
Algorithms for Arithmetic Circuits

Neeraj Kayal ∗

neeraka@microsoft.com

April 21, 2010

Abstract

Given a multivariate polynomial f(X) ∈ F[X] as an arithmetic circuit we would like to efficiently
determine:

1. Identity Testing. Is f(X) identically zero?

2. Degree Computation. Is the degree of the polynomial f(X) at most a given integer d .

3. Polynomial Equivalence. Upto an invertible linear transformation of its variables, is f(X) equal
to a given polynomial g(X).

The algorithmic complexity of these problems is studied. Some new algorithms are provided here while
some known ones are simplified. For the first problem, a deterministic algorithm is presented for the
special case where the input circuit is a ”sum of powers of sums of univariate polynomials” . For the
second problem, a coRPPP-algorithm is presented. Finally, randomized polynomial-time algorithms are
presented for certain special cases of the third problem.

1 Introduction

Polynomials are used extensively in computer algebra. The naive way of encoding polynomials is to write
down the list of the coefficients of all monomials but this is not always suitable, especially when we are
dealing with multivariate polynomials where even low degree polynomials may have an exponentially large
number of monomials. 1 Arithmetic circuits can sometimes remedy this situation since their size is in general
much smaller than the list of all coefficients. Arithmetic circuits also provide a natural and elegant model
for computing polynomials. Of particular interest in computer science is the determination of the smallest
arithmetic circuit computing a given polynomial.
Having found a versatile and compact way to represent polynomials, the focus now naturally shifts to
algorithms for basic operations involving polynomials represented as arithmetic circuits. Substantial progress
has been made in this direction. Efficient (randomized) algorithms have been devised for testing the equality
of two polynomials (see e.g. [Sch80]), for computing the gcd of two polynomials [Kal88], for factoring a
low-degree multivariate polynomial [Kal89] and for computing the set of partial derivatives of a polynomial
[BS83]. At times algorithmic results such as the one of Baur and Strassen [BS83] have yielded lower bounds
on the arithmetic circuit complexity of a polynomial.
Though compact, this manner of representing polynomials is not always amenable to efficient computation
- some very natural questions become hard when dealing with arithmetic circuits. It is known for example
that computing the coefficient of a given monomial is #P- hard [Mal07, AKPBM06]. Thus it seems natural
to wonder which properties of the polynomial described by a given arithmetic circuit can be computed
efficiently. Zeroness/nonzeroness and degree are clearly basic algebraic properties of a polynomial and with
this, we dispense with the need to motivate the associated computational problems. We now motivate
polynomial equivalence testing.

∗Microsft Research India. Part of this work done while the author was at DIMACS, Rutgers University.
1A multivariate polynomial is said to be a low degree polynomial if its degree is bounded above by a polynomial in the

number of variables.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 73 (2010)

Motivation. We consider the task of understanding polynomials upto invertible linear transformations of
the variables. We will say that two n-variate polynomials f(X) and g(X) are equivalent, denoted f ∼ g
if there exists an invertible linear transformation A ∈ Fn×n such that f(X) = g(A · X). The following
well-known lemma constructively classifies quadratic polynomials upto equivalence.

Lemma 1. (Structure of quadratic polynomials). Let F be an algebraically closed field of characteristic
different from 2. For any homogeneous quadratic polynomial f(X) ∈ F[X] there exists an invertible linear
transformation A ∈ Fn×n and a natural number 1 ≤ r ≤ n such that

f(A ·X) = x2
1 + x2

2 + . . .+ x2
r.

Moreover, the linear transformation A involved in this equivalence can be computed efficiently. Furthermore,
two quadratic forms are equivalent if and only if they have the same number r of variables in the above
canonical representation.

This lemma allows us to understand many properties of a given quadratic polynomial. We give one example.

Example 2. Formula size of a quadratic polynomial. Let Φ be an arithmetic formula. The size of
the formula Φ, denoted L(Φ) is defined to be the number of multiplication gates in it. 2 For a polynomial f ,
L(f) is the size of the smallest formula computing f . Then for a homogeneous quadratic polynomial f , we
have that

L(f) =
⌈r

2

⌉
,

where r is as given by lemma 1.

Sketch of Proof : Let f(X) be equivalent to x2
1+. . .+x2

r. Using the identity y2+z2 = (y+
√
−1z)·(y−

√
−1z),

we can replace the sum of squares representation above with a sum of products of pairs. That is,

f(X) ∼

{
x1x2 + x3x4 + . . .+ xr−1xr if r is even,
x1x2 + x3x4 + . . .+ xr−2xr−1 + x2

r if r is odd,

Let g(X) def= x1x2 +x3x4 + . . .+xr−1xr. For any homogeneous quadratic polynomial, there is a homogeneous
ΣΠΣ (sum of product of sums) formula of minimal formula size for computing that polynomial. Using this
the formula size for g(X) can be deduced to be r

2 and furthermore that L(f) is exactly
⌈
r
2

⌉
.

�

No generalization of the above example to higher degree polynomials is known. Indeed, no explicit family
of cubic (i.e. degree three) polynomials is known which has superlinear formula-size complexity. 3 One
might näıvely hope that an appropriate generalization of lemma 1 to cubic polynomials might shed some
light on the formula size complexity of a cubic polynomial. That is, one wants a characterization of cubic
polynomials upto equivalence. Despite intensive effort (cf. [MH74, Har75]), no ‘explicit’ characterization of
cubic forms was obtained. In a recent work, Agrawal and Saxena [AS06] ‘explained’ this lack of progress:
they showed that the well-studied but unresolved problem of graph isomorphism reduces to the problem of
testing equivalence of cubic forms. A simpler proof of a slightly weaker version of their result is presented
in example 3. This means that the polynomial equivalence problem is likely to be very challenging, even
when the polynomials are given verbosely via a list of coefficients. In this work, we do not tackle the general
polynomial equivalence problem, but rather some special cases of it which are motivated by the desire to
present a given polynomial in an “easier way”. The “easier” ways of presenting that we look at are motivated
by the characterization of quadratic polynomials as given in lemma 1 and example 2. Let us describe these
special cases of polynomial equivalence.

2The size of an arithmetic formula is usually defined as the total number of gates, addition as well as multiplication, in
the formula. Our definition is equivalent to this definition upto quadratic factors. In many situations it is more convenient to
work with the number of multiplication gates as a measure of the size of the formula. This definition has the further desirable
property that if two polynomials are equivalent then they have the same formula size.

3A dimension counting arguments assures us that over every field F, there exists a family of {fn} of cubic n-variate polyno-

mials which has formula size Ω(n
3
2). No explicit family of cubic polynomials with superlinear formula size is known.

2

The integer r of lemma 1 is referred to in the literature as the rank of the quadratic form. Notice that
upto equivalence, it is the smallest number of variables which the given polynomial f depends on. One then
asks whether a given polynomial is equivalent to another polynomial which depends on a fewer number of
variables. The canonical form for a quadratic polynomial is as a sum of squares of linear forms. The natural
question for higher degree polynomials then is whether the given polynomial is a sum of appropriate powers
of linear forms. i.e whether a given polynomial of degree d is equivalent to

xd1 + xd2 + . . .+ xdn.

It should be noted that unlike quadratic forms, not every polynomial of degree d ≥ 3 can be presented in
this fashion. We devise an efficient randomized algorithm for this special case of equivalence testing. We
then consider some other classes of polynomials and do equivalence testing for those. In particular, we devise
algorithms to test whether the given polynomial is equivalent to an elementary symmetric polynomial. The
algorithms that we devise can be generalized quite a bit and these generalizations (which we call polynomial
decomposition and polynomial multilinearization) are explained in section 9 of this article. Before we go
on let us motivate our consideration of such special cases by obtaining a hardness result for polynomial
equivalence.

Example 3. Graph Isomorphism many-one reduces to testing equivalence of cubic polynomials. 4

Sketch of Proof : Let the two input graphs be G1 = (V1, E1) and G2 = (V2, E2). Let |V1| = |V2| = n.
Define the cubic polynomial fG1 as follows:

fG1(X) def=
n∑
i=1

x3
i +

∑
{i,j}∈E1

xi · xj .

Polynomial fG2 is defined analogously. It suffices to prove that G1 is isomorphic to G2 if and only if fG1 is
equivalent to fG2 . The forward direction is easy. For the other direction, assume that fG1 is equivalent to
fG2 via the matrix A. i.e.

fG1(A ·X) = fG2(X).

Then the homogeneous cubic part of fG1 must be equivalent, via A, to the homogeneous cubic part of fG2 and
the same thing holds for the homogeneous quadratic part. Corollary 23 describes the automorphisms of the
polynomial x3

1+. . .+x3
n and it says that there exists a permutation π ∈ Sn and integers i1, i2, . . . , in ∈ {0, 1, 2}

such that
A ·X = (ωi1 · xπ(1), ω

i
2 · xπ(2), . . . , ω

i
n · xπ(n)).

Using the equivalence via A of the homogeneous quadratic parts of fG1 and fG2 , we obtain that π in fact
describes an isomorphism from G1 to G2.

�

1.1 Previous work and our results

Identity Testing

It is well known that polynomial identity testing, the problem of determining whether a given arithmetic
circuit computes the identically zero polynomial or not, admits a randomized algorithm [Sch80, Zip79]. No
deterministic algorithm is known. In recent years, the problem has been under intense attack and a number
of special cases have been tackled and resolved [LV98, KS01, AB03, RS04, DS05, KS06, Sax08, SV08, KS09].
The reason is twofold. Firstly, besides being a natural problem, many other interesting algorithmic problems
such as primality testing [AB03] and bipartite matching [MVV87] are special cases of this problem. Perhaps
more importantly, it is known that derandomizing identity testing will lead to arithmetic circuit lower bounds

4Agrawal and Saxena [AS06] showed the stronger result that graph isomorphism reduces to testing equivalence of homoge-
neous cubic polynomials, also known as cubic forms .

3

[Agr05, IK03]. Here we consider the special case of identity testing where the circuit is a sum of powers of
sums of univariate forms. We will test whether an expression of the form

k∑
i=1

ai(gi1(x1) + gi2(x2) + . . .+ gin(xn))d

is identically zero or not. This situation has been examined before - a deterministic polynomial time algorithm
was devised by Saxena [Sax08]. The algorithm that we devise is self contained and arguably much simpler.
5

Degree of a polynomial

As an algorithmic problem the complexity of computing the degree of the polynomial computed by a given
arithmetic circuit (shortened to DegSLP) has been studied in by Allender et al [ABKPM09] and by Koiran
and Perifel [KP07]. The first work gives an upper bound in the counting hierarchy while the second work
improves it to coNPPP. We improve this further to coRPPP. Furthermore, our algorithm works even when
the finite field itself is part of the input rather than being fixed.

Polynomial Equivalence

Polynomial equivalence is a relatively less well-studied problem. The problem of minimizing the number of
variables in a polynomial upto equivalence was considered earlier from a more practical perspective and an
efficient algorithm for verbosely represented polynomial (i.e. polynomials given via a list of coefficients) was
devised by Carlini [Car06] and implemented in the computer algebra system CoCoA. We observe here that
this problem admits an efficient randomized algorithm even when the polynomial is given as an arithmetic
circuit. In his thesis [Sax06], Saxena notes that the work of Harrison [Har75] can be used to solve certain
special cases of polynomial equivalence but the time complexity deteriorates exponentially with the degree.
In particular, the techniques of Harrison imply that one can deterministically test whether a given polynomial
is equivalent to xd1 + . . .+ xdn but the time taken is exponential in the degree d. Here we give a randomized
algorithm with running time polynomial in d and the size of the input circuit. We also present a new
randomized polynomial time algorithm to test whether a given polynomial is equivalent to an elementary
symmetric polynomial. Our algorithms generalize somewhat and we obtain efficient randomized algorithms
for polynomial decomposition and multilinearization. See theorems 31 and 30 for the precise statements of
these generalizations and the degenerate cases which need to be excluded.

Linear Dependence among polynomials

One natural subproblem is common to many of these algorithms. We call it POLYDEP and it is studied in
section 3. There we show the relationship of this problem to identity testing and give an efficient randomized
algorithm for it.

Organization

The rest of this article is organized as follows. We fix some notation and terminology in section 2. We
then define and investigate the problem of computing linear dependencies among polynomials in section 3.
Thereafter, we look at identity testing in section 4. We move on to the complexity of computing the degree
in section 5. Then in section 6, we devise an efficient randomized algorithm to minimize the number of
variables occuring in a given polynomial. Thereafter we consider polynomial equivalence in sections 7, 8 and
9. We conclude by posing some new problems.

5The algorithm of Saxena [Sax08] uses a noncommutative formula identity testing algorithm by Raz and Shpilka [RS04]

4

2 Notation

We will abbreviate the vector of indeterminates (x1, x2, . . . , xn) by X. The set {1, 2, . . . , n} will be abbrevi-
ated as [n]. We will be consider polynomials in n variables over some field F. We will need the notion of the
formal degree of an arithmetic circuit.

Definition 4. The formal degree of a vertex in an arithmetic circuit is defined inductively as follows:

• the formal degree of an input node is 1.

• the formal degree of a + gate is the maximum of the formal degrees of its entries.

• the formal degree of a × gate is the sum of the formal degrees of its entries.

The formal degree of an arithmetic circuit is the formal degree of its output node.

A polynomial of degree one is called an affine form. Affine forms whose constant term is zero are called
linear forms. We will say that a given polynomial f(X) is a low-degree polynomial if its degree is bounded
above by a polynomial in the size of the arithmetic circuit computing f(X).
For a linear transformation

A =

a11 · · · a1n

a21 · · · a2n

...
. . .

...
an1 · · · ann

 ∈ Fn×n,

we shall denote by A ·X the tuple of polynomials

(a11x1 + . . .+ a1nxn, . . . , an1x1 + . . .+ annxn).

Thus, for a polynomial f(X) ∈ F[X], f(A · X) denotes the polynomial obtained by making the linear
transformation A on the variables in f .
We also set up a compact notation for partial derivatives and substitution maps. Let f(x1, . . . , xn) ∈
F[x1, . . . , xn] be a polynomial. Then:

• Sets of derivatives. ∂kf shall denote the set of k-th order partial derivatives
of f . Thus ∂1f , abbreviated as ∂f , shall equal{

∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

}
.

∂2f is the set {
∂2f

∂xi · ∂xj
: 1 ≤ i < j ≤ n

}
,

and so on.

• Derivatives and substitution maps. We also have

∂if
def=

∂f

∂xi
and σif

def= f(x1, . . . , xi−1, 0, xi+1, . . . , xn).

3 Linear dependencies among polynomials
In this section we isolate and study a subproblem which is common to many of the problems studied here.
We call it the problem of computing linear dependencies among polynomials and denote it by POLYDEP.

5

Definition 5. Let f(X) def= (f1(X), f2(X), . . . , fm(X)) ∈ (F[X])m be a vector of polynomials over a field F.
The set of F-linear dependencies in f , denoted f⊥, is the set of all vectors v ∈ Fm whose inner product with
f is the zero polynomial, i.e.,

f⊥ def=
{

(a1, . . . , am) ∈ Fm : a1f1(X) + . . .+ amfm(X) = 0
}

If f⊥ contains a nonzero vector, then the fi’s are said to be F-linearly dependent.

The set f⊥ is clearly a linear subspace of Fm. In many of our applications, we will want to efficiently compute
a basis of f⊥ for a given tuple f = (f1(X), . . . , fm(X)) of polynomials. Let us capture this as a computational
problem.

Definition 6. The problem of computing linear dependencies between polynomials, denoted POLYDEP, is
defined to be the following computational problem: given as input m arithmetic circuits computing polynomials
f1(X), . . . , fm(X) respectively, output a basis for the subspace f⊥ = (f1(X), . . . , fm(X))⊥ ⊆ Fm.

Clearly, identity testing is a special case of POLYDEP (put m = 1). Like identity testing, POLYDEP
admits an efficient randomized algorithm. This randomized algorithm will form a basic building block of our
algorithms Section 3.1. We do not know whether POLYDEP is equivalent (via deterministic polynomial-
time Turing reductions) to identity testing. In practice what is seen is that the known polynomial-time
algorithms to do identity testing for certain special families of arithmetic circuits can all be tweaked into
polynomial-time algorithms to solve POLYDEP for such families of arithmetic circuits. In the other direction
we have:

Exercise 7. Let the search version of identity testing be the following computational problem: given an
arithmetic circuit C output an a ∈ Fn such that C(a) 6= 0, if such an a exists; else output ‘No such a’. 6

Show that POLYDEP reduces to the search version of identity testing. 7

Notice that for low-degree arithmetic circuits 8, the search version of identity testing is equivalent (via
polynomial-time turing reductions) to the decision version. For this reason, the reader should think of
POLYDEP as being a problem that is “morally equivalent” to identity testing.

In section 4, we will devise a deterministic polynomial-time algorithm for POLYDEP over a special family
of polynomials. As a corollary, it gives us a deterministic polynomial-time algorithm for identity testing.
In particular, we will show how to efficiently find a basis for the space of all F-linear dependencies between
polynomials of the form (

g1(x1) + g2(x2) + . . .+ gn(xn)
)D

,

where each gi is a univariate polynomial and is given explicitly.

3.1 A randomized algorithm for POLYDEP.

Lemma 8. Given a vector of m polynomials f = (f1(X), f2(X), . . . , fm(X)) in which every fi is as usual
specified by a circuit, we can compute a basis for the space f⊥ in randomized polynomial time.

Proof. We will prove this by showing that f⊥ is actually the nullspace of a small, efficiently computable
matrix. Suppose that f⊥ is spanned by b1, . . . ,bt. Pick m points a1, . . . ,am in Fn and consider the m×m
matrix M defined as follows:

M
def=

f1(a1) f2(a1) . . . fm(a1)
f1(a2) f2(a2) . . . fm(a2)

...
...

. . .
...

f1(am) f2(am) . . . fm(am)

 (1)

6The underlying field F is assumed to be large enough — say at least twice the formal degree of C.
7For low-degree arithmetic circuits, i.e. arithmetic circuits whose formal degree is bounded by a polynomial in the size of

the circuit, the search version of identity testing is equivalent to the decision version.
8An arithmetic is said to be of low degree if the degree of the polynomial computed by it is bounded by a polynomial in the

circuit size.

6

Notice that for each bi in the basis of f⊥, we always have M ·bi = 0 by definition. We now claim that with
high probability over a random choice of the points a1, . . . ,am ∈ Fn, the matrix M has rank (m− t). If this
happens, then it means that the nullspace of M is exactly the space spanned by b1, . . . ,bt, thereby enabling
us to compute a basis of f⊥ efficiently. Towards this end, it is sufficient to prove the following claim:

Claim 8.1. Let P (X1, . . . ,Xm) be the m×m matrix with entries in F(X1, . . . ,Xm) defined as follows:

P (X1, . . . ,Xm) def=

f1(X1) f2(X1) . . . fm(X1)
f1(X2) f2(X2) . . . fm(X2)

...
...

. . .
...

f1(Xm) f2(Xm) . . . fm(Xm)

 . (2)

Then P has rank (m− t).

Proof of Claim 8.1: Without loss of generality we can assume that the polynomials
f1(X), f2(X), . . . , fm−t(X) are F-linearly independent and the rest of the polynomials are F-linear com-
binations of these first (m− t) polynomials. It is then sufficient to prove that the submatrix

Q
def=

f1(X1) f2(X1) . . . fm−t(X1)
f1(X2) f2(X2) . . . fm−t(X2)

...
...

. . .
...

f1(Xm−t) f2(Xm−t) . . . fm−t(Xm−t)

has full rank, or equivalently, the determinant of Q is a nonzero polynomial. Now, expanding Det(Q) along
the first row we have

Det(Q) = f1(X1) ·Q11 − f2(X1) ·Q12 + . . .+ (−1)m−t+1fm−t(X1) ·Q1m−t,

where Qij is the determinant of the ij-th minor.
Notice that every Q1k, k ∈ [m− t], is a polynomial in the set of variables X2, . . . ,Xm−t. By induction, every
Q1k is a nonzero polynomial (since every subset of a set of F-linearly independent polynomials is also F-
linearly independent). If Det(Q) was the zero polynomial then plugging in random values for X2, . . . ,Xm−t
would give us a nonzero F-linear dependence among f1(X1), f2(X1), . . . , fm−t(X1), which is a contradiction.
Hence Det(Q) must be nonzero, proving the claim. �

This also completes the proof of Lemma 8.

4 Identity testing

Despite much effort, no deterministic polynomial-time algorithm is known for identity testing. Because of
the difficulty of the general problem, research has focussed on special cases. We will present an efficient
deterministic algorithm for a special family of polynomials. It is a conceptually simpler and self-contained
version of an algorithm of [Sax08]. As observed in the previous section, identity testing is “morally equivalent”
to POLYDEP. We will focus our efforts on POLYDEP and devise an efficient deterministic algorithm for
POLYDEP(f1(X), . . . , fm(X)) when each polynomial fi(X) is a power of a sum of univariate polynomials,
i.e.,

∀ i ∈ [m] : fi(X) =
(
gi1(x1) + gi2(x2) + . . .+ gin(xn)

)D
,

and each gij(xj) is a univariate polynomial of degree at most d. For a set of polynomials of this form the
brute force algorithm that expands every polynomial takes time about nd+D. In this section we will devise
a poly(nmdD)-time algorithm. We need a few technical claims in order to devise our algorithm. The fairly
straightforward proofs of these claims are pushed back to the following subsection.
Our first claim is that knowing a basis for the space of linear dependencies between (h1(X), . . . , hm(X)), we
can efficiently compute a basis for the space of linear dependencies between known linear combinations of
the hi’s.

7

Claim 8.2. Let h = (h1(X), . . . , ht(X)) ∈ F[X]t be a vector of polynomials. Given a basis for h⊥ and given
vectors a1, . . . ,am ∈ Ft, we can efficiently compute a basis for (f1(X), . . . , fm(X))⊥, where

fi(X) = ai · h for each 1 ≤ i ≤ m.

The next claim is a restatement of the fact that a univariate polynomial of degree at most d is zero if
and only if the constant term of each one of its derivatives of order upto d is zero.

Claim 8.3. Let f(X) be a polynomial of degree at most d. Then f is identically zero if and only if σ1∂
j
1f = 0

for all 0 ≤ j ≤ d.

The next claim uses the above one and shows how to reduce a given instance of the POLYDEP problem
into a large number of “smaller” instances of the POLYDEP problem using partial derivatives.

Claim 8.4. [Reducing an instance of POLYDEP in n variables to a number of instances of
POLYDEP in n− 1 variables]
Let f = (f1(X), . . . , fm(X)). Suppose that the degree of each fi(X) is at most d. Suppose that the underlying
field F has characteristic larger than d. Then we have

f⊥ =
d⋂
j=0

Vj ,

where for each j ∈ {0, 1, . . . , d}, Vj is defined to be

Vj
def=
(
σ1∂

j
1f1, . . . , σ1∂

j
1fm

)⊥
.

The observation above suggests a natural strategy for POLYDEP — recursively compute the dependencies
among (

σ1∂
j
1f1, . . . , σ1∂

j
1fm

)
for j ∈ {0, . . . , d} and then take the intersection of all the subspaces so obtained. This näıve strategy in
general only gives an exponential algorithm that is little better than brute force expansion. However, for the
case when fi’s are the powers of sums of univariate polynomials, one can show that all the polynomials in{

σ1∂
j
1fk : 0 ≤ j ≤ d, 1 ≤ k ≤ m

}
are efficiently expressible as linear combinations of a small number of polynomials {h1, h2, . . . , ht} ⊆
F[x2, . . . , xn] where hi’s are also powers of sums of univariate polynomials. Then using just one recur-
sive call POLYDEP(h1, . . . , ht) and using the algorithm of claim 8.2, we can compute each Vj for 0 ≤ j ≤ d.
Thereafter, taking the intersection of the Vj ’s allows us to compute the linear dependencies between the
original polynomials. The algorithm is efficient because in the recursive step we make just one recursive call
to POLYDEP rather than (d+ 1) calls.

Lemma 9. Let f(x1, . . . , xn) = (g1(x1)+ . . .+gn(xn))D, where the gi’s are univariate polynomials of degree
at most d. Let G = g1(x1) + g2(x2) + . . .+ gn(xn). Then

σ1∂
j
1f =

j∑
k=0

ajk · σ1G
D−k, where each ajk ∈ F.

Furthermore, the ajk’s occurring in the above expression can be computed in time poly(dD).

Proof. It suffices to prove that

∂j1f =
j∑

k=0

(d−1)j∑
`=0

bk` ·GD−k · x`1, (3)

8

where the bkl’s are computed efficiently. We prove it by induction on j with the base case of j = 0 being
trivial. Now assume equation 3 holds then differentiating both sides of equation 3 with respect to x1, we get
an expression for ∂j+1

1 f . By linearity of derivatives it suffices to examine just one summand which is of the
form ∂1G

D−kx`1. We have

∂1G
D−kx`1 = ` ·GD−kx`−1

1 + (D − k) ·GD−k−1x`1 · ∂1G

= ` ·GD−kx`−1
1 + (D − k) ·GD−k−1x`1 · ∂1(g1(x1))

= ` ·GD−kx`−1
1 +

d−1∑
i=0

ai(D − k) ·GD−k−1x`+i1 ,

where ∂1g1 =
∑d−1
i=0 aix

i
1. This completes the proof of the lemma.

We are now ready to prove our first result on POLYDEP and consequently on identity testing.

Theorem 10. For i ∈ [m] and j ∈ {0, . . . , D}, let fij(X) = Gi(X)j where each Gi is a sum of univariate
polynomials of degree at most d, i.e., each Gi is of the form

(gi1(x1) + . . .+ gin(xn)),

the gik’s being univariate polynomials of degree at most d. There is a deterministic algorithm for

POLYDEP
(
fij : i ∈ [m], j ∈ {0, . . . , D}

)
,

whose running time is bounded by poly(nmdD).

Proof. The algorithm is as follows.

Step 1: If n = 0, then the fij ’s are all field elements
and thus, the computation of their linear de-
pendencies is trivial.

Step 2: If n ≥ 1, then by making a recursive call to

POLYDEP
(
σ1(Gi)j : i ∈ [m], j ∈ {0, . . . , D}

)
,

we get a basis for (
σ1(Gi)j : i ∈ [m], j ∈ {0, . . . , D}

)⊥
.

Step 3: Use the algorithm of Lemma 9 to compute
aijks’s such that

σ1∂
k
1G

j
i =

D∑
s=0

aijks · σ1(Gi)s.

Step 4: From the data above and using the algorithm
of claim 8.2, compute a basis for

Vk
def=
{
σ1∂

k
1G

j
i : i ∈ [m], j ∈ {0, . . . , D}

}⊥
.

Step 5: Output
dD⋂
k=0

Vk.

9

The correctness follows from claim 8.4. If the time taken is denoted by T (n,m, d,D) then the recurrence
relation is

T (n,m, d,D) = T (n− 1,m, d,D) + poly(mdD)

which solves out to give T (n,m, d,D) = poly(nmdD).

4.1 Proofs of the technical claims

In this subsection we provide the proofs of some of the technical claims.

Claim 8.2. Let h = (h1(X), . . . , ht(X)) ∈ F[X]t be a vector of polynomials. Given a basis for h⊥ and given
vectors a1, . . . ,am ∈ Ft, we can efficiently compute a basis for (f1(X), . . . , fm(X))⊥, where

fi(X) = ai · h for each 1 ≤ i ≤ m.

Proof. Let r = t − dim((h1(X), . . . , ht(X))⊥). r is the dimension of the F-space generated by {h1, . . . , ht}.
Using the basis for h⊥ and the Gaussian elimination algorithm, we can find a linearly independent set of r
hi’s. Without loss of generality, let us assume that h1, . . . , hr are F-linearly independent. Now express each
fj(X) as a linear combination of h1(X), . . . , hr(X). In this way, for the purpose of the rest of the algorithm,
we can treat the fj ’s simply as r-dimensional vectors over F. Finally, we iterate over i and compute two sets
Fi ⊆ {f1(X), . . . , fi(X)} and Vi ⊂ Ft. Fi consitutes a maximal set of F- linearly independent vectors among
{f1(X), . . . , fi(X)} whereas Vi will be a basis of the linear dependencies involving f1(X), f2(X), . . . , fi(X).
Assume that we have Fi and Vi and we wish to compute Fi+1, Vi+1.

• Case 1. fi+1(X) /∈ Span(f1(X), . . . , fi(X)). Then

Fi+1
def= Fi] {fi+1} and Vi+1

def= Vi.

• Case 2. fi+1(X) ∈ Span(f1(X), . . . , fi(X)). Let

fi+1(X) = α1f1(X) + α2f2(X) + . . .+ αifi(X)

Then
Fi+1

def= Fi and Vi+1
def= Vi] (α1, α2, . . . , αi,−1, 0, . . . 0).

After m steps of the the iterative process, we output Vm. Clearly, this is an efficient algorithm.

Claim 8.4. [Reducing an instance of POLYDEP in n variables to a number of instances of
POLYDEP in n− 1 variables]
Let f = (f1(X), . . . , fm(X)). Suppose that the degree of each fi(X) is at most d. Suppose that the underlying
field F has characteristic larger than d. Then we have

f⊥ =
d⋂
j=0

Vj ,

where for each j ∈ {0, 1, . . . , d}, Vj is defined to be

Vj
def=
(
σ1∂

j
1f1, . . . , σ1∂

j
1fm

)⊥
.

Proof. Let g(X) =
∑
i∈[m] αifi(X). Viewing g(X) as a univariate polynomial in x1 and using claim 8.3, we

get that g(X) is zero if and only if σ1∂
j
1g = 0 for all j ∈ {0, 1, . . . , d}. By the linearity of ∂1 and of σ1, we

get that ∑
i∈[m]

αi · σ1∂
j
1fi = 0

for all j ∈ {0, . . . , d}. Thus (α1, . . . , αm) ∈ Vj for all j ∈ {0, . . . , d}.

10

5 The complexity of DegSLP

In this section we consider the algorithmic complexity of the following problem: given a polynomial f(X)
as an arithmetic circuit, and an integer d in binary determine if deg(f) ≤ d. Towards this end, we need to
define another computational problem which is interesting in its own right.

CoeffSLP : given a polynomial f(X) over a finite field F and a monomial Xα, determine the
coefficient of Xα in f(X).

We will need the following theorem from [KP07]. A simpler, self-contained proof is given in the appendix.

Theorem 11. [KP07] CoeffSLP is #P-complete.

We will also need a lemma originally due to Edouard Lucas.

Lemma 12. [vL99, p.55] Let n,m be positive inte gers whose p-ary representation is the following:

m = m0 +m1p+ . . .+mdp
d, ∀i : 0 ≤ mi ≤ p− 1

n = n0 + n1p+ . . .+ ndp
d ∀i : 0 ≤ ni ≤ p− 1.

Then (
n

m

)
=
(
n0

m0

)
·
(
n1

m1

)
· . . . ·

(
nd
md

)
(mod p)

In particular, for any intger n ≥ 1, the binomial coefficient
(
n
pi

)
is divisible by p if and only if the ni, the

i-th digit in the p-ary representation of n is zero.

Lemma 13. Over a field of characteristic larger than d, the coefficient of xd in f(x+β) is precisely 1
d!fd(β).

Proof. By the linearity of derivatives, it is sufficient to show this for monomials. So let f(x) = a ·xe. If e < d
then fd(x) is the zero polynomial and we are done. So let e ≤ d. Expanding (x+β)e using binomial theorem
we get that coefficient of xd is a ·

(
e
d

)
· βe−d. On the other hand fd(x) = a · e · (e− 1) · . . . · (e− d+ 1)xe−d.

It is now easily verified that the coefficient of xd in f(x+ β) is 1
d!fd(β) .

Theorem 14.
DegSLP ≤coRP

T CoeffSLP .

Proof. We first reduce the multivariate to the univariate problem by making a random substitution of the
form g(z) = f(a1 · z, a2 · z, . . . , an · z).

Claim 14.1. With high probability over a random choice of the vector a = (a1, . . . , an) we have: deg(g(z)) =
deg(f(X)).

Proof of Claim 14.1: Let f have degree d. We can write the polynomial f(X) as
∑d
i=0 fi(X), where each

fi(X) is a homogeneous polynomial of degree i. Applying the substitution xi := ai · z, we get that

g(z) = f0 + z · f1(a) + z2 · f2(a) + . . .+ zd · fd(a).

By the Schwartz-Zippel lemma, fd(a) is nonzero with high probability so that deg(g(z)) = deg(f(X)) also
with high probability. �

We will first show the reduction to CoeffSLP for fields which have characteristic zero or at least characteristic
larger than the formal degree of the polynomial that is computed. The reduction in smaller characteristic
is a little more involved. Our problem is the following: given an arithmetic circuit computing a univariate
polynomial g(z) and an integer d in binary, we want to determine if deg(g(z)) ≥ d. Let gd(z) denote the d-th
derivative of g(z). Over fields of appropriately large characteristic, deg(g(z)) ≥ d if and only if gd(z) is not
the identically zero polynomial. By lemma 13, the coefficient of zd in g(z + β) is 1

d!gd(β). Thus, with high
probability over a random choice of β, the coefficient of zd in g(z+β) is nonzero if and only if deg(g(z)) ≥ d.
This we can determine by making an oracle call to CoeffSLP .

11

To get the reduction over fields of small characteristic, we need to examine the polynomial g(z + y) and
determine as to when does it happen that the coefficient of zd as a polynomial in y is the identically zero
polynomial. We sketch the proof below. Let the size of the circuit computing f be s. Then the formal
degree of f is bounded by 2s. First observe that multiplying g(z) with a suitable power of z, we may assume
without loss of generality that d is a power of p, say d = pt. Notice that deg(g(z)) ≥ pt if and only if
g(z) contains a monomial zm where the p-ary (base-p) representation of the positive integer m contains a
non-zero digit at the i-th position, for some t ≤ i ≤ s. Thus, to achieve our objective, it is sufficient to devise
a randomized procedure that given an integer i ∈ [s], tests whether g(z) contains any non-zero monomial
zm such that in the p-ary representation of the integer m, the i-th digit is non-zero. This procedure works
as before: choose a random β (in a suitably large field extension of Fp) and accept if and only if the the
coefficient of zp

i

(computed via an oracle call to CoeffSLP) is nonzero. We next describe why the test gives
the correct answer with high probability. Suppose that

g(z) =
∑

0≤m≤2s

am · zm.

Then the coefficient of zp
i

in g(z + β) is given by

h(β) =
∑

pi≤m≤2s

am ·
(
m

pi

)
· βm−p

i

.

Our test accepts with high probability if and only if h(β) is not the identically zero polynomial with respect
to β. Use Lucas’s lemma 12 to observe that

(
m
pi

)
is zero modulo p if and only if the i-th digit in the p-ary

representation of m is zero. Thus h(β) is not the zero polynomial if and only if there exists an pi ≤ m ≤ 2s,
such that am is nonzero and in the p-ary representation of the integer m, the i-th digit is nonzero. Thus
h(β) is nonzero if and only if g(z) contains a non-zero monomial zm such that in the p-ary representation of
the integer m, the i-th digit is non-zero. This completes the proof of the theorem.

Combining theorems 11 and 14, we immediately get:

Theorem 15. DegSLP is in coRPPP.

6 Minimizing Variables

From now on we will only consider fields of characteristic zero. All the results stated here will also hold true
for fields of characteristic larger than the degrees of the relevant polynomials. In this section we study how
to elimiate redundant variables from a polynomial.

Definition 16. Let f(X) ∈ F[X] be a polynomial. We will say that f(X) is independent of a variable xi if
no monomial of f(X) contains xi. We will say that the number of essential variables in f(X) is t if we can
make an invertible linear A ∈ F(n×n)∗ transformation on the variables such that f(A ·X) depends on only
t variables x1, . . . , xt. The remaining (n− t) variables xt+1, . . . , xn are said to be redundant variables. We
will say that f(X) is a regular if it has no redundant variables.

Example 17. The number of essential variables in the quadratic polynomial f(x1, x2, x3) = x2
1 + 2x1x2 +

x2
2 + x2

3 is just two because notice that f = (x1 + x2)2 + x2
3 and thus after making the invertible linear

transformation

x1 + x2 7→ x1

A : x3 7→ x2

x2 7→ x3

we get that f(A ·X) = x2
1 + x2

2 is just a function of two variables x1 and x2.

12

The vanishing of partials.

We now reprove a lemma due to Carlini [Car06]. Let us examine the situation when a variable is redundant.
Let g(X) = f(A ·X) where A is an n× n invertible matrix. If g does not depend upon xi then

∂g

∂xi
= 0 ⇔

n∑
k=1

aki ·
∂f

∂xk
(A ·X) = 0

Thus there exists a vector a ∈ Fn such that a · ∂(f) = 0, where ∂(f) def= (∂1f, ∂2f, . . . , ∂nf). Using the
notation of section 3, this can be written succintly as

a ∈ ∂(f)⊥

Suppose that b1, . . . ,bt ∈ Fn is a basis of the space ∂(f)⊥. Now there exists n − t independent vectors
a1, . . . ,an−t such that the vector space Fn is spanned by a1, . . . ,an−t,b1, . . . ,bt. Consider the invertible
matrix whose columns are a1, . . . ,an−t,b1, . . . ,bt respectively. Let g(X) def= f(A ·X). Then for n− t+ 1 ≤
i ≤ n,

∂g

∂xi
= bi−n+t · ∂(f)(A ·X)

= 0 (since bi−n+t · ∂(f)(X) = 0)

We thus have:

Lemma 18. (Carlini [Car06]) The number of redundant variables in a polynomial f(X) equals the dimension
of ∂(f)⊥. Furthermore, given a basis of ∂(f)⊥, we can easily come up with a linear transformation A on the
variables such that the polynomial f(A ·X) depends on only the first (n− dim(∂(f)⊥)) variables.

Notice that arithmetic circuits for each polynomial in ∂(f) can be easily computed in poly(|f |) time, where
|f | is the size of the circuit for f . This computation can be made even more efficient using the algorithm of
Baur and Strassen [BS83]. Thereafter, a basis for the space ∂(f)⊥ can be efficiently computed using lemma
8. In this way we have:

Theorem 19. Given a polynomial f(X) ∈ F[X] with m essential variables, we can compute in randomized
polynomial time an invertible linear transformation A ∈ F(n×n)∗ such that f(A ·X) depends on the first m
variables only.

7 Equivalence to sums of d-th powers

Consider the following problem: given a homogeneous polynomial f(X) ∈ F[X] of degree d, does there exist
a linear transformation A ∈ Fn×n and constants a1, . . . , an ∈ F such that

f(A ·X) = a1 · xd1 + a2 · xd2 + . . .+ an · xdn.

Equivalently, the problem can be restated as follows: given a homogeneous polynomial f(X) ∈ F[X] of degree
d, determine n independent linear forms `1, . . . , `n ∈ F[X] and constants a1, . . . , an ∈ F such that

f(X) = a1 · `1(X)d + . . .+ an · `n(X)d.

We will devise a randomized polynomial-time algorithm that given f(X), computes the constants and the
set of linear forms `1(X), . . . , `n(X). The key idea involved in this is the Hessian matrix.

Definition 20. For a polynomial f(X) ∈ F[X], the Hessian Matrix Hf (X) ∈ (F [X])n×n is defined as
follows.

Hf (X) def=

∂2f

∂x1·∂x1
. . . ∂2f

∂x1·∂xn

...
. . .

...
∂2f

∂xn·∂x1
. . . ∂2f

∂xn·∂xn

13

The most interesting property of the hessian matrix of a polynomial is the effect that a linear transformation
of the variables has on it.

Lemma 21. Let f(X) ∈ F[X] be an n-variate polynomial and A ∈ Fn×n be a linear transformation. Let
F (X) def= f(A ·X). Then,

HF (X) = AT ·Hf (A ·X) ·A.
In particular,

Det(HF (X)) = Det(A)2 ·Det(Hf (A ·X))

Proof. By the chain for differentiation we have for all 1 ≤ i ≤ n:

∂F

∂xi
=

n∑
k=1

aki ·
∂f

∂xk
(A ·X)

Therefore for all 1 ≤ i, j ≤ n:

∂2F

∂xi · ∂xj
=

n∑
k=1

aki · (
n∑
`=1

a`j
∂2f

∂xk · ∂xl
(A ·X))

=
∑

k∈[n],`∈[n]

aki ·
∂2f

∂xk · ∂xl
(A ·X) · a`j

Putting these equations into matrix form immediate gives us the lemma.

Now consider a homogeneous polynomial f(X) of degree d ≥ 3 which has the property that there exists a
linear transformation A of the variables such that

f(A ·X) = xd1 + xd2 + . . .+ xdn.

Set F (X) def= xd1 + xd2 + . . .+ xdn. Observe that

∂2F

∂xi · ∂xj
=

{
0 if i 6= j,

d(d− 1)xd−2
i if i = j.

Thus the matrix HF (X) is a diagonal matrix so that we have

Det(HF (X)) = d(d− 1) ·
n∏
i=1

xd−2
i .

By the lemma 21 above we get that

Det(Hf (X)) = d(d− 1) ·Det(A)−2 ·
n∏
i=1

`i(X)d−2,

where the `i(X)’s are linear forms corresponding to the different rows of the matrix A−1. Let us record this
as a lemma.

Lemma 22. For a polynomial f(X) ∈ F[X] of degree d, if

f(X) =
n∑
i=1

ai · `i(X)d,

where `1(X), . . . `n(X) are independent linear forms then

Det(Hf (X)) = c ·
n∏
i=1

`i(X)d−2,

where c ∈ F is a nonzero constant.

14

Using lemma 22 and applying unique factorization of polynomials to Det(Hf (X)), we immediately get the
following corollary.

Corollary 23. If
∑
i∈[n] x

3
i =

∑
i∈[n] `i(X)3, where the `i’s are independent linear forms then there exists a

permutation π ∈ Sn such that `i = ωj · xπ(i), where ω is a primitive third root of unity.

Lemma 22 can be used to devise a randomized polynomial-time algorithm for our problem as follows.

Input. An n-variate polynomial f(X) ∈ F[X] of degree d.

Output. A set of independent linear forms `1(X), . . . , `n(X) and constants a1, . . . , an
such that

f(X) = a1 · `1(X)d + . . .+ an · `n(X)d,

if such a set of `i’s exist.

The Algorithm.

1. Compute an arithmetic circuit C(X) which computes Det(Hf (X)).

2. Use Kaltofen’s factorization algorithm [Kal89] to factor C(X) in random polyno-
mial time. If it is not the case that

C(X) =
n∏
i=1

`i(X)d−2,

where each `i(X) is a linear form then output No such forms. else (by solving
a system of linear equations) compute constants a1, . . . , an such that

f(X) =
n∑
i=1

ai · `i(X)d.

Output (`1(X), . . . , `n(X)), (a1, . . . , an).

This completes the description of the decomposition algorithm for the special case of sum of powers.

8 Equivalence to an elementary symmetric polynomial

The problem that we now tackle is the following — given an arithmetic circuit which computes an n-variate
homogeneous polynomial f(X) ∈ F[X], is there an invertible linear transformation A such that f(A · X)
is the elementary symmetric polynomial of degree d? Recall that the elementary symmetric polynomial of
degree d 9 is

SYMd
n

def=
∑

S⊆[n],|S|=d

∏
i∈S

xi.

Observe that SYMd
n is a multilinear polynomial and therefore we have

∂2
i SYMd

n = 0, for all i ∈ [n]. (4)

More interestingly, these are essentially the only second-order partial derivatives of SYMd
n which vanish. The

following lemma shows that most of the these partial derivatives are linearly independent.

Lemma 24. For d ≥ 4, we have

dim
(
∂2(SYMd

n)
)

=
(
n

2

)
.

9SYMd
n is the unique (upto scalar multiples) homogeneous multilinear polynomial of degree d in n variables, which is invariant

under every permutation of the variables.

15

Proof. See [KN97, pp.22–23].

This means that if f is equivalent to SYMd
n then ∂2(f) has dimension

(
n
2

)
. Indeed our method shows that for

any polynomial f ∈ F(X) which has the property that ∂2(f) has dimension
(
n
2

)
, we can efficiently determine

whether f is equivalent to a multilinear polynomial and if so, find an invertible matrix A such that f(A ·X)
is multilinear. Now let

g(X) def= f(A ·X)

be multilinear. It will also follow from our proof that this multilinear polynomial g(X) is equivalent to an
elementary symmetric polynomial if and only if there is a diagonal matrix B such that

g(B ·X) = SYMd
n.

It is then a relatively easy exercise to determine whether such a diagonal matrix B exists or not.

Exercise 25. Show that given a multilinear polynomial g(X), one can efficiently determine whether there
exist λ1, . . . , λn ∈ F such that

g(λ1x1, . . . , λnxn) = SYMd
n(X)

In the rest of this section, we will assume that f(X) ∈ F[X] is a polynomial that satisfies dim(∂2(f)) =
(
n
2

)
.

We will tackle the problem of finding an invertible matrix A such that f(A · X) is multilinear, if such an
A exists. We will first observe that our problem boils down to finding an “nicer” basis for a given space
of matrices. By a “nicer” basis, we will mean a basis consisting of rank one matrices. We then devise an
efficient randomized algorithm for the latter problem.

8.1 Reduction to finding a good basis for a space of matrices.

We first consider linear transformations of the variables of a polynomial which make the polynomial multi-
linear. Let

g(X) = f(A ·X) = f

∑
j

a1jxj ,
∑
j

a2jxj , . . . ,
∑
j

anjxj

 .

be the polynomial obtained by applying the transformation A to the variables in f . Then ∂2
i g = 0 if and

only if
(a1i∂1 + a2i∂2 + . . .+ ani∂n)2f = 0.

Therefore, if g(X) is multilinear then every column vector of A satisfies

(a1∂1 + a2∂2 + . . .+ an∂n)2f = 0,

and these n vectors are linearly independent since A is invertible.
We will apply the above observation algorithmically as follows. Given f , we first compute the set ∂2f

def=
{ ∂

2f
∂i·∂j : i 6= j} and then using the randomized algorithm for POLYDEP, we obtain a basis for the set

of all quadratic differential operators D(∂1, . . . , ∂n) such that Df = 0. Since dim(∂2(f)) =
(
n
2

)
we have

dim(D(∂1, . . . , ∂n)) = n. By the observation above our problem boils down to finding a basis forD(∂1, . . . , ∂n)
such that every quadratic operator in the basis has the following form:

(a1∂1 + a2∂2 + . . .+ an∂n)2f = 0.

Towards this end, we associate every n-variate quadratic operator D with an n× n symmetric matrix D̂ in
the following natural way. Let D ∈ F[∂1, . . . , ∂n] be a quadratic polynomial, where

D =
∑
i∈[n]

αi∂
2
i +

∑
1≤i<j≤n

βij∂i∂j .

16

The matrix D̂ associated with this operator D is the following:

D̂
def=

α1

1
2β12 . . . 1

2β1n
1
2β12 α2 . . . 1

2β2n

...
...

. . .
...

1
2β1n

1
2β2n . . . αn

 . (5)

This way of associating a quadratic differential operator with a symmetric matrix has the following property.

Property 26. Over an algebraically closed field F of characteristic different from 2, the quadratic polynomial
D is equivalent to a sum of r squares if and only if the corresponding symmetric matrix D̂ is of rank r. In
particular, the polynomial D is a perfect square if and only if D̂ is of rank one.

Using this property, our problem is equivalent to finding a basis of a given space of symmetric matrices
consisting of rank one symmetric matrices in the following way.

1. Given an arithmetic circuit of size s for the polynomial f(X) ∈ F[X], we use the naive method of
computing derivatives to obtain a new circuit of size O(sn2), whose outputs are the second-order
partial derivatives ∂2(f) of f .

2. Using the randomized algorithm for POLYDEP, we obtain
a basis for (∂2(f))⊥. Each element in the basis of (∂2(f))⊥ is a homogeneous quadratic polynomial in
F[∂1, . . . , ∂n] in the natural way. Let this basis be

{D1, . . . , Dn} ⊂ F[∂1, . . . , ∂n].

3. From D1, . . . , Dn, we get the corresponding symmetric matrices D̂1, . . . , D̂n. Using the random-
ized algorithm given below, we obtain another basis {Ê1, . . . , Ên} of the vector space generated by
{D̂1, . . . , D̂n} such that each Êi is a rank one symmetric matrix 10, if such a basis exists.

Their corresponding quadratic polynomials E1, . . . , En ⊂
F[∂1, . . . , ∂n] are then perfect squares. Let

Ei =

∑
j∈[n]

aij∂j

2

.

The matrix A = (aij)i,j∈[n] is then the required linear transformation which makes f multilinear.

We now present an efficient randomized algorithm that given n linearly independent matrices of dimension
n×n, finds a basis consisting of rank-one matrices, if such a basis exists. Our proof will also show that such
a basis, if it exists, is unique up to scalar multiples and permutations of the basis elements.

8.2 Randomized algorithm for finding a basis consisting of rank-one matrices.

We are given n symmetric matrices D̂1, . . . , D̂n, and we want to find another basis Ê1, . . . , Ên of the space
generated by the given matrices such that each Êi is of rank one. A rank one symmetric matrix is the outer
product of a vector with itself. So for each i ∈ [n], let Êi = vTi vi where vi ∈ Fn.

Lemma 27. Suppose that v1, . . . ,vn ∈ Fn are vectors. Then

Det(z1vT1 · v1 + . . .+ znvTn · vn) = z1z2 . . . zn · (Det(V))2, (6)

where V = [vT1 . . .v
T
n] is the matrix whose columns are the vi’s.

10Here we are thinking of matrices as n2-dimensional vectors

17

Proof. Let M(z) def= z1vT1 · v1 + . . .+ znvTn · vn. Then Det(M(z)) is a polynomial of degree n in the formal
variables z1, . . . , zn. If zi = 0 then for every setting of the remaining variables, the matrix M is singular
because its image is spanned by the vectors v1, . . . ,vi−1,vi+1, . . . ,vn, and is of rank at most n − 1. Thus
zi divides Det(M(z)) for all i ∈ [n]. Using Chinese remaindering, we have that

∏
zi divides Det(M(z)).

Because the degree of Det(M(z)) is n, we have

Det(M(z)) = λ
∏
i∈[n]

zi,

for some scalar λ ∈ F. Setting all the zi’s to 1, we get

λ = Det

∑
i∈[n]

vTi · vi

 = Det(V · V T) = Det(V)2.

We thus have Det(M(z)) = z1z2 . . . zn · (Det(V))2.

Corollary 28. Let D̂1, . . . , D̂n ∈ Fn×n be symmetric matrices. Suppose that there exist vectors v1, . . .vn
such that

D̂i =
n∑
j=1

αijvTj · vj . (7)

Then
Det(z1D̂1 + . . . znD̂n) = constant · `1`2 . . . `n,

where for all j ∈ [n], `j =
∑n
i=1 αijzi is a linear form over z1, . . . , zn.

Corollary 28 suggests an algorithm.

Theorem 29. There exists a randomized polynomial-time algorithm that given n symmetric matrices
D̂1, . . . , D̂n ∈ Fn×n, finds a basis for the space generated by them consisting of matrices of rank one, if
such a basis exists.

Proof. We write down an arithmetic circuit for the polynomial

F (z1, . . . , zn) def= Det(z1D̂1 + . . .+ znD̂n).

Then we use Kaltofen’s algorithm [Kal89] to factor F (z1, z2, . . . , zn) in randomized polynomial time. By
Corollary 28, we can use the linear factors `1, `2, . . . , `n of this polynomial, which are unique up to scalar
multiples and permutations, to solve the equations (7), and get the rank one matrices as required.

This completes the description of our algorithm.

9 Generalizations of equivalence testing.

The algorithm presented in the previous section generalizes and we obtain:

Theorem 30. Multilinearization. Given a polynomial f ∈ F(X) which has the property that ∂2(f) has
dimension

(
n
2

)
, we can efficiently determine whether f is equivalent to a multilinear polynomial and if so,

find an invertible matrix A such that f(A ·X) is multilinear. 11

The algorithm for testing equivalence to sum of powers of linear forms also generalizes although certain
degenerate cases need to be ruled out.

Theorem 31. Polynomial Decomposition There is a randomized polynomial-time algorithm that given
an n-variate polynomial f(X) as an arithmetic circuit, finds a decomposition of f(X), if it exists, provided
Det(Hf (X)) is a regular polynomial, i.e. it has n variables upto equivalence.

We do not know whether there exists such an efficient polynomial decomposition algorithm for all polyno-
mials. We postpone this generalization to the appendix.

11Notice that if f is equivalent to a multilinear polynomial then ∂2(f) can have dimension at most
(n
2

)
.

18

10 Discussion and open problems

We feel that the complexity of the problem DegSLP is one of the most intriquing questions in the area of
computational algebra. Our work on this problem was motivated by the work of Allender et al [AKPBM06]
combined with the observation that this problem is to polynomials what the problem PosSLP is to integers.
As shown in [AKPBM06], the latter problem captures a huge chunk of the field of numerical analysis and is
therefore unlikely to admit efficient algorithms. We make a corresponding conjecture for DegSLP :

Conjecture. There is no efficient randomized algorithm for DegSLP unless the polynomial hierarchy
collapses.

The problem DegSLP has a natural generalization to low-degree multivariate polynomials: given a polyno-
mial f(X) ∈ F[X], determine its leading coefficient under say the natural lexicographic ordering of monomials.
We do not understand the complexity of this latter problem even for arithmetic circuits of depth three.

Challenge Problem. Complexity of computing the leading monomial of depth-three arithmetic circuits.
Either:

Devise a randomized polynomial-time algorithm to compute the leading monomial of an arith-
metic circuit of depth three (ΣΠΣ-circuits).

Or:

Show that the existence of any efficient algorithm for this problem will lead to a collapse of the
polynomial hiearchy.

We would also like to pose the following two problems which are special cases of polynomial equivalence
testing: devise an efficient algorithm (if such an algorithm exists) to test if a given polynomial is equivalent
to

1. the determinant

2. the permanent.

References

[AB03] Manindra Agrawal and Somenath Biswas. Primality and identity testing via chinese remain-
dering. J. ACM, 50(4):429–443, 2003.

[ABKPM09] Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On the
complexity of numerical analysis. SIAM J. Comput., 38(5):1987–2006, 2009.

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators. In R. Ramanujam
and Sandeep Sen, editors, FSTTCS 2005: Foundations of Software Technology and Theoretical
Computer Science, 25th International Conference, Hyderabad, India, December 15-18, 2005,
Proceedings, volume 3821 of Lecture Notes in Computer Science, pages 92–105. Springer, 2005.

[AKPBM06] Allender, Kjeldgaard-Pedersen, Burgisser, and Miltersen. On the complexity of numerical anal-
ysis. In Annual IEEE Conference on Computational Complexity (formerly Annual Conference
on Structure in Complexity Theory), volume 21, 2006.

[AS06] Manindra Agrawal and Nitin Saxena. Equivalence of f-algebras and cubic forms. In Proceedings
of the Symposium on Theoretical Aspects of Computer Science, volume 3884 of Lecture Notes
in Computer Science. Springer, 2006.

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical Computer
Science, 22:317–330, 1983.

19

[Car06] E. Carlini. Reducing the number of variables of a polynomial, Algebraic geometry and geometric
modelling, pages 237–247. Mathematics and Visualization. Springer, 2006.

[DS05] Zeev Dvir and Amir Shpilka. Locally decodable codes with 2 queries and polynomial identity
testing for depth 3 circuits. In STOC, pages 592–601, 2005.

[Har75] D. K. Harrison. A grothendieck of higher degree forms. Journal of Algebra, 35:123–128, 1975.

[IK03] Impagliazzo and Kabanets. Derandomizing polynomial identity tests means proving circuit
lower bounds. In STOC: ACM Symposium on Theory of Computing (STOC), 2003.

[Kal88] Erich Kaltofen. Greatest common divisors of polynomials given by straight-line programs.
Journal of the ACM, 1(35):231–264, 1988.

[Kal89] Erich Kaltofen. Factorization of polynomials given by straight-line programs. Randomness and
Computation, 5, 1989.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press Cam-
bridge, 1997.

[KP07] Pascal Koiran and Sylvain Perifel. The complexity of two problems on arithmetic circuits.
Theoretical Computer Science, 1-2(389):172–181, 2007.

[KS01] Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate
polynomials. In STOC, pages 216–223, 2001.

[KS06] Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 circuits. In Proceedings
of the twenty-first Annual IEEE Conference on Computational Complexity (CCC), 2006.

[KS09] Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth 3 circuits.
Electronic Colloquium on Computational Complexity (ECCC), 16(032), 2009.

[LV98] Daniel Lewin and Salil P. Vadhan. Checking polynomial identities over any field: Towards a
derandomization? In STOC, pages 438–447, 1998.

[Mal07] Guillaume Malod. The complexity of polynomials and their coefficient functions. In Proceedings
of the Conference on Computational Complexity, pages 193–204, 2007.

[MH74] Y. I. Manin and M. Hazewinkel. Cubic forms: algebra, geometry, arithmetic. North-Holland
Publishing Co., Amsterdam, 1974.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–113, 1987.

[RS04] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative
models. In IEEE Conference on Computational Complexity, pages 215–222, 2004.

[Sax06] Nitin Saxena. Automorphisms of rings and applications to complexity. PhD thesis, Indian
Institute of Technology Kanpur, 2006.

[Sax08] Nitin Saxena. Diagonal circuit identity testing and lower bounds. In ICALP (1), pages 60–71,
2008.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, 1980.

[SV08] Amir Shpilka and Ilya Volkovich. Read-once polynomial identity testing. In STOC, pages
507–516, 2008.

[vL99] Jacobus Hendricus van Lint. Introduction to coding theory. Springer, 1999.

20

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In ISSAC ’79: Proc. Int’l. Symp. on
Symbolic and Algebraic Computation, Lecture Notes in Computer Science, Vol. 72. Springer-
Verlag, 1979. Zippel discusses probabilistic methods for testing polynomial identities and
properties of systems of polynomials.

21

Appendix

A The complexity of CoeffSLP

The aim of this section of the appendix is to give a simpler, self-contained proof of the following theorem.

Theorem 11. CoeffSLP is #P-complete.

We first give some warm-up lemmas.

Lemma 32. For any m ≥ 7, the lcm of the first m numbers is at least 2m.

Lemma 33. For any integer t ∈ Z≥1 and prime p, there is a prime r = O(t2 · log p) such that the ring

R
def= Fp[z]/〈

zr − 1
z − 1

〉

is the direct sum of finite fields of size q > pt.

Proof. Consider the integer
M := (p− 1) · (p2 − 1) · . . . · (pt − 1).

Then M < pt
2
. By lemma 32, there exists a prime r < logM such that r does not divide M . This is the

prime r that we seek. Let m denote the order of p modulo r , i.e. m is the smallest positive integer such
that pm = 1 (mod r). Since r does not divide M =

∏
i∈[t](p

i − 1), therefore r does not divide any (pi − 1)
for 1 ≤ i ≤ t and therefore m > t. Let φr(z) denote the r-th cyclotomic polynomial, that is

φr(z)
def=

zr − 1
z − 1

.

It is known that over Fp, φr(z) factors into r−1
m irreducible polynomials each of degree m. Thus, R def=

Fp[z]/〈φr(z)〉 is the direct sum of finite fields of size pm > pt.

Proof of Theorem 11: The #P-hardness of this problem is well-known and a proof can be found for exam-
ple in [AKPBM06]. It is sufficient to show this for univariate polynomials (by replacing each indeterminate
xi by an exponentially increasing sequence of monomials, if necessary). That is, our problem now becomes
the following: given a circuit of size s computing a univariate polynomial f(x) and an α ∈ Z≥0 given in

binary, compute the coefficient of xα in f(x). Notice that D def= 2s is an upper bound on deg(f(x)). Using
lemma 33, we obtain an extension ring R of the form R = Fp[z]/〈 z

r−1
z−1 〉 such that r ≤ (logD)2 · (log p) and

R ∼= Fq ⊕ . . .⊕ Fq,

with q − 1 > D. We now observe that the coefficient of xα in f(x) is given by

Coeff(xα, f(x)) = −
∑
β∈R∗

βα · f(β−1).

The number of terms in the above summation is exponentially large but notice that each summand in the
above expression, (β ·f(β−1)), is polynomial-time computable so that overall this sum is computable in P#P.

�

22

B Polynomial Decomposition

We are now set to generalize the sum of powers problem considered in section 7. Given a polynomial f(X),
we want to write it as the sum of two polynomials on disjoint sets of variables. That is, our aim is to find
an invertible linear transformation A on the variables such that

f(A ·X) = g(x1, . . . , xt) + h(xt+1, . . . , xn)

We first consider the special case of the above we just want to partition the set of variables X = Y] Z so
that f(X) = g(y) + h(z).

Lemma 34. Given a low-degree polynomial f(X), we can efficiently compute a partition X = Y] Z of the
variables such that f(X) = g(y) + h(z), if such a partition exists.

Proof. Observe that given f(X) and two variables xi and xj we can efficiently determine whether there is any
monomial in f which contains both these variables by plugging in randomly chosen value for the remaining
variables and determining whether the resulting bivariate polynomial has any such monomial or not. Now
create an undirected graph Gf whose nodes are the variables and there is and edge between the nodes xi
and xj if and only if there is a monomial in f(X) which contains both xi and xj . We find the connected
components of Gf . The partitioning of the set of variables induced by the connected components of Gf gives
the required partition of variables needed for decomposition.

Our main interest though is in devising an algorithm for polynomial decomposition that allows arbitary
invertible linear transformations of the variables. Now let f(X) be a regular polynomial. Suppose that for
some invertible linear transformation A ∈ F(n×n)∗:

f(A ·X) = g(x1, . . . , xt) + h(xt+1, . . . , xn)

Without loss of generality, we can assume that Det(A) = 1. Let F (X) = f(A ·X). Then observe that

Det(HF)(X) = Det(Hg)(X) ·Det(Hh)(X)

Now by lemma 21 we have

Det(Hf)(A ·X) = Det(Hg)(A ·X) ·Det(A ·Hh)(X).

Also observe that Det(Hg)(X) is in fact a polynomial in the variables x1, . . . , xt whereas Det(Hh)(X) is
a polynomial in the remaining (n − t) variables xt+1, . . . , xn. This motivates us to look at a multiplicative
version of the polynomial decomposition problem. Let D(X) be the polynomial Det(Hf)(X). Then we
want to make an invertible linear transformation on the variables and write D as the product of polynomials
on disjoint sets of variables.

A multiplicative version of polynomial decomposition

We are given a polynomial D(X) and we want to make a linear transformation B on the variables to get a
factorization of the form

D(B ·X) = C1(x1, . . . , xt1) · C2(xt1+1, . . . , xt1+t2) · . . . · Ck(xn−tn+1, . . . , xn),

where the individual Ci’s are ‘multiplicatively indecomposable’.
Towards this end, let us make a definition. For a polynomial f(X), we denote by f⊥⊥ the vector space
orthogonal to ∂(f)⊥. That is,

f⊥⊥
def= {a ∈ Fn|a · v = 0 ∀v ∈ ∂(f)⊥}

Intuitively, a basis for f⊥⊥ corresponds to the essential variables of f(X).
Notice that any factor C(X) of the multivariate polynomial D(X) depends on a subset of the variables

which D(X) itself depends upon. Furthermore D(X) does depend on all the variables in any divisor C(X).

23

Lemma 35. If a polynomial D(X) has the factorization

D(X) = C1(X)e1 · C2(X)e2 · . . . · Ck(X)ek ,

then the space D⊥⊥ is the linear span of the spaces C1
⊥⊥, C2

⊥⊥, . . . , Ck
⊥⊥.

Lemma 35 together with Kaltofen’s algorithm for factoring low-degree polynomials allows us to devise an
efficient algorithm for a multiplicative version of polynomial decomposition.

Theorem 36. There exists an efficient randomized algorithm that given a regular low-degree polynomial
D(X) ∈ F[X], computes an invertible linear transformation A ∈ F(n×n)∗ such that

D(A ·X) = C1(x1, . . . , xt1) · C2(xt1+1, . . . , xt1+t2) · . . . · Ck(xn−tn+1, . . . , xn),

where the individual Ci’s are multiplicatively indecomposable, if such a transformation A exists.

Polynomial Decomposition Algorithm

We now give the algorithm for the usual notion of decomposition of polynomials.

Input. A regular low-degree n-variate polynomial f(X) ∈ F[X].

Output. An invertible linear transformation A such that f(A ·X) is the sum of two
polynomials on disjoint sets of variables.

The Algorithm.

1. Compute an arithmetic circuit D(X) which computes Det(Hf (X)).

2. Use the multiplicative polynomial decomposition algorithm of theorem 36 to de-
termine a linear transformation A ∈ F(n×n)∗ such that

D(A ·X) = C1(x1, . . . , xt1) · C2(xt1+1, . . . , xt1+t2) · . . . · Ck(xn−tn+1, . . . , xn),

where the individual Ci’s are multiplicatively indecomposable. If no such A exists
then output no decomposition exists.

3. Use the algorithm of lemma 34 check if f(A · X) can be written as the sum of
two polynomials on disjoint sets of variables. If so output A else output no such
decomposition exists.

The following theorem summarizes the conditions under which the above algorithm is guaranteed to give
the right answer.

Theorem 37. Given a n-variate polynomial f(X) ∈ F[X], the algorithm above finds a decomposition of
f(X), if it exists, in randomized polynomial time provided Det(Hf (X)) is a regular polynomial, i.e. it has
n variables upto equivalence.

24

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

