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Abstract

In 2002 Jackson et al. [JKS02] asked whether AC0 circuits augmented with a threshold gate at the
output can be efficiently learned from uniform random examples. We answer this question affirmatively
by showing that such circuits have fairly strong Fourier concentration; hence the low-degree algorithm of
Linial, Mansour and Nisan [LMN93] learns such circuits in sub-exponential time. Under a conjecture of
Gotsman and Linial [GL94] which upper bounds the total influence of low-degree polynomial threshold
functions, the running time is quasi-polynomial. Our results extend to AC0 circuits augmented with a
small super-constant number of threshold gates at arbitrary locations in the circuit. We also establish
some new structural properties of AC0 circuits augmented with threshold gates, which allow us to prove
a range of separation results and lower bounds.

Our techniques combine classical random restriction arguments with more recent results [DRST09,
HKM09, She09] on polynomial threshold functions.
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1 Introduction

The seminal result of Linial, Mansour and Nisan [LMN93] showed how to learn the class AC0 of constant
depth circuits in quasi-polynomial time under the uniform distribution with random examples. Their work
introduced the Low-Degree Algorithm which can learn any class of functions where the Fourier spectrum is
concentrated on low-degree coefficients; this algorithm and its extensions have since found numerous appli-
cations in learning, see e.g. [FJS91, BT96, JKS02, KOS04, MOS04, OS07, BOW08, KKMS08, KOS08].

In the two decades since their work, despite much effort, there has been limited progress in designing
learning algorithms for more expressive circuit classes. Circuit classes like AC0 with parity gates (AC0[2])
and depth-2 TC0 remain beyond the reach of currently known algorithms. One obstacle is that there are
no lower bounds known for some of these classes, such as depth-2 TC0, and the existence of lower bounds
seems to be a pre-requisite for any learning algorithm (see [FK09]). Devising learning algorithms and
lower bound techniques that can handle more powerful classes of circuits is a central open problem at the
intersection of computational learning theory and circuit lower bounds.

Jackson et al. made some progress on learning circuits more expressive than AC0 in [JKS02]. They
gave a quasipolynomial-time algorithm that can learn Majority-of-AC0 circuits – polynomial-size, constant-
depth circuits augmented with a single Majority gate at the output – under the uniform distribution. Using
a result of [Bei94], this yields a quaspolynomial-time algorithm that can learn AC0 circuits augmented with
polylog(n) many Majority gates at arbitrary locations in the circuit. The algorithm of Jackson et al. uses
the low-degree algorithm as a weak learner and combines it with boosting. [JKS02] posed as an open
question whether any efficient algorithm can learn Threshold-of-AC0 circuits, in which the the topmost gate
is a threshold gate (i.e. a weighted majority in which the weights may be arbitrary). It is observed in
[JKS02] via an explicit counterexample that the analysis of their boosting-based algorithm breaks down for
Threshold-of-AC0. In this work, we take a significant step towards answering the question of [JKS02].

AC0 circuits augmented with a few threshold gates have been well studied in the complexity theory
literature, see e.g. [ABFR94, Bei94, GHR92, Gol97]. This is a natural class of circuits lying between the
classes AC0 (which we understand well) and TC0 (for which we do not know lower bounds). One focus
of this work has been on understanding the difference in power between unweighted threshold gates (i.e.
majorities) versus threshold gates with arbitrary weights. Aspnes et al. [ABFR94] prove that any AC0 circuit
with a single threshold gate at the top cannot compute (or even approximate) parity. However, we are not
aware of prior lower bounds known even for AC0 augmented with two threshold gates. In contrast, when
we restrict ourselves to Majority gates, an elegant result of Beigel [Bei94] alluded to above shows that any
polynomial-size AC0 circuit with polylog(n) Majority gates is equivalent to a quasi-polynomial size AC0

circuit with a single majority gate at the top, and lower bounds for such circuits follow from [ABFR94].

1.1 Our Results

We show that AC0 circuits augmented with a few threshold gates with arbitrary weights can be learned in
subexponential time under the uniform distribution. In doing this we establish some new structural properties
of such circuits, which allow us to prove new lower bounds and separations for such circuits.

1.1.1 Learning AC0 with threshold gates

Our first main result is a Fourier concentration bound for Threshold-of-AC0 circuits: roughly speaking, this
bound says that any size-M , constant-depth Threshold-of-AC0 circuit C must satisfy

∑
|α|>t

Ĉ(α)2 ≤ ε for t =
(logM)Θ(d)2Θ((logM)2/3)

ε(logM)1/3
.
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This can be viewed as a natural extension of the [ABFR94] result showing that Threshold-of-AC0 cannot
compute parity; we show that such circuits in fact exhibit strong Fourier concentration. (Thus, roughly
speaking, our result is to [ABFR94] as the [LMN93] Fourier concentration bound for AC0 is to the earlier
AC0 lower bounds of Håstad [Hås86].) We note that Fourier concentration bounds of the sort we establish
were not known even for Majority-of-AC0 prior to this work; the [JKS02] algorithm requires boosting and
its analysis does not establish Fourier concentration.

With our Fourier concentration bound for Threshold-of-AC0 in hand, applying the Low-Degree Algo-
rithm of [LMN93] we get the first subexponential-time learning result for this class: any size-M , constant-

depth Threshold-of-AC0 can be learned to any constant accuracy ε in time n2Θ((logM)2/3)
.

An important ingredient in our proof is a recent 2O(d)n1−1/O(d) upper bound on the total influence
of degree-d polynomial threshold functions over n Boolean variables, proved recently by [HKM09] and
[DRST09]. In 1994 Gotsman and Linial [GL94] conjectured a stronger bound, that every degree-d PTF
has total influence O(d

√
n). We show that under the [GL94] conjecture our results become significantly

stronger: every size-M depth-d Threshold-of-AC0 circuit C has Fourier concentration

∑
|α|>t

Ĉ(α)2 ≤ ε for t =
2O(d)(logM)d

ε2

and consequently such circuits can be learned to constant accuracy in time n2O(d)(logM)d .
We extend the above results by giving Fourier concentration and learning results for AC0 circuits with

r threshold gates in arbitrary locations in the circuit. We unconditionally learn such circuits with r =

O((logM)1/3) many threshold gates, to any constant accuracy, in time n2Θ((logM)2/3)
. Assuming the [GL94]

conjecture, we learn such circuits with r = O(log logM) to any constant accuracy in time n2O(d)(logM)O(d)
.

These results are achieved building on our results for Threshold-of-AC0.

1.1.2 Lower bounds and separation results

To complement the positive (learning) results described above, in Section 6 we establish new lower bounds
and separation results for AC0 circuits augmented with threshold gates. These results separate the classes
Majority-of-AC0 and Threshold-of-AC0 and highlight some interesting contrasts between them.

1. Since Majority-of-AC0 is already known to be learnable in quasi-polynomial time, our learning results
are only of interest if Threshold-of-AC0 is actually a broader class than Majority-of-AC0. We show
that this is indeed the case, by exhibiting a single threshold gate for which any equivalent depth-d
Majority-of-AC0 circuit must have size 2Ω(n1/(d−1)). (See Section 6.1.)

2. Beigel [Bei94] showed that any size-s, depth-d circuit that contains m Majority gates is computed
by a size-2m(O(log s))2d+1

, depth-(d + 2) circuit with a single Majority gate at the root. We show that
this size bound cannot be improved to polynomial, by showing that a simple AND of two Majority
gates requires any constant-depth circuit with a single Majority gate at the top (or even an arbitrary
Threshold gate at the top) to have nΩd(logn) size. (See Section 6.2.)

3. A natural question is whether Beigel’s result can be extended from Majority gates to arbitrary Thresh-
old gates. Perhaps every AC0 circuit which contains polylog(n) many Threshold gates is equivalent to
a quasipoly(n)-size Threshold-of-AC0? In fact the answer is no: we show that no analogue of Beigel’s
result is possible for Threshold gates, by showing that any Threshold-of-AC0 circuit that computes the
AND of two (high-weight) Threshold gates must have exponential size. (See Section 6.3.)
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4. We also give lower bounds for AC0 circuits with relatively many Threshold gates. We prove that
any AC0 circuit with ε log n Threshold gates cannot compute parity, for a small constant ε > 0.
Previously, Aspnes et al. [ABFR94] proved this claim for AC0 with a single threshold gate at the top.
Beigel [Bei94] showed that any AC0 circuit must be augmented with nΩ(1) many Majority gates in
order to compute parity. Our bound allows for a smaller number of gates augmenting the basic AC0

circuit, but the gates (Threshold instead of Majority) are more powerful. (See Section 6.4.)

We note that the previous lower bounds on Threshold-of-AC0 due to [ABFR94] apply to functions which
have high PTF degree. This approach cannot be used for results (1) and (2) above, where we are proving
lower bounds against functions which have low PTF degree.

2 Preliminaries

2.1 MAC0 and TAC0 and TAC0[r]

Recall that a threshold function, or halfspace, over n variables is a Boolean function h : {−1, 1}n →
{−1, 1}, h(x) = sign (

∑n
i=1wixi − θ) , where w1, . . . , wn, θ may be arbitrary real values. We will some-

times write Thr to denote a single threshold gate and Maj to denote a single Majority gate, where the
Majority function is the threshold function for which each wi equals 1 and the threshold θ equals 0.

A Threshold-of-AC0 circuit, or TAC0, is a circuit consisting of a threshold function (with arbitrary
weights and fanin) as the output gate and AC0 circuits feeding into it. A depth-d TAC0 is one in which each
of the AC0 circuits feeding into the output threshold gate has depth at most d− 1. The size of a TAC0 is the
total number of gates (so in particular, in a size-M TAC0 each of the AC0 circuits is of size at most M ).

A Majority-of-AC0 circuit, or MAC0, is a TAC0 in which the top threshold function is a majority gate.
Finally, we will also consider AC0 circuits that have r arbitrary Thr gates buried at arbitrary locations

in the circuit; we refer to such a circuit as a “Threshold-of-r-AC0s”, or TAC0[r].

Our arguments involve polynomial threshold functions, influence of variables on Boolean functions,
noise sensitivity, and the basics of Fourier analysis. We briefly define the relevant notions and then recall
some facts we will need about how random restrictions affect AC0 circuits. Then in Section 2.5 we explain
the high-level idea of our Fourier concentration bound for TAC0 circuits.

2.2 Polynomial Threshold Functions

Threshold functions are equivalent to degree-1 polynomial threshold functions; higher-degree polynomial
threshold functions will play an important role in our proofs. A Boolean function f : {−1, 1}n → {−1, 1}
is said to be a degree-k polynomial threshold function (PTF) if f(x) = sign(p(x)) for all x ∈ {−1, 1}n,
where p(x) is a real-valued polynomial of degree at most k. (Since we are dealing with Boolean inputs the
polynomial p can always be taken without loss of generality to be multlinear.) If p(x) is a polynomial with
all integer coefficients, we say the weight of the PTF sign(p) is the sum of the absolute value of those integer
coefficients.

2.3 Fourier background, Influence, and Noise Sensitivity

We briefly recall the rudiments of Fourier analysis over the Boolean hypercube. Every real-valued func-
tion f : {−1, 1}n → {−1, 1} has a unique Fourier representation as a linear combination of parity basis
functions χα:

f(x) =
∑
α⊆[n]

f̂(α)χα(x).

3



Note that this is precisely the unique representation of f as a multilinear polynomial, since (over {−1, 1}n
inputs) the parity function χα(x) is simply the monomial

∏
i∈α xi.

Plancherel’s identity says that E[fg] =
∑

α f̂(α)ĝ(α) for all f, g; in particular this implies that for
every Boolean function f with range {−1, 1}, we have

∑
α f̂(α)2 = 1.

The Fourier degree, or simply degree, of a Boolean function f is the size of the largest α ⊆ [n] such
that f̂(α) 6= 0. We denote this deg(f). We recall the easy fact that if f is computed by a decision tree of
depth d, then deg(f) ≤ d.

The influence of variable i on a Boolean function f : {−1, 1}n → {−1, 1} is defined to be Pr[f(x) 6=
f(x ⊕ ei)], where x is uniform from {−1, 1}n and x + ei denotes x with the i-th bit flipped. The total
influence of f is Inf(f) =

∑n
i=1 Infi(f).

For f : {−1, 1}n → {−1, 1} and ε > 0, the noise sensitivity of f at noise rate ε is defined to be

nsε(f) = Pr
x,y

[f(x) 6= f(y)]

where x is uniform from {−1, 1}n and y is obtained from x by flipping each bit independently with proba-
bility ε.

2.4 Random Restrictions and AC0

We write “ρ ∼ Rp” to indicate that ρ is a random restriction with parameter p. Such a restriction ρ
is chosen by independently fixing each variable to +1 or −1 each with probability 1−p

2 , and leaving the
variable unfixed with probability p. We write fρ to denote the function that results from applying ρ to f.

We will use several facts from [Hås86, LMN93] about the behavior of AC0 circuits under random re-
strictions. The first of these facts is Håstad’s Switching Lemma:

Lemma 1 ([Hås86]) Let C be a depth-2 circuit (i.e. a DNF or a CNF) of bottom fan-in s. Then Prρ[Cρ
cannot be written as a depth-t decision tree] ≤ (5ps)t, where ρ is a random restriction with parameter p.

(The above statement is implicit in [Hås86] and is made explicit in e.g. [Hås01].) Repeated applications of
the Switching Lemma can be used to prove the following in a rather straightforward way:

Lemma 2 ([LMN93], Lemma 2) If C is a size-M depth-d AC0 circuit, then for any t ≥ 0 we have Prρ[Cρ
cannot be written as a depth-t decision tree] ≤ M2−t, where ρ is a random restriction with parameter
p = 1

10dtd−1 .

([LMN93] actually state a slightly weaker form in which the LHS is replaced by “Prρ[deg(Cρ) > t].” It is
easy to check that using Lemma 1, the [LMN93] proof directly yields Lemma 2 as stated above.)

2.5 Sketch of the Random Restriction Argument.

The high-level idea of our proof is quite simple, and is similar to the high-level idea of [LMN93]. We
show that when a TAC0 is hit with a random restriction, with high probability it collapses into a “much
simpler function,” specifically a low-degree PTF. Recent results on the Fourier concentration of low-degree
PTFs due to [DRST09, HKM09] let us infer that the original TAC0 must similarly have had good Fourier
concentration. In the rest of this section we elaborate on this argument.

We begin by recalling the basic outline of [LMN93]’s Fourier concentration bound for AC0 circuits. It
will be useful for us to view the [LMN93] argument as proceeding in two stages:
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1. The first stage analyzes what happens to a size-M , depth-d AC0 circuit C when it is hit with a random
restriction with parameter p ≈ 1

(logM)d−1 (recall that p is the probability that a variable “survives” the
restriction, i.e. is left unfixed). [LMN93] show that with high probability such a restriction causes Cρ
to collapse down to a (logM)-depth decision tree.

2. The second stage is the observation that a (logM)-depth decision tree T , being a degree logM
polynomial, has extremely strong Fourier concentration:

∑
|α|>logM T̂ (α)2 = 0. Linial et al. then

use the Fourier concentration of Cρ to argue that the original AC0 function computed by C must have
had most of its Fourier weight at levels ≤ (logM)d.

Our argument for TAC0 has a similar high-level structure, but with some significant differences in both
stages. Let C now denote a size-M , depth-d TAC0 circuit.

1′. In the first stage, we consider hitting C with a “stronger” random restriction with a smaller value of
p (so fewer variables survive the restriction). We show that with high probability such a restriction
causes Cρ to collapse down to a “low-degree” PTF of degree k � logM . The stronger restriction is
necessary since the results of [DRST09, HKM09] are non-trivial only when the degree of the PTF is
o(
√

log n).

2′. The results of [DRST09, HKM09] imply that Cρ must have some nontrivial Fourier concentration.
The Fourier concentration for Cρ is much weaker than what one gets for decision trees, but one can
adapt the original [LMN93] argument to show that the original circuit C itself must have had some
Fourier concentration.

The conjecture of Gotsman & Linial significantly strengthens the bounds on total influence and noise
sensitivity of low-degree PTFs that are currently known; it implies non-trivial bounds as long as the degree is
o(
√
n). This in turn strengthens the Fourier concentration that we get for Cρ in Stage 2′, and hence also for

C. We present each of the stages of the above argument in as self-contained a way as possible in Section 3.
Section 4 puts the pieces together to prove the main results.

3 Random Restrictions of TAC0.

3.1 Stage 1: Collapsing TAC0 to a low-degree PTF

In this section we prove the following:

Lemma 3 Let C be a size-M , depth-d TAC0. Let ρ be a random restriction with parameter p (specified
below) and let k ≥ 1. Then for any 0 < p′ < 1, with failure probability at most δ the function Cρ is a
degree-k PTF, where

δ = M−2 +M5

(
4e log(M)p′

k

)k
and p =

1
10d−1(4 logM)d−2

· p′.

Proof: The proof is conceptually quite simple. Let C = Thr(C1, . . . , C`) where Thr is the topmost thresh-
old gate, ` ≤ M is its fan-in, and each Ci is an AC0 circuit of depth at most d − 1 and size Mi, where
M1, . . . ,M` ≤ M . We view the restriction ρ as being obtained in two steps. The first step collapses each
Ci to a decision tree of depth O(logM). The second step significantly reduces the depth of each decision
tree, down to k. After these two steps, with high probability each Ci has collapsed down to (Ci)ρ which is
a degree-k polynomial. Thus Cρ is a PTF of degree k.
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In the first step we take a random restriction ρ1 with parameter p1 = 1
10d−1(4 logM)d−2 . For a given i,

Lemma 2 gives that with failure probability at mostMi ·M−4, the function (Ci)ρ1 is equivalent to a decision
tree Ti of depth 4 logM . Summing failure probabilities over all i = 1, . . . , `, this occurs for every Ci with
overall failure probability at most (M1 + · · ·+M`)M−4 ≤M−2.

In the second step, we take a random restriction with parameter p′ (thus the overall probability that a
variable survives the combined restriction is p = p1p

′ as desired). The following simple lemma analyzes
the effect of a random restriction on a depth-t decision tree:

Lemma 4 Let T be a depth-t decision tree and ρ be a random restriction with parameter p′. Then for k ≥ 1,
we have Pr[Tρ cannot be written as a depth-k decision tree] ≤ 2t ((etp′)/k)k .

Proof: Suppose that under ρ at most k variables survive in each root-to-leaf path in T. Then it is clear that
Tρ can be written as a decision tree of depth at most k. So fix any given path of length at most t in T ; wlog
the variables appearing on this path are x1, . . . , xt. The probability that at least k of these variables survive
ρ is at most (

t

k

)
(p′)k ≤

(
et

k

)k
(p′)k =

(
etp′

k

)k
.

A union bound over all (at most 2t) paths in T finishes the proof.

We apply this lemma to each of the ` ≤ M decision trees Ti from step 1, taking t = 4 logM. A union
bound gives that the probability that any Ti fails to have its depth reduced to k is at most M · 2t · (etp′/k)k .
Any decision tree of depth k is exactly computed by a Fourier polynomial of degree at most k; the top-level
Thr gate takes the sign of a weighted sum of these polynomials, and we obtain Lemma 3.

3.2 Stage 2: From Fourier concentration of Cρ to Fourier concentration of C

We will use the following recent bound on the noise sensitivity of degree-k PTFs due to Diakonikolas et al.
[DRST09] and Harsha et al. [HKM09] (see Appendix 2.3 for the definition of nsε(f), the noise sensitivity
of f at noise rate ε):

Theorem 5 For any degree-k PTF f over {−1, 1}n and any 0 ≤ ε ≤ 1, we have nsε(f) ≤ 2O(k) · ε
1

O(k) .

The following simple result (Corollary 17 of [KOS04]) converts noise sensitivity upper bounds to
Fourier concentration bounds:

Lemma 6 Let f : {−1, 1}n → {−1, 1} be any Boolean function and let κ : [0, 1/2] → R+ be an
increasing function such that nsε(f) ≤ κ(ε). Then∑

|α|≥m

f̂(α)2 ≤ ε for m =
1

κ−1(ε/2.32)
.

Plugging in Theorem 5 gives the following Fourier concentration bound:

Corollary 7 For any degree-k PTF f over {−1, 1}n and any 0 ≤ ε ≤ 1, we have

∑
|α|≥m(ε)

f̂(α)2 ≤ ε where m(ε) =
2Θ(k2)

εΘ(k)
.
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We now show that if fρ has good Fourier concentration (w.h.p. over the choice of random restriction
ρ), then f itself has good Fourier concentration. This is done by the following lemma, adapting arguments
from [LMN93].

Lemma 8 Let f : {−1, 1}n → {−1, 1} and let t, p be parameters such that pt > 8. Then∑
|α|>t

f̂(α)2 ≤ 2Eρ[
∑
|β|>pt/2

f̂ρ(β)2],

where ρ is a random restriction with parameter p.

Proof: Lemma 6 of [LMN93] gives us ∑
|α|>t

f̂(α)2 ≤ 2Eγ [
∑

|α∩γ|>pt/2

f̂(α)2]

where γ ⊆ [n] is a subset chosen at random by including each variable independently with probability p.
[LMN93] also show that for any subset γ ⊆ [n] and any k,∑

α:|α∩γ|>k

f̂(α)2 = ER[
∑
|β|>k

f̂γ←R(β)2]

where R is a ±1 assignment to the variables in γ chosen at random. Combining these, we have∑
|α|>t

f̂(α)2 ≤ 2Eγ [ER[
∑
|β|>pt/2

f̂γ←R(β)2]] = 2Eρ[
∑
|β|>pt/2

f̂ρ(β)2],

since the combination of randomly choosing γ andR as described is exactly equivalent to choosing a random
restriction ρ with parameter p.

As an easy corollary of Lemma 8 we have the following:

Corollary 9 Let f : {−1, 1}n → {−1, 1} and let t, p be parameters such that tp > 8. Suppose that with
probability at least 1 − δ (over the choice of a random restriction ρ with parameter p) the function fρ has
Fourier concentration

∑
|β|>pt/2 f̂ρ(β)2 ≤ ε. Then we have

∑
|α|>t f̂(α)2 ≤ 2ε+ 2δ.

(This follows from the lemma because f̂ρ is a Boolean function and consequently always has total Fourier
weight at most 1.)

4 Proof of the Fourier concentration results for TAC0

Throughout this section C is a size-M , depth-d TAC0. The regime we are most interested in is when the
circuit size M is poly(n) and the error parameter ε is something like a small constant; in particular, we
are most interested in situations where ε > M−1. (We note that even the Majority function has f̂([n])2 =
Θ(1/n), so Fourier concentration bounds for TAC0 must certainly be vacuous for ε < 1/n.)
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4.1 The unconditional result

Putting together all the pieces, we have established a Fourier concentration bound for TAC0:

Theorem 10 Let C be a size-M , depth-d TAC0. Let ε ≥ 2M−2. Then C has Fourier concentration∑
|α|>t

Ĉ(α)2 ≤ 4ε for t =
(logM)Θ(d) · 2Θ((logM)2/3)

εΘ((logM)1/3)
. (1)

Proof: In Stage 1 we shall take (with foresight) k = (logM)1/3 and p′ = k
4eM7/k logM

, so consequently

p = k
(40 logM)d−1·e·M7/k . This choice of parameters gives failure probability at most δ = 2M−2 in Lemma 3,

so with this failure probability we have that Cρ is a degree-k PTF which satisfies

∑
α≥m

f̂(α)2 ≤ ε where m =
2Θ((logM)2/3)

εΘ((logM)1/3)
.

In Step 3, we take t = 2m/p so tp/2 = m which is at least 8. Corollary 9 thus gives us

∑
|α|>t

Ĉ(α)2 ≤ 2ε+ 2δ where t =
(logM)Θ(d) · 2Θ((logM)2/3)

εΘ((logM)1/3)
.

Applying the well-known [LMN93] machinery for uniform distribution learning of Boolean functions
with good Fourier concentration, we get the following:

Corollary 11 Size-M depth-d TAC0 circuits can be learned to accuracy ε in time nt where

t =
(logM)Θ(d) · 2Θ((logM)2/3)

εΘ((logM)1/3)
.

Thus as long as ε ≥ 1/2O((logM)1/3)) and d ≤ O((logM)2/3/(log logM)) this gives an algorithm to

learn size-M depth-d TAC0 in time n2Θ((logM)2/3)
, i.e. sub-exponential time (2n

o(1)
) for any M = poly(n).

4.2 The Gotsman-Linial Conjecture and its consequences

In 1994 Gotsman and Linial [GL94] asked the question of what is the maximum total influence of any
degree-k PTF over n variables. They conjectured that the symmetric function which changes sign on the
k middle layers of the Boolean hypercube has the highest total influence of any degree-k PTF (it is easy
to see that this function is indeed a degree-k PTF). Since each layer of edges in the Boolean hypercube
contains at most

√
n2n−1 edges, a direct consequence of their conjecture (which is nearly equivalent to it

for k = o(
√
n)) is the following:

Conjecture 12 ([GL94]) Every degree-k PTF f over n variables has Inf(f) ≤ k
√
n.

We show that using our approach, Conjecture 12 yields significantly improved Fourier concentration
(and significantly more efficient learnability) for TAC0. The noise sensitivity bounds of [DRST09] and
[HKM09] follow from a bound of 2O(k)n1−1/O(k) on the average sensitivity of degree-k PTFs. This bound
becomes trivial for k = Ω(

√
log n), and hence we needed to use a very strong random restriction in order

to reduce our initial TAC0 to a PTF of degree o(
√

log n). Conjecture 12 implies that a weaker random
restriction will suffice. We use the following noise sensitivity and Fourier concentration consequences of
the Gotsman-Linial conjecture:
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Corollary 13 If Conjecture 12 holds, then for any degree k PTF f over {−1, 1}n and any 0 ≤ ε ≤ 1,

nsε(f) ≤ 2k
√
ε and

∑
|α|≥m

f̂(α)2 ≤ ε where m =
24k2

ε2
.

The first inequality follows from the reduction from total influence to noise sensitivity for PTFs given
in [DRST09] (see Section 7), and the second inequality then follows from Lemma 6. We thus obtain:

Theorem 14 Let C be a size-M , depth-d TAC0. Let ε ≥ 2M−2. If Conjecture 12 is true, then we have∑
|α|>t

Ĉ(α)2 ≤ 4ε for t =
2O(d)(logM)d

ε2
.

Proof: In Stage 1 we shall take k = logM and p′ = 10−4, so p = 1
10d+3(4 logM)d−2 . Lemma 3 gives

that with probability at least 1 − 2M−2, the function Cρ is a degree-k PTF, in which case we have, for

m = 24k2/ε2,
∑
|α|>m Ĉρ(α)2 ≤ ε. For Stage 3, in Corollary 9 we take t = 2m

p = (c1 logM)d

ε2
for some

absolute constant c1. Corollary 9 thus gives us
∑
|α|>t Ĉ(α)2 ≤ 2ε+ 2δ.

Similar to before, the [LMN93] low-degree algorithm gives us:

Corollary 15 If Conjecture 12 is true, then size-M , depth-d TAC0 can be learned to accuracy ε in time

n
2O(d)(logM)d

ε2 .

This gives quasi-polynomial time learning forM = poly(n)-size TAC0 for any constant (or even 1/polylog(n))
accuracy ε.

5 Learning TAC0[r]

Our learning results can be extended from TAC0 circuits to TAC0[r] circuits for small (but superconstant)
values of r. The high-level approach is as follows: We first prove a general result showing that if a class C
has Fourier concentration, then anyR-junta-of-functions-from-C must also have fairly good Fourier concen-
tration provided that R is not too large. We then argue that any TAC0[r] is equivalent to a R-junta-of-TAC0

for R = (r + 1)2r. This lemma and the arguments used in its proof are similar to arguments found in
[BRS95]. Combining the above two ingredients with the Fourier concentration bounds for TAC0 which we
obtained in Section 4, we get Fourier concentration bounds for TAC0[r].

We show unconditionally that TAC0[O((logM)1/3)] circuits can be learned in essentially the same time
bound that we achieved for unconditionally learning TAC0 circuits:

Theorem 16 The class of TAC0[O((logM)1/3)] circuits of size M and depth d can be learned to accuracy
ε (for ε > 2M−2) in time nt, where

t = (logM)Θ(d) · 2Θ((logM)2/3)ε−Θ((logM)1/3).

Assuming the Gotsman-Linial conjecture, we obtain

Theorem 17 If Conjecture 12 is true, then the class of TAC0[r] circuits of size M and depth d can be
learned to accuracy ε (for ε > 2M−2) in time nt, where

t = 2O(d+r) · (logM)3dε−3.

For constant d this gives quasi-polynomial time learning for r as large as O(log logM).
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5.1 Fourier concentration of C implies Fourier concentration of junta-of-C

Let C be a class of Boolean functions. Any function of the form h = g(f1, . . . , fR), where each fi belongs
to C and g is an arbitrary R-argument Boolean function, is said to be an R-junta-of-C. Let us assume that
every function f ∈ C satisfies the Fourier concentration bound:∑

|α|>`(ε)

f̂(α)2 ≤ ε. (2)

We first convert this to a statement about noise stability:

Lemma 18 Set δ ≤ ε
`(ε) . For any function f ∈ C, we have nsδ(f) ≤ 2ε.

Proof: A simple calculation (see e.g. [KOS04]) shows that

nsδ(f) =
1
2

∑
α

f̂(α)2(1− (1− 2δ)|α|).

For |α| ≤ `(ε), we have (1− (1− 2δ)|α|) ≤ 2δ`(ε). Hence

2nsδ(f) =
∑
α

f̂(α)2(1− (1− 2δ)|α|)

≤
∑
|α|≤`(ε)

f̂(α)2(1− (1− 2δ)|α|) +
∑
|α|>`(ε)

f̂(α)2

≤ (2δ`(ε))(
∑
|α|≤`(ε)

f̂(α)2) + ε ≤ 3ε.

Recalling the definition of noise sensitivity, for h = g(f1, . . . , fR) any R-junta-of-C we have that
h(x) 6= h(y) only if fi(x) 6= fi(y) for some i. Thus the union bound gives:

Corollary 19 Let h be any R-junta-of-C, and let δ ≤ ε
`(ε) . Then nsδ(h) ≤ 2Rε.

This noise stability bound for h can of course be converted into a Fourier concentration bound using
Lemma 6; we do this in Section 5.3 below.

5.2 Every TAC0 is a junta-of-TAC0

Lemma 20 Let C be a depth-d, size-M TAC0[r] circuit. Then C is equivalent to a ((r + 1)2r)-junta of
TAC0 circuits, each of which has depth at most d and size at most M .

Proof: By increasing the number of Thr gates in C to r + 1, we may assume that the output gate of C is
itself a Thr gate. Let Thr1, . . . ,Thrr+1 denote the r + 1 Thr gates in C, where Thr1 is the root gate.

For each i ∈ [r + 1], let Ci denote the sub-circuit of C whose root is Thri (note that C1 is equivalent to
C). Let ni ∈ {0, 1, . . . , r} denote the number of Thr gates that lie below the root Thri in Ci (so n1 = r).

For each i ∈ [r + 1], for each ni-bit string b = (b1, . . . , bni), let C(b)
i denote the circuit obtained by

replacing the j-th of the ni Thr gates occurring below the root in Ci with the bit bj , for all j ∈ [ni]. Note
that for each i and each b, the circuit C(b)

i is a TAC0 of depth at most d and size at most M. Note also that
there are at most (r + 1)2r circuits C(b)

i .
The lemma follows on observing that for every input string x ∈ {0, 1}n, the value of C(x) = C1(x) is

completely determined by the values of all the C(b)
i (x)’s in a bottom-up fashion.

10



As a simple example to illustrate how C(x) is determined as a function of the C(b)
i (x)’s, consider a

circuit C containing k = 3 Thr gates: one root gate Thr1 which has two Thr gates, Thr2 and Thr3, among
its inputs (note that Thr1 may have other inputs which are AC0 circuits, and Thr2 and Thr3 may have AC0

circuits as inputs). The value C(x) is computed by the 6-junta-of-TAC0 which works in the following way
(we write ε to denote the empty string):

“For all (b1, b2) ∈ {0, 1}2, if (C(ε)
2 (x), C(ε)

3 (x)) = (b1, b2) then output C(b1,b2)
1 (x).”

5.3 Learning TAC0[r(n)]

Let h : {−1, 1}n → {−1, 1} be a depth-d, size-M TAC0[r] circuit and let R = (r + 1)2r. Let

`(ε) =
(logM)Θ(d) · 2Θ((logM)2/3)

(ε/R)Θ((logM)1/3)

so by Theorem 10 (assuming ε ≥ 2M−2) we have that any size-M depth-dTAC0 f satisfies
∑
|α|>`(ε) f̂(α)2 ≤

ε/R. Putting together Lemma 20 and Corollary 19, we see that for δ = ε
10`(ε/10) we have nsδ(h) ≤ ε/5. We

may rephrase this as nsε(h) ≤ κ(ε), where

κ(ε) = R
(
ε · (logM)Θ(d) · 2Θ((logM)2/3)

)1/Θ((logM)1/3)
.

Now appealing to Lemma 6, we get

∑
|α|≥m(ε)

f̂(α)2 ≤ ε where m(ε) =
RΘ((logM)1/3) · (logM)Θ(d) · 2Θ((logM)2/3)

εΘ((logM)1/3)
.

This is easily seen to give Theorem 16.

Assuming the Gotsman-Linial conjecture, we apply Theorem 14 instead of Theorem 10 and we take

`(ε) =
2O(d)(logM)d

(ε/R)2
.

This yields ∑
|α|≥m(ε)

f̂(α)2 ≤ ε where m(ε) =
R2 · 2O(d) · (logM)3d

ε3
,

and we obtain Theorem 17.

6 Lower bounds

6.1 MAC0 cannot compute TAC0

In this section we prove that there are TAC0 circuits that have no small equivalent MAC0 circuit.

Theorem 21 There is a threshold function over N = O(n2) variables such that any equivalent MAC0

circuit of depth d ≥ 2, d = Θ(1) must have size 2Ω(n1/(d−1)).
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The desired function is the function Un,4n(x) defined by Goldmann et al. in Section 4 of [GHR92]:

Un,4n(x) = sign(2rn,4n(x) + 1), rn,4n(x) =
n−1∑
i=0

4n−1∑
j=0

2ixij , (3)

where all variables take values ±1.
It is clear that Un,4n is a TAC0 circuit (of depth 1), consisting of a single threshold gate over N = 4n2

input variables. It remains to show that any depth-d MAC0 circuit for Un,4n(x) must be large. We do this
in two steps as follows. Suppose that C is a depth-d, size-M MAC0 circuit that computes Un,4n(x). If
M = 2Ω(n1/(d−1)) then there is nothing to show, so we assume M = 2O(n1/(d−1)). We shall consider the
effect of applying a random restriction with parameter r = 1

10d−1sd−2 to C, where we select s = 3 logM.
We will establish the following two lemmas:

Lemma 22 With probability at least 1 − M−1 over the random choice of ρ, the function (Un,4n)ρ is a
polynomial threshold function of total weight at most M7.

Lemma 23 With probability at least 1 − 2n−2 over the random choice of ρ, the function (Un,4n)ρ has a
sub-function (obtained by possibly fixing some additional variables in (Un,4n)ρ) that is equivalent, up to
renaming variables, to Um,4m where m = Ω(n/(logM)d−2).

Fix a restriction ρ that satisfies both Lemmas (such a ρ must exist since each of the two events has
probability greater than 1/2). The function Um,4m is a restriction of the function (Un,4n)ρ from Lemma 22,
and thus (Um,4m)ρ must have a polynomial threshold function of weight at most M7. However, the discus-
sion following Corollary 8 of [GHR92] shows that the total weight of any PTF for Um,4m must be at least
Ω(2m/2/

√
m). Since m = Ω(n/(logM)d−2), straightforward manipulation yields the desired lower bound

M = 2Ω(n1/(d−1)) and proves Theorem 21.

Proof of Lemma 22: Fix a sub-circuit C ′ that is one of the inputs to the Majority gate (so the depth of C ′ is
at most d− 1 and the size is at most M ). Lemma 2 implies that with probability at least 1−M−2 we have
that (C ′)ρ is a decision tree of depth at most 3 logM and thus deg((C ′)ρ) ≤ 3 logM (see Section 2.3). We
now recall the easy fact (from [DLM+07]) that if a function g : {−1, 1}n → {−1, 1} has deg(g) ≤ k, then
every Fourier coefficient of g is of the form (integer)/2k−1. Hence we may rewrite (C ′)ρ as

(C ′)ρ(x) =
1

2b3 logMc

∑
α

aαχα(x)

where the aα’s are integers whose squares sum to 22·b3 logMc ≤M6 and hence
∑

α |aα| ≤M6.
We apply this analysis to each of the (at mostM ) sub-circuits that feed into the Majority gate. Summing

failure probabilities, we get that with overall probability at least 1−M−1, the sum of (C ′)ρ (summed over
all sub-circuits C ′ that are input to the Majority gate) can be expressed as 1

2b3 logMc× (some integer linear
combination of parities), where the sum of the magnitudes of the integer coefficients is at mostM7.We may
rescale by multiplying by 2b3 logMc, and thus obtain Lemma 22.

Proof of Lemma 23: Fix any i ∈ {0, 1, . . . , n − 1}. Let livei denote the number of variables xij that
survive the random restriction ρ. We have Eρ[livei] = 4rn and a standard Chernoff bound gives that
Prρ[livei ≤ 2rn] ≤ e−rn/2. A union bound over all n possibilities for i gives

Pr
ρ

[livei ≤ 2rn for any i] ≤ ne−rn/2 � n−2,
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where the last inequality follows from our assumption thatM = 2O(n1/(d−1)) (recall that r = 1
10d−1(3 logM)d−2 ).

For a given i, let posi denote the number of variables xij that are set to +1 by ρ, and let negi denote the
number of variables xij that are set to −1 by ρ. Another standard Chernoff bound gives that for each fixed
i, we have Prρ[|posi − negi| > 10

√
n log n] ≤ n−3 (with room to spare). So we further get

Pr
ρ

[|posi − negi| ≥ 10
√
n log n for any i] ≤ n−2.

We henceforth assume that for every i we have livei > 2rn and |posi − negi| < 10
√
n log n.

We now observe that for any fixed choice of i, by setting |posi − negi| < 10
√
n log n of the variables

xij that survive ρ, it is possible to “undo” any nonzero contribution to a constant term in (rn,4n)ρ that came
from summands of the form 2iρij (i.e., that came from variables xij that were set by ρ). Let ρ? denote the
combined restriction obtained by extending ρ in this way for all i. For each i, the restriction ρ? keeps at
least 2rn− 10

√
n log n variables of the form xij free. It is straightforward to check that 2rn− 10

√
n log n

is at least m = Ω(n/(logM)d−2). Thus the restriction (Un,4n)ρ? can be restricted to yield a sub-function
equivalent to Un,4m, and it is clear that Un,4m can be restricted to yield Um,4m. This gives Lemma 23.

6.2 Lower bounds on MAC0

Beigel [Bei94] showed that any size-s, depth-d circuit that contains m Maj gates is computed by a size-
2m(O(log s))2d+1

, depth-(d + 2) circuit with a single Maj gate at the root. It is natural to ask whether this
simulation can be improved to a polynomial-size (rather than quasi-polynomial) Maj of AC0. In this section
we observe that no such strengthened version of Beigel’s theorem can exist, by proving that there is no
polynomial-size MAC0 (or even TAC0) for an AND of two Maj gates:

Theorem 24 For any constant d, any TAC0 circuit of depth d that computes f(x, y) = Maj(x1, . . . , xn) ∧
Maj(y1, . . . , yn) must have size nΩd(logn).

Proof: The proof is by contradiction. Let M = no(logn) and let C be a depth-d TAC0 of size M that
computes f(x, y). We analyze the effect of hitting C with a very strong random restriction ρ, one which has
parameter p = n−0.1. It is easy to see that with extremely high probability – much more than 1/2 – fρ turns
into some function of the form

fρ(x, y) = sign(
∑
i∈S1

xi + C1) ∧ sign(
∑
j∈S2

yj + C2),

where |S1|, |S2| ≥ n0.8 and |C1|, |C2| ≤ n0.51. For any such ρ, by fixing at most 2n.51 additional variables,
we get Maj(x′)∧Maj(y′) where x′, y′ are Ω(n0.8)-bit strings. By the recent result of Sherstov [She09], any
PTF for this function must have degree at least c1 log n for some absolute constant c1 > 0.

On the other hand, let us consider what happens to the TAC0 C under such a strong random restriction
using Lemma 3. Since p = n−0.1, we have p′ = n−0.1 · 10d−1(4 logM)d−2 < n−0.09 for n sufficiently
large. Taking k = (c1/2) log n, Lemma 3 gives us that Cρ has a PTF of degree at most (c1/2) log n with
failure probability at most

M−2 +M5(4e log(M)p′/k)k = M−2 +M5n−Ω(logn) < 1/2

since M = no(logn). Thus, there must be some restriction ρ such that fρ has PTF degree at least c1 log n,
but Cρ has PTF degree at most (c1/2) log n. This contradiction proves the theorem.

Aspnes et al. [ABFR94] prove lower bounds on the size of TAC0 circuits that compute various functions
such as parity. The method of [ABFR94] is useful for functions that have high weak PTF degree (such as
parity). In contrast, our argument above gives us a TAC0 lower bound for the function Maj(x) ∧ Maj(y),
which is known [BRS95] to have PTF degree only O(log n).
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6.3 Lower bounds on TAC0

We prove that no analogue of Beigel’s theorem [Bei94] is possible for Thr gates: even an AND of two Thr
gates may require a TAC0 of more than quasi-polynomial size. The proof is similar to that of Theorem 24,
it uses a recent result of Sherstov [She09] showing that the function f(x, y) = Un,4n(x) ∧ Un,4n(y) (see
Section 6.1) has PTF degree Ω(n).

Theorem 25 Fix any absolute constant d. Any TAC0 circuit of depth d that computes f(x, y) = Un,4n(x)∧
Un,4n(y) must have size 2Ω(n1/(d−1)).

Proof: Let C be a depth-d TAC0 of size M that computes f(x, y). As in Section 6.1, we consider the effect
of hitting C with a random restriction with parameter r = 1

10d−1sd−2 , where s = 3 logM.
The proof of Lemma 22 shows that with failure probability at most M−2 over the choice of ρ, the

restricted circuit Cρ can be expressed as a PTF of degree at most 3 logM. And Lemma 23 gives that with
failure probability at most 4n−2, both (Un,4n)ρ(x) and (Un,4n)ρ(y) have sub-functions that are equivalent
to Um,4m(x) and Um,4m(y) respectively, where m = Ω(n/(logM)d−2). Applying Sherstov’s lower bound,
we get that for such a restriction ρ, the function fρ(x, y) must have PTF degree Ω(n/(logM)d−2). We thus
have M = 2Ω(n1/(d−1)), and the theorem is proved.

6.4 Lower bounds on TAC0[t(n)]

Inspection of the proof of Theorem 16 is easily seen to imply that the parity function cannot be computed
by a TAC0[(log n)2/3] circuit. We give an improved bound that allows up to O(log n) threshold gates.

Theorem 26 Fix any absolute constant d. Any poly(n)-size, depth-d TAC0[t(n)] circuit that computes the
parity function must have t(n) = Ω(log n).

Proof: Fix any constant c > 1 and d ≥ 1, and let C be a depth-d TAC0[t(n)] circuit of size at most M = nc

that computes the parity function. We write t as shorthand for t(n), and we may assume that (t + 1)2t is
less than n.

By Lemma 20, we have that C is equivalent to a (t + 1)2t-junta-of-TAC0. We write this function as
J(C1(x), . . . , C(t+1)2t(x)), where each Ci is a TAC0 of depth d and size at most M = nc.

We consider the effect of applying a random restriction with parameter p = n−0.5 to C. As in the proof
of Theorem 24, let us consider what happens to C – or rather, to J(C1, . . . , C(t+1)2t) – under such a strong
random restriction using Lemma 3. Since p = n−0.5, we have

p′ = n−0.5 · 10d−1(4c log n)d−2 = n−0.5 · polylog(n).

Now we shall take k in Lemma 3 to be k = 20c. For any fixed i ∈ [(t + 1)2t], the Lemma gives that with
failure probability at most

M−2 +M5(4ec log(n)p′/(20c))20c = n−2c + n5c · (n−0.5 · polylog(n))20c < 2n−2c < n−2,

the restriction ρ causes the TAC0 Ci to become a function (Ci)ρ which is a PTF of degree at most k = 20c.
Since there are at most (t + 1)2t < n many TAC0 circuits Ci, with overall probability at least 1 − n−1 the
function Cρ is equivalent to a (t+ 1)2t-junta of degree-20c PTFs, J((C1)ρ, . . . , (C(t+1)2t)ρ).

We now observe that since C computes the parity function, under any restriction the function computed
by Cρ is simply the parity function (or its negation) on all variables that survive the restriction ρ. A simple
Chernoff bound shows that with probability at least 99/100, at least (say) 0.05 ·n0.5 many variables survive
the restriction ρ.
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Thus there is some restriction ρ such that (1) at least 0.05n0.5 many variables survive ρ, and (2) the
functionCρ is equivalent to a (t+1)2t-junta of degree-20c PTFs (C1)ρ, . . . , (C(t+1)2t)ρ over these variables.
For simplicity we restrict further variables if necessary so that there are precisely n′ = 0.05n0.5 surviving
variables. We now recall that by the [DRST09, HKM09] bound on the total influence of any degree-d PTF
over n′ variables, each function (Ci)ρ has total influence at most O(1) · (n′)1−1/100d. The total influence of
a T -junta J(c1, . . . , cT ) is easily seen to be at most T times the maximum total influence of any ci. Since
J((C1)ρ, . . . , (C(t+1)2t)ρ) computes parity (or its negation) over n′ variables, its total influence is exactly
n′. Thus we must have (t+ 1)2t = Ω(n′1/(100d)), which means that t = Ω(log n).

We note that a careful inspection of our proof shows that it does not use the depth restriction on the
threshold gates: it applies to any threshold circuit of size log n augmented with AC0 inputs. It is known that
there are circuits of log n threshold gates that can compute parity [SRK94], and hence any improvement of
our bound must exploit the depth restriction on the threshold gates.
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