = f(x, y)]. We consider inputs drawn from a joint distribution XY , in
which case the success probability is Pr[Π(X,Y ) = f(X,Y )]. The probability of the complementary
event is called the error of the protocol on the distribution XY .

As in the classical case, there is no canonical measure of quantum information leaked by a protocol,
and this notion is a topic of active research. The choice of the measure is driven by a motivating
application and the ease with which we can analyze it. We typically strike a balance between these
opposing forces.
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x yΦ〉

V1

V3

V2

Vt

HA,0 HB,0A B

M1

HA,1 HB,2A M2 B

HA,t HB,t-1A M t B

measurement

outcome  Π(x,y)

M1 HB,0HB,1 = ⊗

M t HB,t-1HB,t = ⊗

M2HA,1HA,2= ⊗

Figure 2: A quantum two-party communication protocol with t messages, inputs x, y and shared
initial state |Φ〉.

A significant difference between classical and quantum information costs arises because the no
cloning principle [42, p. 532] prevents the two parties from keeping a copy of the messages. A
natural notion of a transcript that encapsulates the history of a quantum protocol is instead the
sequence of the joint states after each message exchange. Correspondingly, the notion of information
cost is also different from the one in the classical case.

Consider a quantum communication protocol Π with a total of t messages, beginning with Alice
and alternating with Bob. We emphasize that the input qubits in Π are read-only. The first
player is assumed to be Alice solely to eliminate awkwardness in defining and referring to quantum
information cost. The assumption may be removed without affecting the results in this article.
Alternatively, if Bob starts, we may modify the protocol so that Alice sends a single qubit in a
fixed state, say |0〉, at the beginning. This does not affect the information cost, but increases the
number of messages by one.

Let λ be a probability distribution over X × Y, and let random variables XY be distributed
according to λ. Let PiQi denote the joint state of Alice and Bob’s workspace immediately after
the ith message is sent, in a protocol Π when we start with the inputs XY . In analogy with the
classical case, we may define the quantum information cost of Π for Alice with respect to λ as∑

odd i∈[t]

I(X : Qi |Y ) , (4.1)
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and similarly for Bob as ∑
even i∈[t]

I(Y : Pi |X) . (4.2)

A similar definition has been considered by Jain, Radhakrishnan, and Sen [23]. This appears to
be a natural definition; it captures the amount of information about the other party’s input that
is not already contained in her state. It also allows us to relate quantum streaming algorithms for
Dyck(2) that use small space, to two-party protocols for Augmented Indexwith small quantum
information cost. (The reduction described in Section 3 extends to quantum algorithms with minor
modifications.) However, we are not able to prove an information cost trade-off for Augmented
Index with this definition.

The tension between applicability and ease of analysis is rather acute in our case. This leads us
to consider the information contained in the messages when the input qubits are initialized to an
appropriate superposition. This information is in general more than that contained in the messages
when we have the corresponding distribution over inputs. The former measure may sometimes
capture the information revealed by a party in a quantum communication protocol more accurately
(see, e.g., Ref. [24]). The resulting notion also seems to be necessary for the proof of the information
cost trade-off we present.

Defining quantum information cost with superpositions over inputs, corresponding to arbitrary
non-product distributions, comes with its own set of complications. A comprehensive discussion
of such measures is beyond the scope of this article. We focus on distributions λ over the input
space X × Y with the following limited type of dependence. Let X,Y1 be independent random
variables, and Y2 = s(X,Y1), where s is some function of the first two random variables such
that the conditional random variables X|(Y2 = v) and Y1|(Y2 = v) are also independent, for
any v with Pr[Y2 = v] 6= 0. Then λ is the distribution of XY1Y2. In other words, Alice is given
some input X, Bob an independent input Y1, and also a joint function Y2 = s(X,Y1) of the two.
Moreover, their inputs X,Y1 remain independent when conditioned on any given value of Y2. Such
distributions include product distributions as well as distributions for problems in which the two
communicating parties may share a portion of the input, as in the case of Augmented Index.

The final point of difference between the notions of classical and quantum information cost we
consider comes from the dependence described above in the distribution λ. Since Bob has Y2,
which depends on X, when the input registers are initialized with a superposition corresponding
to λ, the each party already begins with some information about the other’s input. Unlike in the
classical case, this may enable Alice to get information about the Bob’s input Y1. The effect of
the input Y2 is identical to that of measuring the associated qubits of Alice’s superposition in some
basis. This may result in states of varying amount of von Neumann entropy for different values
of Y1, which leaks information about this input to Alice. This is precisely what happens in the case
of Augmented Index, due to the prefix shared by the two parties. To quantify the information
leaked by the protocol , we therefore imagine that there is a single quantum register that carries the
superposition corresponding to X, and that Bob has oracle access to s(X,Y1). Bob’s information
cost is then measured with respect to all the qubits with Alice.

We are now in a position to define the measure of quantum information cost for two-party pro-
tocols that we analyze. Let λ be a probability distribution over X × Y of the type described
above, and let X̂Ŷ1 denote the corresponding superposition

∑
x∈X ,y∈Y

√
λ(x, y) |x, y1〉 over inputs.

Let X̂PiQiŶ1 denote the joint state of Alice and Bob’s input and workspace qubits immediately
after the ith message is sent, in a protocol Π when we start with the input qubits in state X̂Ŷ1.
Note that the input qubits may get entangled with the message qubits during the protocol. As
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the state of the input qubits we refer to will be clear from the context, we do not label it with the
message number i. The quantum information cost of Π for Alice and Bob with respect to λ is then
defined as

QICA
λ(Π) =

∑
odd i∈[t]

I(X̂ : QiŶ1 |Y2) , and

QICB
λ(Π) =

∑
even i∈[t]

I(Ŷ1 : X̂Pi) .

In Alice’s cost, we measure the information about X̂ in Bob’s quantum state, given access to Y2.
In Bob’s cost, we measure the information about Ŷ1 contained in Alice’s quantum state, while
disregarding Y2 (which is not available to Alice). This corresponds to a hybrid of “internal” and
“external information cost” [6]. For product distributions (when Y2 is trivial), this reduces precisely
to the amount of (quantum) information available to a party about the other’s input.

4.3 The quantum information cost trade-off

In this section, we derive an analogue of the information trade-off result established in Section 2.3
for quantum communication protocols for Augmented Index.

We first specialize the notion of quantum information cost to the Augmented Index function fn,
and simplify it further. This allows us derive a stronger information cost trade-off than with the
original definition. Let (X,K,B) be random variables distributed according to µ, the uniform
distribution over {0, 1}n× [n]×{0, 1}. Let µ0 denote the distribution µ conditioned upon XK = B,
i.e., when the inputs are chosen uniformly from the set of 0s of fn. We are interested in the quantum
information cost of a protocol Π for Augmented Index under the distribution µ0, for the two
parties.

As explained in Section 4.2, we adopt the following convention with respect to the inputs for
Augmented Index. Alice is given the input x. We imagine that Bob is given k, b, and access to
the prefix x[1, k − 1], rather than a copy of these bits. When we restrict to the distribution µ0, we
assume he has read-only access to x[1, k]. This means that the local unitary operations used by
Bob during the protocol are controlled by the register holding this prefix.

Suppose we have a quantum protocol Π for Augmented Index with a total of t messages. Without
loss of generality (see Section 4.2), we assume that Alice sends the first message, and alternates
with Bob thereafter.

Let X̂PiQiK̂B̂ denote the joint state of Alice and Bob’s workspace in the protocol Π immediately
after the ith message is sent, when we start with uniform superpositions X̂ over strings x ∈ {0, 1}n,
K̂ over [n], and B̂ over {0, 1} (this corresponds to distribution µ). Let X̂0P 0

i Q
0
i K̂

0B̂0 denote the
analogous joint state corresponding to µ0, where we assume that Bob is given read-only access to
the register containing xk, rather than a copy of this bit. The quantum information cost of Π for
Alice and Bob with respect to µ0 is then

QICA
µ0(Π) =

∑
odd i∈[t]

I(X̂0[K + 1, n] : Q0
i K̂

0 |X[1,K]) , and

QICB
µ0(Π) =

∑
even i∈[t]

I(K̂0 : X̂0P 0
i ) .
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Due to the monotonicity of mutual information under quantum operations [42, Theorem 11.15,
p. 522], for each i = 1, . . . , t we have

I(X : Q0
i |X[1,K]) ≤ I(X̂0[K + 1, n] : Q0

i K̂
0 |X[1,K]) , and

I(K : X̂0P 0
i ) ≤ I(K̂0 : X̂0P 0

i ) .

The trade-off we prove also holds for the potentially smaller quantities on the left side above. In
order to state the theorem in the strongest possible terms, we define another measure of information
cost as follows:

Q̃IC
A
µ0(Π) =

∑
odd i∈[t]

I(X : Q0
i |X[1,K]) , and

Q̃IC
B
µ0(Π) =

∑
even i∈[t]

I(K : X̂0P 0
i ) .

The intuition behind the lower bound on quantum information cost is the same as that in the
classical case. Namely, starting from an input pair on which the function evaluates to 0, if the
information cost of any one party is low and we carefully change her input, the other party’s share
of the state does not change much. Assume for simplicity that Alice produces the output of the
protocol. We show that even when we simultaneously change both parts of the input, resulting in
a 1-input of the function, the perturbation to Alice’s final state is also correspondingly small. This
implies that the two information costs cannot be small simultaneously. For more intuition into the
main lemmata in this proof, we refer the reader to the analogous steps in the classical case. In
the final piece of the argument for the quantum case, the Local Transition Theorem and a hybrid
argument take the place of the Cut-and-Paste Lemma. Unlike the latter, these are applied on a
message-by-message basis, à la Jain, Radhakrishnan, and Sen [23], and leads to a dependence of
the information cost trade-off on the number of messages in the protocol.

The next theorem executes this argument for even n. A similar result also holds for odd n, and may
be inferred from the proof for the even case. As explained in the previous section, the assumption
that Alice sends the first message is not necessary.

Theorem 4.6. Let Π be any quantum two-party communication protocol for the Augmented
Index function fn with n even, Alice starting and alternating with Bob for a total of t ≥ 1 messages.
If Π makes error at most ε ∈ [0, 1/4] on the uniform distribution µ over inputs, then

2

Q̃IC
A
µ0(Π)

n

1/2

+
[
2 · Q̃IC

B
µ0(Π)

]1/2
≥ 1− 4ε

4
√
κ t

,

where µ0 is the uniform distribution over f−1n (0).

Proof: Consider a protocol Π as in the statement of the theorem. Let the inputs be given by random

variables X,K,B, drawn from the distribution µ, let d
def
= Q̃IC

A
µ0(Π)/n, and let c

def
= Q̃IC

B
µ0(Π).

Let X̂PiQiKB be the joint state of the registers used in the protocol, when the inputs are initialized
with a uniform superposition X̂ over x ∈ {0, 1}n and random variables K,B, immediately after
the ith message in the protocol. Let di = 1

n I(X : Q0
i |X[1,K]) for odd i ∈ [t], and ci = I(K : X̂0P 0

i )
for even i ∈ [t]. So d =

∑
odd i∈[t] di and c =

∑
even i∈[t] ci.
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We prove the theorem assuming that Alice computes the output of the protocol, i.e., t is even. The
proof when Bob computes the output is similar; we point out the main differences along the way.
If t is even, we show that the state XP 0

t is close in trace distance to the state XP 1
t , where XP 1

t

denotes the reduced state XPt conditioned on the function value being 1, i.e., when B = X̄K .
(Note that X is the classical random variable corresponding to the superposition X̂.)

Lemma 4.7.
∥∥XP 0

t −XP 1
t

∥∥
tr
≤ 1 + 4

√
κ t
[
2
√
d+
√

2c
]
, where κ = ln 2

2 .

If t is odd, i.e., Bob computes the output of the protocol, we show the same bound on∥∥Q0
t X[1,K]−Q1

t X[1,K − 1] X̄K

∥∥
tr

.

Since the protocol identifies the two states XP 0
t and XP 1

t , with average error ε, and trace distance
is monotonic under quantum operations [42, Theorem 9.2, p. 406], we have∥∥XP 0

t −XP 1
t

∥∥ ≥ 2(1− 2ε) .

The theorem follows.

We now prove the core of the theorem, i.e., that if Alice computes the output, her final state for
the 0 and 1 inputs are close to each other in distribution.

Proof of Lemma 4.7: When we wish to explicitly write a state, say Pi, as a function of the
inputs to Alice and Bob, say x and x[1, k − 1], b respectively, we write it as Pi(x;x[1, k − 1], b).
If b = xk, we write Bob’s input as x[1, k].

As before, for any x ∈ {0, 1}n and i ∈ [n], we let x(i) denote the string that equals x in all
coordinates except at the ith. Note that P 1

t = Pt(X;X[1,K − 1], X̄K) is the same mixed state
as Pt(X

(K);X[1,K]), since X and X(K) are identically distributed. Thus, our goal is to bound∥∥∥XPt(X;X[1,K])−X(K)Pt(X
(K);X[1,K])

∥∥∥
tr

.

For reasons similar to those the classical case and new ones arising from our proof (an explanation for
which is included below), we consider the trace distance between the first term above with K ∈ [n/2]
and the second term with K ∈ [n]− [n/2]. (Recall that in the classical case, we restricted ourselves
to K ∈ [n]− [n/2] in both terms.) Let J be uniformly and independently distributed in [n/2], and
let L be uniformly and independently distributed in [n]− [n/2]. Then∥∥∥XPt(X;X[1,K])−X(K)Pt(X

(K);X[1,K])
∥∥∥
tr

≤ 1 +
1

2

∥∥∥XPt(X;X[1, J ])−X(L)Pt(X
(L);X[1, L])

∥∥∥
= 1 +

1

2

∥∥∥X(L)Pt(X
(L);X[1, J ])−X(L)Pt(X

(L);X[1, L])
∥∥∥ . (4.3)

So it suffices to bound the RHS above. If t is odd, we instead bound∥∥∥Qt(X;X[1,K])X[1,K]−Qt(X(K);X[1,K])X[1,K]
∥∥∥
tr

≤ 1 +
1

2

∥∥∥Qt(X;X[1, L])X[1, L]−Qt(X(L);X[1, L])X[1, L]
∥∥∥
tr

. (4.4)
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This expression is similar to the one we had in the classical case: we focus on the case K ∈ [n]−[n/2]
alone.

For every j ∈ [n/2], l ∈ [n] − [n/2] and z ∈ {0, 1}l, we consider four runs of the protocol Π. The
inputs to Alice and Bob in the four runs are summarized in the table below. Only the first l bits
of Alice’s input are specified. In all four runs, the last (n− l) input bits of Alice are initialized to a
uniform superposition over all (n− l)-bit strings. The final column gives the notation for the (pure)
state corresponding to the registers X̂[l+ 1, n]PiQi, which constitute the last (n− l) inputs bits of
Alice, her workspace, and that of Bob, immediately after the ith message has been sent, i ∈ [t].

Run Alice’s input x[1, l] Bob’s input k, x[1, k − 1], b State

00 z j, z[1, j − 1], zj |φi(z, j)〉
01 z l, z[1, l − 1], zl |φi(z, l)〉
10 z(l) j, z[1, j − 1], zj |φi(z(l), j)〉
11 z(l) l, z[1, l − 1], zl |φi(z(l), l)〉

The two bits in the “Run” column indicate whether Alice’s lth bit has been flipped, and whether
we have switched j to l. A “1” indicates a switch. Note that for the first three kinds of inputs, the
function value is 0, and for the last it is 1.

When Bob’s information cost is low, it follows that the final state on inputs of type “00” is close to
the final state on inputs of type “01” (Lemma 4.8). We show a similar closeness between the final
state on inputs of type “10” and that on inputs of type “11”. This explains the choice made in
Eq. (4.3) when Alice produces the output of the protocol. For similar reasons, when Bob produces
the output of the protocol, we compare the final state of the protocol on inputs of type “01” with
that on inputs of type “11”, as in Eq. (4.4).

As the first step, we compare the intermediate protocol states in the above four runs, when we flip
the lth input bit of Alice, and when we switch Bob’s input from j to l (along with the corresponding
prefix). We show that the switch results in a perturbation to reduced state of the other party that
is related to the information contained about the bit or the index (as in the classical case). To
quantify this perturbation, define

hi(j, l, z) = h
(
Qi(zX[l + 1, n]; z[1, j]) , Qi(z

(l)X[l + 1, n]; z[1, j])
)
,

for every odd i ∈ [t]. This is the perturbation in Bob’s reduced state when we flip the lth bit of
Alice input, when Bob has index j. Define

hi(j, l, z) = h
(
X̂[l + 1, n]Pi(zX̂[l + 1, n]; z[1, j]) , X̂[l + 1, n]Pi(zX̂[l + 1, n]; z[1, l])

)
,

for every even i ∈ [t]. This is the perturbation in Alices’s reduced state when we switch Bob’s
index from j to l. In the above states, Pi is entangled with the qubits holding X̂, and is written as
a function of X̂[l + 1, n] to emphasize this.

The number of qubits Alice and Bob have during the protocol changes with every message. To
maintain simplicity of notation, we denote the identity operator in any round on the register
holding X̂[l+1, n] and Alice’s workspace qubits by IA and the identity operator on Bob’s workspace
qubits by IB.

We begin by showing that changing Bob’s input alone from j to l while keeping Alice’s input fixed
at zX̂[l + 1, n], does not perturb Alice’s reduced state in any round of communication by much,
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provided the corresponding information cost of Bob is small. By the Local Transition Theorem, we
then see that Bob may apply a unitary operation to his qubits alone to bring the protocol states
close to each other.

Lemma 4.8. For every even i ∈ [t], there is a unitary operator Ui that depends upon j, l, z, acts
on Bob’s workspace qubits alone (i.e., on the register holding state Qi), and is such that

h( (IA ⊗ Ui) |φi(z, j)〉 , |φi(z, l)〉) = hi(j, l, z) .

Moreover,
E(j′,l′,z′)←(J,L,X[1,L]) hi(j

′, l′, z′) ≤
√

8κ ci .

The proof is presented later in this section.

Next, we show that if the information cost of Alice is small, Bob’s state Q0
i does not carry much

information about X, even given a prefix. Therefore, flipping a bit outside the prefix does not
perturb Bob’s state by much, and there is a unitary operation on Alice’s qubits which brings the
joint states close to each other.

Lemma 4.9. For every odd i ∈ [t], there is a unitary operator Ui that depends upon j, l, z, acts
on the qubits holding X̂[l+ 1, n] and Alice’s workspace qubits (the register holding state Pi), and is
such that

h
(

(Ui ⊗ IB) |φi(z, j)〉 , |φi(z(l), j)〉
)

= hi(j, l, z) .

Moreover,
E(j′,l′,z′)←(J,L,X[1,L]) hi(j

′, l′, z′) ≤ 4
√
κ di .

This is proven later in the section.

There is no quantum counterpart to the Cut-and-Paste lemma, so that unlike in the classical
case, the above two lemmata are by themselves not sufficient to conclude the theorem. Instead, we
combine these with a hybrid argument to show that switching from chosen 0-inputs of Augmented
Index of the type “10” (as defined above) to corresponding 1-inputs of type “11” does not affect
the final state by “much”.

Lemma 4.10. Let (Ui)i∈[t], be the unitary operators given by Lemmata 4.8 and 4.9. For every
odd r ∈ [t],

h
(

(Ur ⊗ IB) |φr(z, l)〉 , |φr(z(l), l)〉
)
≤ hr(j, l, z) + 2

r−1∑
i=1

hi(j, l, z) .

For every even r ∈ [t],

h
(

(IA ⊗ Ur)|φr(z(l), j)〉 , |φr(z(l), l)〉
)
≤ hr(j, l, z) + 2

r−1∑
i=1

hi(j, l, z) .

This is proved later in this section.
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By the Triangle Inequality, the monotonicity of the trace distance under quantum operations [42,
Theorem 9.2, p. 406], the relationship between trace and Bures distance (Proposition 4.1), Lem-
mata 4.10, 4.8 and 4.9,∥∥∥X(L)Pt(X

(L);X[1, J ])−X(L)Pt(X
(L);X[1, L])

∥∥∥
tr

≤ E(j,l,z)←(J,L,X[1,L])

∥∥∥X[l + 1, n]Pt(z
(l)X[l + 1, n]; z[1, j])−X[l + 1, n]Pt(z

(l)X[l + 1, n]; z[1, l])
∥∥∥
tr

≤ E(j,l,z)←(J,L,X[1,L])

∥∥∥X̂[l + 1, n]Pt(z
(l)X̂[l + 1, n]; z[1, j])− X̂[l + 1, n]Pt(z

(l)X̂[l + 1, n]; z[1, l])
∥∥∥
tr

≤ 2
√

2 E(j,l,z)←(J,L,X[1,L]) h
(
X̂[l + 1, n]Pt(z

(l)X̂[l + 1, n]; z[1, j]) , X̂[l + 1, n]Pt(z
(l)X̂[l + 1, n]; z[1, l])

)
≤ 2

√
2 E(j,l,z)←(J,L,X[1,L]) h

(
(IA ⊗ Ut)|φt(z(l), j)〉 , |φt(z(l), l)〉

)
≤ 4

√
2 E(j,l,z)←(J,L,X[1,L])

t∑
i=1

hi(j, l, z)

≤ 4
√

2

 ∑
odd i∈[t]

4
√
κ di +

∑
even i∈[t]

2
√

2κ ci

 ≤ 8
√
κ t
[
2
√
d+
√

2c
]
.

This concludes the proof of Lemma 4.7.

We turn to the deferred proofs.

Lemma 4.8. For every even i ∈ [t], there is a unitary operator Ui that depends upon j, l, z, acts
on Bob’s workspace qubits alone (i.e., on the register holding state Qi), and is such that

h( (IA ⊗ Ui) |φi(z, j)〉 , |φi(z, l)〉) = hi(j, l, z) .

Moreover,
E(j′,l′,z′)←(J,L,X[1,L]) hi(j

′, l′, z′) ≤
√

8κ ci .

Proof: Note that X̂[l + 1, n]Pi(zX̂[l + 1, n]; z[1, k]) for k ≤ l is the reduced state of |φ(z, k)〉 with
Bob’s workspace (i.e., the register holding state Qi) traced out. By the Local Transition Theorem,
Proposition 4.3, there is a unitary operator Ui that depends upon j, l, z, acts on Bob’s workspace
qubits alone, and is such that

h( (IA ⊗ Ui) |φi(z, j)〉 , |φi(z, l)〉) = hi(j, l, z) .

We show that this distance is bounded on average. Consider the quantum state X̂P̃i which is
the reduced state of all quantum registers except Bob’s workspace and his input K. We denote
by X̂Pi(X̂; X̂[1, k]) this state for a fixed index k, so that

X̂P̃i =
1

n

n∑
k=1

X̂Pi(X̂; X̂[1, k]) .

By the Average Encoding Theorem, Proposition 4.5,

Ek←K h
(
X̂Pi(X̂ ; X̂[1, k]) , X̂P̃i

)2
≤ κ ci ,
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where κ = ln 2
2 . An immediate consequence is that

Ej′←J h
(
X̂Pi(X̂ ; X̂[1, j′]) , X̂P̃i

)2
≤ 2κ ci , and

El′←L h
(
X̂Pi(X̂ ; X̂[1, l′]) , X̂P̃i

)2
≤ 2κ ci .

By the Triangle Inequality, for any j′ ∈ [n/2], l′ ∈ [n]− [n/2],

h
(
X̂Pi(X ; X[1, j′]) , X̂Pi(X ; X[1, l′])

)2
≤

(
h
(
X̂Pi(X ; X[1, j′]) , X̂P̃i

)
+ h
(
X̂Pi(X ; X[1, l′]) , X̂P̃i

))2
≤ 2 h

(
X̂Pi(X ; X[1, j′]) , X̂P̃i

)2
+ 2 h

(
X̂Pi(X ; X[1, l′]) , X̂P̃i

)2
.

Since Bures distance is monotonic under quantum operations [42, Theorem 9.6, p. 414], measuring
the first l′ qubits of X̂ yields

h
(
X[1, l′] X̂[l′ + 1, n]Pi(X[1, l′] X̂[l′ + 1, n] ; X[1, j′]) ,

X[1, l′] X̂[l′ + 1, n]Pi(X[1, l′] X̂[l′ + 1, n] ; X[1, l′])
)2

≤ 2 h
(
X̂Pi(X ; X[1, j′]) , X̂P̃i

)2
+ 2 h

(
X̂Pi(X ; X[1, l′]) , X̂P̃i

)2
.

Moreover, by Proposition 4.2, the left hand side above is equal to

Ez′←X[1,l′] h
(
X̂[l′ + 1, n]Pi(z

′X̂[l′ + 1, n] ; z′[1, j′]) , X̂[l′ + 1, n]Pi(z
′X̂[l′ + 1, n] ; z′[1, l′])

)2
.

Taking expectation over (j′, l′) ← (J, L), and invoking the Jensen inequality, we get the claimed
bound.

Lemma 4.9. For every odd i ∈ [t], there is a unitary operator Ui that depends upon j, l, z, acts
on the qubits holding X̂[l+ 1, n] and Alice’s workspace qubits (the register holding state Pi), and is
such that

h
(

(Ui ⊗ IB) |φi(z, j)〉 , |φi(z(l), j)〉
)

= hi(j, l, z) .

Moreover,
E(j′,l′,z′)←(J,L,X[1,L]) hi(j

′, l′, z′) ≤ 4
√
κ di .

Proof: Note that Qi(zX[l + 1, n]; z[1, k]) for k ≤ l is the reduced state of |φ(z, k)〉 with the
register holding X̂ and Alice’s workspace (the register holding state Pi) traced out. By the Local
Transition Theorem, Proposition 4.3, there is a unitary operator Ui that depends upon j, l, z, acts
on the registers holding X̂[l + 1, n]Pi alone, and is such that

h
(

(Ui ⊗ IB) |φi(z, j)〉 , |φi(z(l), j)〉
)

= hi(j, l, z) .

We have

I(X : Q0
i (X ; X[1, J ]) |X[1, J ]) ≤ 2 I(X : Q0

i |X[1,K]) ≤ 2din . (4.5)
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Fix j′ ∈ [n/2] and z′′ ∈ {0, 1}j
′
. By the Chain Rule, Proposition 4.4,

I(X[j′ + 1, n] : Qi(z
′′X[j′ + 1, n] ; z′′))

=

n∑
l′=j′+1

I(Xl′ : Qi(z
′′X[j′ + 1, n] ; z′′) |X[j′ + 1, l′ − 1])

≥
n∑

l′=n/2+1

I(Xl′ : Qi(z
′′X[j′ + 1, n] ; z′′) |X[j′ + 1, l′ − 1]) . (4.6)

Moreover, by the Average Encoding Theorem (Proposition 4.5) and the Triangle Inequality, for any

given l′ ∈ [n]− [n/2] and z′ ∈ {0, 1}l
′
,

h
(
Qi(z

′X[l′ + 1, n] ; z′[1, j′]) , Qi(z
′(l′)X[l′ + 1, n] ; z′[1, j′])

)2
≤ 4κ I(Xl′ : Qi(z

′[1, l′ − 1]Xl′ X[l′ + 1, n] ; z′[1, j′])) . (4.7)

Combining Eqs. (4.5), (4.6), and (4.7), we get

E(j′,l′,z′)←(J,L,X[1,L]) h
(
Qi(z

′X[l′ + 1, n] ; z′[1, j′]) , Qi(z
′(l′)X[l′ + 1, n] ; z′[1, j′])

)2
≤ 4κ E(j′,l′,z′)←(J,L,X[1,L]) I(Xl′ : Qi(z

′[1, l′ − 1]Xl′X[l′ + 1, n] ; z′[1, j′]))

= 4κ E(j′,l′,z′′)←(J,L,X[1,J ]) I(Xl′ : Qi(z
′′X[j′ + 1, n] ; z′′) |X[j′ + 1, l′ − 1])

≤ 8κ

n
I(X : Qi(X ; X[1, J ]) |X[1, J ]) ≤ 16κ di ,

as claimed.

Lemma 4.10. Let (Ui)i∈[t], be the unitary operators given by Lemmata 4.8 and 4.9. For every
odd r ∈ [t],

h
(

(Ur ⊗ IB) |φr(z, l)〉 , |φr(z(l), l)〉
)
≤ hr(j, l, z) + 2

r−1∑
i=1

hi(j, l, z) .

For every even r ∈ [t],

h
(

(IA ⊗ Ur)|φr(z(l), j)〉 , |φr(z(l), l)〉
)
≤ hr(j, l, z) + 2

r−1∑
i=1

hi(j, l, z) .

Proof: We prove the lemma by induction over r ∈ [t]. The base case is r = 1. By the convention
we have adopted, Alice sends the first message. Since the joint state immediately after the first
message is independent of Bob’s input, we have

|φ1(z, l)〉 = |φ1(z, j)〉 and |φ1(z(l), l)〉 = |φ1(z(l), j)〉 .

That is, the state on the input of type “01” equals that on the input of type “00”. The same holds
for inputs of type “11” and “10”. Along with Lemma 4.9 we get

h
(

(U1 ⊗ IB) |φ1(z, l)〉 , |φ1(z(l), l)〉
)

= h
(

(U1 ⊗ IB) |φ1(z, j)〉 , |φ1(z(l), j)〉
)

= h1(j, l, z) .
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Base case
(1st message sent by Alice)

00 input

01 input

11 input

10 input

equal

equal

close, modulo local 
unitary, if Alice's 
information cost 
is small

Therefore close, 
modulo same unitary,
if Alice's information 
cost is small

Inductive step
(rth message sent by Bob)

00 input

01 input

11 input

10 input

close after rth 
message, modulo 
local unitary,
if Bob's information 
cost is small

Therefore close, 
modulo local unitary,
if total information 
cost is small

close after (r-1)th 
message, modulo 
local unitary,
if Alice's information 
cost is small

close after (r-1)th 
message, modulo 
local unitary, by 
inductive hypothesis

Figure 3: The relationship between states at intermediate stages of the protocol, as described in
the proof of Lemma 4.10.

In other words, the state on the input of type “01” is, up to a unitary operation on Alice’s part,
“close” to that on the input of type “11”.

We prove that the lemma holds for r, assuming that it holds for r − 1 ∈ [t]. The argument here
follows the same intuition as in the base case, but is more involved because the analogous equalities
need not hold. However, the first pair of states may be shown to be close to each other, modulo
a local unitary operator, by virtue of Bob’s low information cost. The second pair are assumed
to be close, again modulo a local unitary operator, by the inductive hypothesis. A careful hybrid
argument then gives us the claimed bound. Figure 3 depicts this schematically.

There are two cases: r is odd, or r is even. We conduct the argument in the second case, when r
is even. The argument for r odd is similar, and is omitted.

By our convention, Bob sends the even numbered messages, including the rth message. By
Lemma 4.8, the states on the inputs of type “00” and “01” are “close” up to the local unitary Ur,
i.e.,

h( (IA ⊗ Ur) |φr(z, j)〉 , |φr(z, l)〉) = hr(j, l, z) . (4.8)

Similarly, by Lemma 4.9, the states before the rth message on the inputs of type “00” and “10”
are “close” up to the local unitary Ur−1, i.e.,

h
(

(Ur−1 ⊗ IB) |φr−1(z, j)〉 , |φr−1(z(l), j)〉
)

= hr−1(j, l, z) . (4.9)

By the induction hypothesis, we also have the following relationship between the states on inputs
of type “01” and “11”:

h
(

(Ur−1 ⊗ IB) |φr−1(z, l)〉 , |φr−1(z(l), l)〉
)
≤ hr−1(j, l, z) + 2

r−2∑
i=1

hi(j, l, z) . (4.10)
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Now

|φr(z, l)〉 = (IA ⊗ Vr,z[1,l]) |φr−1(z, l)〉 , and

|φr(z(l), l)〉 = (IA ⊗ Vr,z[1,l]) |φr−1(z(l), l)〉 ,

where Vr,z[1,l] is the unitary operator that Bob applies on his part of the state (i.e., on the register
holding state Qr−1 before sending the rth message. Note that Vr,z[1,l] commutes with Ur−1, as
they act on disjoint sets of qubits. Since the Bures distance is invariant under unitary operators,
Eq. (4.9) gives us

h
(

(Ur−1 ⊗ IB) |φr〉(z, j) , |φr(z(l), j)〉
)

= hr−1(j, l, z) , (4.11)

and Eq. (4.10) gives us

h
(

(Ur−1 ⊗ IB) |φr(z, l)〉 , |φr(z(l), l)〉
)
≤ hr−1(j, l, z) + 2

r−2∑
i=1

hi(j, l, z) . (4.12)

By the Triangle Inequality, Eqs. (4.8), (4.11), and (4.12), and the observation that Ur−1 and Ur
act on disjoint sets of qubits, we get

h
(

(IA ⊗ Ur) |φr(z(l), j)〉 , |φr(z(l), l)〉
)

≤ h
(

(IA ⊗ Ur) |φr(z(l), j)〉 , (Ur−1 ⊗ I⊗ Ur) |φr(z, j)〉
)

+ h
(

(Ur−1 ⊗ I⊗ Ur) |φr(z, j)〉 , |φr(z(l), l)〉
)

= hr−1(j, l, z) + h
(

(Ur−1 ⊗ I⊗ Ur) |φr(z, j)〉 , |φr(z(l), l)〉
)

≤ hr−1(j, l, z) + h((Ur−1 ⊗ I⊗ Ur) |φr(z, j)〉 , (Ur−1 ⊗ IB) |φr(z, l)〉)

+ h
(

(Ur−1 ⊗ IB) |φr(z, l)〉 , |φr(z(l), l)〉
)

≤ hr−1(j, l, z) + hr(j, l, z) + h
(

(Ur−1 ⊗ IB) |φr(z, l)〉 , |φr(z(l), l)〉
)

≤ hr(j, l, z) + 2
r−1∑
i=1

hi(j, l, z) .

(The identity operators without a subscript in this derivation act on the space of the rth message.)
This completes the induction step.

5 Concluding remarks

The main focus of this article is the amount of information two parties necessarily reveal about their
inputs in the process of the computing a function in a distributed manner. The function of interest
is Augmented Index, a natural variant of the Index function that is ubiquitous in communication
complexity. We show that in any randomized communication protocol that computes this function
correctly with constant error on the uniform distribution (a “hard” distribution), either Alice
reveals Ω(n) information about her n-bit input, or Bob reveals Ω(1) information about his (log n)-
bit input, even when the inputs are drawn from the uniform distribution over inputs which evaluate

32



to 0. It may come as a surprise that such a trade-off hold under a distribution on inputs on which
the function value is known in advance.

The motivation for this work comes from the study of tasks that may be accomplished with a
few sequential scans of massive data, using significantly smaller memory, i.e., through streaming
algorithms. The above result has implications for the space required by streaming algorithms for
Dyck(2), the problem of checking the syntax of a parenthesized expression. It implies that for this
problem, we need space

√
n/T on inputs of length n, when allowed T unidirectional passes over the

input.

The proof of the information cost trade-off showcases a modular and conceptually simple technique
involving the Average Encoding Theorem and the Cut-and-Paste Lemma. Originally developed to
analyse properties of quantum protocols, Average Encoding has been used more widely in classical
complexity theory. For instance, it has been used to derive lower bounds for data structures [46],
and can be used to derive the “Disguising Distribution Lemma” [17], which has applications for
instance compression. The technique developed in this article has also been adapted by François
and Magniez to prove space lower bounds for the problem of checking priority queues with time
stamps in the streaming model [19]. We expect that these tools have yet more applications in
information processing.

A few recent works show how simple quantum streaming algorithms may use exponentially smaller
amount of space as compared with classical ones [35, 21]. We ask if there is similar advantage
in solving a natural and important problem such as Dyck(2). We make partial progress in this
direction, by establishing a quantum information cost trade-off for Augmented Index. We show
that in quantum protocols that compute Augmented Index correctly with constant error on the
uniform distribution, either Alice reveals Ω(n/t) information, or Bob reveals Ω(1/t) information,
where t is the number of messages in the protocol, even when the inputs are drawn from the
aforementioned easy distribution.

The quantum information cost trade-off by itself does not imply a space lower bound for streaming
quantum algorithms. The reduction from streaming algorithms for Dyck(2) with small space to
quantum two-party protocols for Augmented Index breaks down for the notion of information
cost we adopt. We conjecture that a trade-off similar to Theorem 4.6 hold for the notion of
information cost in Eqs. (4.1) and (4.2). We leave the resolution of this conjecture as an intriguing
open problem.

References

[1] Scott Aaronson. The learnability of quantum states. Proceedings of the Royal Society A,
Mathematical, Physical & Engineering Sciences, 463(2088):3089–3114, 2007.

[2] Andris Ambainis, Ashwin Nayak, Amnon Ta-Shma, and Umesh Vazirani. Dense quantum
coding and a lower bound for 1-way quantum automata. In Proceedings of the Thirty-First
Annual ACM Symposium on Theory of Computing, pages 376–383. ACM Press, May 1–4,
1999.

[3] Andris Ambainis, Ashwin Nayak, Amnon Ta-Shma, and Umesh Vazirani. Dense quantum
coding and quantum finite automata. Journal of the ACM, 49(4):1–16, July 2002.

[4] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. The sketching com-
plexity of pattern matching. In Klaus Jansen, Sanjeev Khanna, José D. P. Rolim, and Dana
Ron, editors, Proceedings of the 7th International Workshop on Approximation Algorithms for

33



Combinatorial Optimization Problems (APPROX 2004) and 8th International Workshop on
Randomization and Computation (RANDOM 2004), volume 3122 of Lecture Notes in Com-
puter Science, pages 261–272. Springer, 2004.

[5] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and System
Sciences, 68(4):702–732, 2004. Special issue on FOCS 2002.

[6] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive com-
munication. In Proceedings of the 42nd ACM symposium on Theory of Computing, STOC ’10,
pages 67–76, New York, NY, USA, 2010. ACM.

[7] Ethan Bernstein and Umesh V. Vazirani. Quantum complexity theory. SIAM Journal on
Computing, 26(5):1411–1473, 1997.

[8] Robin Blume-Kohout, Sarah Croke, and Daniel Gottesman. Streaming universal distortion-
free entanglement concentration. Technical Report arXiv:0910.5952, arXiv.org Preprint,
http://arxiv.org/abs/0910.5952, October 30, 2009.

[9] Joshua Brody, Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman. Towards a
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