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Abstract

Span programs form a linear-algebraic model of computation, with span program “size” used
in proving classical lower bounds. Quantum query complexity is a coherent generalization, for
quantum algorithms, of classical decision-tree complexity. It is bounded below by a semi-definite
program (SDP) known as the general adversary bound. We connect these classical and quantum
models by proving that for any boolean function, the optimal “witness size” of a span program
for that function coincides exactly with the general adversary bound.

A consequence is an optimal quantum algorithm for evaluating “balanced,” read-once formu-
las over any finite boolean gate set. For example, the gate set may be taken to be all functions
{0, 1}k → {0, 1} with k ≤ 1000. A formula is a tree whose nodes are associated to functions
from the gate set. The notion of balance is technical, but it includes layered formulas. A previ-
ous quantum algorithm optimally evaluates formulas for which an optimal span program is given
for each constant-size gate. However, span programs have been found only by hand. The SDP
automates this procedure, and its value surprisingly always matches the lower bound. Other
implications of the SDP include an exact composition rule for the general adversary bound, and
that the general adversary bound upper-bounds the sign degree.

The connection can also be seen as half of a universality result for span programs. For any
boolean function, there exists a span program with witness size at most the function’s quantum
query complexity. Conversely, solutions to the SDP give span programs, and therefore also new
quantum algorithms—beyond evaluating formulas. Subsequent work has bounded the query
complexity by the witness size, thus implying that the general adversary bound is tight.

1 Introduction

Quantum algorithms for evaluating formulas have developed rapidly since Farhi, Goldstone and
Gutmann’s breakthrough AND-OR formula-evaluation algorithm [FGG08]. The set of allowed
gates in the formula has increased from just AND and OR gates to include all boolean functions
on up to three bits, and many four-bit functions, with certain technical balance conditions [RŠ08].
The new algorithms can be interpreted as evaluating span programs, a certain linear-algebraic
computational model [KW93]. A function can be added to the gate set if a span program is found
whose complexity matches an adversary lower bound.

This paper is motivated by three main puzzles:

1. Can the gate set allowed in the formula-evaluation algorithm be extended further? Given
that the search for optimal span programs has been entirely ad hoc, yet still quite successful,
it seems that the answer must be yes. How far can it be extended, though?
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2. The adversary bounds are lower bounds on the number of queries to the input that a quan-
tum algorithm needs to evaluate a function [Amb02, ŠS06, HLŠ07]. There are two different
adversary bounds, Adv ≤ Adv± (Definition 4.1), but the power of the latter bound is not
fully understood. What is the relationship between span program complexity, or “witness
size” (Definition 3.3), and the adversary lower bounds on quantum query complexity? There
appears to be a close connection. For example, so far all known optimal span programs are
for functions f with Adv(f) = Adv±(f).

3. Aside from their applications to formula evaluation, can span programs be used to derive
other quantum algorithms?

We answer the first two questions, and give a partial answer to the third. Unexpectedly, we find
that for any boolean function f , the optimal span program has witness size equal to the general
adversary bound Adv±(f). This result allows us to optimally evaluate balanced, read-once formulas
over any finite gate set, quantumly. Classically, optimal formula-evaluation algorithms are known
only for a limited class of formulas using AND and OR gates, and a few other special cases.

The optimization result also suggests that there is a fundamental connection between span
programs and quantum algorithms. A good quantum query algorithm implies a low adversary
bound and hence the existence of a good span program. Conversely, based on the adversary lower
bound, one can construct a span program. The span program can be turned into a quantum
algorithm using ideas from [RŠ08]. This provides a new quantum algorithm design technique for
problems beyond formula evaluation. Unfortunately, it has not been known how to analyze the
algorithm’s query complexity, or more precisely, how to set the query complexity in order to ensure
correctness. Subsequent work [Rei09c, Rei10] has resolved this question, showing that the query
complexity can be bounded by the witness size. In combination, the two results imply that the
general adversary bound, Adv±, is tight for every boolean function. The results also imply that
quantum computers, measured by query complexity, and span programs, measured by witness size,
are equivalent computational models.

Some further background material is needed to introduce and place in context the results.
Farhi, Goldstone and Gutmann in 2007 gave a nearly optimal quantum algorithm for evaluating
balanced binary AND-OR formulas [FGG08, CCJY07]. This was extended by Ambainis et al. to a
nearly optimal quantum algorithm for evaluating all AND-OR formulas, and an optimal quantum
algorithm for evaluating “approximately balanced” AND-OR formulas [ACR+07, Rei09a].

Reichardt and Špalek gave an optimal quantum algorithm for evaluating “adversary-balanced”
formulas over a considerably extended gate set [RŠ08], including in particular:

• All functions {0, 1}n → {0, 1} for n ≤ 3, such as AND, OR, PARITY and MAJ3.

• 69 of the 92 inequivalent functions f : {0, 1}4 → {0, 1} with Adv(f) = Adv±(f).

They derived this result by generalizing the previous approaches to consider span programs,
a computational model introduced by Karchmer and Wigderson [KW93]. They then derived a
quantum algorithm for evaluating certain concatenated span programs, with a query complexity
upper-bounded by the span program witness size. Thus in fact the allowed gate set includes all
functions f : {0, 1}n → {0, 1}, with n = O(1), for which we have a span program P computing f
and with witness size wsize(P ) = Adv±(f). A special case of [RŠ08, Theorem 4.7] is:
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Theorem 1.1 ([RŠ08]). Fix a function f : {0, 1}n → {0, 1}. For k ∈ N, define fk : {0, 1}nk →
{0, 1} as follows: f1 = f and fk(x) = fk−1

(
f(x1, . . . , xn), . . . , f(xnk−n+1, . . . , xnk)

)
for k > 1.

If span program P computes f , then the bounded-error quantum query complexity of fk, Q(fk),
satisfies

Q(fk) = O(wsize(P )k) . (1.1)

[RŠ08] followed an ad hoc approach to finding optimal span programs for various functions.
Although successful so far, continuing this method seems daunting for a few reasons:

• For most functions f , probably Adv±(f) > Adv(f). Indeed, there are 222 four-bit boolean
functions, up to the natural equivalences, and for only 92 of them does Adv± = Adv hold.
For no function with a gap has a span program matching Adv±(f) been found. This suggests
that perhaps span programs can only work well for the special cases when Adv± = Adv.

• Moreover, for all the functions for which we know an optimal span program, it turns out
that an optimal span program can be built just by using AND and OR gates with optimized
weights. (This fact has not been appreciated; see [Rei09c, App. A].) On the other hand, there
is no reason to think that optimal span programs will in general have such a limited form.

• Finally, it can be difficult to prove a span program’s optimality. For several functions, we
have found span programs whose witness sizes match Adv numerically, but we lack a proof.

In any case, the natural next step is to try to automate the search for good span programs.
A main difficulty is that there is considerable freedom in the span program definition, e.g., span
programs are naturally continuous, not discrete objects. The search space needs to be narrowed.

We show that it suffices to consider span programs written in so-called “canonical” form. This
form was introduced by [KW93], but its significance for developing quantum algorithms was not
at first appreciated. We then find a semi-definite program (SDP) for varying over span programs
written in canonical form, optimizing the witness size. This automates the search for span programs.

Remarkably, the SDP has a value that corresponds exactly to the general adversary bound
Adv±, in a new formulation. Thus we characterize optimal span program witness size:

Theorem 1.2. For any function f : {0, 1}n → {0, 1},

inf
P

wsize(P ) = Adv±(f) , (1.2)

where the infimum is over span programs P computing f . Moreover, this infimum is achieved.

This result greatly extends the gate set over which the formula-evaluation algorithm of [RŠ08]
works optimally. In fact, it allows the algorithm to run on formulas with any finite gate set
(Theorem 6.5). A factor is lost that depends on the gates, but for a finite gate set, this will be a
constant. As another corollary, Theorem 1.2 also settles the question of how the general adversary
bound behaves under function composition (Theorem 4.8), and it implies that the sign degree of a
boolean function is upper-bounded by the general adversary bound (Corollary 6.4).

By Theorems 1.1 and 1.2 together, we obtain that for any function f : {0, 1}n → {0, 1},

lim
k→∞

Q(fk)1/k = Adv±(f) (1.3)
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(Theorem 6.2). It seems natural to ask whether the limit is necessary. Is in factQ(f) = Θ(Adv±(f)),
with the optimal algorithm perhaps based on the optimal span program? Can span programs be
used to develop quantum algorithms for problems beyond formula evaluation? Indeed, the quantum
walk technique of [RŠ08] can be applied to evaluate arbitrary span programs. However, the analysis
in [RŠ08] only holds for the repeated concatenation of constant-size programs, i.e., for evaluating
formulas. Recent work [Rei09c, Rei10] has extended the analysis to arbitrary span programs, giving

Q(f) = O(wsize(P )) . (1.4)

for any span program P computing f . Combined with Theorem 1.2, this implies that the general
adversary bound is tight, and that span programs are equivalent to quantum query algorithms for
evaluating boolean functions.

This article is based on a portion of the arXiv preprint [Rei09c], an abbreviated version of which
has appeared in [Rei09d].

2 Notation

For a natural number n ∈ N, let [n] = {1, 2, . . . , n}. Let B = {0, 1}. For a bit b ∈ B, let b̄ = 1− b
denote its complement. A function f with codomain B is a (total) boolean function if its domain
is Bn for some n ∈ N; f is a partial boolean function if its domain is a subset D ⊆ Bn.

The complex numbers are denoted by C. For a finite set X, let CX be the inner product
space C|X| with orthonormal basis {|x〉 : x ∈ X}. We assume familiarity with ket notation, e.g.,∑

x∈X |x〉〈x| = 1 the identity on CX . The `2 vector and operator norms are denoted by ‖ · ‖. For
vector spaces V and W over C, let L(V,W ) denote the set of all linear transformations from V
into W , and let L(V ) = L(V, V ).

3 Span programs and canonical span programs

A span program P is a certain linear-algebraic way of specifying a boolean function fP [KW93,
GP03]. Roughly, a span program consists of a target |t〉 in a vector space V , and a collection of
subspaces Vj,b ⊆ V , for j ∈ [n], b ∈ B. For an input x ∈ Bn, fP (x) = 1 when the target can be
reached using a linear combination of vectors in ∪j∈[n]Vj,xj . For our complexity measure on span
programs, however, it will be necessary to fix a set of “input vectors” that span each subspace Vj,b.
We desire to span the target using a linear combination of these vectors with small coefficients.

Formally we therefore define a span program as follows:

Definition 3.1 (Span program [KW93]). Let n ∈ N. A span program P consists of a “target”
vector |t〉 in a finite-dimensional inner-product space V over C, together with “input” vectors
|vi〉 ∈ V for i ∈ I. Here the index set I is a disjoint union I = Ifree t

⊔
j∈[n],b∈B Ij,b.

To P corresponds a function fP : Bn → B, defined by

fP (x) =

{
1 if |t〉 ∈ Span({|vi〉 : i ∈ Ifree ∪

⋃
j∈[n] Ij,xj})

0 otherwise
(3.1)
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Additionally, let A ∈ L(CI , V ) be the linear operator whose columns are the input vectors. For
an input x, let Π(x) ∈ L(CI) be the projection onto the indices of the input vectors available for x,

A =
∑
i∈I
|vi〉〈i| (3.2)

Π(x) =
∑

i∈Ifree∪
S

j∈[n] Ij,xj

|i〉〈i| . (3.3)

Lemma 3.2. For a span program P , fP (x) = 1 if and only if |t〉 ∈ Range(AΠ(x)). Equivalently,
fP (x) = 0 if and only if Π(x)A†|t〉 ∈ Range

[
Π(x)A†

(
1− |t〉〈t|‖t‖2

)]
.

Lemma 3.2 follows from Eq. (3.1). Therefore exactly when fP (x) = 1 is there a “witness”
|w〉 ∈ CI satisfying AΠ(x)|w〉 = |t〉. Exactly when fP (x) = 0, there is a witness |w′〉 ∈ V satisfying
〈t|w′〉 6= 0 and Π(x)A†|w′〉 = 0, i.e., |w′〉 has nonzero inner product with the target vector and is
orthogonal to the available input vectors.

The complexity measure we use to characterize span programs is the witness size [RŠ08]:

Definition 3.3 (Witness size with costs [RŠ08]). Consider a span program P , and a vector s ∈
[0,∞)n of nonnegative “costs.” Let S =

∑
j∈[n],b∈B,i∈Ij,b

√
sj |i〉〈i|. For each input x ∈ Bn, define

the witness size of P on x with costs s, wsizes(P, x), as follows:

• If fP (x) = 1, then |t〉 ∈ Range(AΠ(x)), so there is a witness |w〉 ∈ CI satisfying AΠ(x)|w〉 =
|t〉. Then wsizes(P, x) is the minimum squared length of any such witness, weighted by the
costs s:

wsizes(P, x) = min
|w〉:AΠ(x)|w〉=|t〉

‖S|w〉‖2 . (3.4)

• If fP (x) = 0, then |t〉 /∈ Range(AΠ(x)). Therefore there is a witness |w′〉 ∈ V satisfying
〈t|w′〉 = 1 and Π(x)A†|w′〉 = 0. Then

wsizes(P, x) = min
|w′〉: 〈t|w′〉=1

Π(x)A†|w′〉=0

‖SA†|w′〉‖2 . (3.5)

The witness size of P with costs s, restricted to domain D ⊆ Bn, is

wsizes(P,D) = max
x∈D

wsizes(P, x) . (3.6)

Numerous examples are given in [RŠ08, Rei09c]. For the common case that D = Bn, let
wsizes(P ) = wsizes(P,Bn). For j ∈ [n], sj can intuitively be thought of as a charge for evaluating
the jth input bit. When the subscript s is omitted, the costs are taken to be uniform, s = ~1 =
(1, 1, . . . , 1), e.g., wsize(P ) = wsize~1(P ). The extra generality of allowing nonuniform costs is
necessary for considering unbalanced formulas [Rei09b, Rei09a].

Note that replacing the target vector |t〉 by c|t〉, for c 6= 0, changes the witness sizes by a factor
of |c|2 or 1/|c|2, depending on whether fP (x) = 1 or 0. Thus we might just as well have defined
the witness size as the geometric mean of maxx:fP (x)=0 wsizes(P, x) and maxx:fP (x)=1 wsizes(P, x).
Explicit formulas for wsizes(P, x) can be written in terms of Moore-Penrose pseudoinverses of
certain matrices, and are given in [RŠ08, Lemma A.3].
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Classical applications of span programs have used a different complexity measure, the “size” of
P being the number of input vectors, |I|. This measure has been characterized in [Gál01].

Call a span program strict if Ifree = ∅. The original definition of span programs [KW93]
considered only strict span programs. If our aim is to minimize the witness size, then we may
restrict to considering strict span programs:

Proposition 3.4. For any span program P , there exists a strict span program P ′ with fP ′ = fP
and wsizes(P ′, x) = wsizes(P, x) for all s ∈ [0,∞)n and x ∈ Bn.

Proof. Construct P ′ by projecting P ’s target vector |t〉 and input vectors {|vi〉 : i ∈ I r Ifree} to
the space orthogonal to the span of the free input vectors. That is, let ∆free be the projection onto
the space orthogonal to Span({|vi〉 : i ∈ Ifree}). Then the target vector of P ′ is ∆free|t〉 and the
input vectors are {∆free|vi〉 : i ∈ I r Ifree}.

Then fP ′ = fP . Indeed, if fP (x) = 1, i.e., |t〉 = AΠ(x)|w〉 for some witness |w〉, then |w〉 is also
a witness for fP ′(x) = 1. Conversely, if fP ′(x) = 1, i.e., for some |w〉, ∆free|t〉 = ∆freeAΠ(x)|w〉,
then |t〉 −AΠ(x)|w〉 ∈ Range({|vi〉 : i ∈ Ifree}), so fP (x) = 1. Fix s ∈ [0,∞)n.

If fP (x) = 1, then let Πfree =
∑

i∈Ifree |i〉〈i| and Π′(x) = Π(x)−Πfree. We have

wsizes(P, x) = min
|w〉:AΠ(x)|w〉=|t〉

‖SΠ′(x)|w〉‖2

= min
|w〉:Π′(x)|w〉=|w〉

A|w〉−|t〉∈Range(AΠfree)

‖S|w〉‖2 (3.7)

= min
|w〉:∆freeAΠ′(x)|w〉=∆free|t〉

‖S|w〉‖2 = wsizes(P ′, x) .

If fP (x) = 0, then

wsizes(P, x) = min
|w′〉:〈t|w′〉=1

Π(x)A†|w′〉=0

‖SA†|w′〉‖2

= min
|w′〉:〈t|w′〉=1

Π(x)A†|w′〉=0

∆free|w′〉=|w′〉

‖SA†|w′〉‖2

= min
|w′〉:〈t|∆free|w′〉=1

Π(x)A†∆free|w′〉=0

‖SA†∆free|w′〉‖
2

= wsizes(P ′, x) ,

(3.8)

where the second equality is because Π(x)A†|w′〉 = 0 implies that 〈vi|w′〉 = 0 for all i ∈ Ifree.

Allowing free input vectors can be convenient for defining and composing span programs, and
may be necessary for developing span-program-based quantum algorithms that are time efficient as
well as query efficient [Rei09b, Rei09a, Rei09c]. The problem for time complexity is that applying
the projection ∆free affects the sparsity of |t〉 and A, as well as the norm of the entry-wise absolute-
value of A, and this complicates the implementation of a certain quantum walk. In this article,
though, we henceforth consider only strict span programs.

In fact, we may restrict even further, and consider only “canonical” span programs [KW93]:
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Definition 3.5 (Canonical span program [KW93]). Let P be a strict span program computing fP :
Bn → B, with inner product space V , target vector |t〉 and input vectors |vi〉 for i ∈

⊔
j∈[n],b∈B Ij,b.

P is canonical if:

• V = CF0 where F0 = {x ∈ Bn : fP (x) = 0}. V has orthonormal basis {|x〉 : x ∈ F0}.

• The target is given by |t〉 =
∑

x∈F0
|x〉.

• For all x ∈ F0, j ∈ [n] and i ∈ Ij,xj , 〈x|vi〉 = 0; thus 〈x|AΠ(x) = 0.

Theorem 3.6. For any cost vector s ∈ [0,∞)n, a span program P can be converted to a canonical
span program P̂ that computes the same function fP̂ = fP , with wsizes(P̂ , x) ≤ wsizes(P, x) for
all x ∈ Bn. In fact, for all x ∈ Bn with fP (x) = 0, wsizes(P̂ , x) = wsizes(P, x), with |x〉 itself an
optimal witness for fP̂ (x) = 0.

Proof. This theorem is analogous to [KW93, Theorem 6], and we use the same conversion procedure,
except additionally analyzing the witness size.

Let P be a strict span program with target vector |t〉 ∈ V and input vectors |vi〉 for i ∈ I =⋃
j∈[n],b∈B Ij,b. Fix s ∈ [0,∞)n and let S =

∑
j∈[n],b∈B,i∈Ij,b

√
sj |i〉〈i|.

For x ∈ Bn, let |w(x)〉 or |w′(x)〉 be optimal witnesses for fP (x) being 1 or 0, respectively, with
costs s. That is, let

|w(x)〉 = arg min|w〉:AΠ(x)|w〉=|t〉‖S|w〉‖
2 if fP (x) = 1

|w′(x)〉 = arg min |w′〉:〈t|w′〉=1

Π(x)A†|w′〉=0

‖SA†|w′〉‖2 if fP (x) = 0 (3.9)

(See [RŠ08, Lemma A.3] for explicit formulas for |w(x)〉 and |w′(x)〉.)
Let F0 = {x ∈ Bn : fP (x) = 0}. To construct P̂ from P , simply apply to P ’s target and input

vectors the map
∑

x∈F0
|x〉〈w′(x)| ∈ L(V,CF0). Then

• The target vector becomes |t̂〉 =
∑

x∈F0
|x〉〈w′(x)|t〉 =

∑
x∈F0

|x〉 ∈ CF0 , as required for a
canonical span program. The input vectors become, for i ∈ I, |v̂i〉 =

∑
x∈F0

|x〉〈w′(x)|vi〉.

• For any x ∈ F0 and i ∈ ∪j∈[n]Ij,xj , since 〈w′(x)|vi〉 = 0, 〈x|v̂i〉 = 0.

Therefore P̂ is a canonical span program. Let Â =
∑

i∈I |v̂i〉〈i| =
∑

x∈F0
|x〉〈w′(x)|A.

For x ∈ F0, note that 〈t̂|x〉 = 1 and

Â†|x〉 = A†|w′(x)〉 . (3.10)

In particular, Π(x)Â†|x〉 = 0, so |x〉 is a witness for fP̂ (x) = 0. Also, wsizes(P̂ , x) ≤ ‖SÂ†|x〉‖2 =
‖SA†|w′(x)〉‖2 = wsizes(P, x). In fact, |x〉 is an optimal witness for fP̂ (x) = 0. Indeed, assume
otherwise, and let |û〉 =

∑
y∈F0

ûy|y〉 satisfy 〈t̂|û〉 =
∑

y∈F0
ûy = 1, Π(x)Â†|û〉 = 0 and ‖SÂ†|û〉‖2 <

‖SÂ†|x〉‖2. Let |u〉 =
∑

y∈F0
ûy|w′(y)〉, so A†|u〉 = Â†|û〉. Then 〈t|u〉 = 1, Π(x)A†|u〉 = 0, and

‖SA†|u〉‖2 = ‖SÂ†|û〉‖2 < wsizes(P, x), a contradiction.
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Next consider an x ∈ Bn such that fP (x) = 1. Then

ÂΠ(x)|w(x)〉 =
∑
y∈F0

|y〉〈w′(y)|AΠ(x)|w(x)〉

=
∑
y∈F0

|y〉〈w′(y)|t〉

= |t̂〉 .

(3.11)

Thus |w(x)〉 is a witness for fP̂ (x) = 1, and wsizes(P̂ , x) ≤ ‖S|w(x)〉‖2 = wsizes(P, x).

4 Adversary lower bounds

The adversary method lower bounds the quantum query complexity of a function by a hybrid ar-
gument that considers the system’s entanglement when run on a superposition of inputs [HŠ05].
The technique was introduced by Ambainis [Amb02]. A number of variants of Ambainis’s bound
were soon discovered, including weighted versions [HNS02, BS04, Amb06, Zha05], a spectral ver-
sion [BSS03], and a version based on Kolmogorov complexity [LM04]. These variants can be asymp-
totically stronger than the original unweighted bound, but are equivalent to each other [ŠS06], and
we denote them all by Adv.

The lower bound Adv is known to be loose for some functions, as it runs up against certificate
complexity and property testing barriers. Høyer, Lee and Špalek discovered a strict generalization
Adv± of Adv [HLŠ07]. For example, for a certain four-bit function f studied in [Amb06], Adv(fk) =
2.5k, whereas Adv±(fk) ≥ 2.51k. Adv± breaks the certificate complexity and property testing
barriers, and no similar limits on its power have been found. In particular, for no function f is it
known that the quantum query complexity of f is ω(Adv±(f)).

In this section, we define the two adversary bounds. On account of how their definitions differ,
we call Adv the “nonnegative-weight” adversary bound, and Adv± the “general” adversary bound.
We then derive a new dual formulation of the semi-definite program for the general adversary bound
for boolean functions, and apply it to prove a composition theorem.

Definition 4.1 (Adversary bounds with costs [HLŠ05, HLŠ07]). For finite sets C and E, and
D ⊆ Cn, let f : D → E and let s ∈ [0,∞)n be a vector of nonnegative costs. An adversary matrix
for f is a nonzero, |D| × |D| real, symmetric matrix Γ that satisfies 〈x|Γ|y〉 = 0 for all x, y ∈ D
with f(x) = f(y).

Define the nonnegative-weight adversary bound for f , with costs s, as

Advs(f) = max
adversary matrices Γ:
∀x,y∈D, 〈x|Γ|y〉≥0
∀j∈[n], ‖Γ◦∆j‖≤sj

‖Γ‖ , (4.1)

where Γ ◦∆j denotes the entry-wise matrix product between Γ and ∆j =
∑

x,y∈D:xj 6=yj
|x〉〈y|, and

the norm is the operator norm.
The general adversary bound for f , with costs s, is

Adv±s (f) = max
adversary matrices Γ:
∀j∈[n], ‖Γ◦∆j‖≤sj

‖Γ‖ . (4.2)
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In this maximization, the entries of Γ need not be nonnegative. In particular, Adv±s (f) ≥ Advs(f).
Letting ~1 = (1, 1, . . . , 1), the nonnegative-weight adversary bound for f is Adv(f) = Adv~1(f)

and the general adversary bound for f is Adv±(f) = Adv±~1 (f).

The adversary bounds are primarily of interest because, with uniform costs s = ~1, they give
lower bounds on quantum query complexity [BSS03, HLŠ07].

Definition 4.2. For f : D → E, with D ⊆ Cn, let Qε(f) be the ε-bounded-error quantum query
complexity of f , and let Q(f) = Q1/10(f).

Theorem 4.3 ([BSS03, HLŠ07]). For any function f : D → E, with D ⊆ Cn, the ε-bounded-error
quantum query complexity of f is lower-bounded as

Qε(f) ≥
1− 2

√
ε(1− ε)
2

Adv(f)

Qε(f) ≥
1− 2

√
ε(1− ε)− 2ε

2
Adv±(f) .

(4.3)

In particular, Q(f) = Ω(Adv±(f)). Moreover, if D = {0, 1}, then

Qε(f) ≥
1− 2

√
ε(1− ε)
2

Adv±(f) . (4.4)

Let us now prove a dual formulation of Eq. (4.2) for Adv±s (f), that holds when the input
alphabet is binary or the codomain is boolean.

Theorem 4.4. For finite sets D ⊆ Cn, and E, let f : D → E, and let s ∈ [0,∞)n be a vector of
nonnegative costs. If either C = {0, 1} or E = {0, 1}, then the general adversary bound for f , with
costs s, equals

Adv±s (f) = min
X�0:

∀(x,y)∈F,
P

j∈[n]:xj 6=yj
〈x,j|X|y,j〉=1

max
x∈D

∑
j∈[n]

sj〈x, j|X|x, j〉 . (4.5)

Here X is required to be a positive semi-definite, (n|D|) × (n|D|) matrix, with coordinates labeled
by D × [n], and F = {(x, y) ∈ D ×D : f(x) 6= f(y)}. The optimum is achieved.

Proof. The proof is by a standard application of duality theory to the semi-definite program (SDP)
given in Definition 4.1. Nonetheless, this expression for Adv±s (f) is new, and is somewhat simpler
than the expression that was known before, Eq. (4.9) below. Therefore we include a proof, based
on the following immediate observation:

Claim 4.5. Let M =
∑

j,k∈[m]Mjk|j〉〈k| ∈ L(C[m]) be an m ×m Hermitian matrix. Assume that
either M is entry-wise nonnegative, i.e., Mjk ≥ 0 for all j, k ∈ [m], or that M is bipartite, i.e., for
some l ∈ [m− 1], M =

∑
j≤l,k>l(Mjk|j〉〈k|+Mkj |k〉〈j|). Then M � 1 if and only if ‖M‖ ≤ 1.

Taking the dual of the SDP on the right-hand side of Eq. (4.5), we obtain

max
Γ̃=

P
F αxy |x〉〈y|
{βx≥0}

∑
F

αxy such that
∑
x

βx ≤ 1, ∀j, Γ̃j � sj
∑
x

βx|x〉〈x| . (4.6)
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Here Γ̃j = Γ̃ ◦∆j =
∑

x,y∈D:xj 6=yj
|x〉〈x|Γ̃|y〉〈y| as in Definition 4.1. Also, Γ̃j � sj

∑
x βx|x〉〈x| means

that the difference (sj
∑

x∈D βx|x〉〈x|) − Γ̃j is a positive semi-definite matrix. In particular, this
constraint implies that if sj = 0 then αxy = 0 for all x, y with xj 6= yj ; and that if αxy 6= 0, then
βx > 0 and βy > 0.

Thus we can change variables, letting Γ =
∑

(x,y)∈∆:αxy 6=0
αxy√
βxβy
|x〉〈y|. Like Γ̃, Γ can vary

over the set of adversary matrices, i.e., symmetric matrices supported only on those |x〉〈y| with
f(x) 6= f(y). The objective function becomes

∑
F 〈x|Γ|y〉

√
βxβy, and, for j ∈ [n], the constraint

on Γ̃j becomes Γj � sj1, where Γj = Γ ◦∆j .
Now if C = {0, 1}, then the matrices ∆j are bipartite—perhaps in a permuted basis—so each

Γj is also bipartite. If E = {0, 1}, then Γ is bipartite since it is supported only on F . In either
case, by Claim 4.5 the condition Γj � sj1 is equivalent to ‖Γj‖ ≤ sj . Therefore, after changing
variables, the SDP becomes

max
adversary matrices Γ

{βx≥0}

∑
F

〈x|Γ|y〉
√
βxβy such that

∑
x

βx ≤ 1, ∀j, ‖Γj‖ ≤ sj . (4.7)

Since any negative signs on the coordinates of the principal eigenvector of Γ can be absorbed into
the matrix, without affecting the norms of the Γj , the objective function in Eq. (4.7) simplifies
to ‖Γ‖, so we obtain Adv±(f). Since the dual SDP in Eq. (4.6) is clearly strictly feasible, by
the duality principle [Lov03, Theorem 3.4] the primal optimum equals the dual optimum and the
primal optimum is achieved. Eq. (4.5) follows.

For completeness, we state without proof the dual forms of the adversary bounds for the case
of functions without a binary input alphabet or boolean codomain:

Theorem 4.6. For finite sets D ⊆ Cn, and E, let f : D → E, and let s ∈ [0,∞)n. Let F =∑
x,y∈D: f(x)6=f(y) |x〉〈y|. As in Definition 4.1, let ∆j =

∑
x,y∈D:xj 6=yj

|x〉〈y| for j ∈ [n], and let ◦
denote entry-wise matrix multiplication.

Then the nonnegative-weight adversary bound for f , with costs s, equals

Advs(f) = min
Xj�0:P

j Xj◦∆j◦F≥F

max
x∈D

∑
j∈[n]

sj〈x|Xj |x〉 . (4.8)

The minimization is over |D| × |D| positive semi-definite matrices Xj, j ∈ [n], that satisfy the
entry-wise inequality

∑
j Xj ◦∆j ◦F ≥ F . (Note that Eq. (4.5) has the same form, except with the

requirement that
∑

j Xj ◦∆j ◦ F = F .)
The general adversary bound for f , with costs s, equals

Adv±s (f) = min
Xj ,Yj�0:P

j(Xj−Yj)◦∆j◦F=F

max
x∈D

∑
j∈[n]

sj〈x|(Xj + Yj)|x〉 . (4.9)

For boolean functions, the nonnegative-weight adversary bound composes multiplicatively, but
this was not known to hold for the general adversary bound [HLŠ07]. Theorem 4.4 allows us to
prove that the general adversary bound composes in the same way.
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Theorem 4.7 (Adversary bound composition [HLŠ07, Amb06, LLS06, HLŠ05]). Let f : {0, 1}n →
{0, 1} and, for j ∈ [n], let fj : {0, 1}mj → {0, 1}. Define g : {0, 1}m1 × · · · × {0, 1}mn → {0, 1} by

g(x) = f
(
f1(x1), . . . , fn(xn)

)
. (4.10)

Let s ∈ [0,∞)m1 × · · · × [0,∞)mn, and let αj = Advsj (fj) and βj = Adv±sj
(fj) for j ∈ [n]. Then

Advs(g) = Advα(f) (4.11)
Adv±s (g) ≥ Adv±β (f) . (4.12)

In particular, if Advs1(f1) = · · · = Advsn(fn) = α, then Advs(g) = αAdv(f).

Theorem 4.8 (General adversary bound composition). Under the conditions of Theorem 4.7,

Adv±s (g) = Adv±β (f) . (4.13)

In particular, if Adv±s1(f1) = · · · = Adv±sn
(fn) = β, then Adv±s (g) = βAdv±(f).

Proof. We aim to show that Eq. (4.12) is tight. Recall that B = {0, 1}. For x ∈ Bm1 × · · · ×Bmn ,
let y(x) = (f1(x), . . . , fn(x)), so g(x) = f(y(x)).

For y ∈ Bn and j ∈ [n], fix vectors |vyj〉 ∈ V that achieve Adv±β (f), i.e.,
∑

j:yj 6=yj′
〈vyj |vy′j〉 = 1

for all y, y′ ∈ Bn with f(y) 6= f(y′), and Adv±β (f) = maxy∈Bn

∑
j∈[n] βj‖|vyj〉‖

2. For j ∈ [n], fix

vectors |vjzk〉 ∈ V
j for z ∈ Bmj , k ∈ [mj ], that achieve Adv±sj

(fj), i.e.,
∑

k:zk 6=z′k
〈vjzk|v

j
z′k〉 = 1 for

all z, z′ ∈ Bmj with fj(z) 6= fj(z′).
Based on these solutions, we construct a feasible solution for the dual formulation of Adv±s (g).

For x ∈ Bm1 × · · · ×Bmn , j ∈ [n] and k ∈ [mj ], let

|wxjk〉 = |vy(x)j〉 ⊗ |v
j
xjk
〉 ⊗ |δg(x),fj(xj)〉 ∈ V ⊗ (⊕j∈nV j)⊗C2 . (4.14)

Here, the third register is spanned by the orthonormal basis {|0〉, |1〉}, and δa,b is 1 if a = b and 0
otherwise.

Consider x, x′ ∈ Bm1 × · · · ×Bmn such that g(x) 6= g(x′). In particular, y(x) 6= y(x′). Then∑
j∈[n],k∈[mj ]:
xjk 6=x′jk

〈wxjk|wx′jk〉 =
∑
j∈[n]

〈vy(x)j |vy(x′)j〉
∑

k∈[mj ]:xjk 6=x′jk

〈vjxjk
|vj
x′jk
〉(1− δfj(xj),fj(x′j))

=
∑

j∈[n]:y(x)j 6=y(x′)j

〈vy(x)j |vy(x′)j〉
∑

k∈[mj ]:xjk 6=x′jk

〈vjxjk
|vj
x′jk
〉

=
∑

j∈[n]:y(x)j 6=y(x′)j

〈vy(x)j |vy(x′)j〉

= 1 .

(4.15)
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Hence indeed the vectors |wxjk〉 give a feasible solution. We conclude that

Adv±s (g) ≤ max
x∈Bm1×···×Bmn

∑
j∈[n],k∈[mj ]

sjk‖|wxjk〉‖2

= max
x

∑
j∈[n]

‖|vy(x)j〉‖2
∑
k∈[mj ]

sjk‖|vjxjk
〉‖2

≤ max
x

∑
j∈[n]

βj‖|vy(x)j〉‖2

= Adv±β (f) .

(4.16)

The last step is clearly an inequality, which is all that is needed to finish the proof. It is in fact an
equality, though, because y(x) varies over all strings in Bn as x varies over Bm1 × · · · ×Bmn .

Finally, Theorem 4.7 allows connecting span program witness size to the adversary lower bounds:

Theorem 4.9 ([RŠ08]). For any span program P computing fP : {0, 1}n → {0, 1},

wsize(P ) ≥ Adv±(fP ) ≥ Adv(fP ) . (4.17)

There is a direct proof that wsize(P ) ≥ Adv(fP ) in [RŠ08, Sec. 5.3], but the inequality
wsize(P ) ≥ Adv±(fP ) is only implicit in [RŠ08]. The argument is as follows. Letting fk : {0, 1}nk →
{0, 1} be the k-times-iterated composition of f on itself, Q(fkP ) = Ok(wsize(P )k) by Theorem 1.1.
Now by Theorem 4.7, Adv±(f)k ≤ Adv±(fk) = O(Q(fkP )). Putting these results together and let-
ting k →∞ gives Adv±(f) ≤ wsize(P ). A full and direct proof will be given below in Theorem 5.1.

5 Span program witness size and the general adversary bound

In this section, we will use Theorem 3.6 to formulate a semi-definite program for the optimal span
program computing a boolean function f . Remarkably, the optimal span program witness size
is exactly equal to the general adversary bound. This result has several corollaries, in quantum
algorithms and in complexity theory, that we give in Section 6.

Theorem 5.1. For any function f : D → B, with D ⊆ Bn, and any cost vector s ∈ [0,∞)n,

inf
P : fP |D=f

wsizes(P,D) = Adv±s (f) , (5.1)

where the infimum is over span programs P that compute a function agreeing with f on D. More-
over, this infimum is achieved.

Proof. Lemma 5.2 constructs an SDP whose solution is the optimal witness size of a span program
computing f .

Lemma 5.2. Let f : D → B, with D ⊆ Bn, be a partial boolean function. For b ∈ B, let
Fb = {x ∈ D : f(x) = b}. Then for any cost vector s ∈ [0,∞)n,

inf
P : fP |D=f

wsizes(P,D) = inf
m∈N,

{|vxj〉∈Cm:x∈D,j∈[n]} :
∀(x,y)∈F0×F1,

P
j∈[n]:xj 6=yj

〈vxj |vyj〉=1

max
x∈D

∑
j∈[n]

sj‖|vxj〉‖2 .
(5.2)
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Proof. The proof is by establishing a correspondence between solutions to the constraints on the
right-hand side of Eq. (5.2) and canonical span programs computing fP |D = f with maxj∈[n],b∈B |Ij,b| ≤
m.

First let us prove the ≤ direction. Given a solution {|vxj〉}, let P be a span program with target
|t〉 =

∑
x∈F0

|x〉 ∈ RF0 and Ij,b = [m] for all j ∈ [n], b ∈ B. These sets are not disjoint, so for k ∈ Ij,b,
use |vjbk〉 to denote the corresponding input vector, defined by |vjbk〉 =

∑
x∈F0:xj 6=b 〈vxj |k〉|x〉. Thus

A :=
∑

j∈[n],b∈B,k∈[m]

|vjbk〉〈j, b, k|

=
∑

x∈F0,j∈[n]

|x〉〈j, x̄j | ⊗ 〈vxj | .
(5.3)

For x ∈ F0, |w′〉 = |x〉 is a witness for fP (x) = 0; 〈x|t〉 = 1 but 〈x|vjxjk〉 = 0 for all j, k. The
witness size is ‖A†|x〉‖2 =

∑
j sj‖|vxj〉‖

2.
For x ∈ F1, let |w〉 =

∑
j |j, xj〉 ⊗ |vxj〉. The condition that

∑
j:xj 6=yj

〈vyj |vxj〉 = 1 implies that

|w〉 is a witness, AΠ(x)|w〉 = A|w〉 = |t〉, so fP (x) = 1. The witness size is ‖|w〉‖2 =
∑

j sj‖|vxj〉‖
2.

Thus fP |D = f and wsizes(P,D) ≤ maxx
∑

j sj‖|vxj〉‖
2.

Now let us prove the ≥ direction. Let P be a span program computing fP , with fP |D = f .
By Theorem 3.6, we may assume that P is in canonical form, and that for each x ∈ F0, |x〉 is an
optimal witness for fP (x) = 0: wsizes(P, x) = ‖SA†|x〉‖2.

Thus the target vector |t〉 =
∑

x∈F0
|x〉 and the input vectors lie in the inner product space CF0 .

Let m = maxj∈[n],b∈B |Ij,b|. Without loss of generality, we may assume that |Ij,b| = m for all j ∈ [n]
and b ∈ B; if some index set Ij,b is smaller, then we can pad it with zero vectors without affecting
the witness size. Therefore, let Ij,b = [m] for all j ∈ [n] and b ∈ B. These sets are not disjoint, so
for k ∈ Ij,b, use |vjbk〉 to denote the corresponding input vector.

For x ∈ F0, note that since the span program is canonical, 〈x|vjxjk〉 = 0 for all j ∈ [n] and
k ∈ [m]. For j ∈ [n], let |vxj〉 =

∑
k∈[m] 〈vjx̄jk|x〉|k〉. Then Eq. (5.3) again holds. Moreover,

wsizes(P, x) = ‖SA†|x〉‖2 =
∑

j∈[n] sj‖|vxj〉‖
2. Thus maxx∈F0

∑
j sj‖|vxj〉‖

2 ≤ wsizes(P,D).
For x ∈ F1, on the other hand, let |wx〉 be an optimal witness vector, i.e., satisfying |wx〉 =

Π(x)|wx〉 =
∑

j∈[n],k∈[m] |j, xj , k〉〈j, xj , k|wx〉, A|wx〉 = |t〉 and wsizes(P, x) = ‖S|wx〉‖2. For j ∈ [n],
let |vxj〉 =

∑
k∈[m] |k〉〈j, xj , k|wx〉. Then

A|wx〉 = |t〉 =⇒ ∀ y ∈ F0,
∑

j:xj 6=yj

〈vyj |vxj〉 = 1 . (5.4)

Finally, wsizes(P, x) =
∑

j sj‖|vxj〉‖
2, so maxx∈F1

∑
j sj‖|vxj〉‖

2 ≤ wsizes(P,D).

Now the expression on the right-hand side of Eq. (5.1) is just the Cholesky decomposition of
the solution to the SDP in Eq. (4.5). We conclude that infP :fP |D=f wsizes(P ) = Adv±s (f), as
claimed.

This result may be somewhat surprising, because the optimal span programs known previously
were all for functions f with Adv(f) = Adv±(f) [RŠ08]. It is not clear why earlier attempts to
find optimal span programs did not succeed for any function f with Adv(f) < Adv±(f).

Before stating some corollaries of Theorem 5.1, let us make a remark on the proof:
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Lemma 5.3. For a function f : D → B, with D ⊆ Bn, assume that there is a rank-k optimal
solution X to Eq. (4.5) for Adv±(f). Note that k ≤ n|D| ≤ n2n. Then by the proof of Lemma 5.2
there is an optimal span program computing f with |Ij,b| = k for all j ∈ [n] and b ∈ B.

[HLŠ07, Theorem 18] states in particular that Eq. (4.8) always has a rank-one optimal solution.
The proof takes the Cholesky decomposition of a solution X =

∑
x,y,j,j′ |x, j〉〈vxj |vyj′〉〈y, j′|, and

replaces each vector |vxj〉 by the scalar ‖|vxj〉‖. That is, let X ′ =
∑

x,y,j,j′ ‖|vxj〉‖‖|vyj′〉‖|x, j〉〈y, j′|,
a rank-one matrix. Then by the Cauchy-Schwarz inequality, 〈x, j|X ′|y, j〉 ≥ 〈x, j|X|y, j〉, with
equality when y = x, so X ′ is as good a solution to Eq. (4.8) as X is. However, note that even
when Advs(f) = Adv±s (f), this argument does not imply that Eq. (4.5) has a rank-one optimal
solution [Špa09].

6 Consequences of the SDP for optimal witness size

This section will state several corollaries of Theorem 5.1.

Theorem 6.1. For any function f : D → {0, 1}, with D ⊆ {0, 1}n, there exists a span program P
computing fP |D = f with witness size upper-bounded by the bounded-error quantum query complex-
ity of f ,

wsize(P,D) = O(Q(f)) . (6.1)

Proof. By Theorem 4.3, the quantum query complexity of f is lower-bounded by the general ad-
versary bound for f , which by Theorem 5.1 equals the best span program witness size:

Q(f) = Ω(Adv±(f)) (6.2)
= Ω

(
inf

P :fP |D=f
wsize(P,D)

)
.

It is an interesting problem to prove Theorem 6.1 based directly on a quantum query algorithm
that evaluates f , as in the proof of [Rei09c, Theorem 3.1] for the one-sided error case.

By substituting Theorem 5.1 into Theorem 1.1, we obtain an exact asymptotic expression for
the quantum query complexity of a boolean function f composed on itself.

Theorem 6.2. For any function f : {0, 1}n → {0, 1}, define fk : {0, 1}nk → {0, 1} as the function
f composed on itself repeatedly to a depth of k, as in Theorem 1.1. Then

lim
k→∞

Q(fk)1/k = Adv±(f) . (6.3)

Proof. By Theorems 4.3 and 4.7, Q(fk) = Ω(Adv±(fk)) = Ω(Adv±(f)k). Hence lim infk→∞Q(fk)1/k ≥
Adv±(f). Theorem 5.1 together with the formula-evaluation algorithm Theorem 1.1 impliesQ(fk) =
Ok(Adv±(f)k). Hence lim supk→∞Q(fk)1/k ≤ Adv±(f).

Theorem 6.2 implies a new asymptotic upper bound on the sign degree of a boolean function f .

Definition 6.3. The sign degree of a function f : {0, 1}n → {0, 1} is the least degree of a real
multivariate polynomial p(x1, . . . , xn) such that for all x ∈ {0, 1}n, p(x) ≥ 0 if and only if f(x) = 1.

Corollary 6.4 ([Lee09]). For any function f : {0, 1}n → {0, 1},

sign-degree(f) ≤ Adv±(f) . (6.4)
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Proof. By the polynomial method [BBC+01, NC00], sign-degree(f) ≤ 2Q(f). Thus

lim sup
k→∞

sign-degree(fk)1/k ≤ lim
k→∞

Q(fk)1/k = Adv±(f) . (6.5)

Now use sign-degree(f)k ≤ sign-degree(fk) [Lee09].

Corollary 6.4 is a classical statement, with positive consequences in classical learning theory; an
n-bit function with sign-degree d can be learned, in several models, in time 2Õ(d) [KS01, KOS04].
However, its proof uses quantum algorithms [DW09]. A more direct proof is not known.

For example, if f is a read-once AND-OR formula on n variables, Adv(f) = Adv±(f) =√
n [BS04]. Indeed, these bounds can be computed by showing Advs(ANDm) = Adv±s (ANDm) =√∑

j∈[m] s
2
j , where ANDm denotes the AND gate on m variables, and then using Theorems 4.7

and 4.8 to compose the adversary bounds. Therefore sign-degree(f) ≤
√
n. This inequality is tight

for some n, and resolves an open problem posed in [OS03]. The best previous upper bound was
sign-degree(f) = n1/2+o(1) based on a quantum algorithm [ACR+07]. Of course, Eq. (6.4) can be
loose, for example for disjunctive normal form (DNF) formulas [KS01]. Given Eq. (1.4), this is not
surprising, as 2Q(f) in fact upper-bounds the approximate polynomial degree, which lies above the
sign degree.

Theorem 5.1 is very useful for developing quantum algorithms for evaluating formulas. Theo-
rem 1.1 is only a special case of the formula-evaluation result from [RŠ08]. That article’s main result
can also be extended. Ref. [RŠ08] used the nonnegative-weight adversary bound Adv instead of the
general adversary bound Adv± throughout, because only for functions f with Adv(f) = Adv±(f)
had matching span programs been found. Theorem 5.1, however, gives optimal span programs for
every boolean function f . Thus we can simply modify [RŠ08, Def. 4.5], defining adversary-balanced
formulas, to refer to Adv± instead of Adv. That is, a formula is adversary-balanced if at every
gate the input subformulas have equal general adversary bounds. Letting S be any finite gate set
of boolean functions, [RŠ08, Theorem 4.7] becomes:

Theorem 6.5. There exists a quantum algorithm that evaluates an adversary-balanced formula
ϕ(x) over S using O(Adv±(ϕ)) input queries. After efficient classical preprocessing independent
of the input x, and assuming O(1)-time coherent access to the preprocessed classical string, the
running time of the algorithm is Adv±(ϕ)(log Adv±(ϕ))O(1).

Aside from changing Adv to Adv±, the proof from [RŠ08] is unchanged. Note that layered
formulas, in which gates at the same depth are the same, are a special case of adversary-balanced
formulas.

Notice that Theorem 6.5 is superior to the algorithm behind Eq. (1.4), from [Rei10], because
Theorem 6.5 bounds time complexity as well as query complexity. In fact, though, the more general
analysis of quantum algorithms for evaluating span programs in [Rei09c] is superior to the analysis
in [RŠ08] even for the special case of evaluating formulas. Using this improved analysis, Theorem 6.5
has been generalized to hold even for “almost-balanced” formulas, for which the input subformulas
of a gate are allowed to have general adversary bounds that differ by a constant factor [Rei09b].

Finally, combined with Theorem 4.8 and simple monotonicity arguments for the witness size [RŠ08,
Remark A.5], Theorem 5.1 gives a composition result for span programs:

Corollary 6.6 (Span program composition). Under the conditions of Theorem 4.7, let P be a span
program computing fP = f and, for j ∈ [n], let Pj be a span program computing fPj = fj. Then
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there exists a span program Q computing the composed function fQ = g, and such that, for any
s ∈ [0,∞)m1 × · · · × [0,∞)mn, with βj = wsizesj (Pj),

wsizes(Q) ≤ wsizeβ(P ) . (6.6)

In particular, wsizes(Q) ≤ wsize(P ) maxj∈[n] wsizesj (Pj).

This corollary should not be emphasized, though, as there is a direct and explicit composition
theorem for span programs [Rei09c, Theorem 4.3]. In fact, Theorem 4.8 was first proved indirectly,
by combining the span program composition theorem with Theorem 5.1 (see [Rei09c, Theorem 7.2]).

7 Conclusion

We have shown that for any boolean function f , the general adversary bound Adv±(f) exactly
characterizes the optimal span program witness size. As discussed below Theorem 6.5, this and
subsequent work [Rei09b] has largely resolved the problem of evaluating formulas quantumly, with
optimal query complexity and near-optimal time complexity, except for formulas including gates of
unbounded size or very unbalanced formulas. The formula-evaluation algorithms exploit the ease
of composing span programs. Span programs, and the semi-definite program for finding optimal
span programs, may also be useful for developing other quantum algorithms.

Another open question is to determine the relationship, if any, between span programs and
quantum query algorithms for non-boolean functions, and especially for functions with a non-
binary input alphabet. Of course an input in [k]n can always be encoded into binary, {0, 1}ndlog2 ke,
and then a span program built from the general adversary bound SDP. However, this encoding
might increase Adv± significantly, possibly by more than the expected O(log k) factor. Neither
adversary bound is known to be stable under different encodings of the input. A natural and
more direct approach is to define generalized canonical span programs and extend Lemma 5.2 to
characterize an optimal generalized witness size. Although this may lead to new quantum query
algorithms, it will likely be insufficient for obtaining provably optimal or near-optimal algorithms,
since the SDP on the right-hand side of Eq. (4.5) is greater than Adv± in general; see Eq. (4.9).
Moreover, there are surjective functions [3]2 → [3] for which both Adv± and the SDP in Eq. (4.5)
compose strictly sub-multiplicatively. This indicates, not surprisingly, that the formula-evaluation
problem with non-boolean gate sets may be much complicated.
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